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APPROXIMATE BIPROJECTIVITY AND φ-BIFLATNESS OF
CERTAIN BANACH ALGEBRAS

BY

A. SAHAMI (Ilam and Tehran) and A. POURABBAS (Tehran)

Abstract. In the first part of the paper, we investigate the approximate biprojectivity
of some Banach algebras related to the locally compact groups. We show that a Segal
algebra S(G) is approximate biprojective if and only if G is compact. Also for every
continuous weight w, we show that L1(G,w) is approximate biprojective if and only if G
is compact, provided that w(g) ≥ 1 for every g ∈ G.

In the second part, we study φ-biflatness of some Banach algebras, where φ is a
character. We show that if S(G) is φ0-biflat, then G is an amenable group, where φ0 is
the augmentation character on S(G). Finally, we show that the φ-biflatness of L1(G)∗∗

implies the amenability of G.

1. Introduction and preliminaries. B. E. Johnson [J] defined the
class of amenable Banach algebras and showed that L1(G) is an amenable
Banach algebra if and only if G is an amenable group. At about the same
time A. Ya. Helemskii studied the class of biflat and biprojective Banach
algebras. Like amenability, he showed that L1(G) is biprojective (biflat) if
and only if G is a compact (amenable) group, respectively (see [H, Theorem
IV.5.13]).

The present authors [SP1] have studied some generalization of Helem-
skii’s theory. The concepts of φ-biflatness, φ-biprojectivity, φ-Johnson amen-
ability were introduced and studied. It was shown that L1(G) is φ-biflat
if and only if G is an amenable group, and the Fourier algebra A(G) is
φ-biprojective if and only if G is a discrete group.

Other generalized notions of Helemskii’s theory are approximate bipro-
jectivity and approximate biflatness. These generalizations have been intro-
duced by Zhang [Z] and Samei et al. [SSS], respectively. Samei et al. [SSS]
studied the approximate biflatness of Segal algebras and Fourier algebras,
and showed that a Segal algebra S(G) is pseudo contractible if and only if G
is compact. Note that the pseudo contractibility of Banach algebras implies

2010 Mathematics Subject Classification: Primary 43A07, 43A20; Secondary 46H05.
Key words and phrases: Beurling algebras, Segal algebras, approximate biprojectivity,
φ-biflat.
Received 1 December 2014; revised 3 November 2015.
Published online 8 July 2016.

DOI: 10.4064/cm6459-11-2015 [273] c© Instytut Matematyczny PAN, 2016



274 A. SAHAMI AND A. POURABBAS

their approximate biprojectivity [GZ, Proposition 3.8] (for more details see
[GZ]).

In this paper we show that a Segal algebra S(G) is approximately bipro-
jective if and only if G is compact, which is an extension of [SSS, Theorem
3.5] or [CGZ, Theorem 5.3].

Next, we show that the weighted group algebra L1(G,w) is approxi-
mately biprojective if and only if G is compact, for every continuous weight
w on G with w(g) ≥ 1 for every g ∈ G. This is an extension of [H, Theorem
IV.5.13]. Finally, we show that if a Segal algebra S(G) is φ0-biflat, then G is
amenable, where φ0 is the augmentation character on L1(G), and if L1(G)∗∗

is φ̃-biflat, then G is amenable, where φ̃ is an extension of a character φ on
L1(G).

We recall some standard notation and definitions. Let A be a Banach
algebra. If X is a Banach A-bimodule, then X∗ is also a Banach A-bimodule
via the following actions:

(a · f)(x) = f(x · a), (f · a)(x) = f(a · x) (a ∈ A, x ∈ X, f ∈ X∗).
Throughout, ∆(A) denotes the character space of A, that is, the set of all

non-zero multiplicative linear functionals on A. Let φ ∈ ∆(A). Then φ has
a unique extension φ̃ ∈ ∆(A∗∗) defined by φ̃(F ) = F (φ) for every F ∈ A∗∗.

