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MIXED WEAK TYPE ESTIMATES: EXAMPLES AND
COUNTEREXAMPLES RELATED TO A PROBLEM
OF E. SAWYER

BY

SHELDY OMBROSI (Bahfa Blanca) and CARLOS PEREZ (Bilbao)

Abstract. We study mixed weighted weak-type inequalities for families of functions,
which can be applied to study classical operators in harmonic analysis. Our main theorem
extends the key result of Cruz-Uribe et al. (2005).

1. Introduction and main results. In this work we consider mixed
weighted weak-type inequalities of the form

(1.1) uv({a} ere: LUV@] t}) < % | £ (@) | Mu(z)v(z) dz,

o(a) )

where T' is either the Hardy—Littlewood maximal operator or any Calderén—
Zygmund operator. Similar inequalities were studied by Sawyer [Sa] moti-
vated by the work of Muckenhoupt and Wheeden [MW] (see also [AM]
and [MOS]).

E. Sawyer proved that inequality holds in R when T' = M is the
Hardy—Littlewood maximal operator assuming that the weights v and v be-
long to the class A;. This result can be seen as a very delicate extension of
the classical weak type (1,1) estimate. However, the reason why E. Sawyer
considered is due to the following interesting observation. Indeed, in-
equality yields a new proof of the classical Muckenhoupt theorem for
M assuming that the A, weights can be factored (P. Jones’s theorem). This
means that if w € Ay, then w = uv'™P for some u,v € Ay. Now, the op-
erator f +— M(fv)/v is bounded on L*°(uv) and it is of weak type (1,1)
with respect to the measure uvdz by . Hence by the Marcinkiewicz
interpolation theorem we recover Muckenhoupt’s theorem.

In the same paper, Sawyer conjectured that if T is instead the Hilbert
transform the inequality also holds with the same hypotheses on the weights
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w and v. This conjecture was proved in [CMP2]. In fact, it is proved in this
paper that the inequality holds for both the Hardy-Littlewood max-
imal operator and for any Calderén—Zygmund operator in any dimension
if either the weights u and v both belong to Aj, or uw belongs to A; and
uv € Aso. The method of proof is quite different from that in [Sa] (and
also from [MW]) and it is based on certain ideas from extrapolation that go
back to the work of Rubio de Francia (see [CMP2] and also the expository
paper [CMP3]). Applications of these results can be found in [LOPTT]. The
authors conjectured in [CMP2] that their results may hold under weaker hy-
potheses on the weights. To be more precise, they conjectured that inequality
is true if u € A; and v € A. Very recently, some quantitative esti-
mates in terms of the relevant constants of the weights have been obtained
in [OPR] and some new conjectures have been formulated.

Inequalities like (1.1)), when T is the Hardy-Littlewood maximal oper-
ator, can also be seen as generalizations of the classical Fefferman—Stein
inequality

M fllpree ) < ellfllraru)s

where ¢ is a dimensional constant. However, in Section 3, we will see that
does not hold in general even for weights satisfying strong conditions
like v € RHy C Ao

In this work we generalize the extrapolation result in [CMP3]| to a larger
class of weights (see Theorem below). This method of extrapolation is
flexible enough with scope reaching beyond the classical linear operators.
Indeed, it can be applied to square functions, vector-valued operators as
well as multilinear singular integral operators. See Section [2] for some of
these applications. In fact, the best way to state the extrapolation theorem
is without considering operators and the result can be seen as a property of
families of functions. Hereafter, F will denote a family of ordered pairs of
non-negative, measurable functions (f, g). Also we are going to assume that
F has the following property: for some pg, 0 < pg < 00, and every w € A,

(1.2) | f@Pow(@)de < C | g(z)Pw(z) da,
Rn Rn
for all (f,g) € F such that the left-hand side is finite, and where C' depends

only on the A, constant of w. By the main theorem in [CMP1], this is then
true for any exponent p € (0,00) and every w € A,

(1.3) S f(@)Pw(x)de < C S g(x)Pw(x) de,
R™ R™
for all (f,g) € F such that the left hand side is finite, and where C' depends

only on the A constant of w. See the papers [CMPI], [CGMP] and [CMP3]
for more information and applications, and the book [CMP4] for a general
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account. It is also interesting that both (1.2) and (1.3)) are equivalent to the
following vector-valued version: for all 0 < p,q¢ < oo and all w € Ay we

have
1/
i SN (@)™

an ()"

for any {(f;,gj)}; C F, where these estimates hold whenever the left-hand
sides are finite.
The next theorem improves the corresponding theorem from [CMP2].

