VOL. 145

2016

NO. 2

APPROXIMATE BIPROJECTIVITY AND ϕ -BIFLATNESS OF CERTAIN BANACH ALGEBRAS

ΒY

A. SAHAMI (Ilam and Tehran) and A. POURABBAS (Tehran)

Abstract. In the first part of the paper, we investigate the approximate biprojectivity of some Banach algebras related to the locally compact groups. We show that a Segal algebra S(G) is approximate biprojective if and only if G is compact. Also for every continuous weight w, we show that $L^1(G, w)$ is approximate biprojective if and only if G is compact, provided that $w(g) \ge 1$ for every $g \in G$.

In the second part, we study ϕ -biflatness of some Banach algebras, where ϕ is a character. We show that if S(G) is ϕ_0 -biflat, then G is an amenable group, where ϕ_0 is the augmentation character on S(G). Finally, we show that the ϕ -biflatness of $L^1(G)^{**}$ implies the amenability of G.

1. Introduction and preliminaries. B. E. Johnson [J] defined the class of amenable Banach algebras and showed that $L^1(G)$ is an amenable Banach algebra if and only if G is an amenable group. At about the same time A. Ya. Helemskii studied the class of biflat and biprojective Banach algebras. Like amenability, he showed that $L^1(G)$ is biprojective (biflat) if and only if G is a compact (amenable) group, respectively (see [H, Theorem IV.5.13]).

The present authors [SP1] have studied some generalization of Helemskii's theory. The concepts of ϕ -biflatness, ϕ -biprojectivity, ϕ -Johnson amenability were introduced and studied. It was shown that $L^1(G)$ is ϕ -biflat if and only if G is an amenable group, and the Fourier algebra $\mathcal{A}(G)$ is ϕ -biprojective if and only if G is a discrete group.

Other generalized notions of Helemskii's theory are approximate biprojectivity and approximate biflatness. These generalizations have been introduced by Zhang [Z] and Samei et al. [SSS], respectively. Samei et al. [SSS] studied the approximate biflatness of Segal algebras and Fourier algebras, and showed that a Segal algebra S(G) is pseudo contractible if and only if Gis compact. Note that the pseudo contractibility of Banach algebras implies

Received 1 December 2014; revised 3 November 2015. Published online 8 July 2016.

²⁰¹⁰ Mathematics Subject Classification: Primary 43A07, 43A20; Secondary 46H05.

Key words and phrases: Beurling algebras, Segal algebras, approximate biprojectivity, $\phi\text{-biflat}.$

their approximate biprojectivity [GZ, Proposition 3.8] (for more details see [GZ]).

In this paper we show that a Segal algebra S(G) is approximately biprojective if and only if G is compact, which is an extension of [SSS, Theorem 3.5] or [CGZ, Theorem 5.3].

Next, we show that the weighted group algebra $L^1(G, w)$ is approximately biprojective if and only if G is compact, for every continuous weight w on G with $w(g) \geq 1$ for every $g \in G$. This is an extension of [H, Theorem IV.5.13]. Finally, we show that if a Segal algebra S(G) is ϕ_0 -biflat, then G is amenable, where ϕ_0 is the augmentation character on $L^1(G)$, and if $L^1(G)^{**}$ is $\tilde{\phi}$ -biflat, then G is amenable, where $\tilde{\phi}$ is an extension of a character ϕ on $L^1(G)$.

We recall some standard notation and definitions. Let A be a Banach algebra. If X is a Banach A-bimodule, then X^* is also a Banach A-bimodule via the following actions:

$$(a \cdot f)(x) = f(x \cdot a), \quad (f \cdot a)(x) = f(a \cdot x) \quad (a \in A, x \in X, f \in X^*).$$

Throughout, $\Delta(A)$ denotes the character space of A, that is, the set of all non-zero multiplicative linear functionals on A. Let $\phi \in \Delta(A)$. Then ϕ has a unique extension $\tilde{\phi} \in \Delta(A^{**})$ defined by $\tilde{\phi}(F) = F(\phi)$ for every $F \in A^{**}$.

Let A and B be Banach algebras. The ℓ^1 -direct sum $A \oplus_1 B$ is a Banach algebra with the usual product and with the norm ||(a, b)|| = ||a|| + ||b||. It is easy to see that

$$\Delta(A \oplus_1 B) = (\Delta(A) \times \{0\}) \cup (\{0\} \times \Delta(B)).$$

Let A and B be Banach algebras. The projective tensor product $A \otimes_p B$ is a Banach A-bimodule via the following actions:

 $a \cdot (b \otimes c) = ab \otimes c, \quad (b \otimes c) \cdot a = b \otimes ca \quad (a, b, c \in A).$

We recall that $\Delta(A \otimes_p B) = \{\phi \otimes \psi \mid \phi \in \Delta(A), \psi \in \Delta(B)\}$, where $\phi \otimes \psi(a \otimes b) = \phi(a)\psi(b)$ for all $a \in A$ and $b \in B$. The product morphism $\pi_A : A \otimes_p A \to A$ is specified by $\pi_A(a \otimes b) = ab$ for $a, b \in A$.

Let G be a locally compact group. The Fourier algebra on G is denoted by $\mathcal{A}(G)$. It is well-known that the character space $\mathcal{\Delta}(\mathcal{A}(G))$ consists of all point evaluation maps $\phi_t : \mathcal{A}(G) \to \mathbb{C}$ such that $\phi_t(f) = f(t)$ for each $f \in \mathcal{A}(G)$ (see [E]).

