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Remarks on regularity criteria for the Navier—Stokes
equations with axisymmetric data

ZUJIN ZHANG (Ganzhou)

Abstract. We consider the axisymmetric Navier—Stokes equations with non-zero
swirl component. By invoking the Hardy—Sobolev interpolation inequality, Hardy inequal-
ity and the theory of Ag (1 < 8 < o0) weights, we establish regularity criteria involving
u”, w® or w’ in some weighted Lebesgue spaces. This improves many previous results.

1. Introduction. The three-dimensional Navier—Stokes equations read

du+ (u-V)u— Au+ Vr =0,
(1.1) V-u=0,
u(0) = uy,

where

u = (u,u? u’) = ule; +ues + ules
is the fluid velocity field, 7 is a scalar pressure, and ug is the prescribed
initial data satisfying the compatibility condition V - ug = 0 in the sense of
distributions.

It is well-known that has a global weak solution for initial data of
finite energy [7, 13]. However, its regularity and uniqueness is an outstanding
open problem in mathematical fluid dynamics. Pioneered by Serrin [17] and
Prodi [I6], there are many sufficient conditions to ensure the smoothness
of the solution. In particular, we have the following regularity criterion (see
[4, [16], [17] for example):

2 3

(1.2) w e L0, T; LP(R?)), ——}—le,?)gqgoo.
«
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In this paper, we shall concern ourselves with axisymmetric solutions of
(1.1). A solution is axisymmetric if the velocity field can be represented as

(1.3) u=u"(t,r,z)e, + u®(t,r, 2)eg + u*(t,r, z)e,,

where

e — <‘””“”2 ) — (cos0,sin6,0), ep= (—“,“,0>= (—sin6, cos6,0),
r’or r’or

€, = (0707 1)7

and u", u? and u? are called the radial, swirl (or azimuthal) and azial com-
ponents of u respectively. Thus the system (|1.1) can be equivalently refor-
mulated as

D 1 1 (u?)?
@“T‘@“%H@‘rz)“r‘ + 8,1 =0,
D , 9 a2 1 1Y 4 uu?
@u — (87‘ +8Z+T3r—742>u + " :0,

(1.4) D

R 2 2 1 z _
Dl <8T +0; + r@,« u® + 0,7 =0,
Op(ru”) 4+ 0, (ru®) = 0,

(urv uaa uz)(o) = (UB, ugv ug)?

where

D I8
(1.5) Di =0, +u" 0, + u,0,

denotes the convection derivative (or material derivative).
If we take the curl of (1.1)); and denote

(1.6) w=Vxu=uwe+uwley+we,
with
6
(1.7) Ww'=—0,u0, W =00 —0uF, W=l + u—,
,
then
(1.8) ow+ (u-Vw — (w-V)u — Aw =0,
which could be rewritten as
P
D 1 1
Ewr — <8§ + 85 + ;& — r2>wr — (W0 + w0, )u" =0,
D 1 1 200,10 ww?
1.9 =0 2 2, -9 _ 0 z _ _
(1.9) Qtw <3r+3z+7ﬁr r2>w . — =0
D

1
By 2 2 - z _ T z z _
DY <8T + 07+ r&«>w (W0 + w®0,)u* = 0.
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If the swirl component ug is zero, then has a unique global regu-
lar solution |10} 12, 19]. However, if ug # 0, then global regularity is open.
Tremendous efforts have been devoted to the regularity problem, and inter-
esting progress has been made: see [11, 3], 5 8, 9, [TT], 14}, [15], 20] and references
therein. Let us now list some regularity criteria which are relevant to our re-
sults:

(1) (|2, Theorem 1.1])

