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Two new estimates for eigenvalues of Dirac operators

Wenmin Gong and Guangcun Lu (Beijing)

Abstract. We establish lower and upper eigenvalue estimates for Dirac operators
in different settings, a new Kirchberg type estimate for the first eigenvalue of the Dirac
operator on a compact Kähler spin manifold in terms of the energy momentum tensor, and
an upper bound for the smallest eigenvalues of the twisted Dirac operator on Legendrian
submanifolds of Sasakian manifolds. The sharpness of those estimates is also discussed.

1. Introduction and main results

1.1. Previous work. Spectrum estimates for the Dirac operator D
on a closed spin manifold have been developed for a long time. In 1980,
Friedrich [Fri1] proved that on a compact Riemannian spin manifold (Mn, g)
of positive scalar curvature S, the first eigenvalue λ of D satisfies

(1.1) λ2 ≥ n

4(n− 1)
S0,

where S0 is the minimum of S on M , and equality holds in (1.1) if and only
if there exists a real Killing spinor ψ, i.e.

(1.2) ∇Xψ = −λ1
n
X · ψ

for all vector fields X on M . Moreover Friedrich proved that the existence
of a nontrivial Killing spinor implies that (Mn, g) is Einstein. Here λ1 is the
eigenvalue of D with the smallest absolute value. For Kähler manifolds of
complex dimension m > 1 Hijazi [Hij1] proved that equality in (1.1) cannot
be attained since Kähler manifolds cannot have Killing spinors. On the other
hand, in 1986 Kirchberg [Kir1] proved that each eigenvalue λ of the Dirac
operator on a compact Kähler spin manifold (M, g, J) of complex dimension
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m with positive scalar curvature S satisfies

λ2 ≥


m+ 1

4m
S0 if m is odd,

m

4(m− 1)
S0 if m is even.

(1.3)

When m = 2l + 1, Kirchberg [Kir4] also showed that equality in the first
relation of (1.3) is characterized by the existence of a Kählerian Killing
spinor ψ = ψl + ψl+1 ∈ Γ (ΣlM ⊕Σl+1M), i.e.

∇Xψl = − λ1
m+ 1

X− · ψl+1,

∇Xψl+1 = − λ1
m+ 1

X+ · ψl,
(1.4)

for any vector field X, where X± = 1
2(X ∓ iJX), and that (M, g, J) is

always Einstein in this case. Unlike the case of odd complex dimensions, for
m = 2l Gauduchon [Gau] proved that equality in the second relation of (1.3)
holds if and only if there exists a nontrivial spinor ψ ∈ Γ (Σl+1M) satisfying
D2ψ = D+Dψ = λ2ψ and

∇Xψ = − 1

m
X+ ·Dψ,(1.5)

for any vector field X (see (2.2) for the definition of D+).

On the other hand, inspired by the idea of Vafa and Witten [Wit], Bär
[Bar1] applied the min-max principle to establish upper eigenvalue esti-
mates for the twisted Dirac operators on submanifolds of spin manifolds
with Killing spinors. Then Ginoux [Gin2] established eigenvalue estimates
for the Dirac operator on Lagrangian submanifolds of Kählerian manifolds.

These results reveal that one can relate analytical properties of the Dirac
operator to richer geometric structures of the underlying Riemannian spin
manifolds. It is interesting to give lower bounds for the Dirac spectrum de-
pending on additional geometric quantities. In this direction Friedrich and
Kirchberg [FK1, FK2, Kir2] generalized (1.1) in terms of the Ricci ten-
sor, curvature tensor and Weyl tensor in, respectively. In special geometric
situations, better estimates are obtained in [Hij2, Hij3, HZ]. The famous
energy-momentum tensor Qψ comes from variation of the Dirac operator,
and it not only appears in the Dirac–Einstein equations but also is the sec-
ond fundamental form of an immersion into a spin manifold with a parallel
spinor. With a modified Levi-Civita connection on compact Riemannian spin
manifolds, Hijazi [Hij4] proved that the eigenvalues of the Dirac operator
could be related to the norm of the energy-momentum tensor Qψ associated
to an eigenspinor field ψ, i.e.,

(1.6) λ2 ≥ inf
M

(
1
4S + |Qψ|2

)
,
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and if equality holds there exists a nontrivial spinor ψ such that

(1.7) ∇Xψ = −Aψ(X) · ψ

for any vector field X, where Aψ is the field of symmetric endomorphisms
associated to the symmetric bilinear tensors Qψ. The equality (1.7) can
be used to study isometric immersion of hypersurfaces into a manifold, for
instance, isometric immersion of a surface into the 3-dimensional Euclidean
space [Fri2] and isometric immersion of a semi-Riemannian hypersurface into
model spaces of constant sectional curvature [BGM]. It is thus natural to
ask if there exists an analogous estimate on compact Kähler spin manifolds.

