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MIXED WEAK TYPE ESTIMATES: EXAMPLES AND
COUNTEREXAMPLES RELATED TO A PROBLEM

OF E. SAWYER

BY

SHELDY OMBROSI (Bah́ıa Blanca) and CARLOS PÉREZ (Bilbao)

Abstract. We study mixed weighted weak-type inequalities for families of functions,
which can be applied to study classical operators in harmonic analysis. Our main theorem
extends the key result of Cruz-Uribe et al. (2005).

1. Introduction and main results. In this work we consider mixed
weighted weak-type inequalities of the form

(1.1) uv

({
x ∈ Rn :

|T (fv)(x)|
v(x)

> t

})
≤ C

t

�

Rn
|f(x)|Mu(x)v(x) dx,

where T is either the Hardy–Littlewood maximal operator or any Calderón–
Zygmund operator. Similar inequalities were studied by Sawyer [Sa] moti-
vated by the work of Muckenhoupt and Wheeden [MW] (see also [AM]
and [MOS]).

E. Sawyer proved that inequality (1.1) holds in R when T = M is the
Hardy–Littlewood maximal operator assuming that the weights u and v be-
long to the class A1. This result can be seen as a very delicate extension of
the classical weak type (1, 1) estimate. However, the reason why E. Sawyer
considered (1.1) is due to the following interesting observation. Indeed, in-
equality (1.1) yields a new proof of the classical Muckenhoupt theorem for
M assuming that the Ap weights can be factored (P. Jones’s theorem). This
means that if w ∈ Ap then w = uv1−p for some u, v ∈ A1. Now, the op-
erator f 7→ M(fv)/v is bounded on L∞(uv) and it is of weak type (1, 1)
with respect to the measure uvdx by (1.1). Hence by the Marcinkiewicz
interpolation theorem we recover Muckenhoupt’s theorem.

In the same paper, Sawyer conjectured that if T is instead the Hilbert
transform the inequality also holds with the same hypotheses on the weights
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u and v. This conjecture was proved in [CMP2]. In fact, it is proved in this
paper that the inequality (1.1) holds for both the Hardy–Littlewood max-
imal operator and for any Calderón–Zygmund operator in any dimension
if either the weights u and v both belong to A1, or u belongs to A1 and
uv ∈ A∞. The method of proof is quite different from that in [Sa] (and
also from [MW]) and it is based on certain ideas from extrapolation that go
back to the work of Rubio de Francia (see [CMP2] and also the expository
paper [CMP3]). Applications of these results can be found in [LOPTT]. The
authors conjectured in [CMP2] that their results may hold under weaker hy-
potheses on the weights. To be more precise, they conjectured that inequality
(1.1) is true if u ∈ A1 and v ∈ A∞. Very recently, some quantitative esti-
mates in terms of the relevant constants of the weights have been obtained
in [OPR] and some new conjectures have been formulated.

Inequalities like (1.1), when T is the Hardy–Littlewood maximal oper-
ator, can also be seen as generalizations of the classical Fefferman–Stein
inequality

‖Mf‖L1,∞(u) ≤ c‖f‖L1(Mu),

where c is a dimensional constant. However, in Section 3, we will see that
(1.1) does not hold in general even for weights satisfying strong conditions
like v ∈ RH∞ ⊂ A∞.

In this work we generalize the extrapolation result in [CMP3] to a larger
class of weights (see Theorem 1.1 below). This method of extrapolation is
flexible enough with scope reaching beyond the classical linear operators.
Indeed, it can be applied to square functions, vector-valued operators as
well as multilinear singular integral operators. See Section 2 for some of
these applications. In fact, the best way to state the extrapolation theorem
is without considering operators and the result can be seen as a property of
families of functions. Hereafter, F will denote a family of ordered pairs of
non-negative, measurable functions (f, g). Also we are going to assume that
F has the following property: for some p0, 0 < p0 <∞, and every w ∈ A∞,

(1.2)
�

Rn
f(x)p0w(x) dx ≤ C

�

Rn
g(x)p0w(x) dx,

for all (f, g) ∈ F such that the left-hand side is finite, and where C depends
only on the A∞ constant of w. By the main theorem in [CMP1], this is then
true for any exponent p ∈ (0,∞) and every w ∈ A∞,