Let A and B be Banach algebras. The `1-direct sum A⊕1B is a Banach
algebra with the usual product and with the norm ||(a, b)|| = ||a||+ ||b||. It
is easy to see that

∆(A⊕1 B) = (∆(A)× {0}) ∪ ({0} ×∆(B)).

Let A and B be Banach algebras. The projective tensor product A⊗pB
is a Banach A-bimodule via the following actions:

a · (b⊗ c) = ab⊗ c, (b⊗ c) · a = b⊗ ca (a, b, c ∈ A).

We recall that ∆(A ⊗p B) = {φ ⊗ ψ | φ ∈ ∆(A), ψ ∈ ∆(B)}, where
φ ⊗ ψ(a ⊗ b) = φ(a)ψ(b) for all a ∈ A and b ∈ B. The product morphism
πA : A⊗p A→ A is specified by πA(a⊗ b) = ab for a, b ∈ A.

Let G be a locally compact group. The Fourier algebra on G is denoted
by A(G). It is well-known that the character space ∆(A(G)) consists of
all point evaluation maps φt : A(G) → C such that φt(f) = f(t) for each
f ∈ A(G) (see [E]).

We also recall some concepts of Banach homology. A Banach algebra
A is called biprojective if there exists a bounded A-bimodule morphism
ρ : A → A ⊗p A such that ρ is a right inverse for πA [H]. Moreover, A is
approximately biprojective if there exists a net of bounded A-bimodule mor-
phisms ρα : A→ A⊗p A such that πA ◦ ρα(a)→ a for each a ∈ A (see [Z]).
A Banach algebra A is called φ-biflat, for φ ∈ ∆(A), if there exists a bounded
A-bimodule morphism ρ : A → (A ⊗p A)∗∗ such that φ̃ ◦ π∗∗A ◦ ρ(a) = φ(a)
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for every a ∈ A [SP1]. Also, A is called left φ-amenable [left φ-contractible]
if there exists m ∈ A∗∗ [m ∈ A] such that am = φ(a)m and φ̃(m) = 1
[φ(m) = 1] for every a ∈ A. For more details on left φ-amenability and left
φ-contractibility see [KLP] and [NS], respectively.

The following theorems come from [SP2]. They characterize the approx-
imate biprojectivity of some semigroup algebras. We apply these theorems
in order to characterize the approximate biprojectivity of algebras related
to locally compact groups.

Theorem 1.1 ([SP2]). Let A be an approximately biprojective Banach
algebra with a left approximate identity [right approximate identity ] and let
φ ∈ ∆(A). Then A is left φ-contractible [right φ-contractible].

Theorem 1.2 ([SP2]). Let A be a Banach algebra with a left approxi-
mate identity and let ∆(A) be a non-empty set. Then the triangular Banach
algebra T =

(
A A
0 A

)
is not approximately biprojective.

2. Approximate biprojectivity. We recall that, for a locally compact
group G, a linear subspace S(G) of L1(G) is said to be a Segal algebra on
G if it satisfies the following conditions:

(i) S(G) is dense in L1(G),
(ii) S(G) with a norm ‖·‖S(G) is a Banach space and ‖f‖L1(G) ≤ ‖f‖S(G)

for every f ∈ S(G),
(iii) for every f ∈ S(G) and y ∈ G we have Lyf ∈ S(G) and the map

y 7→ Lyf of G into S(G) is continuous, where Lyf(x) = f(y−1x),
(iv) ‖Lyf‖S(G) = ‖f‖S(G) for every f ∈ S(G) and y ∈ G.

It is well-known that S(G) has a left approximate identity. Also, every Se-
gal algebra is an abstract Segal algebra with respect to L1(G). For more
information on Segal algebras see [Re].

Note that ∆(S(G)) = {φ|S(G)
| φ ∈ ∆(L1(G))} and φ0 (the augmentation

character on L1(G)) induces a character on S(G) still denoted by φ0 [ANN,
Lemma 2.2].

Samei et al. [SSS, Theorem 3.5] and Choi et al. [CGZ, Theorem 5.3]
showed that S(G) is pseudo contractible if and only if G is compact. As
pseudo contractibility is a weaker condition than approximate biprojectivity,
in the following theorem we extend this result.