We also recall some concepts of Banach homology. A Banach algebra A is called *biprojective* if there exists a bounded A-bimodule morphism $\rho: A \to A \otimes_p A$ such that ρ is a right inverse for π_A [H]. Moreover, A is approximately biprojective if there exists a net of bounded A-bimodule morphisms $\rho_{\alpha}: A \to A \otimes_p A$ such that $\pi_A \circ \rho_{\alpha}(a) \to a$ for each $a \in A$ (see [Z]). A Banach algebra A is called ϕ -biflat, for $\phi \in \Delta(A)$, if there exists a bounded A-bimodule morphism $\rho: A \to (A \otimes_p A)^{**}$ such that $\tilde{\phi} \circ \pi_A^{**} \circ \rho(a) = \phi(a)$

for every $a \in A$ [SP1]. Also, A is called *left* ϕ -*amenable* [*left* ϕ -*contractible*] if there exists $m \in A^{**}$ [$m \in A$] such that $am = \phi(a)m$ and $\tilde{\phi}(m) = 1$ [$\phi(m) = 1$] for every $a \in A$. For more details on left ϕ -amenability and left ϕ -contractibility see [KLP] and [NS], respectively.

The following theorems come from [SP2]. They characterize the approximate biprojectivity of some semigroup algebras. We apply these theorems in order to characterize the approximate biprojectivity of algebras related to locally compact groups.

THEOREM 1.1 ([SP2]). Let A be an approximately biprojective Banach algebra with a left approximate identity [right approximate identity] and let $\phi \in \Delta(A)$. Then A is left ϕ -contractible [right ϕ -contractible].

THEOREM 1.2 ([SP2]). Let A be a Banach algebra with a left approximate identity and let $\Delta(A)$ be a non-empty set. Then the triangular Banach algebra $T = \begin{pmatrix} A & A \\ 0 & A \end{pmatrix}$ is not approximately biprojective.

2. Approximate biprojectivity. We recall that, for a locally compact group G, a linear subspace S(G) of $L^1(G)$ is said to be a *Segal algebra* on G if it satisfies the following conditions:

- (i) S(G) is dense in $L^1(G)$,
- (ii) S(G) with a norm $\|\cdot\|_{S(G)}$ is a Banach space and $\|f\|_{L^1(G)} \leq \|f\|_{S(G)}$ for every $f \in S(G)$,
- (iii) for every $f \in S(G)$ and $y \in G$ we have $L_y f \in S(G)$ and the map $y \mapsto L_y f$ of G into S(G) is continuous, where $L_y f(x) = f(y^{-1}x)$,
- (iv) $||L_y f||_{S(G)} = ||f||_{S(G)}$ for every $f \in S(G)$ and $y \in G$.

It is well-known that S(G) has a left approximate identity. Also, every Segal algebra is an abstract Segal algebra with respect to $L^1(G)$. For more information on Segal algebras see [Re].

Note that $\Delta(S(G)) = \{\phi_{|_{S(G)}} \mid \phi \in \Delta(L^1(G))\}$ and ϕ_0 (the augmentation character on $L^1(G)$) induces a character on S(G) still denoted by ϕ_0 [ANN, Lemma 2.2].

Samei et al. [SSS, Theorem 3.5] and Choi et al. [CGZ, Theorem 5.3] showed that S(G) is pseudo contractible if and only if G is compact. As pseudo contractibility is a weaker condition than approximate biprojectivity, in the following theorem we extend this result.

THEOREM 2.1. Let G be a locally compact group. Then S(G) is approximately biprojective if and only if G is compact.

Proof. Let S(G) be approximately biprojective. Since S(G) has a left approximate identity, Theorem 1.1 shows that S(G) is left ϕ_0 -contractible, hence by [NS, Theorem 2.1] there exists $m \in S(G)$ such that $am = \phi_0(a)m$ and $\phi_0(m) = 1$ for every $a \in S(G)$. Since S(G) is dense in $L^1(G)$, it is easy

to see that $am = \phi_0(a)m$ and $\phi_0(m) = 1$ for every $a \in L^1(G)$. Using the same argument as in the proof of [H, Theorem IV.5.13], we find that m is a constant function, which shows that G is compact.

The converse is clear by [SSS, Theorem 3.5] or [CGZ, Theorem 5.3].

The class of non-approximately biprojective Banach algebras is wide enough among the algebras related to locally compact groups. Here we give another class of non-approximately biprojective Banach algebras.

PROPOSITION 2.2. The triangular Banach algebra

$$T = \begin{pmatrix} S(G) & S(G) \\ 0 & S(G) \end{pmatrix}$$

is not approximately biprojective for any Segal algebra S(G).

Proof. Since S(G) has a left approximate identity, T has a left approximate identity. As $\Delta(S(G)) \neq \emptyset$, the use of Theorem 1.2 finishes the proof.

THEOREM 2.3. Let G be a SIN group. If $S(G) \otimes_p S(G)$ is approximately biprojective, then G is compact.

Proof. The main result of [KR] asserts that if G is a SIN group, then S(G) has a central approximate identity, say $(e_{\alpha})_{\alpha \in I}$. Since $S(G) \otimes_p S(G)$ is approximately biprojective, there exists a net

$$\rho_{\beta}: S(G) \otimes_p S(G) \to (S(G) \otimes_p S(G)) \otimes_p (S(G) \otimes_p S(G)), \quad \beta \in \Theta,$$

of continuous $S(G) \otimes_p S(G)$ -bimodule morphisms with $\pi_{S(G) \otimes_p S(G)} \circ \rho_{\beta}(x)$ $\rightarrow x$ for every $x \in S(G) \otimes_p S(G)$. Set $n_{\alpha} = e_{\alpha} \otimes e_{\alpha}$. It is easy to see that for every $x \in S(G) \otimes_p S(G)$ we have $xn_{\alpha} = n_{\alpha}x$ and $\phi \otimes \phi(n_{\alpha}) = \phi \otimes \phi(e_{\alpha} \otimes e_{\alpha}) = \phi(e_{\alpha})\phi(e_{\alpha}) \rightarrow 1$, where $\phi \in \Delta(S(G))$.