(1.3)
�

Rn
f(x)pw(x) dx ≤ C

�

Rn
g(x)pw(x) dx,

for all (f, g) ∈ F such that the left hand side is finite, and where C depends
only on the A∞ constant of w. See the papers [CMP1], [CGMP] and [CMP3]
for more information and applications, and the book [CMP4] for a general
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account. It is also interesting that both (1.2) and (1.3) are equivalent to the
following vector-valued version: for all 0 < p, q < ∞ and all w ∈ A∞ we
have

(1.4)
∥∥∥(∑

j

(fj)
q
)1/q∥∥∥

Lp(w)
≤ C

∥∥∥(∑
j

(gj)
q
)1/q∥∥∥

Lp(w)
,

for any {(fj , gj)}j ⊂ F , where these estimates hold whenever the left-hand
sides are finite.

The next theorem improves the corresponding theorem from [CMP2].

Theorem 1.1. Let F be a family of functions satisfying (1.2) and let
θ ≥ 1. Suppose that u ∈ A1 and that v is a weight such that vδ ∈ A∞ for
some δ > 0. Then there is a constant C such that

(1.5) ‖f/vθ‖L1/θ,∞(uv) ≤ C‖g/v
θ‖L1/θ,∞(uv), (f, g) ∈ F .

Similarly, the following vector-valued extension holds: if 0 < q <∞, then

(1.6)

∥∥∥∥(
∑

j(fj)
q)1/q

vθ

∥∥∥∥
L1/θ,∞(uv)

≤ C
∥∥∥∥(
∑

j(gj)
q)1/q

vθ

∥∥∥∥
L1/θ,∞(uv)

for any {(fj , gj)}j ⊂ F .

Observe that the class of singular weights v(x) = |x|−nr, r ≥ 1, is covered
by the hypothesis of Theorem 1.1 but not by the corresponding theorem from
[CMP2].

The proof of (1.6) is immediate since we can extrapolate using as initial
hypothesis (1.4) and then applying (1.5).

Corollary 1.2. Let F , u and θ ≥ 1 be as in Theorem 1.1. Suppose
now that vi, i = 1, . . . ,m, are weights such that for some δi > 0, we have
vδii ∈ A∞, i = 1, . . . ,m. Denote v =

∏m
i=1 vi. Then

‖f/vθ‖L1/θ,∞(uv) ≤ C‖g/v
θ‖L1/θ,∞(uv), (f, g) ∈ F ,

and similarly for 0 < q <∞,∥∥∥∥(
∑

j(fj)
q)1/q

vθ

∥∥∥∥
L1/θ,∞(uv)

≤ C
∥∥∥∥(
∑

j(gj)
q)1/q

vθ

∥∥∥∥
L1/θ,∞(uv)

,

for any {(fj , gj)}j ⊂ F .

This reduces to Theorem 1.1 by choosing δ > 0 small enough such
that vδ =

∏m
i=1 v

δ
i ∈ A∞, which follows by convexity since vδii ∈ A∞,

i = 1, . . . ,m.
To apply Theorem 1.1 to some of the classical operators we need a mixed

weak type estimate for the Hardy–Littlewood maximal operator. This is
the content of the next theorem which was obtained in dimension one by
Andersen and Muckenhoupt [AM], and by Mart́ın-Reyes, Ortega Salvador
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and Sarrión Gavián [MOS] in higher dimensions. In each case the statement
is a consequence of a more general result with the additional hypothesis that
u ∈ A1. For completeness we will give an independent and direct proof with
the advantage that no condition on the weight u is assumed.

Theorem 1.3. Let u ≥ 0 and v(x) = |x|−nr for some r > 1. Then there
is a constant C such that for all t > 0,

(1.7) uv

({
x ∈ Rn :

M(fv)(x)

v(x)
> t

})
≤ C

t

�

Rn
|f(x)|Mu(x)v(x) dx.

Remark 1.4. We remark that the theorem could be false when r = 1
even in the case u = 1 (see [AM]). However, we already mentioned that the
singular weight v(x) = |x|−n is covered by the extrapolation Theorem 1.1.

2. Some applications. In this section we show the flexibility of the
method by giving two applications.

2.1. The vector-valued case. Let T be any singular integral operator
with standard kernel and let M be the Hardy–Littlewood maximal function.
We are going to show that starting from the following inequality due to
Coifman [Coi]: for 0 < p <∞ and w ∈ A∞,

(2.1)
�

Rn
|Tf(x)|pw(x) dx ≤ C

�

Rn
Mf(x)pw(x) dx,

combined with Theorems 1.1 and 1.3, we get the following corollary.