Sasakian manifolds [Bla] can be thought of as the odd-dimensional ana-
logues of Kähler manifolds. In [FKi, Kim], the authors improved Friedrich’s
estimates (1.1) with the help of new connection deformation techniques
adapted to the Sasakian structure. It is natural to ask whether one can
build bridges between upper eigenvalue estimates for the Dirac operator
and the Sasakian structure on a Sasakian manifold. Our second result will
give an affirmative answer to this question.

1.2. Main results. The following is our first result.

Theorem 1.1. Let (M2m, J, g) be a compact Kähler spin manifold with
scalar curvature S, and ψ an eigenspinor of type (r − 1, r) associated to a
nonzero eigenvalue λ of D, where r ∈ {1, . . . ,m}. Then

λ2 ≥


r

4r − 2
inf

Mψr−1

(S + 4|Qψr−1 |2),

m− r + 1

2(2m− 2r + 1)
inf
Mψr

(S + 4|Qψr |2),
(1.8)

where Mψ = {x ∈M | ψ(x) 6= 0}.

This is a new Kirchberg type estimate for the first eigenvalue of the
Dirac operator on compact Kähler spin manifolds in terms of the energy-
momentum tensor. The proof is mainly based on the Weitzenböck formula
for a modified Kähler twistor operator [Kir3, Pi].

Corollary 1.2. Let (M2m, J, g) be a compact Kähler spin manifold
with scalar curvature S. Then any eigenvalue λ 6= 0 of the Dirac operator
satisfies

λ2 ≥


m+ 1

4m
inf
M

(S + 4|Qψr−1 |2) if m is odd,

m

4(m− 1)
inf
M

(S + 4|Qψr |2) if m is even,
(1.9)

where ψ = ψr−1 +ψr is an eigenspinor of type (r−1, r) associated to λ with
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r ∈ {(m+ 1)/2, (m+ 1)/2+1, . . . ,m} if m is odd, and r ∈ {m/2+1,m/2+2,
. . . ,m} if m is even. Furthermore, assume that some eigenvalue λ∗ 6= 0 of
the Dirac operator is such that equality holds in (1.9). Then

(i) for odd m we have r = (m+ 1)/2 and

S + 4|Qψ(m−1)/2
|2 ≡ inf

M
(S + 4|Qψ(m−1)/2

|2),

(1.10) ∇Xψ(m−1)/2 +
λ∗

m+ 1
X− · ψ(m+1)/2 +Aψ(X) · ψ(m−1)/2 = 0

for every vector field X;
(ii) for even m we have r = (m+ 2)/2 and

S + 4|Qψ(m+2)/2
|2 ≡ inf

M
(S + 4|Qψ(m+2)/2

|2),

(1.11) ∇Xψ(m+2)/2 +
λ∗

m
X+ · ψm/2 +Aψ(X) · ψ(m+2)/2 = 0,

for every vector field X.

Comparing (1.6) and (1.9) we see that (1.9) is a better estimate on
compact Kähler spin manifolds. Moreover, for odd m the equality (1.10)
can be partially viewed as a generalization of (1.4); and for even m the
equality (1.11) is equivalent to

∇Xψ(m+2)/2 +
1

m
X+ ·Dψ(m+2)/2 +Aψ(m+2)/2

(X) · ψ(m+2)/2 = 0,

which also can be viewed as an analogue of (1.5).

Our second result is an upper eigenvalue estimate for Legendrian sub-
manifolds in Sasakian manifolds. We give a definition of a Sasakian version of
Killing spinors and show that it is equivalent to the definition of a Sasakian
Killing spinor in [Kim]. Via combining the formula for the square of the
twisted Dirac operator (cf. Lemma 4.1) and an adapted local frame (cf.
Lemma 4.2) on the underlying manifold, we obtain:

Theorem 1.3. Let (L, g) be a closed Legendrian spin manifold of a
Sasakian spin manifold (M2m+1, φ, ξ, η, g) with m ≥ 3 and m ≡ 1 mod 2,
and let H be the mean curvature vector field of L in M . Assume that
M admits Sakakian Killing spinors and that the normal bundle of L in
M is equipped with the induced spin structure. Set l := (m− 1)/2 and
N := dim(SK(µ)), where µ is a given nonzero real number and SK(µ)
is the space of µ-Sasakian Killing spinors on (M2m+1, φ, ξ, η, g). Then there
are at least N eigenvalues λ counted with multiplicity of the twisted Dirac
operator DT satisfying

(1.12) λ2 ≤ (µ+ (−1)l)2

4
+

m2

4 Vol(L)

�

L

|H|2vg.
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If the submanifold L is minimal in M , then (1.12) becomes

(1.13) λ2 ≤ (µ+ (−1)l)2/4.

In Section 5.2 we shall give an example to show that this estimate is sharp.
The arrangement of this paper is as follows. In Section 2 we collect some

necessary preliminaries on spinor bundles and the Dirac operator on Kähler
manifolds. The proofs of Theorem 1.1 and Corollary 1.2 will be given in
Section 3. In Section 4 we shall discuss Legendrian submanifolds of Sasakian
manifolds and give some lemmas. Theorem 1.3 will be proved in Section 5,
and we also give some examples and corollaries there.