Define $m_{\alpha}^{\beta} = \rho_{\beta}(n_{\alpha})$. Then it is easy to see that $x \cdot m_{\alpha}^{\beta} = m_{\alpha}^{\beta} \cdot x$. Also,

(2.1)
$$\lim_{\alpha} \lim_{\beta} \phi \otimes \phi \circ \pi_{S(G) \otimes_{p} S(G)}(m_{\alpha}^{\beta}) - 1$$
$$= \lim_{\alpha} \lim_{\beta} \phi \otimes \phi \circ \pi_{S(G) \otimes_{p} S(G)} \circ \rho_{\beta}(n_{\alpha}) - 1$$
$$= \lim_{\alpha} \phi \otimes \phi(n_{\alpha}) - 1 = \lim_{\alpha} \phi(e_{\alpha})^{2} - 1 = 0.$$

Set $E = I \times \Theta^{I}$, where Θ^{I} is the set of all functions from I into Θ . Consider the product ordering on E, defined as follows:

$$(\alpha,\beta) \leq_E (\alpha',\beta') \Leftrightarrow \alpha \leq_I \alpha', \beta \leq_{\Theta^I} \beta' \quad (\alpha,\alpha' \in I, \beta,\beta' \in \Theta^I);$$

here $\beta \leq_{\Theta^I} \beta'$ means that $\beta(d) \leq_{\Theta} \beta'(d)$ for each $d \in I$. Suppose that $\gamma = (\alpha, \beta_{\alpha}) \in E$ and $m_{\gamma} = \rho_{\beta_{\alpha}}(n_{\alpha}) \in (S(G) \otimes_p S(G)) \otimes_p (S(G) \otimes_p S(G))$. Now using the iterated limit theorem [K, p. 69] in (2.1) we obtain

$$\phi \otimes \phi \circ \pi_{S(G) \otimes_p S(G)}(m_\gamma) \to 1,$$

and similarly $x \cdot m_{\gamma} = m_{\gamma} \cdot x$ for every $x \in S(G) \otimes_p S(G)$. By the same argument as in the proof of [SP1, Proposition 2.2] one can show that $S(G) \otimes_p S(G)$ is left $\phi \otimes \phi$ -contractible. Hence [NS, Theorem 3.14] shows that S(G) is left ϕ -contractible, and [ANN, Theorem 3.3] implies that G is compact.

Let G be a locally compact group. A *weight* on G is a function $w: G \to \mathbb{R}^+$ such that

$$w(e) = 1$$
 and $w(xy) \le w(x)w(y)$,

where $e \in G$ is the identity and $x, y \in G$. We form the Banach space

$$L^1(G, w) = \{ f : G \to \mathbb{C} \mid fw \in L^1(G) \}.$$

Then $L^1(G, w)$, with convolution product, is a Banach algebra, called a *Beurling algebra*. See [DL] for further information on Beurling algebras.

Helemskii [H, Theorem IV.5.13] showed that the group algebra $L^1(G)$ is biprojective if and only if G is compact. In the following theorem we extend this result.

THEOREM 2.4. Let G be a locally compact group and let w be a continuous weight on G. Then $L^1(G, w)$ is approximately biprojective if and only if G is compact, provided that $w(g) \ge 1$ for every $g \in G$.

Proof. Suppose $L^1(G, w)$ is approximately biprojective. Then by Theorem 1.1, $L^1(G, w)$ is left ϕ -contractible for every $\phi \in \Delta(L^1(G, w))$, in particular for the augmentation character ϕ_0 specified by

$$\phi_0(f) = \int_G f(x) \, dx.$$

By [NS, Theorem 2.1] there exists $m \in L^1(G, w)$ such that $a * m = \phi_0(a)m$ and $\phi_0(m) = 1$ for every $a \in L^1(G, w)$. Pick $f \in L^1(G, w)$ such that $\phi_0(f) = 1$. We have

 $\delta_g * m = \phi_0(f) \delta_g * m = \delta_g * (f * m) = (\delta_g * f) * m = \phi_0(\delta_g * f) m = \phi_0(f) m = m$, which shows that m is a constant function in $L^1(G, w)$, so we can assume that $1 \in L^1(G, w)$. Since $w(g) \ge 1$ for every $g \in G$, we have

$$|G| = \int_{G} 1 \, dg \le \int_{G} w(g) \, dg < \infty.$$

Now apply [HS, Theorem 15.9] to deduce that G is compact.

For the converse, using the same arguments as in [H, Theorem IV.5.13], it is easy to see that $L^1(G, w)$ is biprojective, so $L^1(G, w)$ is approximately biprojective.

PROPOSITION 2.5. Let G be a locally compact group and let A be a unital Banach algebra with $\Delta(A) \neq \emptyset$. If $A \otimes_p L^1(G)$ is approximately biprojective, then G is compact and A is approximately biprojective. The converse holds if A is biprojective. *Proof.* Suppose that $B = A \otimes_p L^1(G)$ is approximately biprojective. It is easy to see that $(e_A \otimes e_\alpha)$ is an approximate identity for B, where e_A is an identity for A, and (e_α) is a bounded approximate identity for $L^1(G)$. Let $\psi \in \Delta(A)$ and $\phi \in \Delta(L^1(G))$. Then Theorem 1.1 implies that B is left $\psi \otimes \phi$ -contractible. By [NS, Theorem 3.14], $L^1(G)$ is left ϕ -contractible, which implies that G is compact (see [NS, Theorem 6.1]).