THEOREM 1.1. Let F be a family of functions satisfying (1.2) and let
0 > 1. Suppose that uw € A1 and that v is a weight such that v° € Ay for
some & > 0. Then there is a constant C such that

(1.5) 1 /9 1000 vy < Cllg/VNprooequys  (Fr9) € F

Similarly, the followz'ng vector-valued extension holds: if 0 < q¢ < oo, then
(95)1)"

LP(w)7

(16) H i

< CH(Z]

Ll/G,oo(uv) Ll/@,oo(uv)

for any {(fyvgj)}j C F.

Observe that the class of singular weights v(z) = |z|™™", r > 1, is covered
by the hypothesis of Theorem [I.I]but not by the corresponding theorem from
[CMP2].

The proof of is immediate since we can extrapolate using as initial

hypothesis ((1.4) and then applying (|1.5)).

COROLLARY 1.2. Let F, u and 0 > 1 be as in Theorem [I.1 Suppose
now that v;, i = 1,...,m, are weights such that for some §; > 0, we have
v?i € Ao, i =1,...,m. Denote v =[[", v;. Then

Hf/UGHLl/e"X’(uv) < CHg/voHLl/@"X’(uv)? (f7 g) € ‘F7
and similarly for 0 < g < oo,

(32,(g7)%)"/

oo ’

H 1/q
Ll/@,oo(u,u)

<¢|

L1/8:00 (yv)
for any {(fj,gj)}j CF.

This reduces to Theorem by choosing § > 0 small enough such

that 9 = = v? € A, which follows by convexity since vfi € Ay,

=1 "1

1=1,...,m.
To apply Theorem [I.1]to some of the classical operators we need a mixed
weak type estimate for the Hardy-Littlewood maximal operator. This is
the content of the next theorem which was obtained in dimension one by

Andersen and Muckenhoupt [AM], and by Martin-Reyes, Ortega Salvador
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and Sarriéon Gavian [MOS] in higher dimensions. In each case the statement
is a consequence of a more general result with the additional hypothesis that
u € A;. For completeness we will give an independent and direct proof with
the advantage that no condition on the weight u is assumed.

THEOREM 1.3. Let u > 0 and v(x) = |x|™™" for some r > 1. Then there
s a constant C' such that for all t > 0,

(1.7) uv({x eR": W > t}) < fRS |f ()| Mu(z)v(z) da.

REMARK 1.4. We remark that the theorem could be false when r = 1
even in the case u =1 (see [AM]). However, we already mentioned that the
singular weight v(x) = |z|™" is covered by the extrapolation Theorem

2. Some applications. In this section we show the flexibility of the
method by giving two applications.

2.1. The vector-valued case. Let T be any singular integral operator
with standard kernel and let M be the Hardy—Littlewood maximal function.
We are going to show that starting from the following inequality due to
Coifman [Coil: for 0 < p < co and w € A,

(2.1) VITf(@)Pw(e)de < C | Mf(2)P w(x)da,
Rn R
combined with Theorems [I.1] and we get the following corollary.

COROLLARY 2.1. Letu € Ay and v(z) = |z|™™" for some r > 1. Also let
1 < g < 00. Then there is a constant C such that for all t > 0,

uv({x cgn. M(fjv)(a))/e y t})

v(x)
<O (S 1n@r) " up)

R ]

uv( {x cgn. T (fjv)(2)[9)"/4 y t})

o(@)
<N (1) u@) do.

Rn ]

Observe that in particular we have the following scalar version:

uv<{$ eR™: W > t}) < fﬂ{g |f ()| u(z)v(z) de.