2. Spinor bundles on Kähler manifolds. Let (M, g, J) be a real
n = 2m-dimensional Kähler manifold with Riemannian metric g, complex
structure J and Kähler form Ω = g(J ·, ·) (see [Mor]). Fix a spin structure
on M and denote the spinor bundle of M by ΣM (see [LM]). The Clifford
contraction c : TM ⊗ ΣM → ΣM is defined on each fiber by the Clifford
multiplication on the spinor representation Σ. We always denote c(X ⊗ ϕ)
= X ·ϕ and {ei}i=1,...,n a local orthonormal frame. The tangent bundle and
cotangent bundle are identified by the metric g. Each k-form ω acts as an
endomorphism of the spinor bundle, locally given by

ω · ϕ =
∑

1≤i1<···<ik≤2m
ω(ei1 , . . . , eik)ei1 · . . . · eik · ϕ.

With respect to this action, the Kähler form is given locally by

Ω =
1

2

n∑
j=1

ej · Jej .

Under the action of the Kähler form Ω, the spinor bundle splits into the
orthogonal decomposition

ΣM =
m⊗
r=0

ΣrM

with respect to the Hermitian scalar product (·, ·), where each ΣrM is an
eigenbundle of Ω associated to the eigenvalue µr = i(2r −m).

For r ∈ {0, 1, . . . ,m}, denote by cr the restriction of the Clifford con-
traction c to TM ⊗ΣrM . Then

c = c−r + c+r : Γ (TM ⊗ΣrM)→ Γ (TM ⊗Σr−1M)⊕ Γ (TM ⊗Σr+1M),

where c−r and c+r , taking values in Σr−1M and Σr+1M respectively, are given
by

c+r (X ⊗ ϕ) = X+ · ϕ and c−r (X ⊗ ϕ) = X− · ϕ
with X± = 1

2(X ∓ iJX) as before.
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The Dirac operator is defined as the composition

Γ (ΣM)
∇−→ Γ (T ∗M ⊗ΣM)

c−→ Γ (ΣM),

i.e., D = c ◦ ∇. Locally, it is given by D =
∑n

i=1 ei · ∇ei . It is well known
that the Dirac operator satisfies the Schrödinger–Lichnerowicz formula

(2.1) D2 = ∇∗∇+ 1
4S,

where ∇∗∇ is the Laplacian operator on the spinor bundle and S is the
scalar curvature of M . When restricted to ΣrM , the Dirac operator has a
natural decomposition

D = D+ +D− : Γ (ΣrM)→ Γ (Σr+1M)⊕ Γ (Σr−1M),

where D+ and D− are defined by

(2.2) D+ := c+r ◦ ∇ and D− := c−r ◦ ∇,

and satisfy the relations

(D+)2 = 0, (D−)2 = 0, D+D− +D−D+ = D2.

On the spinor bundle there is a canonical C-anti-linear real or quaternionic
structure  : ΣM → ΣM such that

2 = (−1)m(m+1)/2,  : ΣrM → Σm−rM,(2.3)

(Z · ϕ) = Z̄ · (ϕ) ∀Z ∈ Γ (TMC),(2.4)

(ϕ, φ) = (ϕ, φ), D ◦  =  ◦D, D± ◦  =  ◦D∓.(2.5)

On each subbundle ΣrM (r = 0, . . . ,m), the Kähler twisted operator for
any X ∈ Γ (TM) and any ϕ ∈ ΣrM is defined by

(2.6) (Tr)Xϕ = ∇Xϕ+
1

2(r + 1)
X− ·D+ϕ+

1

2(m− r + 1)
X+ ·D−ϕ

(see [Kir3, Pi]). As in [Pi], a straightforward calculation leads to

Lemma 2.1. For any ϕ ∈ Γ (ΣrM),

(2.7) |Trϕ|2 = |∇ϕ|2 − 1

2(r + 1)
|D+ϕ|2 −

1

2(m− r + 1)
|D−ϕ|2.

For the eigenvalues of the Dirac operator on a compact Kähler spin
manifold, Kirchberg [Kir3] proved

Lemma 2.2. Let M be a compact Kähler spin manifold of complex di-
mension m. Then for any eigenvalue λ 6= 0 of the Dirac operator, there
exists an eigenspinor ψ associated with λ such that ψ = ψr−1 +ψr for some
r ∈ {1, . . . ,m}, and the components ψr−1 ∈ Γ (Σr−1) and ψr ∈ Γ (Σr) have



Eigenvalues of Dirac operators 115

the properties:

‖ψr−1‖ = ‖ψr‖,(2.8)

D+ψr = 0, D+ψr−1 = λψr,(2.9)

D−ψr−1 = 0, D−ψr = λψr−1.(2.10)

For simplicity, we call such an eigenspinor an eigenspinor of type (r, r − 1).