Let $\rho : G \to \mathbb{C}$ be a group character corresponding to ϕ (see [HS, Theorem 23.7]). It is easy to see that $\rho \in L^{\infty}(G)$. Since G is compact, $L^{\infty}(G) \subseteq L^1(G)$. Thus $\rho \in L^1(G)$. Also, since $\rho * f = f * \rho = \phi(f)\rho$ for every $f \in L^1(G)$, one can easily see that ρ is idempotent in $L^1(G)$. Now by a similar argument to that in [Ra, Proposition 2.6], one finds that A is approximately biprojective.

Conversely, it is well-known that $L^1(G)$ is biprojective if and only if G is compact. Now apply [Ra, Proposition 2.4] to complete the proof.

We recall that a Banach algebra A is *left character contractible* if A is left ϕ -contractible for every $\phi \in \Delta(A) \cup \{0\}$; for more information on this notion, see [NS].

PROPOSITION 2.6. Let G be a locally compact group. Then the following are equivalent:

- (i) $L^1(G) \otimes_p M(G)$ is biprojective;
- (ii) $L^1(G) \otimes_p M(G)$ is approximately biprojective;
- (iii) G is finite.

Proof. (i) \Rightarrow (ii) is clear.

(ii) \Rightarrow (iii). Suppose that $L^1(G) \otimes_p M(G)$ is approximately biprojective. Since M(G) is unital, Proposition 2.5 shows that M(G) is approximately biprojective. So by Theorem 1.1, M(G) is left ϕ -contractible for every ϕ in $\Delta(M(G))$. Also M(G) is left 0-contractible. Hence M(G) is left character contractible. Therefore by [NS, Corollary 6.2], G is finite.

 $(iii) \Rightarrow (i)$ is clear.

PROPOSITION 2.7. Let G be an amenable locally compact group. If $L^1(G) \otimes_p \mathcal{A}(G)$ is approximately biprojective, then G is finite.

Proof. It is well-known that $L^1(G)$ has a bounded approximate identity, and by Leptin's theorem, $\mathcal{A}(G)$ has a bounded approximate identity (see [Ru, Theorem 7.1.3]). Therefore $L^1(G) \otimes_p \mathcal{A}(G)$ has a bounded approximate identity. Suppose that $L^1(G) \otimes_p \mathcal{A}(G)$ is approximately biprojective. Then by Theorem 1.1, $L^1(G) \otimes_p \mathcal{A}(G)$ is left $\phi \otimes \psi$ -contractible for every $\phi \in \mathcal{A}(L^1(G))$ and $\psi \in \mathcal{A}(\mathcal{A}(G))$. Now by [NS, Theorem 3.14], $L^1(G)$ is left ϕ -contractible and $\mathcal{A}(G)$ is left ψ -contractible. By [NS, Proposition 6.6], G is discrete and by [NS, Proposition 6.1], G is compact, therefore G must be finite. PROPOSITION 2.8. Let G be a locally compact group. If $L^1(G) \oplus_1 \mathcal{A}(G)$ is approximately biprojective, then G is finite.

Proof. Let $A = L^1(G) \oplus_1 \mathcal{A}(G)$ be approximately biprojective. Then there exists a net $(\rho_\alpha)_\alpha$ of A-bimodule morphisms from A into $A \otimes_p A$ such that $\pi_A \circ \rho_\alpha(a) \to a$ for every $a \in A$. Let $\phi \in \mathcal{A}(\mathcal{A}(G))$. Pick $x_0 \in \mathcal{A}(G)$ such that $\phi(x_0) = 1$. Set $m_\alpha = \rho_\alpha(x_0) \in A \otimes_p A$. Since the elements of $\mathcal{A}(G)$ commute with the elements of A, we see that $a \cdot m_\alpha = m_\alpha \cdot a$ and $\phi \circ \pi_A(m_\alpha) \to 1$. By replacing m_α with $m_\alpha/\phi \circ \pi_A(m_\alpha)$ we can assume that $\phi \circ \pi_A(m_\alpha) = 1$. Then by the same argument as in the proof of [SP1, Proposition 2.2] one can show that A is left ϕ -contractible, and so its closed ideal $\mathcal{A}(G)$ is left ϕ -contractible [NS, Proposition 3.8]. Thus [NS, Proposition 6.6] shows that G is discrete. This shows that $L^1(G)$ becomes the unital algebra $\ell^1(G)$ with unit element e. Now working with $e \in \ell^1(G)$ instead of x_0 in the above argument we get $n_\alpha = \rho_\alpha(e) \in A \otimes_p A$ with $a \cdot n_\alpha = n_\alpha \cdot a$ and $\psi \circ \pi_A(n_\alpha) = 1$ for every $a \in A$, where $\psi \in \mathcal{A}(\ell^1(G))$. Hence $\ell^1(G)$ is left ψ -contractible. Therefore by [NS, Theorem 6.1], G is finite.

3. ϕ -biflatness. In [SP1], the authors studied ϕ -biflatness of group algebras. In this section we continue the study of ϕ -biflatness of Segal algebras and the second duals of group algebras. We start with a characterization of amenability of a locally compact group.

