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Abstract. The aim of this paper is threefold: (i) We offer short and elementary new
proofs for
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The first identity was published by Brereton et al. in 2011 and the second one extends a
result provided by the same authors. (ii) We present q-analogues of (∗) and (∗∗). (iii) We
use (∗∗) to derive identities and inequalities for trigonometric polynomials. Among other
results, we show that

sin(t) +

n∑
k=2

c(c+ 1) · · · (c+ k − 2)
sin(kt)

k!
> 0 (c ∈ R)

for all n ∈ N and t ∈ (0, π) if and only if c ∈ [−1, 1]. This provides a new extension of the
classical Fejér–Jackson inequality.

1. Introduction and statement of results

(I) Our work has been inspired by an interesting article which was pub-
lished by Brereton et al. [3] in 2011. The six authors presented the following
combinatorial identities.

Theorem 1. For all m,n ∈ N0 = N ∪ {0} we have
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Theorem 2. For all m ∈ N and n ∈ N0 we have

(1.2)
n∑
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)
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) n∑
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.

A generalization of (1.1) can be found in [9, (3.18)]. The sums in (1.1)
are closely related to the Delannoy numbers

D∗(m,n) =
n∑
k=0

2k
(
n

k

)(
m

k

)
=

n∑
k=0

(
m+ n− k

m

)(
m

k

)
.

Indeed, D∗(n, n) is equal to the expressions in (1.1) with m = n. The Delan-
noy number counts the number of lattice paths from (0, 0) to (m,n) allowing
only east (1, 0), north (0, 1) and northeast (1, 1) steps. See [2] for additional
information on this subject.

Brereton and his co-authors offered three different proofs for (1.1) and
(1.2). They used combinatorial arguments, the computer-assisted method
of Wilf–Zeilberger and the generatingfunctionology technique. One of the
goals of the present paper is to provide short and elementary new proofs for
(1.1) and the following extension of (1.2).

Theorem 3. For all n ∈ N0, α ∈ R \ {0,−1, . . . ,−n} and z ∈ C we
have

(1.3)

n∑
k=0

(
α+ k − 1

k

)
(z + 1)k = α

(
α+ n

n

) n∑
k=0

(
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k

)
zk
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.

If we set α = m, z = −1/2 in (1.3), multiply both sides by 2n and apply
the identity

n∑
k=0

(
m+ n

k

)
=

n∑
k=0

(
m+ k − 1

k

)
2n−k

(which can be proved easily by induction on n), we obtain (1.2).

Applications of (1.3) lead to the combinatorial identities

(1.4)
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(
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)
α
(
α+n
n

)
which hold for j ∈ {0, 1, . . . , n − r}. In fact, if we differentiate both sides
of (1.3) r times with respect to z and compare the coefficients, we obtain
(1.4). The same method leads to (1.5) if we set z = w − 1 in (1.3).
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In order to verify (1.1) and (1.3) we use induction. A key role in our
proofs is played by Pascal’s rule

(1.6)

(
α

k

)
+

(
α

k − 1

)
=

(
α+ 1

k

)
.

(II) The q-binomial coefficient, which is also known as the Gaussian
binomial coefficient, is defined for α ∈ R and n ∈ N0 by[

α

0

]
q

= 1,

[
α

n

]
q

=
n−1∏
k=0

1− qα−k

1− qk+1
(n ∈ N).

Here, q ∈ R with q ∈ (0, 1). Moreover, if −n ∈ N, then we set
[
α
n

]
q

= 0.

The connection between
[
α
n

]
q

and the ordinary binomial coefficient
(
α
n

)
is given by the limit relation

(1.7) lim
q→1

[
α

n

]
q

=

(
α

n

)
.

The q-binomial coefficients have interesting applications in various
branches, like the theory of partitions and the theory of projective spaces.
A collection of the most important properties of these coefficients can be
found, for instance, in [5, Chapter 6].