Remark 2.3. Some of the components ψr ∈ Γ (Σr) may be trivial. Since
there exists an anti-linear parallel map  onΣM commuting with the Clifford
multiplication, ψ = ψr + ψr−1 is an eigenspinor of type (m− r,m− r+ 1)
by (2.5). Keeping this in mind, in the following we always assume that

r ∈ {(m+ 1)/2, (m+ 1)/2 + 1, . . . ,m} if m is odd,

r ∈ {m/2 + 1,m/2 + 2, . . . ,m} if m is even.

3. Kirchberg type spectrum estimates

3.1. Proof of Theorem 1.1. For any spinor ψ and any tangent vector
fields X and Y we define, in the classical way, the symmetric bilinear tensor
Qψ on the complement of the zero set of ψ by

(3.1) Qψ(X,Y ) = 1
2<(X · ∇Y ψ + Y · ∇Xψ,ψ/|ψ|2),

where < is the real part of the scalar product. If ψ = 0, we make a convention
thatQψ = 0. For any real parameter t ∈ R, Consider the differential operator
(modified Kähler twistor operator [Pi]), Pt : Γ (ΣM) → Γ (TM ⊗ ΣM),
which is locally defined by Ptψ =

∑n
i=1 ei ⊗ Pteiψ with

PtXψ : = ∇Xψ +
1

2(r + 1)
X− ·D+ψ +

1

2(m− r + 1)
X+ ·D−ψ(3.2)

+ t

n∑
i=1

Qψ(X, ej)ej · ψ.

Lemma 3.1. Let ψ ∈ Γ (ΣrM), r ∈ {0, 1, . . . ,m}. Then

�

M

|Ptψ|2 =
�

M

|Dψ|2 − S

4
|ψ|2 − ar|D+ψ|2 − br|D−ψ|2 + t2|Qψ|2|ψ|2(3.3)

− 2t
�

M

|Qψ|2|ψ|2,

where ar = 1
2(r+1) and br = 1

2(m−r+1) .
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Proof. Let Qψ,i,j = Qψ(ei, ej). From (2.7) we directly calculate

|Ptψ|2 = |Trψ|2 + t2
∑
i,j,k

Qψ,i,jQψ,i,k(ej · ψ, ek · ψ)

+ 2t
∑
i,j

Qψ,i,j<((Tr)eiψ, ej · ψ)

= |Trψ|2 + t2
∑
i,j

Q2
ψ,i,j |ψ|2 + 2t

∑
i,j

Qψ,i,j<(∇eiψ, ej · ψ)

+ 2art
∑
i,j

Qψ,i,j<(e−i ·D+ψ, e
+
j · ψ + e−j · ψ)

+ 2brt
∑
i,j

Qψ,i,j<(e+i ·D−ψ, e
+
j · ψ + e−j · ψ)

= |Trψ|2 + t2|Qψ|2|ψ|2 − 2t|Qψ|2|ψ|2

= |∇ψ|2 − ar|D+ψ|2 − br|D−ψ|2 + t2|Qψ|2|ψ|2 − 2t|Qψ|2|ψ|2.

Using (2.1) and integrating both sides of (3.4) over M we obtain (3.3).

Now we can complete the proof of Theorem 1.1 as follows. Let ψ =
ψr−1 + ψr be an eigenspinor as in Lemma 2.2. Applying (3.3) to ψr−1 and
ψr respectively, we deduce that

(3.4)
�

M

[
λ2(1− ar−1)− 1

4S + t2|Qψr−1 |2 − 2t|Qψr−1 |2
]
|ψr−1|2 ≥ 0

and

(3.5)
�

M

[
λ2(1− br)− 1

4S + t2|Qψr |2 − 2t|Qψr |2
]
|ψr|2 ≥ 0.

Clearly, (3.4) implies that
�

M

λ2(1− ar−1)|ψr−1|2 ≥
�

M

(
S/4 + [1− (t− 1)2]|Qψr−1 |2

)
|ψr−1|2(3.6)

≥
�

M

inf
M

(
S/4 + [1− (t− 1)2]|Qψr−1 |2

)
|ψr−1|2.(3.7)

It follows that

(3.8) λ2(1− ar−1) ≥ inf
M

(
S/4 + [1− (t− 1)2]|Qψr−1 |2

)
, ∀t ∈ R.

Similarly, we obtain

(3.9) λ2(1− br) ≥ inf
M

(
S/4 + [1− (t− 1)2]|Qψr |2

)
, ∀t ∈ R.