This scalar version was proved in [MOS].
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The second inequality of the corollary follows from the first one by ap-
plying inequality ((1.6)) of Theorem with initial hypothesis (2.1)):

(5, IT(f;)(@)[9)a
o(@) g t}>

< csptuo({z e w (&, MU ).

t>0 v(z)

To prove the first inequality of Corollary [2.1] we first note that in [CGMP]
it was shown that for all 1 < g < oo and 0 < p < co and w € Ao,

l(S0r) ) <lpe((S 1))

To conclude we apply Theorem [I.1] combined with Theorem

suptuv({x cR":
>0

LP(w)

2.2. Multilinear Calder6n—Zygmund operators. We now apply
our main results to multilinear Calderén—Zygmund operators. We follow here
the theory developed by Grafakos and Torres [GT1], that is, 7" is an m-linear
operator such that T : L9 x .- x L9 — L9 where 1 < q1,...,qm < 00,

0 < g < ooand
1 1 1
(2.2) S
q q1 dm
The operator T is associated with a Calderéon—Zygmund kernel K in the
usual way:

T(froesf)@) =\ -V K@, ym) i) - fn(ym) dyr - Ay,
R? R

whenever f1,..., f, arein C§° and = ¢ ﬂ;n:l supp f;. We assume that K sat-
isfies the appropriate decay and smoothness conditions (see [GT1] for com-
plete details). Such an operator T' is bounded on any product of Lebesgue
spaces with exponents 1 < ¢1,...,¢n < o0 and 0 < ¢ < oo satisfying
. Further, it also satisfies weak endpoint estimates when some of the
¢;’s are equal to one. There are also weighted norm inequalities for multilin-
ear Calder6n—Zygmund operators; these were first proved in [GT2] using a
good-\ inequality and fully characterized in [LOPTT] using the sharp max-
imal function M and a new maximal type function which plays a central
role in the theory:

LR |
M(fr,- .o, fm)(2) = sup il;[l@glfi(@ld%
Q@ cube

where the supremum is taken over cubes with sides parallel to the axes.
Indeed, one of the main results of [LOPTT] is that for any 0 < p < co and
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any w € Ay,

||T(f17 ) fm)HLP(w) < CHM(fb SO fm)HLP(w)'
Beginning with these inequalities, we can apply Theorem to the fam-
ily F(T(f1,- -y fm), M(f1,..., fm)). Hence, if u € A; and v(z) = |z|~™" for
some r > 1, then

T(flv"wfm)

Um

(2.3)

m

< oMo
) v

Ll/m,oo(uv Ll/m,oo(uv).
COROLLARY 2.2. Let T be a multilinear Calderon—Zygmund operator as

above. Let u € Ay and v(x) = |x|™™" for some r > 1. Then

HM gcﬁ | 1)]uds.

m
v L1/m,%0 (yp) j=1Rn

To prove this corollary we will use the following version of the generalized
Holder inequality: for 1 < g1, ..., ¢m < 00 with
1 1 1
— et — ==
q1 dm q
there is a constant C' such that

[TTs] ey < CTL IS0
i=1 j=1

This is proved similarly to the classical generalized Holder inequality in LP
theory.
Now, if we combine this with (2.3)) and with the trivial observation that

M(flv .. 7fm)(x) S HMf17
i=1

we have
Mf;

v

)

m
v L1:%°(uv)

HT(flavfm)

ofi
j=1

Finally, an application of Theorem [I.3] concludes the proof of the corollary.

Ll/m,oo(u,u)

3. Counterexamples. An interesting point of Theorem is that if

v(x) = |x|™™", r > 1, then the estimate
M c
(3.1) wo| qx € R": M{fo)(z) >te | < — S |f(x)| Mu(x)v(x) dz,
v(z) t o

holds for any u > 0. On the other hand, we have already mentioned that
the same inequality holds if u € Ay and v € Ay, or wv € Ay [CMP2]. In
particular, this is the case if u € A1 and v € RH . Assuming that v € RH,
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a natural question is whether inequality (3.1) holds with no assumption
on u. This would improve the classical Fefferman—Stein inequality. However,
we will show in the next example that this is false in general.