Corollary 2.1. Let u ∈ A1 and v(x) = |x|−nr for some r > 1. Also let
1 < q <∞. Then there is a constant C such that for all t > 0,

uv

({
x ∈ Rn :

(
∑

jM(fjv)(x)q)1/q

v(x)
> t

})
≤ C

t

�

Rn

(∑
j

|fj(x)|q
)1/q

u(x)v(x) dx,

uv

({
x ∈ Rn :

(
∑

j |T (fjv)(x)|q)1/q

v(x)
> t

})
≤ C

t

�

Rn

(∑
j

|fj(x)|q
)1/q

u(x)v(x) dx.

Observe that in particular we have the following scalar version:

uv

({
x ∈ Rn :

|T (fv)(x)|
v(x)

> t

})
≤ C

t

�

Rn
|f(x)|u(x)v(x) dx.

This scalar version was proved in [MOS].
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The second inequality of the corollary follows from the first one by ap-
plying inequality (1.6) of Theorem 1.1 with initial hypothesis (2.1):

sup
t>0

tuv

({
x ∈ Rn :

(
∑

j |T (fj)(x)|q)1/q

v(x)
> t

})
≤ C sup

t>0
tuv

({
x ∈ Rn :

(
∑

jM(fj)(x)q)1/q

v(x)
> t

})
.

To prove the first inequality of Corollary 2.1 we first note that in [CGMP]
it was shown that for all 1 < q <∞ and 0 < p <∞ and w ∈ A∞,∥∥∥(∑

j

(M(fj))
q
)1/q∥∥∥

Lp(w)
≤ C

∥∥∥M((∑
j

|fj |q
)1/q)∥∥∥

Lp(w)
.

To conclude we apply Theorem 1.1 combined with Theorem 1.3.

2.2. Multilinear Calderón–Zygmund operators. We now apply
our main results to multilinear Calderón–Zygmund operators. We follow here
the theory developed by Grafakos and Torres [GT1], that is, T is an m-linear
operator such that T : Lq1 × · · · × Lqm → Lq, where 1 < q1, . . . , qm < ∞,
0 < q <∞ and

(2.2)
1

q
=

1

q1
+ · · ·+ 1

qm
.

The operator T is associated with a Calderón–Zygmund kernel K in the
usual way:

T (f1, . . . , fm)(x) =
�

Rn
· · ·

�

Rn
K(x, y1, . . . , ym)f1(y1) . . . fm(ym) dy1 . . . dym,

whenever f1, . . . , fm are in C∞0 and x /∈
⋂m
j=1 supp fj . We assume thatK sat-

isfies the appropriate decay and smoothness conditions (see [GT1] for com-
plete details). Such an operator T is bounded on any product of Lebesgue
spaces with exponents 1 < q1, . . . , qm < ∞ and 0 < q < ∞ satisfying
(2.2). Further, it also satisfies weak endpoint estimates when some of the
qi’s are equal to one. There are also weighted norm inequalities for multilin-
ear Calderón–Zygmund operators; these were first proved in [GT2] using a
good-λ inequality and fully characterized in [LOPTT] using the sharp max-
imal function M and a new maximal type function which plays a central
role in the theory:

M(f1, . . . , fm)(x) = sup
Q3x
Q cube

m∏
i=1

1

|Q|

�

Q

|fi(z)| dz,

where the supremum is taken over cubes with sides parallel to the axes.
Indeed, one of the main results of [LOPTT] is that for any 0 < p <∞ and
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any w ∈ A∞,

‖T (f1, . . . , fm)‖Lp(w) ≤ C‖M(f1, . . . , fm)‖Lp(w).

Beginning with these inequalities, we can apply Theorem 1.1 to the fam-
ily F(T (f1, . . . , fm),M(f1, . . . , fm)). Hence, if u ∈ A1 and v(x) = |x|−nr for
some r > 1, then

(2.3)

∥∥∥∥T (f1, . . . , fm)

vm

∥∥∥∥
L1/m,∞(uv)

≤ C
∥∥∥∥M(f1, . . . , fm)

vm

∥∥∥∥
L1/m,∞(uv)

.