By computing the maximum of the right sides with respect to the parame-
ter t, Theorem 1.1 is proved.
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3.2. Proof of Corollary 1.2. For any eigenspinor ψ = ψr−1 + ψr of
type (r−1, r) the inequality (1.9) holds, where r is as in Remark 2.3. If m is
odd, we find that since the function f(x) = x/(4x− 2) is strictly decreasing
on [1,∞), we have f(r) ≥ f((m+ 1)/2) for (m+ 1)/2 ≤ r ≤ m. It follows
that

(3.10)
r

4r − 2
inf
M

(S + 4|Qψr−1 |2) ≥
m+ 1

4m
inf
M

(S + 4|Qψr−1 |2)

for (m+ 1)/2 ≤ r ≤ m. If m is even, we consider the strictly increasing
function g(x) = m−x+1

2(2m−2x+1) on [1,∞) and find that g(r) ≥ g((m+ 2)/2) for

(m+ 2)/2 ≤ r ≤ m. Then

(3.11)
m− r + 1

2(2m− 2r + 1)
inf
M

(S + 4|Qψr |2) ≥
m

4(m− 1)
inf
M

(S + 4|Qψr |2)

for (m+ 2)/2 ≤ r ≤ m. Altogether we arrive at the first part of Corol-
lary 1.2.

To prove the remaining limiting case of (1.9), we denote by Aψ the field
of symmetric endomorphisms associated with the field of quadratic forms

Qψ(X) := <(X · ∇Xψ,ψ/|ψ|2),
that is, for any tangent vector field X,

Aψ(X) :=
2m∑
i=1

Qψ(X, ei)ei.

Then the trace of Aψ satisfies trAψ = <(Dψ,ψ/|ψ|2). Clearly trAψ = λ if
ψ is an eigenspinor associated with λ.

Now assume that an eigenvalue λ∗ 6= 0 of the Dirac operator satisfies

(λ∗)2 =


m+ 1

4m
inf
M

(S + 4|Qψr−1 |2) if m is odd,

m

4(m− 1)
inf
M

(S + 4|Qψr |2) if m is even,

where ψ = ψr−1 + ψr is an eigenspinor of type (r − 1, r) associated to λ∗

with r ∈ {(m+ 1)/2, (m+ 1)/2 + 1, . . . ,m} if m is odd, and r ∈ {m/2 + 1,
m/2 + 2, . . . ,m} if m is even.

We only handle the case of m odd, i.e., conclusion (i) of Corollary 1.2;
the proof of the other case is completely similar. In the present situation,
from the proof of Corollary 1.2 we find that r = (m+ 1)/2. Taking λ = λ∗,
t = 1 and r = (m+ 1)/2 in (3.6) and (3.7) we arrive at

S/4 + |Qψ(m−1)/2
|2 ≡ inf

M
(S/4 + |Qψ(m−1)/2

|2).

Then equality holds in (3.4) for t = 1. It follows that�

M

|P1ψ(m−1)/2|2 = 0,
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and thus P1ψ(m−1)/2 = 0. Finally, (1.10) immediately follows from this
equality, (2.9) and (2.10).

Remark 3.2. Taking t = 0 in (3.4) we recover (1.3). Indeed, in this case
(3.10) and (3.11) become

r

4r − 2
inf
M
S ≥ m+ 1

4m
inf
M
S and

m− r + 1

2(2m− 2r + 1)
inf
M
S ≥ m

4(m− 1)
inf
M
S,

respectively. Similarly, the limit cases in [Kir4] and [Gau] can be obtained.

4. Legendrian submanifolds of Sasakian manifolds. We begin
with some notation of [BoyG]. A Sasakian manifold (M2m+1, φ, ξ, η, g) is an
odd-dimensional Riemannian manifold equipped with a type (1, 1)-tensor φ,
a unit Killing vector field ξ and a 1-form η such that for any vector fieldsX,Y,

η(ξ) = 1, φ2(X) = −X + η(X)ξ, g(φ(X), φ(Y )) = g(X,Y )− η(X)η(Y ),

(∇Xφ)(Y ) = g(X,Y )ξ − η(Y )X.

A submanifold L of a Sasakian manifold M2m+1 is Legendrian if dim L = m
and the inclusion map i : L ↪→ M satisfies i∗η = 0. Let L be equipped
with the induced Riemannian metric i∗g. Suppose now that both manifolds
have spin structures and denote their spinor bundles by ΣM and ΣL with
Hermitian inner product 〈·, ·〉 and 〈·, ·〉L respectively. In particular, M and
L are both orientable. Therefore there exists an induced spin structure on
the normal bundle NL such that the restricted spinor bundle ΣM |L can be
identified with ΣL ⊗ ΣN (see [Mil]), where ΣN is the spin bundle of NL
with the induced Hermitian inner product 〈·, ·〉. To compare the different
spin bundles on the submanifold L, we denote by “·L”, “·N” and “·” the
Clifford multiplications of L, NL and M respectively.