EXAMPLE 3.1. On the real line we let v(z) = >, 7 [v — k[x;, (x), where
Ij; denotes the interval |x — k| < 1/2. It is not difficult to see that v € RH.
If we choose

u(@) =Y bg’“(k)xw),

keN
k>10

where Ji = [k +1/(4k),k + 1/k], and f = X|_; 3}, then there is no finite
constant C' such that the inequality
(3.2) wo({z : Mf(z) > v(z)}) < C||f|M u

holds. To prove this we will make use of the following observation:
There is a geometric constant such that

M*w(z) = Mpogrw(z), = €R™,
where
MLlogLf(x) = Sup ”fHLlOgLQ
Q>

and

||f||LlogL,Q = inf{)\ >0: L S @<|f|> dr < 1}
Q)" \x

with @(t) = tlog(e + t) (see [PW] or [G]). Now, by computation one can
see that if z € [—1,1], M?u(x) ~ Mpgru(z) < C then the right hand
side of is finite, while the left hand side is infinite. Let us check that.
For |z| > 2 we have M f(z) > 1/|z| and if z € J, C I for k > 10 then
1/]x| > 1/(2k). Then it is easy to see that (k+1/(4k), k+1/(2k)) C {x € Ji :
M f(x) > v(x)} and therefore

L RO
w({x: Mf(x) >v(z)}) > Z Tog (k) S (x —k)dzx
keN k-+1/(4k)
k>10
1
>y —— =
% 8k log(k)
k>10

4. Proof of Theorem [1.1l The following lemmas will be useful:

LEMMA 4.1. If u,w € Ay, then there exists 0 < ¢g < 1 depending only
on [u]a, such that uw® € Ay for all 0 < € < €.
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Proof. Since u € A;, we have v € RHg, for some syp > 1 depending
on [u]a,. Let g = 1/s(, and 0 < € < €. This implies that u € RHy with

s=(1/e).

Now since u,v € Ay, for any cube @ and almost every x € ) we have

1 . 1/s 1 1/s
m}gﬂ(y) w(y) dy < (,Q|§ u(y) dy> (Méw(y)dy>

u 1/s
< | !]st é“(w dy(h@\éw(y) dy) < [u)ra,[ula, [w]y, u(z)w(z)*.

Hence uw® € Ay with [uw]a, < [u]ry,[u]a,[w]G,. =

We also need the following version of the Marcinkiewicz interpolation
theorem in the scale of Lorentz spaces. In fact we need a version of this
theorem with precise constants. The proof can be found in [CMP2].

PROPOSITION 4.2. Given pg, 1 < pg < 0o, let T' be a sublinear operator
such that
[T fllLroe < Collfllror  and T fllree < Cul| fllze-
Then for all pg < p < 00,

I fllos < 2P(Co(1/po = 1/p) ™" + C1) | f | o1

Fix u € A; and v such that v € Ay for some § > 0. Then by the
factorization theorem v® = vyvy for some v; € Ay and vg € RH,. Define
the operator Sy by

1/(00)
Sxf(z) = %

uv,
for some large enough constant A > 1 that will be chosen soon.

By Lemma[4.1] there exists 0 < €y < 1 (that depends only on [u]4,) such
that uw® € Ay for all w € A7 and 0 < € < €.

Choose A > 1/(d¢€p) such that uvi/(’\é) € Aj. Hence, Sy is bounded on
L*>°(uv) with constant C = [u]4,. We will now show that for some larger A,
Sy is bounded on L™ (uv). Observe that

| @ u@pe)de = | M(fuo) ) (@) u(z)' P vs(2)" da.
R™ Rn
Since vy = 112 ! for some ¥y € A; and t > 1 we have
N e L GG NS

By Lemma (4.1 there exists A sufficiently large (A > 14 (¢t — 1)/(d€g)) such
that u (t 1) (A D e A; and hence ul_’\v%/(s € A,. By Muckenhoupt’s
theorem, M is bounded on L’\(u1_>‘v5/ 5) and therefore S is bounded on
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L (uv) with some constant Cp. Observe that A depends on the A; constant
of u. We fix one such A from now on.

By Proposition 4.2/ above we know that S is bounded on L% (uv), ¢ > A.
Hence,

HSfHqul(uv) < 21/q(00(1/>‘ - 1/Q)71 + Cl) Hf”Lq’l(uv)'

Thus, for all ¢ > 2\ we have ||Sf|ra1() < Kollfllra1 ) With Ko =
4\ (Cp + C1). We emphasize that the constant K is valid for every g > 2.