Corollary 2.2. Let T be a multilinear Calderón–Zygmund operator as
above. Let u ∈ A1 and v(x) = |x|−nr for some r > 1. Then∥∥∥∥T (f1, . . . , fm)

vm

∥∥∥∥
L1/m,∞(uv)

≤ C
m∏
j=1

�

Rn
|fj |u dx.

To prove this corollary we will use the following version of the generalized
Hölder inequality: for 1 ≤ q1, . . . , qm <∞ with

1

q1
+ · · ·+ 1

qm
=

1

q
,

there is a constant C such that∥∥∥ m∏
j=1

hj

∥∥∥
Lq,∞(w)

≤ C
m∏
j=1

‖hj‖Lqj ,∞(w).

This is proved similarly to the classical generalized Hölder inequality in Lp

theory.
Now, if we combine this with (2.3) and with the trivial observation that

M(f1, . . . , fm)(x) ≤
m∏
i=1

Mfi,

we have ∥∥∥∥T (f1, . . . , fm)

vm

∥∥∥∥
L1/m,∞(uv)

≤ C
m∏
j=1

∥∥∥∥Mfj
v

∥∥∥∥
L1,∞(uv)

,

Finally, an application of Theorem 1.3 concludes the proof of the corollary.

3. Counterexamples. An interesting point of Theorem 1.3 is that if
v(x) = |x|−nr, r > 1, then the estimate

(3.1) uv

({
x ∈ Rn :

M(fv)(x)

v(x)
> t

})
≤ C

t

�

Rn
|f(x)|Mu(x)v(x) dx,

holds for any u ≥ 0. On the other hand, we have already mentioned that
the same inequality holds if u ∈ A1 and v ∈ A1, or uv ∈ A∞ [CMP2]. In
particular, this is the case if u ∈ A1 and v ∈ RH∞. Assuming that v ∈ RH∞,
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a natural question is whether inequality (3.1) holds with no assumption
on u. This would improve the classical Fefferman–Stein inequality. However,
we will show in the next example that this is false in general.

Example 3.1. On the real line we let v(x) =
∑

k∈Z |x−k|χIk(x), where
Ik denotes the interval |x−k| ≤ 1/2. It is not difficult to see that v ∈ RH∞.
If we choose

u(x) =
∑
k∈N
k>10

k

log(k)
χJk(x),

where Jk = [k + 1/(4k), k + 1/k], and f = χ[−1,1], then there is no finite
constant C such that the inequality

(3.2) uv({x : Mf(x) > v(x)}) ≤ C
�
|f |M2u

holds. To prove this we will make use of the following observation:

There is a geometric constant such that

M2w(x) ≈ML logLw(x), x ∈ Rn,

where

ML logLf(x) = sup
Q3x
‖f‖L logL,Q

and

‖f‖L logL,Q = inf

{
λ > 0 :

1

|Q|

�

Q

Φ

(
|f |
λ

)
dx ≤ 1

}
with Φ(t) = t log(e + t) (see [PW] or [G]). Now, by computation one can
see that if x ∈ [−1, 1], M2u(x) ≈ ML logLu(x) ≤ C then the right hand
side of (3.2) is finite, while the left hand side is infinite. Let us check that.
For |x| > 2 we have Mf(x) ≥ 1/|x| and if x ∈ Jk ⊂ Ik for k > 10 then
1/|x| > 1/(2k). Then it is easy to see that (k+1/(4k), k+1/(2k)) ⊂ {x ∈ Jk :
Mf(x) > v(x)} and therefore

uv({x : Mf(x) > v(x)}) >
∑
k∈N
k>10

k

log(k)

k+1/(2k)�

k+1/(4k)

(x− k) dx

>
∑
k∈N
k>10

1

8k log(k)
=∞.

4. Proof of Theorem 1.1. The following lemmas will be useful:

Lemma 4.1. If u,w ∈ A1, then there exists 0 < ε0 < 1 depending only
on [u]A1 such that uwε ∈ A1 for all 0 < ε < ε0.
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Proof. Since u ∈ A1, we have u ∈ RHs0 for some s0 > 1 depending
on [u]A1 . Let ε0 = 1/s′0 and 0 < ε < ε0. This implies that u ∈ RHs with
s = (1/ε)′.

Now since u, v ∈ A1, for any cube Q and almost every x ∈ Q we have

1

|Q|

�

Q

u(y)w(y)ε dy ≤
(

1

|Q|

�

Q

u(y)s dy

)1/s( 1

|Q|

�

Q

w(y) dy

)1/s′

≤ [u]RHs
|Q|

�

Q

u(y) dy

(
1

|Q|

�

Q

w(y) dy

)1/s′

≤ [u]RHs [u]A1 [w]εA1
u(x)w(x)ε.