Theorem 2.1. Let G be a locally compact group. Then S(G) is approx-
imately biprojective if and only if G is compact.

Proof. Let S(G) be approximately biprojective. Since S(G) has a left
approximate identity, Theorem 1.1 shows that S(G) is left φ0-contractible,
hence by [NS, Theorem 2.1] there exists m ∈ S(G) such that am = φ0(a)m
and φ0(m) = 1 for every a ∈ S(G). Since S(G) is dense in L1(G), it is easy
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to see that am = φ0(a)m and φ0(m) = 1 for every a ∈ L1(G). Using the
same argument as in the proof of [H, Theorem IV.5.13], we find that m is a
constant function, which shows that G is compact.

The converse is clear by [SSS, Theorem 3.5] or [CGZ, Theorem 5.3].

The class of non-approximately biprojective Banach algebras is wide
enough among the algebras related to locally compact groups. Here we give
another class of non-approximately biprojective Banach algebras.

Proposition 2.2. The triangular Banach algebra

T =

(
S(G) S(G)

0 S(G)

)
is not approximately biprojective for any Segal algebra S(G).

Proof. Since S(G) has a left approximate identity, T has a left approxi-
mate identity. As ∆(S(G)) 6= ∅, the use of Theorem 1.2 finishes the proof.

Theorem 2.3. Let G be a SIN group. If S(G)⊗p S(G) is approximately
biprojective, then G is compact.

Proof. The main result of [KR] asserts that if G is a SIN group, then
S(G) has a central approximate identity, say (eα)α∈I . Since S(G) ⊗p S(G)
is approximately biprojective, there exists a net

ρβ : S(G)⊗p S(G)→ (S(G)⊗p S(G))⊗p (S(G)⊗p S(G)), β ∈ Θ,
of continuous S(G) ⊗p S(G)-bimodule morphisms with πS(G)⊗pS(G) ◦ ρβ(x)
→ x for every x ∈ S(G)⊗p S(G). Set nα = eα⊗ eα. It is easy to see that for
every x ∈ S(G)⊗pS(G) we have xnα = nαx and φ⊗φ(nα) = φ⊗φ(eα⊗eα) =
φ(eα)φ(eα)→ 1, where φ ∈ ∆(S(G)).

Define mβ
α = ρβ(nα). Then it is easy to see that x ·mβ

α = mβ
α · x. Also,

(2.1) lim
α

lim
β
φ⊗ φ ◦ πS(G)⊗pS(G)(m

β
α)− 1

= lim
α

lim
β
φ⊗ φ ◦ πS(G)⊗pS(G) ◦ ρβ(nα)− 1

= lim
α
φ⊗ φ(nα)− 1 = lim

α
φ(eα)2 − 1 = 0.

Set E = I×ΘI , where ΘI is the set of all functions from I into Θ. Consider
the product ordering on E, defined as follows:

(α, β) ≤E (α′, β′) ⇔ α ≤I α′, β ≤ΘI β′ (α, α′ ∈ I, β, β′ ∈ ΘI);
here β ≤ΘI β′ means that β(d) ≤Θ β′(d) for each d ∈ I. Suppose that
γ = (α, βα) ∈ E and mγ = ρβα(nα) ∈ (S(G) ⊗p S(G)) ⊗p (S(G) ⊗p S(G)).
Now using the iterated limit theorem [K, p. 69] in (2.1) we obtain

φ⊗ φ ◦ πS(G)⊗pS(G)(mγ)→ 1,
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and similarly x · mγ = mγ · x for every x ∈ S(G) ⊗p S(G). By the same
argument as in the proof of [SP1, Proposition 2.2] one can show that S(G)⊗p
S(G) is left φ⊗ φ-contractible. Hence [NS, Theorem 3.14] shows that S(G)
is left φ-contractible, and [ANN, Theorem 3.3] implies that G is compact.