Assume that m is odd. We can require that the above identification
ΣM |L ≡ ΣL ⊗ ΣN is unitary by suitably normalizing the associated Her-
mitian inner products. Then for all ϕ ∈ ΣM |L = ΣL⊗ΣN we have{

X · ϕ =
{
X·L ⊗ (IdΣ+N − IdΣ−N )

}
ϕ ∀X ∈ TL,

Y · ϕ = (Id⊗ Y ·N )ϕ ∀Y ∈ NL,

where ΣN = Σ+N ⊕ Σ−N is the orthogonal decomposition induced by
the complex volume form (cf. [Bar1, GM]). Denote by ∇ (resp. ∇) the
Levi-Civita connection of (M, g) (resp. (L, i∗g)). They can be lifted to the
spinorial connections ∇ on ΣM and ∇ := ∇ΣL⊗ΣN on ΣL ⊗ ΣN , respec-
tively. Moreover the following Gauss-type formula holds:

(4.1) ∇Xϕ = ∇Xϕ+
1

2

m∑
u=1

Eu · II (X,Eu) · ϕ
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for any vector field X tangent to L and any section ϕ of ΣM |L, where
(Eu)1≤u≤m stands for a local positively oriented orthonormal basis of TL,
and II is the second fundamental form of L in M . The Dirac–Witten op-
erator D (see [Wit]) and the twisted Dirac operator DT (see [LM]) on the
Legendrian submanifold L are locally given by

D :=

m∑
u=1

Eu · ∇Eu and DT :=

m∑
u=1

Eu · ∇Eu ,

respectively. Note that both operators acting on sections ofΣM |L are elliptic
and that DT is also formally self-adjoint with respect to the L2-Hermitian
inner product 〈·, ·〉L2 . From (4.1), it is easy to see that

(4.2) D = DT −mH/2

(cf. [Bar1]), where H = 1
m tr(II ) is the mean curvature vector field of the

immersion i. Moreover, the following lemma holds:

Lemma 4.1. For any section ϕ of ΣM |L,

(4.3) D
2
ϕ = (DT )2ϕ− m2|H|2

4
ϕ− m

2

m∑
u=1

Eu · ∇NEuH · ϕ,

where ∇NH denotes the normal covariant derivative of H.

Proof. Using (4.2) we calculate

D
2
ϕ = DDTϕ− m

2
D(H · ϕ)

= (DT )2ϕ− m

2
H ·DTϕ− m

2

m∑
u=1

Eu · ∇Eu(H · ϕ)

= (DT )2ϕ− m

2
H ·

(
D +

m

2
H

)
ϕ− m

2

m∑
u=1

Eu ·H · ∇Euϕ

− m

2

m∑
u=1

Eu · ∇EuH · ϕ

= (DT )2ϕ+
m2

4
|H|2ϕ− m

2

m∑
u=1

Eu · ∇EuH · ϕ

= (DT )2ϕ+
m2

4
|H|2ϕ− m

2

m∑
u=1

Eu ·
m∑
v=1

g(∇EuH,Ev)Ev · ϕ

− m

2

m∑
u=1

Eu · ∇NEuH · ϕ
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= (DT )2ϕ+
m2

4
|H|2ϕ+

m

2

m∑
u,v=1

g(H,∇EuEv)Eu · Ev · ϕ

− m

2

m∑
u=1

Eu · ∇NEuH · ϕ

= (DT )2ϕ+
m2

4
|H|2ϕ+

m

2

m∑
u=1

g(H,∇EuEu)ϕ

− m

2

m∑
u=1

Eu · ∇NEuH · ϕ

= (DT )2ϕ+
m2

4
|H|2ϕ− m

2

m∑
u=1

g
(
H, II (Eu, Eu)

)
ϕ

− m

2

m∑
u=1

Eu · ∇NEuH · ϕ

= (DT )2ϕ+
m2

4
|H|2ϕ− m2

2
|H|2ϕ− m

2

m∑
u=1

Eu · ∇NEuH · ϕ

= (DT )2ϕ− m2

4
|H|2ϕ− m

2

m∑
u=1

Eu · ∇NEuH · ϕ.

Lemma 4.2. Let (L, g) be a Legendrian submanifold of a Sasakian man-
ifold (M,φ, ξ, η, g). Then for any local orthonormal frame (Eu)1≤u≤m on L,
{E1, . . . , Em, φ(E1), . . . , φ(Em), ξ} is an adapted local orthonormal frame
on M .

Proof. This results directly from the formula

dη(X,Y ) = g(X,φ(Y ))

for all vector fields X, Y on M (see [Bla, Theorem 6.3]).

Recall that the fundamental 2-form Φ on M is defined by Φ := g
(
·, φ(·)

)
.

The tangent bundle and cotangent bundle are identified via the metric g.
With respect to the local frame above, the fundamental 2-form Φ can be
written as

Φ =

m∑
u=1

φ(Eu) ∧ Eu.