REMARK 3.1 ([Ru, Exercise 1.1.6]). In order to show that a locally compact group G is amenable, we only need to find a net $(g_{\alpha})_{\alpha}$ in $P(G) = \{f \in L^{1}(G) \mid f \geq 0, \|f\|_{1} = 1\}$ such that $\|\delta_{g}g_{\alpha} - g_{\alpha}\|_{1} \to 0$ for all $g \in G$.

We recall that ϕ_0 is the augmentation character on $L^1(G)$; it induces a character on S(G), still denoted by ϕ_0 .

THEOREM 3.2. Suppose that S(G) is a Segal algebra with an approximate identity. Let S(G) be ϕ_0 -biflat. Then G is amenable.

Proof. To show that G is amenable, we construct a net in $L^1(G)$ that satisfies the conditions of Remark 3.1. We do this in two steps.

STEP 1. In this step we show that there exists a net $(b_{\lambda})_{\lambda}$ in $S(G) \otimes_p S(G)$ such that $a \cdot b_{\lambda} - b_{\lambda} \cdot a \to 0$ and $\phi_0 \circ \pi_{S(G)}(b_{\lambda}) \to 1$ for every $a \in S(G)$.

Since S(G) is ϕ_0 -biflat, there exists a bounded S(G)-bimodule morphism $\rho : S(G) \to (S(G) \otimes_p S(G))^{**}$ such that $\tilde{\phi}_0 \circ \pi^{**}_{S(G)} \circ \rho(a) = \phi_0(a)$. Take $m_\alpha = \rho(e_\alpha)$ in $(S(G) \otimes_p S(G))^{**}$, where $(e_\alpha)_{\alpha \in I}$ is an approximate identity for S(G). So we have

(3.1)
$$a \cdot m_{\alpha} - m_{\alpha} \cdot a = a \cdot \rho(e_{\alpha}) - \rho(e_{\alpha}) \cdot a = \rho(ae_{\alpha} - e_{\alpha}a) \to 0$$

and

(3.2)
$$\tilde{\phi}_0 \circ \pi^{**}_{S(G)}(m_\alpha) = \tilde{\phi}_0 \circ \pi^{**}_{S(G)} \circ \rho(e_\alpha) = \phi_0(e_\alpha) \to 1.$$

Take $\epsilon > 0$ and finite sets $F \subseteq S(G)$ and $\Lambda \subseteq (S(G) \otimes_p S(G))^*$. By (3.1) there exists $v(\epsilon, F, \Lambda) \in I$ such that

$$||a \cdot \rho(e_{v(\epsilon,F,\Lambda)}) - \rho(e_{v(\epsilon,F,\Lambda)}) \cdot a|| < \epsilon/K_0,$$

where $K_0 = \max\{||f|| \mid f \in A\}$. But for every $v(\epsilon, F, A) \in I$, by Goldestine's theorem, there exists a net (b_{λ}) in $S(G) \otimes_p S(G)$ such that $b_{\lambda} \xrightarrow{w^*} \rho(e_{v(\epsilon,F,A)})$. By w^* -continuity of $\pi_{S(G)}^{**}$ we have $\pi_{S(G)}(b_{\lambda}) \xrightarrow{w^*} \pi_{S(G)}^{**} \circ \rho(e_{v(\epsilon,F,A)})$, which implies that

(3.3)
$$\phi_0 \circ \pi_{S(G)}(b_\lambda) \to \tilde{\phi_0} \circ \pi^{**}_{S(G)} \circ \rho(e_{v(\epsilon,F,\Lambda)}),$$

and for every $f \in \Lambda$ and $a \in F$ we have

$$(3.4) \qquad f \cdot a(b_{\lambda}) \to \rho(e_{v(\epsilon,F,\Lambda)})(f \cdot a), \qquad a \cdot f(b_{\lambda}) \to \rho(e_{v(\epsilon,F,\Lambda)})(a \cdot f).$$

Using (3.2) one can show that the right hand side of (3.3) tends to 1.

Now for every $f \in \Lambda$ and $a \in F$ using (3.1) and (3.4) we obtain

$$(3.5) |f(a \cdot b_{\lambda} - b_{\lambda} \cdot a) \leq |f(a \cdot b_{\lambda}) - a \cdot \rho(e_{v(\epsilon,F,\Lambda)})(f) + a \cdot \rho(e_{v(\epsilon,F,\Lambda)})(f) - \rho(e_{v(\epsilon,F,\Lambda)}) \cdot a(f) + \rho(e_{v(\epsilon,F,\Lambda)}) \cdot a(f) - f(b_{\lambda} \cdot a)| \leq |f \cdot a(b_{\lambda}) - \rho(e_{v(\epsilon,F,\Lambda)})(f \cdot a)| + |a \cdot \rho(e_{v(\epsilon,F,\Lambda)})(f) - \rho(e_{v(\epsilon,F,\Lambda)}) \cdot a(f)| + |\rho(e_{v(\epsilon,F,\Lambda)})(a \cdot f) - a \cdot f(b_{\lambda})| \rightarrow 0.$$

Consider the directed set $\Delta = \{\gamma = (\epsilon, F, \Lambda)\}$, where $\epsilon > 0$, and F and Λ are finite subsets of S(G) and $S(G) \otimes_p S(G)$, respectively. The order in Δ is defined via

$$\gamma = (\epsilon, F, \Lambda) \leq \gamma' = (\epsilon', F', \Lambda') \iff \epsilon \geq \epsilon', F \subseteq F', \Lambda \subseteq \Lambda'.$$

Now let $a \in S(G)$ and $f \in (S(G) \otimes_p S(G))^*$. Then there exists a $\gamma = \gamma(\epsilon, F, \Lambda) \in \Lambda$, where $a \in F$ and $f \in \Lambda$ are such that by (3.5), $|f(a \cdot b_{\gamma} - b_{\gamma} \cdot a)| \leq \epsilon$, which shows that $a \cdot b_{\gamma} - b_{\gamma} \cdot a \to 0$ in the weak topology. Using Mazur's lemma, one can assume that $a \cdot b_{\gamma} - b_{\gamma} \cdot a \to 0$ in $(S(G) \otimes_p S(G), \|\cdot\|)$, and also we have shown that $\phi_0 \circ \pi_{S(G)}(b_{\gamma}) \to 1$, as desired.