Let G be a locally compact group. A weight on G is a function w : G→
R+ such that

w(e) = 1 and w(xy) ≤ w(x)w(y),

where e ∈ G is the identity and x, y ∈ G. We form the Banach space

L1(G,w) = {f : G→ C | fw ∈ L1(G)}.
Then L1(G,w), with convolution product, is a Banach algebra, called a
Beurling algebra. See [DL] for further information on Beurling algebras.

Helemskii [H, Theorem IV.5.13] showed that the group algebra L1(G) is
biprojective if and only if G is compact. In the following theorem we extend
this result.

Theorem 2.4. Let G be a locally compact group and let w be a contin-
uous weight on G. Then L1(G,w) is approximately biprojective if and only
if G is compact, provided that w(g) ≥ 1 for every g ∈ G.

Proof. Suppose L1(G,w) is approximately biprojective. Then by Theo-
rem 1.1, L1(G,w) is left φ-contractible for every φ ∈ ∆(L1(G,w)), in par-
ticular for the augmentation character φ0 specified by

φ0(f) =
�

G

f(x) dx.

By [NS, Theorem 2.1] there exists m ∈ L1(G,w) such that a ∗m = φ0(a)m
and φ0(m) = 1 for every a ∈ L1(G,w). Pick f ∈ L1(G,w) such that φ0(f)
= 1. We have

δg∗m = φ0(f)δg∗m = δg∗(f∗m) = (δg∗f)∗m = φ0(δg∗f)m = φ0(f)m = m,

which shows that m is a constant function in L1(G,w), so we can assume
that 1 ∈ L1(G,w). Since w(g) ≥ 1 for every g ∈ G, we have

|G| =
�

G

1 dg ≤
�

G

w(g) dg <∞.

Now apply [HS, Theorem 15.9] to deduce that G is compact.
For the converse, using the same arguments as in [H, Theorem IV.5.13],

it is easy to see that L1(G,w) is biprojective, so L1(G,w) is approximately
biprojective.

Proposition 2.5. Let G be a locally compact group and let A be a unital
Banach algebra with ∆(A) 6= ∅. If A⊗pL1(G) is approximately biprojective,
then G is compact and A is approximately biprojective. The converse holds
if A is biprojective.
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Proof. Suppose that B = A ⊗p L1(G) is approximately biprojective. It
is easy to see that (eA ⊗ eα) is an approximate identity for B, where eA is
an identity for A, and (eα) is a bounded approximate identity for L1(G).
Let ψ ∈ ∆(A) and φ ∈ ∆(L1(G)). Then Theorem 1.1 implies that B is
left ψ⊗ φ-contractible. By [NS, Theorem 3.14], L1(G) is left φ-contractible,
which implies that G is compact (see [NS, Theorem 6.1]).

Let ρ : G → C be a group character corresponding to φ (see [HS,
Theorem 23.7]). It is easy to see that ρ ∈ L∞(G). Since G is compact,
L∞(G) ⊆ L1(G). Thus ρ ∈ L1(G). Also, since ρ ∗ f = f ∗ ρ = φ(f)ρ for
every f ∈ L1(G), one can easily see that ρ is idempotent in L1(G). Now
by a similar argument to that in [Ra, Proposition 2.6], one finds that A is
approximately biprojective.

Conversely, it is well-known that L1(G) is biprojective if and only if G
is compact. Now apply [Ra, Proposition 2.4] to complete the proof.

We recall that a Banach algebra A is left character contractible if A is
left φ-contractible for every φ ∈ ∆(A) ∪ {0}; for more information on this
notion, see [NS].

Proposition 2.6. Let G be a locally compact group. Then the following
are equivalent:

(i) L1(G)⊗pM(G) is biprojective;
(ii) L1(G)⊗pM(G) is approximately biprojective;

(iii) G is finite.

Proof. (i)⇒(ii) is clear.

(ii)⇒(iii). Suppose that L1(G) ⊗pM(G) is approximately biprojective.
Since M(G) is unital, Proposition 2.5 shows that M(G) is approximately
biprojective. So by Theorem 1.1, M(G) is left φ-contractible for every φ in
∆(M(G)). Also M(G) is left 0-contractible. Hence M(G) is left character
contractible. Therefore by [NS, Corollary 6.2], G is finite.