In many articles it was shown that certain identities involving binomial
coefficients have q-analogues. For example, the following extensions of the
binomial theorem and the Chu–Vandermonde identity are valid:

(1.8)
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k=0
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k

]
q

q(
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(a; q)n =
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k=0

(1− aqk)

and

(1.9)

[
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k

]
q

=

k∑
j=0

q(α−j)(k−j)
[
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j

]
q

[
β
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]
q

=

k∑
j=0

qj(β−k+j)
[
α

j

]
q

[
β

k− j

]
q

(see [1, Theorem 3.3, eq. (3.3.10)]).

The next two theorems yield q-analogues of (1.1) and (1.3).

Theorem 4. For all n ∈ N0 and α ∈ R we have

(1.10)
n∑
k=0

q(3k−1)k/2(−qk; q)n−k
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k

]
q

[
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Theorem 5. For all n ∈ N0, α ∈ R \ {0,−1, . . . ,−n} and z ∈ C we
have

(1.11)

n∑
k=0

qk
[
α+ k − 1
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]
q

(−z; q)k = [α]q

[
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]
q
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where

[a]q =

[
a

1

]
q

=
1− qa

1− q
.

Using the limit relations (1.7) and limq→1[a]q = a as well as (−z; 1)k =
(z + 1)k shows that if q → 1, then (1.10) and (1.11) lead to (1.1) and (1.3),
respectively. Moreover, we find that (1.1) is valid even if m is a real number.

(III) An application of Theorem 3 gives new identities for trigonometric
polynomials. Let α ∈ R \ {0,−1, . . . ,−n}. We set z = eit (t ∈ R) in (1.3)
and compare the real and imaginary parts on both sides. This leads to

(1.12)

n∑
k=0

(
α+ k − 1

k

) k∑
j=0

(
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)
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) n∑
k=0

(
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cos(kt)

α+ k

and
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)
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.

If we set z = eit − 1 (t ∈ R) in (1.3), then we obtain counterparts of
(1.12) and (1.13):

n∑
k=0

(
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)
cos(kt) = α
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k=0

1
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j=0
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(
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and

(1.14)

n∑
k=1

(
α+ k − 1

k

)
sin(kt)

= α

(
α+ n
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) n∑
k=1

1

α+ k

(
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j=1

(−1)k−j
(
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sin(jt).

We define three one-parameter families of trigonometric polynomials:

An(c, t) =
n∑
k=1

(c)k−1
k!

sin(kt),

(1.15)

A∗n(c, t) =
n∑
k=1

(c)k−1
k!

cos(kt) (c ∈ R),
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where (x)n denotes the Pochhammer symbol

(x)0 = 1, (x)n =

n−1∏
j=0

(x+ j) (n ∈ N),

and

(1.16) Bn(α, t) =
n∑
k=1

1

α+ k

(
n

k

) k∑
j=1

(−1)k−j
(
k

j

)
sin(jt)

(α ∈ R \ {−1, . . . ,−n}).

The polynomials (1.15) satisfy the system of functional-differential equations

1

c

(
∂

∂t
An(c, t)− cos(t)

)
= − sin(t)An−1(c+ 1, t) + cos(t)A∗n−1(c+ 1, t),

1

c

(
∂

∂t
A∗n(c, t) + sin(t)

)
= − cos(t)An−1(c+ 1, t)− sin(t)A∗n−1(c+ 1, t).

From (1.14) we conclude that the sine polynomials (1.15) and (1.16) are
connected by the identity

(1.17) An(α+ 1, t) =

(
α+ n

n

)
Bn(α, t).

Setting c = 1 in (1.15) leads to the well-known sine polynomial of Fejér:

An(1, t) =

n∑
k=1

sin(kt)

k
.

A classical result in the theory of trigonometric polynomials states that

(1.18) An(1, t) > 0 (n ∈ N, 0 < t < π).