2 3 3
1.1 d,,0 o . 78(R3 202 g 2 <
(1.10)  r%u” € L*(0,T; LF(R?)), a+,8 al,l_d<5_oo7
0<d<1;
(2) (|2, Remark 1.3], under the assumption rul € L>)
2 3 3
1.11 “f e L0, T; L°(R? S+ =1-d ——<B<
(L) e O TR, Z4i-1-d o<,
—1<d<0;
(3) (|2, Theorem 1.4])
2 3 3
d, z a . 7B (M3 242 —1_ [ <
(1.12)  r%® € L*(0,T; L°(R”)), a—’_ﬁ 1 d,17d<6_oo,
0<d<1;
(4) ([2, Corollary 1.5], under the assumption ruf € L°°)
(1.13) ru® € L(0,T; L™ (R?));
(5) (|2, Theorem 1.3], under the assumption ru$ € L)
2
(1.14) w® e L0, T; LP(R?)), =+ 3 2, 3 < B < oo;
a S 2
(6) (J1, Theorem 1])
2
(1.15) w? € L0, T; LP(RY)), a+2:2’ g < B < o0,

with the limiting case w? € L1(0,T; L*(R?)) covered and extended to w’ €
L'(0,T; BY, o (R?)) in [3, Theorem 1.2.

By (1.10)-(T.11)), we see that the regularity criterion involving r%uf is
complete. Notice that the case d = 1 is a priori known, which could not

be a regularity criterion (see Lemma . However, the smoothness criteria
(1.14) and ([1.15)) are not complete. We shall extend them in the following
theorem.

Our precise result reads:
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THEOREM 1.1. Let ug € H?(R3) be awially symmetric and divergence-
free, and w € C([0,T); H2(R3))NL2(0, T; H3(R?)) be the unique axisymmet-
ric classical solution of (1.4). If one of the following conditions holds:

2 3 3

d, r ey . 7B (M3 2102 —1_ R <
(1.16) réu” € L*(0,T; L°(R?)), a+5 1 d,l_d<ﬂ_oo,
—-1<d<1;
(1.17) rud € L% and

2 3 3
— =2—-d, —— < B <00,

d, z @ . 7B(M3
L0, T; LA(R =
—2<d< 2
(1.18)  rw? e L0, T; LP(R?)) 2.3 9 4 i<5<oo
N b ) ) a B ’Q—d b
0<d<2,

then the solution can be smoothly extended beyond T'.

REMARK 1.2. In [9, [I4], only some cases of were treated. Also,
and correspond to and with d = 0 respectively.
Thus our results improve and extend previous results. One may refer to [9]
for a weighted regularity criterion in terms of the negative part of u”, where
only the case ¢ = co was not treated in two cases.

REMARK 1.3. Regularity criteria involving r%u? with —1 < d < 0 (the
case 0 < d < 1 was already established in [2, Theorem 1.4]) or r%w" with
—2 < d < 2 (or the weaker condition r?Vu? with V = (9,,0,)) seem to be
out of reach at this moment. This will be the subject of our future investi-
gation.

The proof of Theorem [1.1] under conditions ((1.16)), (1.17) and (|1.18)) will

be given in Sections [4 [f] and [0] respectively. Before doing that, we shall
give some useful equalities and inequalities in Section [2] and establish a
preliminary regularity criterion in Section [3]

2. Some useful equalities and inequalities for axisymmetric so-
lutions. In the calculations later on, we shall often use the following funda-
mental relationships between the Cartesian and cylindrical coordinates. By
the chain rule, we have

Oy cos sinfd 0 o1
(2.1) Og | = | —rsinf rcosf 0| |0:],
0, 0 0 1 O3
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and thus conversely,

o cosf —s28 0\ /9,
(2.2) | =|sino <f of|0|,
s 0 0 1) \o-

which can be abbreviated as
1
(2.3) V=e,0,+ ;8989 +e,0,,

and thus for a function f(r,0, z),

Vf=0ufer + 0ufestd.fe., s

(2.4) 2
Jp

VAP = s +| 2 0.1,
and for an axisymmetric function g(r, z),
(2.5) Vgl = 10:g* + 0.9 = |Vg|?
with V = (91, ).