(iii)⇒(i) is clear.

Proposition 2.7. Let G be an amenable locally compact group. If
L1(G)⊗p A(G) is approximately biprojective, then G is finite.

Proof. It is well-known that L1(G) has a bounded approximate identity,
and by Leptin’s theorem, A(G) has a bounded approximate identity (see
[Ru, Theorem 7.1.3]). Therefore L1(G)⊗pA(G) has a bounded approximate
identity. Suppose that L1(G)⊗pA(G) is approximately biprojective. Then by
Theorem 1.1, L1(G)⊗pA(G) is left φ⊗ψ-contractible for every φ ∈ ∆(L1(G))
and ψ ∈ ∆(A(G)). Now by [NS, Theorem 3.14], L1(G) is left φ-contractible
and A(G) is left ψ-contractible. By [NS, Proposition 6.6], G is discrete and
by [NS, Proposition 6.1], G is compact, therefore G must be finite.
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Proposition 2.8. Let G be a locally compact group. If L1(G)⊕1 A(G)
is approximately biprojective, then G is finite.

Proof. Let A = L1(G) ⊕1 A(G) be approximately biprojective. Then
there exists a net (ρα)α of A-bimodule morphisms from A into A⊗p A such
that πA ◦ ρα(a) → a for every a ∈ A. Let φ ∈ ∆(A(G)). Pick x0 ∈ A(G)
such that φ(x0) = 1. Set mα = ρα(x0) ∈ A ⊗p A. Since the elements of
A(G) commute with the elements of A, we see that a · mα = mα · a and
φ ◦ πA(mα) → 1. By replacing mα with mα/φ ◦ πA(mα) we can assume
that φ ◦ πA(mα) = 1. Then by the same argument as in the proof of [SP1,
Proposition 2.2] one can show that A is left φ-contractible, and so its closed
ideal A(G) is left φ-contractible [NS, Proposition 3.8]. Thus [NS, Proposition
6.6] shows that G is discrete. This shows that L1(G) becomes the unital
algebra `1(G) with unit element e. Now working with e ∈ `1(G) instead of
x0 in the above argument we get nα = ρα(e) ∈ A⊗p A with a · nα = nα · a
and ψ ◦ πA(nα) = 1 for every a ∈ A, where ψ ∈ ∆(`1(G)). Hence `1(G) is
left ψ-contractible. Therefore by [NS, Theorem 6.1], G is finite.

3. φ-biflatness. In [SP1], the authors studied φ-biflatness of group al-
gebras. In this section we continue the study of φ-biflatness of Segal algebras
and the second duals of group algebras. We start with a characterization of
amenability of a locally compact group.

Remark 3.1 ([Ru, Exercise 1.1.6]). In order to show that a locally com-
pact group G is amenable, we only need to find a net (gα)α in P (G) =
{f ∈ L1(G) | f ≥ 0, ‖f‖1 = 1} such that ‖δggα − gα‖1 → 0 for all g ∈ G.

We recall that φ0 is the augmentation character on L1(G); it induces a
character on S(G), still denoted by φ0.

Theorem 3.2. Suppose that S(G) is a Segal algebra with an approximate
identity. Let S(G) be φ0-biflat. Then G is amenable.

Proof. To show that G is amenable, we construct a net in L1(G) that
satisfies the conditions of Remark 3.1. We do this in two steps.

Step 1. In this step we show that there exists a net (bλ)λ in S(G)⊗pS(G)
such that a · bλ − bλ · a→ 0 and φ0 ◦ πS(G)(bλ)→ 1 for every a ∈ S(G).