This is known as the Fejér–Jackson inequality. The validity of (1.18) was
conjectured by Fejér in 1910 and proved one year later by Jackson [4]. This
result has attracted the attention of many researchers, who offered numerous
proofs, extensions, variants, refinements and remarkable applications. For
more information we refer to [8, Chapter 4] and the references cited therein.

In view of (1.18) it is natural to ask about all parameters c such that
An(c, t) is positive for all n ∈ N and t ∈ (0, π). We prove the following
generalization of the Fejér–Jackson inequality.

Theorem 6. Let c ∈ R. Then

(1.19)
n∑
k=1

(c)k−1
k!

sin(kt) > 0

for all n ∈ N and t ∈ (0, π) if and only if c ∈ [−1, 1].
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Using Theorem 6 and (1.17) we are able to determine all parameters α
such that Bn(α, t) is positive for all n ∈ N and t ∈ (0, π).

Theorem 7. Let α ∈ R \ {−1,−2, . . .}. Then

(1.20)

n∑
k=1

1

α+ k

(
n

k

) k∑
j=1

(−1)k−j
(
k

j

)
sin(jt) > 0

for all n ∈ N and t ∈ (0, π) if and only if α ∈ (−1, 0].

An elegant well-known variant of the Fejér–Jackson inequality states that

(1.21)

n∑
k=1
k odd

sin(kt)

k
> 0 (n ∈ N, 0 < t < π).

Applying Theorem 6 yields an extension of (1.21): if c ∈ [−1, 1], then

(1.22)
1

2
(An(c; t) +An(c;π − t))

=
n∑
k=1
k odd

(c)k−1
k!

sin(kt) > 0 (n ∈ N, 0 < t < π).

Are there still more parameters c such that (1.22) is valid? The next theorem
gives an affirmative answer.

Theorem 8. Let c ∈ R. Then

(1.23)

n∑
k=1
k odd

(c)k−1
k!

sin(kt) > 0

for all n ∈ N and t ∈ (0, π) if and only if c ∈ (−3, 2).

An application of Theorem 8 leads to our final result. It provides a
counterpart of Theorem 6.

Theorem 9. Let c ∈ R. Then

(1.24)

n∑
k=1

(c)2k−2
(2k)!

sin(kt) > 0

for all n ∈ N and t ∈ (0, π) if and only if c ∈ [−3, 2].

In the next section we collect some lemmas. The proofs of the theorems
are given in Sections 3–10.

2. Lemmas. Throughout, we maintain the notations introduced in this
section. The first two lemmas play a role in the proofs of Theorems 1 and 3,
respectively.
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Lemma 1. Let

C(m,n) =
n∑
k=0

2n−k
(
n

k

)(
m

k

)
, D(m,n) =

n∑
k=0

2n−k
(
n

k

)(
m

k + 1

)
,

F (m,n) =
n∑
k=0

(
n

k

)(
m+ k

k

)
, G(m,n) =

n∑
k=0

(
n

k

)(
m+ k

k + 1

)
.

For all m ∈ N0 and n ∈ N0 we have

C(m,n) = D(m+ 1, n)−D(m,n),(2.1)

D(m+ 1, n) = C(m,n+ 1)− C(m,n),(2.2)

F (m,n) = G(m+ 1, n)−G(m,n),(2.3)

G(m+ 1, n) = F (m,n+ 1)− F (m,n).(2.4)

Proof. From (1.6) we deduce (2.1), (2.3) and (2.4). Applying (1.6) and
(2.1) gives

C(m,n+ 1) = 2C(m,n) +D(m,n) = C(m,n) +D(m+ 1, n).

This leads to (2.2).

Lemma 2. Let

E(α, n, z) =
n∑
k=0

(
α+ k

k

)
(z + 1)k.

For all n ∈ N0, α ∈ R and z ∈ C we have

(2.5) E(α− 1, n, z) + zE(α, n, z) =

(
α+ n

n

)
(z + 1)n+1.