Moreover,

ore, =0, Oreg = 0, ore, =0,
(2.6) Ope, = ey, Opeg=—e,, Ore, =0,

0,e, =0, 0,e9 =0, d.e, = 0.

LEMMA 2.1. Denote
(2.7) a=1u"e +vie,, ©=uwe +we, V= (O, D).
Then
(2.8) V-au=0 Vxu=uwlep,
and thus for 1 < p < oo,
(2.9) IV < Cp)|w’|l1r;
moreover
ur | ~ ~
(2.10) Val> = |—| +|Vu'|* + |V,
u” 2 012 N ~ ~

(2.11) Vul? = |—| +|—| +|Vu" |2+ |V |2 4 |Vu?|?

Proof. Indeed, we have

u=u"e +u’e, = (u" cosb,u"sinb,u?),

185
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and thus
V-a=01(u"cosf)+ da(u" sinf) 4+ 0,u”
= <cos 00, — 989) (u" cosf) + <sin 00, +
r

cosf

89) (u" sin ) + 0,u”

=0’ + =+ 00" =0 (by (ID);
V xa = (0u® —03(u"sinf), 3(u" cos ) — O1u?, 01 (u" sin f) — 92 (u" cos b))
= (—sinf(0,u" — 9yu*),cosB(0,u" — 0ru®),0)

= (9.u" — 0,u)(—sin b, cos 0, 0) = wey.
Consequently,
(2.12) —Au=-V(V-u)+Vx(Vxa)=Vx(Vxa),

50 Ot = RpR x (wlep) (1 < k <3, R = (R, Rz, R3) being the Riesz trans-
formation). The boundedness of the Riesz transformation in LP (1 < p < 00)

then yields (2.9)).
We now prove (2.11)). First, we have

(2.13) u=u'e; + v’es + u’es
=" (t,r, 2)e, +ul(t,r, 2)eq + u(t,r, 2)e,

= (u"cosf — u? sin 0, u" sin 0 + u? cos B, u?).
By (2.13) and (2.3)), we obtain

1
Vu = <er(9r + —epdy + ezaz) (u" cosf — u’ sin @, u” sin 0 + u’ cos 6, u”)
T

fcosf+gsinf mcosh+nsinf  9.u” cosb
= | fsinf —gcosf® msinf —ncosf Ju*sind |,
h p 0. u?

where

B , B 0 . B u” sin @ + u’ cos 6
f=0u"cosl —0.u’sinf, g¢g= )
r

h = d.u" cos O — d,u’ sin 0, m=0.u"sinf + O,u? cos 0,

u” cosf — uf sin @ . 0
n— — 7 p = 0,u" sinf + d,u’ cosb.
r
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Then direct computations show

|Vu|? = (f cos§ + gsin8)? + (fsinf — gcosh)? + h?
+ (mcosf + nsin@)? + (msin@ — ncos)? + p* + |01 + |0.u7|?
=2+ @+ R+ m? 0+ p? + |07 + |07
= (f2+m?) + (¢° + %) + (h* +p°) + 0w + |07
2 02
u
_|_ R
,
+ 100" P + |00 P + |0pu”* + |07

T

= |8TUT|2 + |(9ru9]2 +

This proves ([2.11]); and (2.10) can be shown in a similar fashion. m

The next lemma concerns the a priori bound of ru?.

LemMA 2.2 ([I, Proposition 1]). Suppose ug € L*(R?) and ruf € LP for
some 2 < p < oo. Then ru? € L>=(0,T; LP(R?)).

In our proof of Theorem [I.I], we shall invoke the following classical in-
equalities.