Hence uwε ∈ A1 with [uwε]A1 ≤ [u]RHs [u]A1 [w]εA1
.

We also need the following version of the Marcinkiewicz interpolation
theorem in the scale of Lorentz spaces. In fact we need a version of this
theorem with precise constants. The proof can be found in [CMP2].

Proposition 4.2. Given p0, 1 < p0 <∞, let T be a sublinear operator
such that

‖Tf‖Lp0,∞ ≤ C0‖f‖Lp0,1 and ‖Tf‖L∞ ≤ C1‖f‖L∞ .
Then for all p0 < p <∞,

‖Tf‖Lp,1 ≤ 21/p
(
C0(1/p0 − 1/p)−1 + C1

)
‖f‖Lp,1 .

Fix u ∈ A1 and v such that vδ ∈ A∞ for some δ > 0. Then by the
factorization theorem vδ = v1v2 for some v1 ∈ A1 and v2 ∈ RH∞. Define
the operator Sλ by

Sλf(x) =
M(fuv

1/(λδ)
1 )

uv
1/(λδ)
1

for some large enough constant λ > 1 that will be chosen soon.
By Lemma 4.1, there exists 0 < ε0 < 1 (that depends only on [u]A1) such

that uwε ∈ A1 for all w ∈ A1 and 0 < ε < ε0.

Choose λ > 1/(δε0) such that uv
1/(λδ)
1 ∈ A1. Hence, Sλ is bounded on

L∞(uv) with constant C1 = [u]A1 . We will now show that for some larger λ,
Sλ is bounded on Lm(uv). Observe that�

Rn
Sf(x)λu(x)v(x) dx =

�

Rn
M(fuv

1/(λδ)
1 )(x)λu(x)1−λv2(x)1/δ dx.

Since v2 = ṽ1−t
2 for some ṽ2 ∈ A1 and t > 1 we have

u1−λv
1/δ
2 = u1−λṽ

(1−t)/δ
2 =

(
uṽ

(t−1)/(δ(λ−1))
2

)1−λ
.

By Lemma 4.1 there exists λ sufficiently large (λ > 1 + (t− 1)/(δε0)) such

that uṽ
(t−1)/(δ(λ−1))
2 ∈ A1 and hence u1−λv

1/δ
2 ∈ Aλ. By Muckenhoupt’s

theorem, M is bounded on Lλ(u1−λv
1/δ
2 ) and therefore S is bounded on
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Lλ(uv) with some constant C0. Observe that λ depends on the A1 constant
of u. We fix one such λ from now on.

By Proposition 4.2 above we know that S is bounded on Lq,1(uv), q > λ.
Hence,

‖Sf‖Lq,1(uv) ≤ 21/q
(
C0(1/λ− 1/q)−1 + C1

)
‖f‖Lq,1(uv).

Thus, for all q ≥ 2λ we have ‖Sf‖Lq,1(uv) ≤ K0 ‖f‖Lq,1(uv) with K0 =
4λ (C0 +C1). We emphasize that the constant K0 is valid for every q ≥ 2λ.

Fix (f, g) ∈ F such that the left hand side of (1.5) is finite. We let r be
such that θ < r < θ(2λ)′, to be chosen soon. Now, by the duality of Lr,∞

and Lr
′,1,

‖fv−θ‖1/r
L1/θ,∞(uv)

= ‖(fv−θ)1/r‖Lr/θ,∞(uv)

= sup
�

Rn
f(x)1/rh(x)u(x)v(x)1−θ/r dx,

where the supremum is taken over all non-negative h ∈ L(r/θ)′,1(uv) with
‖h‖L(r/θ)′,1(uv) = 1. Fix such a function h. We are going to build a larger

functionRh using Rubio de Francia’s method suchRhuv1−θ/r ∈ A∞. Hence
we will use the hypothesis (1.3) with p = θ/r (recall that this is equivalent
to (1.2)) with the weight Rhuv1−θ/r ∈ A∞.