Proof. We use induction on n. If n = 0, then both sides of (2.5) are equal
to z + 1. Using the induction hypothesis and (1.6) gives

E(α− 1, n+ 1, z) + zE(α, n+ 1, z)

= E(α−1, n, z)+zE(α, n, z)+

(
α+n

n+1

)
(z + 1)n+1 +z

(
α+n+1

n+ 1

)
(z+1)n+1

=

{(
α+ n

n

)
+

(
α+ n

n+ 1

)
+ z

(
α+ n+ 1

n+ 1

)}
(z + 1)n+1

=

(
α+ n+ 1

n+ 1

)
(z + 1) (z + 1)n+1 =

(
α+ n+ 1

n+ 1

)
(z + 1)n+2.

The following three lemmas provide inequalities for some classes of sine
polynomials.
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Lemma 3. Let ak ≥ 0 (k = 1, . . . , n) with a1 >
∑n

k=2 kak. Then, for
t ∈ (0, π),

(2.6) a1 sin(t) >
n∑
k=2

ak sin(kt).

Proof. Let t ∈ (0, π) and

sn = a1 −
n∑
k=2

kak.

Then

a1 sin(t)−
n∑
k=2

ak sin(kt) = sn sin(t) +

n∑
k=2

ak(k sin(t)− sin(kt)).

Since sn > 0, ak ≥ 0 (k = 2, . . . , n) and

k sin(t) ≥ |sin(kt)| (k ∈ N),

we conclude that (2.6) holds.

Remark. The following converse is valid. If (2.6) with “≥” instead
of “>” holds for all t ∈ (0, π), then

a1
sin(t)

t
≥

n∑
k=2

kak
sin(kt)

kt
.

By letting t→ 0 we find a1 ≥
∑n

k=2 kak.

The next two lemmas offer generalizations of the Fejér–Jackson inequal-
ity. The first one is a celebrated result of Vietoris [11] (see also [6] and [7]).

Lemma 4. If the real numbers ak (k = 1, . . . , n) satisfy

a1 ≥ · · · ≥ an > 0 and (2k − 1)a2k−1 ≥ 2ka2k (k = 1, . . . , [n/2]),

then
n∑
k=1

ak sin(kt) > 0 (0 < t < π).

The final lemma is due to Turán [10] (see also [8, Section 4.2.1]).

Lemma 5. If ak (k = 1, . . . , n) are real numbers such that
n∑
k=1

ak sin((2k − 1)t) ≥ 0 (0 ≤ t ≤ π),

then
n∑
k=1

ak
sin(kt)

k
> 0 (0 < t < π),

unless a1 = · · · = an = 0.
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3. Proof of Theorem 1. We use induction on n to prove C(m,n) =
F (m,n). For n = 0 we obtain

C(m, 0) = F (m, 0) = 1.

Now, we suppose that

C(m,n) = F (m,n) for m ≥ 0.

Then applying (2.1)–(2.4) and the induction hypothesis yields

C(m,n+ 1) = D(m+ 1, n) + C(m,n) = D(m,n) + 2C(m,n)

=
m−1∑
k=0

[D(k + 1, n)−D(k, n)] + 2C(m,n) =
m−1∑
k=0

C(k, n) + 2C(m,n)

=
m−1∑
k=0

F (k, n) + 2F (m,n) =
m−1∑
k=0

[G(k + 1, n)−G(k, n)] + 2F (m,n)

= G(m,n) + 2F (m,n) = G(m+ 1, n) + F (m,n) = F (m,n+ 1).

4. Proof of Theorem 3. Let

H(α, n, z) =
1

α
(
α+n
n

) n∑
k=0

(
α+ k−1

k

)
(z+ 1)k, I(α, n, z) =

n∑
k=0

(
n

k

)
zk

α+ k
.

We prove H(α, n, z) = I(α, n, z) by induction on n. Setting n = 0 yields

H(α, 0, z) = I(α, 0, z) = 1/α.