LEMMA 2.3 (Hardy-Sobolev interpolation inequality, [2, Lemma 2.4]).
For any 0 <s<2,2<p<2(3-—s), r=+/z]+x3, we have

f

7“3/17

(2.14) ] < Ol -G,

LEMMA 2.4 (Hardy type inequality, [6, Theorem 330]). If 1 < p < oo,
r#1, f>0, and

\reyde, r>1,
Flz) =4 %
| ryde, r<1,
then
(2.15) o Fraz < < > | 27" (zf) da.
0 0

Proof. For completeness, we provide the proof. If r > 1, then integrating
by parts and applying Holder’s inequality yields
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o

1

—r p _ P 1—r
{7 F dx—l_TSF d(z'™")
0 0
! S pFP= . 217" dx
1—r 0
o
= 2@ e o () e
0

B

Absorbing the first term on the right-hand side into the left-hand side, we
obtain the case r > 1. The case r < 1 can be shown in a similar way. =

REMARK 2.5. The Hardy inequality requires the non-negativity of the
function f, so that in the estimates above, the first term on the right-hand
side could be absorbed into the left-hand side. Also, the definition of F' > 0
(depending on the sign of r — 1) realizes this process.

Finally, we introduce the definition of the class Ag (1 < 8 < o0) (see
[18, pp. 194-217]), which was already utilized in the regularity theory of
axisymmetric Navier—Stokes equations [8, [I5].

DEFINITION 2.6. Let 8 € (1,00). A real valued function w(x) is said to
be in the class Ag if it satisfies

/

1 1 , p/p
sup < S w(z) dm) : ( S w(z) PP da:) < 00,
s\ 5]

where the supremum is taken over all balls B in R3, and p’ is the Holder
conjugate of p, i.e. 1/p+1/p' = 1.

For w € A,, we can extend the Calderén-Zygmund inequality for singular
integral operators to integrals with weight function w.

LEMMA 2.7 ([I8, p. 205]). Let p € (1,00). Suppose T is a singular in-
tegral operator of convolution type, and w € Ag. Then for f € LA(R3), we
have

[ ITf(@)Pw@) de < C | |f(@)Pu(z) do.
R3 R3
LEMMA 2.8. Let r denote the distance of a point in R3 from the z-axis.
Then r® € Ag if —2 < s <2(8—1).
Proof. Argue as in the proof of [1, Lemma 1|. =
An immediate consequence of Lemmas and is
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LEMMA 2.9. Foranyl < f <oo and =2/ <d<2(8—-1)/8,

(2.16) < Or?w?| 6.

LB

rd<‘u | + \@url + ]@’uﬂ)

r

Proof. We have

u |8

f (]

R3

+|Vu'P + Wuﬂﬂ) P dx

<c \|val’-r¥dz (by 210))

R3
<C | IR[R x (e’ - r% dz  (by 212))
R3
<C S |wleq|® - r% dz (by Lemmas 2.7 and 2.8)
R3
<C S |w?|? - rdP dz. -
R3

3. A preliminary regularity criterion involving u?/r. The follow-
ing proposition is precisely stated in [2, Lemma 2.5|, which comes from the
calculations in [8], 14, 20]. For the readers’ convenience, we provide a formal
proof. For a complete proof, one may argue as in [12] 20], where 2 is
multiplied with w? /r?7¢, and then after estimations, one lets ¢ — 0.

PROPOSITION 3.1. Let ug € H?(R?) be axially symmetric and divergence-
free, and w € C([0,T); H*(R3))NL2(0,T; H3(R?)) be the unique avisymmet-
ric classical solution of (1.4). If

(3.1) u’ /r e LA0,T; L*(R?)),
then the solution can be smoothly extended beyond T'.

Proof. First, taking the inner product of (L.9), and w?/r? in L?(R3)
formally, we find

L dl|W?|P e /]|
(32) = |- +Hv<w>
2dt T 1.2 T L2
98 0 0 012 6 012 0
T T r T | T
R3 R3 R3
1 014 1 o\ |12
§78 L dx + -0, d .
2 T 2 T L2

R3
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()

Then we bound w?. Multiplying (1.9)5 by w?, and integrating over R?,
we get

Integrating in time, we obtain

w?

r

< C.