We let r be such that (r/θ)′ > 2λ and hence S(r/θ)′ is bounded on

L(r/θ)′,1(uv) with constant bounded by K0. Now apply the Rubio de Francia
algorithm (see [GR]) to define the operator R on h ∈ L(r/θ)′,1(uv), h ≥ 0,
by

Rh(x) =
∞∑
j=0

Sj(r/θ)′h(x)

2jKj
0

,

Recall that the operator S(r/θ)′ is defined by

S(r/θ)′f(x) =
M(fuv

1/((r/θ)′δ)
1 )

uv
1/((r/θ)′δ)
1

.

Also, recall that by the choice of r we have uv
1/((r/θ)′δ)
1 ∈ A1.

It follows immediately from this definition that:

(a) h(x) ≤ Rh(x);
(b) ‖Rh‖L(r/θ)′,1(uv) ≤ 2‖h‖L(r/θ)′,1(uv);

(c) S(r/θ)′(Rh)(x) ≤ 2K0Rh(x).

In particular, (c) and the definition of S imply that Rhuv1/((r/θ)′δ)
1 ∈ A1

and therefore Rhuv1/(r/θ)′ = Rhuv1/(δ(r/θ)′)
1 v

1/(δ(r/θ)′)
2 ∈ A∞.
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To apply the hypothesis (1.3) we must first check that the left-hand side
is finite, but this follows at once from Hölder’s inequality and (b):

�

Rn
f(x)1/rRh(x)u(x)v(x)1−θ/r dx ≤ ‖(fv−θ)1/r‖Lr/θ,∞(uv) ‖Rh‖L(r/θ)′,1(uv)

≤ 2‖fv−θ‖1/r
L1/θ,∞(uv)

‖h‖L(r/θ)′,1(uv) <∞.

Thus since Rhuv1/(r/θ)′ ∈ A∞, by (1.3) we have
�

Rn
f(x)1/rh(x)u(x)v(x)1−θ/r dx ≤

�

Rn
f(x)1/rRh(x)u(x)v(x)1−θ/r dx

≤ C
�

Rn
g(x)1/rRh(x)u(x)v(x)1−θ/r dx

≤ C‖(gv−θ)1/r‖Lr/θ,∞(uv)‖Rh‖L(r/θ)′,1(uv)

≤ 2C‖gv−θ‖1/r
L1/θ,∞(uv)

.

Since C is independent of h, inequality (1.5) follows, finishing the proof of
the theorem.

5. Proof of Theorem 1.3

5.1. Proof of (1.7). The following lemma is important in the proof.

Lemma 5.1. Let f be a positive and locally integrable function. Then for
every r > 1 there exists a positive real number a depending on f and λ such
that ( �

|y|≤a1/(r−1)

f(y) dy
)
an = λ.

Proof. Consider the function

g(a) =
( �

|y|≤a1/(r−1)

f(y) dy
)
an for a ≥ 0.

By the hypothesis, g is a continuous and non-decreasing function. Further-
more, g(0) = 0 and g(∞) = ∞, and therefore by the mean value theorem
there exists a which satisfies the conditions of the lemma.

Let u ≥ 0 and v(x) = |x|−nr with r > 1. By homogeneity we can
assume that λ = 1. Also, for simplicity we denote g = fv. Now, for each
integer k we denote Gk = {2k < |x| ≤ 2k+1}, Ik = {2k−1 < |x| ≤ 2k+2},
Lk = {2k+2 < |x|}, Ck = {|x| ≤ 2k−1}.
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It will be enough to prove the following estimates:∑
k∈Z

uv

{
x ∈ Gk : M(gχIk)(x) >

1

|x|nr

}
≤ Cr,n

�
gMu,(5.1)

∑
k∈Z

uv

{
x ∈ Gk : M(gχLk)(x) >

1

|x|nr

}
≤ Cr,n

�
gMu,(5.2)

∑
k∈Z

uv

{
x ∈ Gk : M(gχCk)(x) >

1

|x|nr

}
≤ Cr,n

�
gMu.(5.3)

Taking into account that in Gk, v(x) = |x|−nr ∼ 2−knr, using the (1, 1)
weak type inequality for M with respect to the pair of weights (u,Mu) and
since the subsets Ik overlap at most three times, we obtain (5.1).

To prove inequality (5.2) we will estimate M(gχLk)(x). Observe that if

x ∈ Gk and y ∈ Lk = {2k+2 < |y|}, and if |y − x| ≤ ρ, we have |y|/2 ≤ ρ,
and so

1

ρn

�

|y−x|≤ρ

g(y)χLk(y) dy ≤ Cn
�

2k+2<|y|

g(y)

|y|n
dy ≤ Cn

�

|x|<|y|

g(y)

|y|n
dy.