We apply (1.6) and the induction hypothesis to obtain

I(α, n+ 1, z) = I(α, n, z) + zI(α+ 1, n, z)(4.1)

= H(α, n, z) + zH(α+ 1, n, z).

Using Lemma 2 leads to

(4.2) H(α, n, z) + zH(α+ 1, n, z)−H(α, n+ 1, z)

=
1

(α+ n+ 1)
(
α+n
n

)(E(α−1, n, z)+zE(α, n, z)−
(
α+ n

n

)
(z+1)n+1

)
= 0.

Finally, combining (4.1) and (4.2) gives H(α, n+ 1, z) = I(α, n+ 1, z).

5. Proof of Theorem 4. Using the identities

(−qk; q)n−k = qn(n−k)−(n−k+1
2 )(−q1−n; q)n−k,

[
n

k

]
q

=

[
n

n− k

]
q

and

(5.1)

[
α

m

]
q

[
m

j

]
q

=

[
α

j

]
q

[
α− j
m− j

]
q

,
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as well as (1.8) and (1.9), gives

n∑
k=0

q(3k−1)k/2(−qk; q)n−k
[
n

k

]
q

[
α

k

]
q

= q(
n
2)

n∑
k=0

qk
2
(−q1−n; q)n−k

[
n

k

]
q

[
α

k

]
q

= q(
n
2)

n∑
k=0

qk
2

[
n

n− k

]
q

[
α

k

]
q

n−k∑
j=0

[
n− k
j

]
q

q(
j
2)+j(1−n)

= q(
n
2)

n∑
j=0

q(
j
2)+j(1−n)

[
n

j

]
q

n−j∑
k=0

qk
2

[
n− j

n− k − j

]
q

[
α

k

]
q

=

n∑
j=0

q(
n−j
2 )
[
n

j

]
q

[
α+ n− j
n− j

]
q

=

n∑
k=0

q(
k
2)
[
n

k

]
q

[
α+ k

k

]
q

.

6. Proof of Theorem 5. We have

(6.1)

[
α+ k − 1

k

]
q

= (−1)kqαk+(k2)
[
−α
k

]
q

.

The special case α = 1 leads to

(6.2) (−1)kq(
k+1
2 )
[
−1

k

]
q

= 1.

Applying (6.1), (1.8), (5.1) and (6.2) yields

(6.3)
n∑
k=0

qk
[
α+ k − 1

k

]
q

(−z; q)k

=

n∑
k=0

(−1)kq(α+1)k+(k2)
[
−α
k

]
q

k∑
j=0

[
k

j

]
q

q(
j
2)zj

=

n∑
j=0

q(
j
2)zj

[
−α
j

]
q

n∑
k=j

(−1)kq(α+1)k+(k2)
[
−α− j
k − j

]
q

= (−1)n
n∑
j=0

q(
j
2)zj

[
−α
j

]
q

n∑
k=j

q(α+1)k+(k2)+(n−k+1
2 )

[
−1

n− k

]
q

[
−α− j
k − j

]
q

.

Next, we make use of (1.9). We obtain

(6.4)
n∑
k=j

q(α+1)k+(k2)+(n−k+1
2 )

[
−1

n− k

]
q

[
−α− j
k − j

]
q

= qαn+(n+1
2 )

n∑
k=j

q(−α−k)(n−k)
[
−1

n− k

]
q

[
−α− j
k − j

]
q

= qαn+(n+1
2 )
[
−α− j − 1

n− j

]
q

.
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Combining (6.3) and (6.4) gives

(6.5)
n∑
k=0

qk
[
α+ k − 1

k

]
q

(−z; q)k

= (−1)nqαn+(n+1
2 )

n∑
j=0

q(
j
2)zj

[
−α
j

]
q

[
−α− j − 1

n− j

]
q

.