Fix (f,g) € F such that the left hand side of is finite. We let 7 be
such that 8 < r < (2)\), to be chosen soon. Now, by the duality of L™
and L™,

L0 ey = NCF™ ) 0,00

=sup | f(@)!/h(e)ul@)o() 0 da,
R’n

where the supremum is taken over all non-negative h € L(/9"1(yp) with
HhHng)gl(uv) = 1. Fix such a function h. We are going to build a larger
function Rh using Rubio de Francia’s method such Rhuv'~%/" € A.. Hence
we will use the hypothesis with p = 0/r (recall that this is equivalent
to ([.2)) with the weight Rhuv'=0/" € A
We let r be such that (r/f)" > 2X and hence S(, /9y is bounded on

L/9"1 (yv) with constant bounded by K. Now apply the Rubio de Francia
algorithm (see [GR]) to define the operator R on h € L(/9"1(uv), h > 0,
by

>~ &7 h(x

Ria) = 3 S0 )
= 2K}

Recall that the operator S, gy is defined by

M (fuvy! (17"
S(r/6y flx) = w7078
1

Also, recall that by the choice of r we have uvi/ ((r/0Y9) ¢ Ay

It follows immediately from this definition that:
(a) h(z) <Rh(z);

(B) IRAN 071 (uwy < 200l 071 1)

(C) S(T/g)/(Rh)(fL‘) < 2KORh($).

In particular, (c¢) and the definition of S imply that Rhuv, L/(r/6)8) ¢ Aq
and therefore Rhuv/ (/9" = Rhu i/( (r/0)) ;/( (r/0)") € Ay
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To apply the hypothesis (1.3]) we must first check that the left-hand side
is finite, but this follows at once from Hoélder’s inequality and (b):

} £@) " Rh(e) ul@)o(@) =" de < | (Fo™) "\ oo oy IRAI Lo/ 1 ()
R

—o1
< 210 ey 1l 7071y < 00

1/, oo ’LL’U

Thus since Rhuv'/ /9" e A, by we have
| f@)Vrh(@)u(@)o(@) =0 de < | ()" Rh(z) u(z)o(a) =0 da
R™ R™
<C | g(@)"" Rh(z) w(z)v(z)' " da
Rn
< Cgv™ )" g s0.0w () R s

< 2C|gv~|

1/, oo uv)

uv)

Since C' is independent of h, inequality (1.5 follows, finishing the proof of
the theorem.

5. Proof of Theorem [1.3]

5.1. Proof of (1.7)). The following lemma is important in the proof.

LEMMA 5.1. Let f be a positive and locally integrable function. Then for
every r > 1 there exists a positive real number a depending on f and \ such
that

| fwdy)am =

ly|<al/(r=1)

Proof. Consider the function

g(a) = ( S f(y) dy)a" for a > 0.
ly|<al/(r=1)

By the hypothesis, g is a continuous and non-decreasing function. Further-
more, ¢(0) = 0 and g(co) = oo, and therefore by the mean value theorem
there exists a which satisfies the conditions of the lemma. =

Let v > 0 and v(x) = |z|7™ with » > 1. By homogeneity we can
assume that A = 1. Also, for simplicity we denote g = fv. Now, for each
integer k we denote G = {2 < |z| < 2M1}, [, = {281 < |o| < 2KF2}
Ly = {252 < Jal}, Gy = {J] < 2+ 1},
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It will be enough to prove the following estimates:

(5.1) Zuv{xeGk:M(gxlk)(x) > 1m"} SCr,nSQM%
k€EZ |l"

(5.2) Zuv{x e Gy : M(gXLk)(x) > |Jnr} < C’I‘,TLSQMU’
kEZ

(5.3) Zuv{xEGk:M(gxck)(a})> | Tm} <CTnSgMu
keZ

Taking into account that in Gy, v(z) = |z|™"" ~ 27*" using the (1, 1)
weak type inequality for M with respect to the pair of weights (u, Mu) and
since the subsets I overlap at most three times, we obtain .

To prove inequality we will estimate M (gx Lk)(z:) Observe that if
r € G and y € Ly = {22 < |y|}, and if |y — 2| < p, we have |y|/2 < p,
and so

1 9y 9y
ly—z|<p 2k F2<y| || <[y]
If we denote F(xz) = § . &40 dy, the left hand side of (5.2) is bounded by
T dt
ZZ*kr”u{x ER": F(z) > 027"} ~ S tu{x e R" : F(x) >t} "
keZ 0
= S F(z)u(x)dr = S S 7(?”) dyu(z) dz
R R™ || <[y]
1
= Vo) | w@)dzdy <C | gly)Mu(y)dy.
.yl "
R |lz|<|yl R

To prove (5.3) we estimate M(gxck)(ac) for x € Gg. Indeed, if y € Cy,
then 2|y| < |z|, and since M(gxc,)(2) < (cn/|z]") Sck 9(y) dy, we obtain
C C

S g - ‘ |n S

M(gxc,)(x) < g.