Since S(G) is φ0-biflat, there exists a bounded S(G)-bimodule morphism
ρ : S(G) → (S(G) ⊗p S(G))∗∗ such that φ̃0 ◦ π∗∗S(G) ◦ ρ(a) = φ0(a). Take

mα = ρ(eα) in (S(G)⊗p S(G))∗∗, where (eα)α∈I is an approximate identity
for S(G). So we have

(3.1) a ·mα −mα · a = a · ρ(eα)− ρ(eα) · a = ρ(aeα − eαa)→ 0

and

(3.2) φ̃0 ◦ π∗∗S(G)(mα) = φ̃0 ◦ π∗∗S(G) ◦ ρ(eα) = φ0(eα)→ 1.
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Take ε > 0 and finite sets F ⊆ S(G) and Λ ⊆ (S(G) ⊗p S(G))∗. By (3.1)
there exists v(ε, F, Λ) ∈ I such that

‖a · ρ(ev(ε,F,Λ))− ρ(ev(ε,F,Λ)) · a‖ < ε/K0,

where K0 = max{‖f‖ | f ∈ Λ}. But for every v(ε, F, Λ) ∈ I, by Goldestine’s

theorem, there exists a net (bλ) in S(G)⊗pS(G) such that bλ
w∗
−−→ ρ(ev(ε,F,Λ)).

By w∗-continuity of π∗∗S(G) we have πS(G)(bλ)
w∗
−−→ π∗∗S(G) ◦ ρ(ev(ε,F,Λ)), which

implies that

(3.3) φ0 ◦ πS(G)(bλ)→ φ̃0 ◦ π∗∗S(G) ◦ ρ(ev(ε,F,Λ)),

and for every f ∈ Λ and a ∈ F we have

(3.4) f · a(bλ)→ ρ(ev(ε,F,Λ))(f · a), a · f(bλ)→ ρ(ev(ε,F,Λ))(a · f).

Using (3.2) one can show that the right hand side of (3.3) tends to 1.

Now for every f ∈ Λ and a ∈ F using (3.1) and (3.4) we obtain

|f(a · bλ − bλ · a) ≤ |f(a · bλ)− a · ρ(ev(ε,F,Λ))(f)(3.5)

+ a · ρ(ev(ε,F,Λ))(f)− ρ(ev(ε,F,Λ)) · a(f)

+ ρ(ev(ε,F,Λ)) · a(f)− f(bλ · a)|
≤ |f · a(bλ)− ρ(ev(ε,F,Λ))(f · a)|

+ |a · ρ(ev(ε,F,Λ))(f)− ρ(ev(ε,F,Λ)) · a(f)|
+ |ρ(ev(ε,F,Λ))(a · f)− a · f(bλ)| → 0.

Consider the directed set ∆ = {γ = (ε, F, Λ)}, where ε > 0, and F and Λ
are finite subsets of S(G) and S(G)⊗p S(G))∗, respectively. The order in ∆
is defined via

γ = (ε, F, Λ) ≤ γ′ = (ε′, F ′, Λ′) ⇔ ε ≥ ε′, F ⊆ F ′, Λ ⊆ Λ′.

Now let a ∈ S(G) and f ∈ (S(G) ⊗p S(G))∗. Then there exists a γ =
γ(ε, F, Λ) ∈ Λ, where a ∈ F and f ∈ Λ are such that by (3.5), |f(a · bγ −
bγ · a)| ≤ ε, which shows that a · bγ − bγ · a→ 0 in the weak topology. Using
Mazur’s lemma, one can assume that a·bγ−bγ ·a→ 0 in (S(G)⊗pS(G), ‖·‖),
and also we have shown that φ0 ◦ πS(G)(bγ)→ 1, as desired.

Step 2. In this step we show that G is amenable. We start with a
bounded linear map T : S(G)⊗pS(G)→ S(G) defined by T (a⊗b) = φ0(b)a
for a, b ∈ S(G). Clearly

aT (x) = T (a · x), T (x · a) = φ0(a)T (x), φ0 ◦ T (x) = φ0 ◦ πS(G)(x),

where a ∈ S(G) and x ∈ S(G)⊗p S(G).
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Set nλ = T (bλ), where (bλ) is a net coming from Step 1. Then for every
a ∈ S(G) we have

‖anλ − φ0(a)nλ‖S = ‖aT (bλ)− φ0(a)T (bλ)‖S(3.6)

= ‖T (a · bλ − bλ · a)‖S → 0,

and
φ0(nλ) = φ0 ◦ T (bλ) = φ0 ◦ πS(G)(bλ)→ 1.