We apply [
−α
j

]
q

= qj
[α]q

[α+ j]q

[
−α− 1

j

]
q

as well as (5.1) and (6.1). Then

(6.6)
n∑
j=0

q(
j
2)
[
−α
j

]
q

[
−α− j − 1

n− j

]
q

zj

=
n∑
j=0

q(
j+1
2 ) [α]q

[α+ j]q

[
−α− 1

j

]
q

[
−α− j − 1

n− j

]
q

zj

=

[
−α− 1

n

]
q

n∑
j=0

q(
j+1
2 ) [α]q

[α+ j]q

[
n

j

]
q

zj

= (−1)nq−αn−(n+1
2 )[α]q

[
α+ n

n

]
q

n∑
j=0

[
n

j

]
q

q(
j+1
2 )zj

[α+ j]q
.

From (6.5) and (6.6) we conclude that (1.11) holds.

7. Proof of Theorem 6. We use the notation of (1.15). First, we
assume that (1.19) is valid for all n ∈ N and t ∈ (0, π). Then

A2(c, t)

sin(t)
= 1 + c cos(t) > 0.

Letting t→ 0 and t→ π, respectively, we obtain −1 ≤ c ≤ 1.

Next, let c ∈ [−1, 1] and t ∈ (0, π). In order to prove (1.19) we distinguish
three cases.

Case 1: c = −1. Since

(−1)0 = 1, (−1)1 = −1 and (−1)k = 0 for k ≥ 2,

we obtain

A1(−1, t) = sin(t) > 0

and, for n ≥ 2,

An(−1, t) = A2(−1, t) = sin(t)(1− cos(t)) > 0.
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Case 2: −1 < c ≤ 0. We set

b1 = 1 and bk = −(c)k−1
k!

(k = 2, . . . , n).

Then bk ≥ 0 (k = 1, . . . , n) and

(7.1) 1 +
n∑
k=2

(c)k−1
(k − 1)!

= b1 −
n∑
k=2

kbk =
1

(n− 1)!

n−1∏
k=1

(k + c) > 0.

From Lemma 3 we conclude that (1.19) holds.

Case 3: 0 < c ≤ 1. Let

dk =
(c)k−1
k!

(k = 1, . . . , n).

Then, for k ≥ 1,

dk > 0,
dk
dk+1

= 1 +
2− c

c+k−1
> 1,

(2k−1)d2k−1
2kd2k

= 1 +
1− c

c+2(k−1)
≥ 1.

Applying Lemma 4 yields An(c, t) > 0.

8. Proof of Theorem 7. We use the notation of (1.16). Let (1.20) be
valid for all n ∈ N and t ∈ (0, π). From

B1(α, t) =
1

α+ 1
sin(t) > 0

we conclude that α+ 1 > 0. Since

B2(α, t) =
2 sin(t)

(α+ 1)(α+ 2)
(1 + (α+ 1) cos(t)) > 0,

we get

1 + (α+ 1) cos(t) > 0.

Letting t→ π gives 1− (α+ 1) ≥ 0. Thus, α ∈ (−1, 0].

Next, let α ∈ (−1, 0]. We have(
α+ n

n

)
> 0,

so that (1.17) and (1.19) with c = α+1 show that Bn(α, t) > 0 for all n ∈ N
and t ∈ (0, π).

9. Proof of Theorem 8. We denote the sum in (1.23) by Sn(c, t) and
suppose that (1.23) holds for all n ∈ N and t ∈ (0, π). Then

S3(c, t)

sin(t)
= 1 +

c(c+ 1)

6
(3− 4 sin2(t)) > 0.
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Setting t = π/2 gives

1− c(c+ 1)

6
= −1

6
(c− 2)(c+ 3) > 0.

This leads to c ∈ (−3, 2).
Now, we prove that if c ∈ (−3, 2), then Sn(c, t) is positive for all n ∈ N

and t ∈ (0, π). Since S1(c, t) = S2(c, t) = Sn(−1, t) = sin(t) > 0, we may
suppose that n ≥ 3 and c 6= −1. Let

dk =
(c)k−1
k!