STEP 2. In this step we show that G is amenable. We start with a bounded linear map $T: S(G) \otimes_p S(G) \to S(G)$ defined by $T(a \otimes b) = \phi_0(b)a$ for $a, b \in S(G)$. Clearly

$$aT(x) = T(a \cdot x), \quad T(x \cdot a) = \phi_0(a)T(x), \quad \phi_0 \circ T(x) = \phi_0 \circ \pi_{S(G)}(x),$$

where $a \in S(G)$ and $x \in S(G) \otimes_p S(G).$

Set $n_{\lambda} = T(b_{\lambda})$, where (b_{λ}) is a net coming from Step 1. Then for every $a \in S(G)$ we have

(3.6)
$$\|an_{\lambda} - \phi_0(a)n_{\lambda}\|_S = \|aT(b_{\lambda}) - \phi_0(a)T(b_{\lambda})\|_S$$
$$= \|T(a \cdot b_{\lambda} - b_{\lambda} \cdot a)\|_S \to 0,$$

and

$$\phi_0(n_\lambda) = \phi_0 \circ T(b_\lambda) = \phi_0 \circ \pi_{S(G)}(b_\lambda) \to 1.$$

Fix $a_0 \in S(G)$ such that $\phi_0(a_0) = 1$. Since $\int a_0(g^{-1}x) dx = \int a_0(x) dx$, we have $\phi_0(\delta_g a_0) = \phi_0(a_0) = 1$. Now set $f_\lambda = a_0 n_\lambda$. It follows from (3.6) that

$$(3.7) \|\delta_g f_{\lambda} - f_{\lambda}\|_S \leq \|\delta_g a_0 n_{\lambda} - n_{\lambda}\|_S + \|n_{\lambda} - a_0 n_{\lambda}\|_S \\ \leq \|\delta_g a_0 n_{\lambda} - \phi_0(\delta_g a_0) n_{\lambda}\|_S + \|\phi_0(a_0) n_{\lambda} - a_0 n_{\lambda}\|_S \\ \to 0.$$

Since S(G) is a Segal algebra, we have $\|\cdot\|_{L^1} \leq \|\cdot\|_S$, so (3.7) holds for L^1 -norm instead of S-norm. Note also that $\phi_0(f_\lambda) \to 1$, so since $|\phi_0(f_\lambda)| \leq \|f_\lambda\|_{L^1}$ we may assume that $\|f_\lambda\|_{L^1} \geq 1/2$. Define $g_\lambda = |f_\lambda|/\|f_\lambda\|_{L^1}$, which is bounded. Also, we have

$$\|\delta_g g_\lambda - g_\lambda\|_{L^1} \le 2 \|\delta_g |f_\lambda| - |f_\lambda|\|_{L^1} \le 2 \|\delta_g f_\lambda - f_\lambda\|_{L^1} \to 0.$$

Since $||g_{\lambda}||_{L^1} = 1$, Remark 3.1 implies that G is amenable.

Let A be a Banach algebra and $\phi \in \Delta(A)$. Then A is called ϕ -inner amenable if there exists a bounded net $(e_{\alpha})_{\alpha}$ in A such that $ae_{\alpha} - e_{\alpha}a \to 0$ and $\phi(e_{\alpha}) \to 1$ for every $a \in A$ (see [JMZ]). Note that every Banach algebra with a bounded approximate identity is ϕ -inner amenable.

THEOREM 3.3. Let A be a ϕ -inner amenable Banach algebra, where $\phi \in \Delta(A)$. If A^{**} is $\tilde{\phi}$ -biflat, then A is left ϕ -amenable.

Proof. Suppose A^{**} is $\tilde{\phi}$ -biflat. Then there exists a bounded A^{**} -bimodule morphism $\rho: A^{**} \to (A^{**} \otimes_p A^{**})^{**}$ such that for every $a \in A^{**}$,

$$\tilde{\tilde{\phi}} \circ \pi_{A^{**}}^{**} \circ \rho(a) = \tilde{\phi}(a),$$

where $\tilde{\phi}$ is an extension of $\tilde{\phi}$ on A^{****} as mentioned in the introduction. Suppose that A is ϕ -inner amenable. Thus A has a bounded net, say (e_{α}) , such that $ae_{\alpha} - e_{\alpha}a \to 0$ and $\phi(e_{\alpha}) \to 1$ for every $a \in A$. Now we define $m_{\alpha} = \rho(e_{\alpha})$ for all α . Since ρ is a bounded map, $(m_{\alpha})_{\alpha}$ is bounded. Let M be a w^* -cluster point of (m_{α}) in $(A^{**} \otimes_p A^{**})^{**}$. Then for every $a \in A$ we have $a \cdot m_{\alpha} \xrightarrow{w^*} a \cdot M$ and $m_{\alpha} \cdot a \xrightarrow{w^*} M \cdot a$, therefore

$$a \cdot m_{\alpha} - m_{\alpha} \cdot a \xrightarrow{w^*} a \cdot M - M \cdot a \quad (a \in A).$$

On the other hand,

$$a \cdot m_{\alpha} - m_{\alpha} \cdot a = a \cdot \rho(e_{\alpha}) - \rho(e_{\alpha}) \cdot a = \rho(ae_{\alpha} - e_{\alpha}a) \xrightarrow{\|\cdot\|} 0$$

so $a \cdot M = M \cdot a$ for every $a \in A$.