= el
lyl<lzl/2

Thus, since the subsets G, are disjoint, the left hand side in (5.3|) is bounded

by
1
uv{a:e]R”:Cn S g > nr}.
|z |z
lyl<|z|/2

Now, if a denotes the positive real number that appears in Lemma,
(i.e., a satisfies 1 = (S|y|<a1/<T*1> g)a™), we express the last quantity in the



270 S. OMBROSI AND C. PEREZ

following way:

(5.4) uv({x:,ﬁn | g>,x‘1m}>

ly|<l|el/2
_ ’U,’U({’w| S al/(Tfl) . % S g > ].nr })
|z |z
ly|<l|xl/2
+ Zuv({x 2R D) | < 21/ D) and |C‘;L S g > Hlma})
x x
k=0 ly|<l|x|/2

If |z| < a1 since |y| < |z|/2 we have |y| < a!/"=1) and thus
T A R
|z |z
ly|<l|x|/2

C {|m| < @M=D =) C’( S g>_1}.

lyl<al/ 1)

Taking into account the last inclusion and since (S\y|<a1/(r—1) g) ' =a"
the first summand in the second term in ([5.4]) is bounded by

I

w({|z]"t > Ca}) = wo({|z| > ca” ).
Using again Lemma the last term can be estimated by
= 1

|z|>Car’—1 c2k—1gr" —1<|z|<c2kar’ —1

=~ 1 1 1
< -
- C; ok(r—1)n gn (czkar’—l)n S U(IE) dz

|| <c2kar’—1

:C;W—Un S g(y)dym | u(@)de,

ly|<ar'—1 |z|<c2kar’ =1

and this is bounded by
S |
< C; T | 1g(y)MU(y) dy < C\gMu.
= ly|<ar'—

To finish, we must estimate the series in (5.4). It is clear that it is
bounded by
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o0
Zuv({az € 28"t < |z| < 2Fa 1Y)

k=0 0 ]
= CZ (2k’ar’—1)nr S udz,
k=0 2k—1arl—1§|w‘<2kar’—1

and arguing as before we conclude the proof of (5.3)).

REMARK 5.2. We observe that the proof only uses the following condi-
tions for a sublinear operator T": (a) T is of weak type (1,1) with respect to
the pair of weights (u, Mu) and (b) T is a convolution type operator such
that the associated kernel satisfies the usual standard condition:

[K ()] < ¢/

In particular if u € Ay, this observation can be applied to the usual Calderén—
Zygmund singular integral operators and moreover to strongly singular in-
tegral operators (see [Chl] and [E]).

Acknowledgements. This research is supported by the Basque Gov-
ernment through the BERC 2014-2017 program and by Spanish Ministry of
Economy and Competitiveness MINECO: BCAM Severo Ochoa excellence
accreditation SEV-2013-0323 and the project MTM2014-53850-P.

The authors are grateful to F. J. Martin-Reyes and P. Ortega-Salvador
for pointing out reference [MOS].

REFERENCES

[AM] K. Andersen and B. Muckenhoupt, Weighted weak type Hardy inequalities
with applications to Hilbert transforms and mazimal functions, Studia Math.
72 (1982), 9-26.

[Ch] S. Chanillo, Weighted norm inequalities for strongly singular convolution op-
erators. Trans. Amer. Math. Soc. 281 (1984), 77-107.
[Coi] R. R. Coifman, Distribution function inequalities for singular integrals, Proc.

Nat. Acad. Sci. U.S.A. 69 (1972), 2838-2839.

[CMP1] D. Cruz-Uribe, J. M. Martell and C. Pérez, Extrapolation results for Aco
weights and applications, J. Funct. Anal. 213 (2004), 412-439.

[CMP2] D. Cruz-Uribe, J. M. Martell and C. Pérez, Weighted weak-type inequalities
and a conjecture of Sawyer, Int. Math. Res. Notices 2005, 1849-1871.