Fix a0 ∈ S(G) such that φ0(a0) = 1. Since
	
a0(g

−1x) dx =
	
a0(x) dx, we

have φ0(δga0) = φ0(a0) = 1. Now set fλ = a0nλ. It follows from (3.6) that

‖δgfλ − fλ‖S ≤ ‖δga0nλ − nλ‖S + ‖nλ − a0nλ‖S(3.7)

≤ ‖δga0nλ − φ0(δga0)nλ‖S + ‖φ0(a0)nλ − a0nλ‖S
→ 0.

Since S(G) is a Segal algebra, we have ‖ · ‖L1 ≤ ‖ · ‖S , so (3.7) holds for
L1-norm instead of S-norm. Note also that φ0(fλ)→ 1, so since |φ0(fλ)| ≤
‖fλ‖L1 we may assume that ‖fλ‖L1 ≥ 1/2. Define gλ = |fλ|/‖fλ‖L1 , which
is bounded. Also, we have

‖δggλ − gλ‖L1 ≤ 2
∥∥δg|fλ| − |fλ|∥∥L1 ≤ 2‖δgfλ − fλ‖L1 → 0.

Since ‖gλ‖L1 = 1, Remark 3.1 implies that G is amenable.

Let A be a Banach algebra and φ ∈ ∆(A). Then A is called φ-inner
amenable if there exists a bounded net (eα)α in A such that aeα − eαa→ 0
and φ(eα)→ 1 for every a ∈ A (see [JMZ]). Note that every Banach algebra
with a bounded approximate identity is φ-inner amenable.

Theorem 3.3. Let A be a φ-inner amenable Banach algebra, where
φ ∈ ∆(A). If A∗∗ is φ̃-biflat, then A is left φ-amenable.

Proof. SupposeA∗∗ is φ̃-biflat. Then there exists a boundedA∗∗-bimodule
morphism ρ : A∗∗ → (A∗∗ ⊗p A∗∗)∗∗ such that for every a ∈ A∗∗,

˜̃
φ ◦ π∗∗A∗∗ ◦ ρ(a) = φ̃(a),

where
˜̃
φ is an extension of φ̃ on A∗∗∗∗ as mentioned in the introduction.

Suppose that A is φ-inner amenable. Thus A has a bounded net, say (eα),
such that aeα − eαa → 0 and φ(eα) → 1 for every a ∈ A. Now we define
mα = ρ(eα) for all α. Since ρ is a bounded map, (mα)α is bounded. Let M
be a w∗-cluster point of (mα) in (A∗∗ ⊗p A∗∗)∗∗. Then for every a ∈ A we

have a ·mα
w∗
−−→ a ·M and mα · a

w∗
−−→M · a, therefore

a ·mα −mα · a
w∗
−−→ a ·M −M · a (a ∈ A).

On the other hand,

a ·mα −mα · a = a · ρ(eα)− ρ(eα) · a = ρ(aeα − eαa)
‖·‖−−→ 0,

so a ·M = M · a for every a ∈ A.
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Also w∗-continuity of π∗∗A∗∗ implies that π∗∗A∗∗(mα)
w∗
−−→ π∗∗A∗∗(M), hence

˜̃
φ ◦ π∗∗A∗∗(mα) = (π∗∗A∗∗(mα))(φ̃)→ (π∗∗A∗∗(M))(φ̃) =

˜̃
φ ◦ π∗∗A∗∗(M).

On the other hand,

˜̃
φ ◦ π∗∗A∗∗(mα) =

˜̃
φ ◦ π∗∗A∗∗ ◦ ρ(eα) = φ(eα)→ 1,

hence
˜̃
φ ◦ π∗∗A∗∗(M) = 1.