Also w^* -continuity of $\pi_{A^{**}}^{**}$ implies that $\pi_{A^{**}}^{**}(m_\alpha) \xrightarrow{w^*} \pi_{A^{**}}^{**}(M)$, hence

$$\tilde{\phi} \circ \pi_{A^{**}}^{**}(m_{\alpha}) = (\pi_{A^{**}}^{**}(m_{\alpha}))(\tilde{\phi}) \to (\pi_{A^{**}}^{**}(M))(\tilde{\phi}) = \tilde{\phi} \circ \pi_{A^{**}}^{**}(M).$$

On the other hand,

$$\tilde{\tilde{\phi}} \circ \pi_{A^{**}}^{**}(m_{\alpha}) = \tilde{\tilde{\phi}} \circ \pi_{A^{**}}^{**} \circ \rho(e_{\alpha}) = \phi(e_{\alpha}) \to 1,$$

hence

$$\tilde{\phi}\circ\pi^{**}_{A^{**}}(M)=1.$$

Now take $\epsilon > 0$ and a finite set $F = \{a_1, \ldots, a_r\} \subseteq A$, and set

$$V = \{(a_1 \cdot n - n \cdot a_1, \dots, a_r \cdot n - n \cdot a_r, \, \tilde{\phi} \circ \pi_{A^{**}}(n) - 1)\}$$
$$\subseteq \prod_{i=1}^r (A^{**} \otimes_p A^{**}) \oplus_1 \mathbb{C},$$

where $n \in A^{**} \otimes_p A^{**}$ is such that $||n|| \leq K$ and K > 0 is a bound for the bounded net $(m_{\alpha})_{\alpha}$. Then V is a convex set and so the weak and the norm closures of V coincide. But by Goldestine's theorem there exists a bounded net $(n_{\alpha}) \subseteq A^{**} \otimes_p A^{**}$ such that $n_{\alpha} \xrightarrow{w^*} M$, and so for every $a \in F$ we have $a \cdot n_{\alpha} - n_{\alpha} \cdot a \xrightarrow{w} 0$ and $|\tilde{\phi} \circ \pi_{A^{**}}(n_{\alpha}) - 1| \to 0$. This shows that $(0, \ldots, 0)$ is a $|| \cdot ||$ -cluster point of V. Thus there exists $n_{(F,\epsilon)} \in A^{**} \otimes_p A^{**}$ such that

$$(3.8) \|a_i \cdot n_{(F,\epsilon)} - n_{(F,\epsilon)} \cdot a_i\| < \epsilon, |\phi \circ \pi_{A^{**}}(n_{(F,\epsilon)}) - 1| < \epsilon$$

for every $i \in \{1, \ldots, r\}$. Now we consider the set

 $\Delta = \{ (F, \epsilon) \mid F \text{ is a finite subset of } A, \epsilon > 0 \},\$

with the following order:

 $(F,\epsilon) \leq (F',\epsilon') \iff F \subseteq F', \epsilon \geq \epsilon'.$

So (3.8) implies that there exists a bounded net $(n_{(F,\epsilon)})_{(F,\epsilon)\in\Delta}$ in $A^{**}\otimes_p A^{**}$ such that

$$a \cdot n_{(F,\epsilon)} - n_{(F,\epsilon)} \cdot a \to 0, \quad \phi \circ \pi_{A^{**}}(n_{(F,\epsilon)}) \to 1$$

for every $a \in A$. By [GLW, Lemma 1.7] there exists a bounded linear map $\psi : A^{**} \otimes_p A^{**} \to (A \otimes_p A)^{**}$ such that for $a, b \in A$ and $m \in A^{**} \otimes_p A^{**}$, the following hold:

- (i) $\psi(a \otimes b) = a \otimes b$,
- (ii) $\psi(m) \cdot a = \psi(m \cdot a), \ a \cdot \psi(m) = \psi(a \cdot m),$
- (iii) $\pi_A^{**}(\psi(m)) = \pi_{A^{**}}(m).$

Define $\xi_{(F,\epsilon)} = \psi(n_{(F,\epsilon)})$, which is a net in $(A \otimes_p A)^{**}$ that by the previous properties of ψ satisfies

$$a \cdot \xi_{(F,\epsilon)} - \xi_{(F,\epsilon)} \cdot a \to 0, \quad \phi \circ \pi_A^{**}(\xi_{(F,\epsilon)}) \to 1.$$

Now much as we obtained a net from (m_{α}) at the beginning of the proof, one can obtain a bounded net $(\gamma_{(F,\epsilon)})_{(F,\epsilon)\in\Delta}$ related to $\xi_{(F,\epsilon)}$ in $A \otimes_p A$ such that

$$a \cdot \gamma_{(F,\epsilon)} - \gamma_{(F,\epsilon)} \cdot a \to 0, \quad \phi \circ \pi_A(\gamma_{(F,\epsilon)}) \to 1.$$

Now define $T : A \otimes_p A \to A$ by $T(a \otimes b) = \phi(b)a$ for a and b in A. It is easy to see that T is a bounded linear map with

$$T(a \cdot m) = aT(m), \quad T(m \cdot a) = \phi(a)T(m) \quad (m \in A \otimes_p A).$$

Define $\nu_{(F,\epsilon)} = T(\gamma_{(F,\epsilon)})$. It is easy to see that $\nu_{(F,\epsilon)}$ is a bounded net and

 $a\nu_{(F,\epsilon)} - \phi(a)\nu_{(F,\epsilon)} \to 0, \quad \phi \circ T(\nu_{(F,\epsilon)}) = \phi \circ \pi_A(\gamma_{(F,\epsilon)}) \to 1 \quad (a \in A).$ Therefore by [KLP, Theorem 1.4], A is left ϕ -amenable.