[CMP3] D. Cruz-Uribe, J. M. Martell and C. Pérez, Extensions of Rubio de Francia’s
extrapolation theorem, Collect. Math. 57 (2006), 195-231.

[CMP4] D. Cruz-Uribe, J. M. Martell and C. Pérez, Weights, Extrapolation and the
Theory of Rubio de Francia, Birkh&user, Basel, 2011.

[CGMP] G. P. Curbera, J. Garcia-Cuerva, J. M. Martell and C. Pérez, Extrapolation
with weights, rearrangement invariant function spaces, modular inequalities
and applications to singular integrals, Adv. Math. 203 (2006), 256-318.

[F] C. Fefferman, Inequalities for strongly singular convolution operators, Acta
Math. 124 (1970), 9-36.


http://dx.doi.org/10.1090/S0002-9947-1984-0719660-6
http://dx.doi.org/10.1073/pnas.69.10.2838
http://dx.doi.org/10.1016/j.jfa.2003.09.002
http://dx.doi.org/10.1016/j.aim.2005.04.009
http://dx.doi.org/10.1007/BF02394567

272 S. OMBROSI AND C. PEREZ

[GR] J. Garcia-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and
Related Topics, North-Holland Math. Stud. 116, North-Holland, Amsterdam,
1985.

[G] L. Grafakos, Modern Fourier Analysis, 3rd ed., Grad. Texts in Math. 250,
Springer, 2014.

[GT1] L. Grafakos and R. Torres, Multilinear Calderén—Zygmund theory, Adv. Math.
165 (2002), 124-164.

(GT2] L. Grafakos and R. Torres, Mazximal operator and weighted norm inequalities
for multilinear singular integrals, Indiana Univ. Math. J. 51 (2002), 1261-1276.

[LOPTT] A. K. Lerner, S. Ombrosi, C. Pérez, R. H. Torres and R. Trujillo-Gonzilez,
New mazximal functions and multiple weights for the multilinear Calderén—
Zygmund theory, Adv. Math. 220 (2009), 1222-1264.

[MOS] F. J. Martin-Reyes, P. Ortega Salvador and M. D. Sarrién Gavildn, Bounded-
ness of operators of Hardy type in AP? spaces and weighted mized inequalities
for singular integral operators, Proc. Roy. Soc. Edinburgh Sect. A 127 (1997),
157-170.

[MW] B. Muckenhoupt and R. Wheeden, Some weighted weak-type inequalities for
the Hardy-Littlewood maximal function and the Hilbert transform, Indiana
Univ. Math. J. 26 (1977), 801-816.

[OPR] S. Ombrosi, C. Pérez and J. Recchi, Quantitative weighted mized weak-type
inequalities for classical operators, Indiana Univ. Math. J. 65 (2016), 615-640.

[PW] C. Pérez and R. Wheeden, Uncertainty principle estimates for vector fields,
J. Funct. Anal. 181 (2001), 146-188.

[Sa] E. T. Sawyer, A weighted weak type inequality for the maximal function, Proc.
Amer. Math. Soc. 93 (1985), 610-614.

Sheldy Ombrosi Carlos Pérez

Department of Mathematics Department of Mathematics

Universidad Nacional del Sur University of the Basque Country

Bahia Blanca, Argentina Tkerbasque and BCAM

E-mail: sombrosiQuns.edu.ar Bilbao, Spain

E-mail: carlos.perezmo@ehu.es


http://dx.doi.org/10.1006/aima.2001.2028
http://dx.doi.org/10.1512/iumj.2002.51.2114
http://dx.doi.org/10.1016/j.aim.2008.10.014
http://dx.doi.org/10.1017/S0308210500023556
http://dx.doi.org/10.1512/iumj.1977.26.26065
http://dx.doi.org/10.1512/iumj.2016.65.5773
http://dx.doi.org/10.1006/jfan.2000.3711
http://dx.doi.org/10.1090/S0002-9939-1985-0776188-1

	1 Introduction and main results
	2 Some applications
	2.1 The vector-valued case
	2.2 Multilinear Calderón–Zygmund operators

	3 Counterexamples
	4 Proof of Theorem 1.1
	5 Proof of Theorem 1.3
	5.1 Proof of (1.7)

	REFERENCES