Assume that (Eu)1≤u≤2m+1 is a local orthonormal frame. Under the action of
Φ =

∑m
u=1 φ(Eu) · Eu the spinor bundle ΣM of the Sasakian spin manifold

(M2m+1, φ, ξ, η, g) splits into the orthogonal direct sum ΣM = Σ0M ⊕
Σ1M ⊕ · · · ⊕ΣmM with
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Φ|ΣrM =
√
−1 (2r −m) Id, dim(ΣrM) =

(
m

r

)
,(4.4)

ξ|ΣrM =
√
−1 (−1)m+r Id, r ∈ {0, 1, . . . ,m}.(4.5)

Moreover, a direct computation leads to

Lemma 4.3. For every vector field Z tangent to M with η(Z) = 0,

(4.6) P+(Z) ·ΣrM ⊂ Σr+1M and P−(Z) ·ΣrM ⊂ Σr−1M
with the convention ΣrM = M ×{0} for r /∈ {0, 1, . . . ,m}, where P±(Z) :=
1
2

(
Z ±
√
−1φ(Z)

)
.

Definition 4.4. Let (M2m+1, φ, ξ, η, g) be a Sasakian spin manifold
with m ≥ 3 and m ≡ 1 mod 2. Let l := (m− 1)/2. A nontrivial sec-
tion ψ = ψl + ψl+1 of ΣM is called a µ-Sasakian Killing spinor with
ψl ∈ Σ(m−1)/2M and ψl+1 ∈ Σ(m+1)/2M if

(4.7)


∇Zψl = − µ

m+ 1
p−(Z)ψl+1 +

1

2
φ(Z) · ξ · ψl,

∇Zψl+1 = − µ

m+ 1
p+(Z)ψl +

1

2
φ(Z) · ξ · ψl+1.

for all vector fields Z ∈ Γ (TM) with η(Z) = 0, where µ is a certain nonzero
real number.

Remark 4.5. Since ∇̃Zψ := ∇Zψ − 1
2φ(Z) · ξ · ψ commutes with the

fundamental form Φ (cf. [Kim]), we deduce from (4.5) and (4.6) that (4.7)
is equivalent to

(4.8) ∇̃Zψ = − µ

2(m+ 1)
Z · ψ − (−1)(m+1)/2 µ

2(m+ 1)
φ(Z) · ξ · ψ.

This exactly gives the definition of a Sasakian spin manifold with character-
istic number µ in [Kim, Definition 3.4] with the property that if ϕ satisfies
(4.8) then ξ · ϕ is also a Sasakian Killing spinor with characteristic num-
ber −µ.

Remark 4.6. Recall that a Sasakian manifold (M2m+1, φ, ξ, η, g) is called
η-Einstein if the scalar curvature S is constant and the Ricci curvature
satisfies

Ric =

(
S

2m
− 1

)
g +

(
2m+ 1− S

2m

)
η ⊗ η.

The existence of a µ-Sasakian Killing spinor [Kim, Proposition 3.5] im-
plies that the manifold (M2m+1, φ, ξ, η, g) must be η-Einstein with S =
4mµ2/(m+ 1)− 2m. Moreover, if M itself is also Einstein and µ = (−1)l+1

× (m+ 1), then (4.7) reduces to the Killing spinor equation

∇Xψ =
(−1)l

2
X · ψ, X ∈ Γ (TM).
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5. Proof of Theorem 1.3 and some related results

5.1. Proof of Theorem 1.3. Denote by SK(µ) the space of µ-Sasakian
Killing spinors on (M2m+1, φ, ξ, η, g). A straightforward computation shows
that SK(µ1) ∩ SK(µ2) = {0} if µ1 6= µ2. For any µ-Sasakian Killing spinor
ψ = ψl + ψl+1, we estimate the Rayleigh quotient

(5.1) Q((DT )2, ψ) :=

	
L Re〈(DT )2ψ,ψ〉vg	

L |ψ|vg
.

Let (Eu)1≤u≤m be a local orthonormal frame on TL. Then {E1, . . . , Em,
φ(E1), . . . , φ(Em), ξ} is a local orthonormal frame on TM . Note that
m∑
u=1

p−(Eu) · p+(Eu) = −
√
−1

2
Φ− m

2
,

m∑
u=1

p+(Eu) · p−(Eu) =

√
−1

2
Φ− m

2
.

From (4.4), (4.5) and (4.8), we deduce

Dψl =
m∑
u=1

Eu · ∇Euψl(5.2)

= − µ

m+ 1

m∑
u=1

Eu · p−(Eu) · ψl+1 +
1

2

∑
u=1

Eu · φ(Eu) · ξ · ψl

= − µ

m+ 1

m∑
u=1

p+(Eu) · p−(Eu) · ψl+1 −
(−1)m+l

2

√
−1Φ · ψl

= − µ

m+ 1

(√
−1

2
Φ · ψl+1 −

m

2
ψl+1

)
+

(−1)l

2
ψl

=
µ

2
ψl+1 +

(−1)l

2
ψl.