(k = 1, . . . , n) and N =

[
n+ 1

2

]
.

We consider three cases.

Case 1: c ∈ (−2,−1) ∪ (0, 2). We have

Sn(c, t) =
N∑
k=1

d2k−1 sin((2k − 1)t)

=

N∑
k=1

(d2k−1 − d2k+1)
sin2(kt)

sin(t)
+ d2N+1

sin2(Nt)

sin(t)
.

Since

d2k−1 − d2k+1 =
(2− c)(4k − 1 + c)

(2k + 1)!

2k−3∏
j=0

(c+ j) > 0 (k = 1, . . . , N)

and d2N+1 > 0, we conclude that Sn(c, t) is positive.

Case 2: c ∈ (−1, 0]. We set

h1 = 1, h2k−1 =− (c)2k−2
(2k−1)!

(k= 2, . . . , N), h2k = 0 (k= 1, . . . , N−1).

Then hk ≥ 0 (k = 1, . . . , 2N − 1) and

Sn(c, t) = h1 sin(t)−
2N−1∑
k=2

hk sin(kt).

Using (c)2k−1 ≤ 0 (k = 1, . . . , N) and (7.1) with n = 2N we obtain

h1 −
2N−1∑
k=2

khk = 1 +

2N∑
k=2

(c)k−1
(k − 1)!

−
N∑
k=1

(c)2k−1
(2k − 1)!

> 0.

An application of Lemma 3 implies that Sn(c, t) > 0.

Case 3: c ∈ (−3,−2]. We have the representation

Sn(c, t) = 4d3 sin(t)(1− sin2(t)) + (1− d3) sin(t)−
n∑
k=5
k odd

|dk| sin(kt).
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Using d3 > 0 gives

Sn(c, t) ≥ (1− d3) sin(t)−
n∑
k=5
k odd

|dk| sin(kt).

We have 1 − d3 = (2 − c)(3 + c)/6 > 0. This implies that S3(c, t) > 0 and
S4(c, t) > 0. Let n ≥ 5. From Lemma 3 we conclude that in order to show
that Sn(c, t) is positive it suffices to prove

(9.1) 1− d3 >
n∑
k=5
k odd

k|dk|.

We set c = −2− s with s ∈ [0, 1). Then we find

(9.2) 1− d3 −
n∑
k=5
k odd

k|dk| =
(1− s2)(2 + s)

24

(
U(s)− VN (s)

)
with

U(s) =
(2− s)(s2 + 5s+ 8)

(s+ 1)(s+ 2)
and VN (s) = 24s

N−1∑
k=3

1

(2k)!

2k−1∏
ν=4

(ν − 2− s).

Since

U(s) >
1 · 8
2 · 3

=
4

3
, VN (s)< 24

N−1∑
k=3

1

(2k)!

2k−1∏
ν=4

(ν−2)<
6

5

N−1∑
k=3

1

k(k − 1)
<

3

5
,

it follows from (9.2) that (9.1) is valid.

10. Proof of Theorem 9. We suppose that (1.24) is valid for all n ∈ N
and t ∈ (0, π). Setting n = 2 yields

sin(t)

12

(
6 + c(c+ 1) cos(t)

)
> 0.

Thus,

6 + c(c+ 1) cos(t) > 0.

If t→ π, then

6− c(c+ 1) = (2− c)(3 + c) ≥ 0.

This gives c ∈ [−3, 2].

Conversely, let c ∈ [−3, 2], n ∈ N and t ∈ [0, π]. From (1.23) with 2n and
“≥” instead of n and “>” we obtain

n∑
k=1

(c)2k−2
(2k − 1)!

sin((2k − 1)t) ≥ 0.
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Applying Lemma 5 yields, for t ∈ (0, π),
n∑
k=1

(c)2k−2
(2k − 1)!

sin(kt)

k
> 0.

This leads to (1.24).
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