L2(0,T;L2)

+
L°°(0,T;L2)

(3.3)

(3. 4)
u” u?0,u?
2 + 191+ | S| = § Lot 2 | o
2 dt r
R3 R3
= Il + ]2.
For I, we have
0
I < u"||peo||— ||w9HL2 (by the Hoélder inequality)
L2
< Cll] poe | 2 (by (3-3))

< Clla) W IValls - l®l 2 (by the Gagliardo-Nirenberg inequality)
< C'HV'1L||1/2||V2 ~||1/2||w9||L2 (by the Sobolev inequality).
By invoking (|2 and its consequence
(3.5) ||akala\|m = [ReR x [01(weg)]l|r < C|[V(w eq)]| 1
< OV - egllr + CllwVes| 1o

0
<CHVw9HLp+C" u; (IVeq| =1/1)

<OV (by @11), for 1 <k, 1<3, 1<p< o0),
it follows that

6),3/2 6)1/2 ) 9
(3.6) I < Ol |21V 1 < Cll’lI72 + IV Z.
By integration by parts and the Cauchy—Schwarz inequality,
W’ [u’|? o
(3.7) Igzxaz wda::—S—'azw dx
T r
R3 R3
\U9|4 02
< 3 S dx + = S 0w’ dx
R3 re ]R
L (JfN 1 02
s2&<ﬂ | da -+ 110

< S |:‘7ﬂ4’—|— ~|ru9|4] d$+§||azw0”%2'
R3
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Gathering (3.6)—(3.7) into (3.4), and applying the Gronwall inequality, we
find by (3.1) and Lemma that

(3.8) e®|l oo 0,752y + 1Vl L20/7322) < C.

Finally, multiplying (1.9); by w", and (1.9); by w*, and adding the results,
we obtain

1 d o zZ\[12 = ro2\(12 w” 2
39) gl B+ 96w e+ ||
= S [(Wopu" + w?du”)w" + (W opu® + w?d,u”)w?] dx
RS
< | |Val-|(w"w*)Pde  (by @10))
R3

< V| 2 |[(w",w?) |34 (by the Holder inequality)
1/2 3/2

< Ol ll2 - " I IV @70l
(by Lemma [2.T] and the Gagliardo—Nirenberg inequality)

< Ol |4, w?) |22 + LIV(",w?)2:  (by the Young inequality)

< Ol w72 + 51V )7 (by BI))-
Applying the Gronwall inequality, we deduce that

(@, W) Le 0,702y < C.

Hence by (3.8), we see that ||u|| 00 r,p1y is uniformly bounded in [0,T).
Standard higher-order energy estimates imply that [|w|| ;e (o,7;72) is also uni-
formly bounded in [0,7). This completes the proof of Proposition (for
details, one can refer to |21, pp. 3-4] for example). =

4. Proof of Theorem under condition . In this section,
we prove the conclusion of Theorem under condition . We remark
that our proof is more elegant and elementary than in [9].

By Proposition , we only need to bound uf /7 in the L*(0,T; L*(R3))
norm. To this end, we multiply 2 by (u?)3/r? and integrate over R? to
get

|u9‘2 2 3 014

4.1
(4. ot

\%

2 3H~ ‘u9’2

1d
4dt|| r |2 4 T
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We now estimate

I A A

R3
3.d |u’|?/r . . . L, 12
< - T _ — 4+ - =
<3 lru”| 18 D by the Holder inequality with 5 + 5 1
012 (12(1-0) 9121120
< ot | 20 ot
L? L

1 _
(by Lemma 23| with s = %dp €10,2), 6 = g _ 3= e [o, 1)>
012 101212
S i e IR N i
2 2 o2
Direct computations show that
2 3
—+—-=1—-d.
1/1-0) p

Plugging (4.2)) into (4.1]), we may apply the Gronwall inequality to deduce
that

1u? /7| paorpay < C,
as desired.