A similar computation yields

(5.3) Dψl+1 =

m∑
u=1

Eu · ∇Euψl+1

= − µ

m+ 1

m∑
u=1

Eu · p+(Eu) · ψl+1 +
1

2

∑
u=1

Eu · φ(Eu) · ξ · ψl+1

= − µ

m+ 1

m∑
u=1

p−(Eu) · p+(Eu) · ψl+1 +
(−1)m+l

2

√
−1Φ · ψl+1

= − µ

m+ 1

(
−
√
−1

2
Φ · ψl −

m

2
ψl

)
+

(−1)l

2
ψl+1

=
µ

2
ψl +

(−1)l

2
ψl+1.
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Thus we obtain

D
2
ψl =

µ

2
Dψl+1 +

(−1)l

2
Dψl(5.4)

=
µ

2

(
µ

2
ψl +

(−1)l

2
ψl+1

)
+

(−1)l

2

(
µ

2
ψl+1 +

(−1)l

2
ψl

)
=
µ2 + 1

4
ψl +

(−1)lµ

2
ψl+1

and

D
2
ψl+1 =

µ

2
Dψl +

(−1)l

2
Dψl+1(5.5)

=
µ

2

(
µ

2
ψl+1 +

(−1)l

2
ψl

)
+

(−1)l

2

(
µ

2
ψl +

(−1)l

2
ψl+1

)
=
µ2 + 1

4
ψl+1 +

(−1)lµ

2
ψl.

Combining (4.3), (5.4) and (5.5), we get

(5.6) (DT )2ψ =
(µ+ (−1)l)2

4
ψ +

m2|H|2

4
ψ +

m

2

m∑
u=1

Eu · ∇NEuH · ψ.

Plugging (4.7) into (4.2) leads to

Q((DT )2, ψ) =
(µ+ (−1)l)2

4
+
m2

	
L |H|

2〈ψ,ψ〉vg	
L〈ψ,ψ〉vg

.

Applying the Min-Max principle, we find that there are at least N eigenval-
ues λ of the twisted Dirac operator DT . According to Remark 4.5, the one-
to-one correspondence between SK(µ) and SK(−µ) implies dim(SK(µ)) =
dim(SK(−µ)). Estimating the Rayleigh quotient on the vector space
SK(µ)⊕ SK(−µ) as above, we obtain the desired result.

5.2. Examples and corollaries

Example 5.1. A natural example of a Sasakian-Einstein manifold is
the odd-dimensional round sphere S2m+1 (cf. [Gol]). Let m ≥ 3 and m ≡ 1
mod 2. By Remark 4.6, the space of µ-Sasakian Killing spinors on S2m+1 is
the same as the space of Killing spinors with Killing number (−1)l/2, where
µ := (−1)l+1(m+ 1) and l := (m− 1)/2, that is,

SK(µ) =

{
ψ ∈ Γ (ΣS2m+1)

∣∣∣∣∇ΣS2m+1

X ψ =
(−1)l

2
X · ψ, ∀X ∈ Γ (TS2m+1)

}
.

Recall that the complex dimension of the space of −1
2 - (or 1

2 -) Killing spinor

on the round sphere Sn is 2[n/2] (see [Bar2]). As a consequence of Theo-
rem 1.3 we recover Bär’s result [Bar1, Corollary 3.3].
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Corollary 5.2. Let L be a (2l+1)-dimensional closed Legendrian spin
submanifold with l ≥ 1 in the Sasakian-Einstein spin manifold S4l+3. Let
the normal bundle of L in S4l+3 carry the induced spin structure, and H
be the mean curvature vector field of L in S4l+3. Then the twisted Dirac
operator DT on L has at least 22l+2 eigenvalues λ counted with multiplicity
satisfying

(5.7) λ2 ≤ (2l + 1)2

4
+

(2l + 1)2

4 Vol(L)

�

L

|H|2vg.

Example 5.3. If L in Corollary 5.2 is the canonical embedding S2l+1 →
S4l+3, which is minimal, we claim that (5.7) becomes

(5.8) λ2 = (2l + 1)2/4.

This means that the estimate in (1.13) or (5.7) is sharp. In fact, by Corol-
lary 5.2 there are at least 22l+2 eigenvalues λ counted with multiplicity
satisfying

(5.9) λ2 ≤ (2l + 1)2/4.

On the other hand, the normal bundle is trivial with flat connection. By
identifying the normal spin bundle ΣN with S2l+1×Σ2l+2, we find that the
twisted Dirac eigenvalues are the same as those of the Dirac operator. Since
the smallest eigenvalues of the Dirac operator on Sn are ±n/2 and each has
multiplicity 2[n/2] (see [Gin3, Theorem 2.1.3]), ±(2l + 1)/2 are the smallest
twisted Dirac eigenvalues on S2l+1 with multiplicity

2[(2l+1)/2] · 2[(2l+2)/2] = 22l+1,

where the second factor on the left side is contributed by the dimension of
Σ2l+2. Therefore, there are precisely 22l+2 eigenvalues counted with multi-
plicity satisfying (5.9). This proves the desired claim.
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