If we denote F (x) =
	
|x|<|y|

g(y)
|y|n dy, the left hand side of (5.2) is bounded by

∑
k∈Z

2−krnu{x ∈ Rn : F (x) > C2−knr} ≈
∞�

0

tu{x ∈ Rn : F (x) > t} dt
t

=
�

Rn
F (x)u(x) dx =

�

Rn

�

|x|<|y|

g(y)

|y|n
dy u(x) dx

=
�

Rn
g(y)

1

|y|n
�

|x|<|y|

u(x) dx dy ≤ C
�

Rn
g(y)Mu(y) dy.

To prove (5.3) we estimate M(gχCk)(x) for x ∈ Gk. Indeed, if y ∈ Ck
then 2|y| < |x|, and since M(gχCk)(x) ≤ (cn/|x|n)

	
Ck
g(y) dy, we obtain

M(gχCk)(x) ≤ C

|x|n
�

Ck

g ≤ C

|x|n
�

|y|≤|x|/2

g.

Thus, since the subsets Gk are disjoint, the left hand side in (5.3) is bounded
by

uv

{
x ∈ Rn :

C

|x|n
�

|y|≤|x|/2

g >
1

|x|nr

}
.

Now, if a denotes the positive real number that appears in Lemma 5.1
(i.e., a satisfies 1 = (

	
|y|≤a1/(r−1) g)an), we express the last quantity in the
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following way:

(5.4) uv

({
x :

C

|x|n
�

|y|≤|x|/2

g >
1

|x|nr

})

= uv

({
|x| ≤ a1/(r−1) :

C

|x|n
�

|y|≤|x|/2

g >
1

|x|nr

})

+
∞∑
k=0

uv

({
x : 2ka1/(r−1) < |x| ≤ 2k+1a1/(r−1) and

C

|x|n
�

|y|≤|x|/2

g >
1

|x|nr

})
.

If |x| ≤ a1/(r−1), since |y| ≤ |x|/2 we have |y| ≤ a1/(r−1), and thus{
|x| ≤ a1/(r−1) :

C

|x|n
�

|y|≤|x|/2

g >
1

|x|nr

}
⊂
{
|x| ≤ a1/(r−1) : |x|n(r−1) > C

( �

|y|≤a1/(r−1)

g
)−1}

.

Taking into account the last inclusion and since (
	
|y|≤a1/(r−1) g)−1 = an,

the first summand in the second term in (5.4) is bounded by

uv({|x|r−1 > Ca}) = uv({|x| > car
′−1}).

Using again Lemma 5.1, the last term can be estimated by

�

|x|>Car′−1

uv dx ≤ C
∞∑
k=1

1

(2kar′−1)nr

�

c2k−1ar′−1≤|x|<c2kar′−1

u(x) dx

≤ C
∞∑
k=1

1

2k(r−1)n

1

an
1

(c2kar′−1)n

�

|x|≤c2kar′−1

u(x) dx

= C
∞∑
k=1

1

2k(r−1)n

�

|y|≤ar′−1

g(y) dy
1

(c2kar′−1)n

�

|x|≤c2kar′−1

u(x) dx,

and this is bounded by

≤ C
∞∑
k=1

1

2k(r−1)n

�

|y|≤ar′−1

g(y)Mu(y) dy ≤ C
�
gMu.

To finish, we must estimate the series in (5.4). It is clear that it is
bounded by
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∞∑
k=0

uv({x ∈ 2kar
′−1 < |x| ≤ 2k+1ar

′−1})

≤ C
∞∑
k=0

1

(2kar′−1)nr

�

2k−1ar′−1≤|x|<2kar′−1

u dx,

and arguing as before we conclude the proof of (5.3).

Remark 5.2. We observe that the proof only uses the following condi-
tions for a sublinear operator T : (a) T is of weak type (1, 1) with respect to
the pair of weights (u,Mu) and (b) T is a convolution type operator such
that the associated kernel satisfies the usual standard condition:

|K(x)| ≤ c/|x|n.
In particular if u ∈ A1, this observation can be applied to the usual Calderón–
Zygmund singular integral operators and moreover to strongly singular in-
tegral operators (see [Ch] and [F]).
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