5. Proof of Theorem under condition . In this section,
we prove the conclusion of Theorem under condition .
We argue in a more flexible way than in [2]. By the Newton—Leibniz
formula, we see by that
T T
rul(t,r,z) = Sas(sue(t, $,2))dr = stz(t, s,z)ds,
0 0
and hence by Lemma [2.4]

oo

S |rd_1u9|/8 rdr = Sr [(2-d)B 1]|7’u(’]|ﬁalr
0 0
<OSO [(2—d)B— 1][T 2 4.1°
T S]rw |ds} dr
0 0
<[ b rogor—[@—dw—”( - |rw®|)? dr
—05-3) )
B :|BOO d z|8
reW* |7 - rdr.
- [e=p= }Ir]
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Integrating in z and ¢, we find
d—1,0 d
[ | zo(o,r;08) < Cllrw?|| Lao,7;1.8)

and by the interpolation inequality and Lemma [2.2]

”rd/zueHLza(o,T;Lm = H|7"d_1ue\1/2 : ’me)’uz”ma (0,T;L2F)
6’H1/2

d— 012
< |lr )Y Lo (0.7:%)

L>(0,T;L

d 1/2
<OWww;0Tm>

Invoking the regularity criterion ([1.10)—(|1.11)), we complete the proof of The-
orem |1.1| under condition (|1.17)).

8) [l

6. Proof of Theorem under condition ((1.18]). In this section,
we prove the conclusion of Theorem under condition ([1.18]). Taking the
inner product of (1.9) with w in L?(R3) we find, by observing

1
(w-V)u= <of8r - ;weag + wzaz> (u"e, +u’eq +ue,) (by [2.3))

=w'ou"e, +w Ouley + w O ute,
u” u?
— — ey + —ule,
r r
+w*ou"e, + w duleq + WO uce, (by the Leibniz rule and (£2.6))
6 r
= <w7"87«ur + i) + wzazur) e+ (wr({“),ﬂue _ve + wzﬁzuo) e
r r
+ (Wopu® + w?du’)e,

and its consequence

0
(w-V)u] w= <w’"8ru’" + L0 wzazu’">w’"
T

I8
+ <wr<9ru0 — u—wo + wzﬁzu9> W+ (W'Oru® + WO u®)w?®
r

that

1 d

(6.1) 3 7

—llwl?z + V|7
u’r
— S <w7"8ru7"w7" + W ol + wrouFw® — —wlu?
R3 r
0
u 0 r z ror z 6, 60 z z, z
+ —w'W +wfdu" W + wfou w’ + wfoufw® | dr
r

EZKZ'.

=1
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For Ky, we have

W |
(6.2) K;= S rio.u” - R dx
R3
w2 1 2
< d r e = i
>~ ”T a'ru HL/B T‘d/2 > <IB +p 1)

< Ollr®e® | ps o[ 1271V 122
d
(by Lemmas [2.9] 23] with s = S € [0,2), 6 =

< Olrt | w22 + Ll Vw| 2.

g 35 ¢ m,1)>

The terms K3, Kg, Kg can be bounded similarly.
For K5, we have

pu?
/2

w’f‘

63) Ko< |1l S

Lp Lp
d, 0 01-06 0 0(1-06 00
< Ollrfw’ s llw”ll 27 [IVW 72 - 10pu”[| 27 [ VOru’| 72

2(1-0
< ClIr% || s w29 Vw2 (by @10))
on1/(1—6
< C|rt? I w] 22 + (Vw2

The terms K4, K5, K7 can be dominated in the same fashion.
Gathering all the above estimates into (6.1]), we find

d 1/(1-6
lellis +IVelie < Clre’ I w72,
where 6 can be calculated from (6.2)) so that
2 3
———+=-=2—d.
ya-6 g

Applying the Gronwall inequality, we deduce that ||w(t)|| 2 is uniformly
bounded in [0,7]. Arguing as in the proof of Proposition , we complete

the proof of Theorem under condition ([1.18)).
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