COROLLARY 3.4. Let G be a locally compact group. If $L^1(G)^{**}$ is $\tilde{\phi}$ -biflat, then G is amenable.

Proof. Since $L^1(G)$ has a bounded approximate identity, it is ϕ -inner amenable. Thus by Theorem 3.3, it is left ϕ -amenable. Now by [ANN, Corollary 3.4], G is amenable.

COROLLARY 3.5. Let G be a locally compact group and $\phi, \psi \in \Delta(L^1(G))$. If $(M^1(G) \otimes_p L^1(G))^{**}$ is $\phi \otimes \psi$ -biflat, then G is amenable.

Proof. We note that $M(G) \otimes_p L^1(G)$ has a bounded approximate identity, and so it is ϕ -inner amenable. Now by Theorem 3.3, $M(G) \otimes_p L^1(G)$ is left $\phi \otimes \psi$ -amenable, where $\phi, \psi \in \Delta(L^1(G))$. Thus by [KLP, Theorem 3.3], $L^1(G)$ is left ϕ -amenable, hence G is amenable.

REFERENCES

- [ANN] M. Alaghmandan, R. Nasr-Isfahani and M. Nemati, Character amenability and contractibility of abstract Segal algebras, Bull. Austral. Math. Soc. 82 (2010), 274–281.
- [CGZ] Y. Choi, F. Ghahramani and Y. Zhang, Approximate and pseudo-amenability of various classes of Banach algebras, J. Funct. Anal. 256 (2009), 3158–3191.
- [DL] H. G. Dales and A. T.-M. Lau, The second duals of Beurling algebras, Mem. Amer. Math. Soc. 177 (2005).
- [E] P. Eymard, L'algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181–236.
- [GLW] F. Ghahramani, R. J. Loy and G. A. Willis, Amenability and weak amenability of second conjugate Banach algebras, Proc. Amer. Math. Soc. 124 (1996), 1489– 1497.
- [GZ] F. Ghahramani and Y. Zhang, Pseudo-amenable and pseudo-contractible Banach algebras, Math. Proc. Cambridge Philos. Soc. 142 (2007), 111–123.
- [H] A. Ya. Helemskii, The Homology of Banach and Topological Algebras, Kluwer, Dordrecht, 1989.

A. SAHAMI AND A. POURABB	AS
--------------------------	----

- [HS] E. Hewitt and K. Ross, Abstract Harmonic Analysis I, Grundlehren Math. Wiss. 115, Springer, Berlin, 1963.
- [JMZ] A. Jabbari, T. Mehdi Abad and M. Zaman Abadi, On φ-inner amenable Banach algebras, Colloq. Math. 122 (2011), 1–10.
- B. E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc. 127 (1972).
- [KLP] E. Kaniuth, A. T. Lau and J. Pym, On φ-amenability of Banach algebras, Math. Proc. Cambridge Philos. Soc. 144 (2008), 85–96.
- [K] J. L. Kelley, *General Topology*, Van Nostrand, Toronto, 1955.
- [KR] E. Kotzmann and H. Rindler, Segal algebras on non-abelian groups, Trans. Amer. Math. Soc. 237 (1978), 271–281.
- [NS] R. Nasr-Isfahani and S. Soltani Renani, Character contractibility of Banach algebras and homological properties of Banach modules, Studia Math. 202 (2011), 205–225.
- [Ra] P. Ramsden, Biflatness of semigroup algebras, Semigroup Forum 79 (2009), 515– 530.
- [Re] H. Reiter, L¹-algebras and Segal Algebras, Lecture Notes in Math. 231, Springer, 1971.
- [Ru] V. Runde, *Lectures on Amenability*, Springer, New York, 2002.
- [SP1] A. Sahami and A. Pourabbas, On φ-biflat and φ-biprojective Banach algebras, Bull. Belg. Math. Soc. Simon Stevin 20 (2013), 789–801.
- [SP2] A. Sahami and A. Pourabbas, Approximate biprojectivity of certain semigroup algebras, Semigroup Forum 92 (2016), 474–485.
- [SSS] E. Samei, N. Spronk and R. Stokke, Biflatness and pseudo-amenability of Segal algebras, Canad. J. Math. 62 (2010), 845–869.
- Y. Zhang, Nilpotent ideals in a class of Banach algebras, Proc. Amer. Math. Soc. 127 (1999), 3237–3242.

A. Sahami

Ilam University

P.O. Box 69315-516

A. Pourabbas Faculty of Mathematics and Computer Science Amirkabir University of Technology 424 Hafez Avenue 15914 Tehran, Iran E-mail: arpabbas@aut.ac.ir

and

Ilam, Iran

Faculty of Mathematics and Computer Science Amirkabir University of Technology 424 Hafez Avenue

15914 Tehran, Iran

E-mail: amir.sahami@aut.ac.ir

Department of Mathematics

Faculty of Basic Sciences

284