Now take ε > 0 and a finite set F = {a1, . . . , ar} ⊆ A, and set

V = {(a1 · n− n · a1, . . . , ar · n− n · ar, φ̃ ◦ πA∗∗(n)− 1)}

⊆
r∏
i=1

(A∗∗ ⊗p A∗∗)⊕1 C,

where n ∈ A∗∗ ⊗p A∗∗ is such that ‖n‖ ≤ K and K > 0 is a bound for the
bounded net (mα)α. Then V is a convex set and so the weak and the norm
closures of V coincide. But by Goldestine’s theorem there exists a bounded

net (nα) ⊆ A∗∗⊗pA∗∗ such that nα
w∗
−−→M , and so for every a ∈ F we have

a · nα − nα · a
w−→ 0 and |φ̃ ◦ πA∗∗(nα)− 1| → 0. This shows that (0, . . . , 0) is

a ‖ · ‖-cluster point of V . Thus there exists n(F,ε) ∈ A∗∗ ⊗p A∗∗ such that

(3.8) ‖ai · n(F,ε) − n(F,ε) · ai‖ < ε, |φ̃ ◦ πA∗∗(n(F,ε))− 1| < ε

for every i ∈ {1, . . . , r}. Now we consider the set

∆ = {(F, ε) | F is a finite subset of A, ε > 0},
with the following order:

(F, ε) ≤ (F ′, ε′) ⇔ F ⊆ F ′, ε ≥ ε′.
So (3.8) implies that there exists a bounded net (n(F,ε))(F,ε)∈∆ in A∗∗⊗pA∗∗
such that

a · n(F,ε) − n(F,ε) · a→ 0, φ̃ ◦ πA∗∗(n(F,ε))→ 1

for every a ∈ A. By [GLW, Lemma 1.7] there exists a bounded linear map
ψ : A∗∗ ⊗p A∗∗ → (A ⊗p A)∗∗ such that for a, b ∈ A and m ∈ A∗∗ ⊗p A∗∗,
the following hold:

(i) ψ(a⊗ b) = a⊗ b,
(ii) ψ(m) · a = ψ(m · a), a · ψ(m) = ψ(a ·m),
(iii) π∗∗A (ψ(m)) = πA∗∗(m).

Define ξ(F,ε) = ψ(n(F,ε)), which is a net in (A ⊗p A)∗∗ that by the previous
properties of ψ satisfies

a · ξ(F,ε) − ξ(F,ε) · a→ 0, φ̃ ◦ π∗∗A (ξ(F,ε))→ 1.
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Now much as we obtained a net from (mα) at the beginning of the proof,
one can obtain a bounded net (γ(F,ε))(F,ε)∈∆ related to ξ(F,ε) in A⊗pA such
that

a · γ(F,ε) − γ(F,ε) · a→ 0, φ ◦ πA(γ(F,ε))→ 1.

Now define T : A⊗p A→ A by T (a⊗ b) = φ(b)a for a and b in A. It is easy
to see that T is a bounded linear map with

T (a ·m) = aT (m), T (m · a) = φ(a)T (m) (m ∈ A⊗p A).

Define ν(F,ε) = T (γ(F,ε)). It is easy to see that ν(F,ε) is a bounded net and

aν(F,ε) − φ(a)ν(F,ε) → 0, φ ◦ T (ν(F,ε)) = φ ◦ πA(γ(F,ε))→ 1 (a ∈ A).

Therefore by [KLP, Theorem 1.4], A is left φ-amenable.

Corollary 3.4. Let G be a locally compact group. If L1(G)∗∗ is φ̃-biflat,
then G is amenable.

Proof. Since L1(G) has a bounded approximate identity, it is φ-inner
amenable. Thus by Theorem 3.3, it is left φ-amenable. Now by [ANN, Corol-
lary 3.4], G is amenable.

Corollary 3.5. Let G be a locally compact group and φ, ψ ∈ ∆(L1(G)).

If (M1(G)⊗p L1(G))∗∗ is φ̃⊗ ψ-biflat, then G is amenable.

Proof. We note thatM(G)⊗pL1(G) has a bounded approximate identity,
and so it is φ-inner amenable. Now by Theorem 3.3, M(G)⊗p L1(G) is left
φ ⊗ ψ-amenable, where φ, ψ ∈ ∆(L1(G)). Thus by [KLP, Theorem 3.3],
L1(G) is left φ-amenable, hence G is amenable.
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