MATHEMATICAL LOGIC AND FOUNDATIONS

Some Applications of the Katětov Order on Borel Ideals

by

Nikodem MROŻEK

Presented by Tomasz ŁUCZAK

Summary. We construct an embedding of the algebra $\mathcal{P}(\omega)/\text{Fin}$ into the family of summable ideals with the Katětov order. This construction will be used to solve two problems: about the relation between the Katětov order and the ideal Baire classes of functions, and about long chains of ideals alternately with and without the property of being a P-ideal.

1. Introduction. An *ideal* on the set ω of natural numbers is a family $\mathcal{I} \subset \mathcal{P}(\omega)$ (where $\mathcal{P}(\omega)$ denotes the power set of ω) which is closed under taking subsets and finite unions. We denote by Fin the ideal of all finite subsets of ω . We assume that all the ideals under consideration are proper $(\neq \mathcal{P}(\omega))$ and contain all finite sets.

Given two ideals \mathcal{I} and \mathcal{J} we write $\mathcal{I} \leq_K \mathcal{J}$ if there exists a function $f: \omega \to \omega$ such that $f^{-1}[A] \in \mathcal{J}$ whenever $A \in \mathcal{I}$. This preorder is called the *Katětov order* and was introduced by Katětov [4, 5].

Many topological and combinatorial properties could be described by finding a locally minimal (in the Katětov order) ideal among ideals having a given property (see [10], [12], [1] or [7]). In particular, Katětov investigated ideal convergence of sequences of continuous functions using this order. In [5] he proved that if $\mathcal{I} \leq_K \mathcal{J}$ then $\mathcal{B}_1^I(T) \subset \mathcal{B}_1^J(T)$ (where $\mathcal{B}_1^I(T)$ is the family of \mathcal{I} -Baire class one functions over a topological space T, see Section 2 for a formal definition). In the same article he asked about the converse implication:

PROBLEM 1.1. If $\mathcal{B}_1^I(T) \subset \mathcal{B}_1^J(T)$ for any topological space T, does it follow that $\mathcal{I} \leq_K \mathcal{J}$?

Published online 11 July 2016.

²⁰¹⁰ Mathematics Subject Classification: Primary 03E05; Secondary 03E15, 26A21. Key words and phrases: Katětov order, P-ideal, Baire classes, summable ideal. Received 20 January 2016; revised 17 June 2016.

The answer can be deduced from [6] where the authors proved that $\mathcal{B}_1^{\mathcal{I}_d}(X) = \mathcal{B}_1^{\operatorname{Fin}}(X)$ where \mathcal{I}_d is the ideal of sets of asymptotic density zero and X is a complete metric space. It is easy to prove that $\mathcal{I}_d \not\leq_K$ Fin, hence we have a negative answer to Katětov's problem. In Corollary 3.8 we give a stronger counterexample by showing that below any analytic P-ideal there is a family of size continuum of pairwise incomparable (in the Katětov order) ideals such that the Baire classes generated by them are equal.

In Section 4 we use the above construction to answer a question of Wilczyński. During the problem session at the 23th International Summer Conference on Real Functions Theory in Niedzica the following problem was formulated:

PROBLEM 1.2. Does there exist, for any $n \in \omega$, a sequence of ideals

$$\mathcal{I}_0 \subset \mathcal{I}_1 \subset \cdots \subset \mathcal{I}_n$$

such that \mathcal{I}_i is a P-ideal iff *i* is even?

In Theorem 4.4 we give a positive answer to this question by producing even a transfinite sequence of ideals with this property.

2. Preliminaries. An ideal \mathcal{I} is called *dense* if for any infinite set $A \subset \omega$ there exists an infinite set $B \subset A$ which belongs to \mathcal{I} .

An ideal \mathcal{I} is a *P-ideal* if for every sequence $(A_n)_{n \in \omega}$ of sets from \mathcal{I} there is $A \in \mathcal{I}$ such that $A_n \subset^* A$, i.e. $A_n \setminus A \in \text{Fin for all } n$.

By identifying sets of naturals with their characteristic functions, we can treat $\mathcal{P}(\omega)$ as the Cantor cube with the natural product topology and therefore we can assign the topological complexity to ideals of sets of integers. In particular, an ideal \mathcal{I} is *analytic* if it is a continuous image of a G_{δ} subset of the Cantor space.

A map $\phi \colon \mathcal{P}(\omega) \to [0,\infty]$ is a submeasure on ω if

$$\phi(\emptyset) = 0, \quad \phi(A) \le \phi(A \cup B) \le \phi(A) + \phi(B),$$

for all $A, B \subset \omega$. It is *lower semicontinuous* (lsc for short) if for all $A \subset \omega$ we have

$$\phi(A) = \lim_{n \to \infty} \phi(A \cap \{0, 1, \dots, n-1\}).$$

For any lsc submeasure on ω , let $\|\cdot\|_{\phi} \colon \mathcal{P}(\omega) \to [0,\infty]$ be the submeasure defined by

 $\|A\|_{\phi} = \lim_{n \to \infty} \phi(A \setminus \{0, 1, \dots, n-1\}).$

Let

$$\operatorname{Exh}(\phi) = \{ A \subset \omega : \|A\|_{\phi} = 0 \}.$$

All analytic P-ideals were characterized by Solecki [11].

THEOREM 2.1. The following conditions are equivalent for an ideal \mathcal{I} on ω .

(1) \mathcal{I} is an analytic *P*-ideal;

(2) $\mathcal{I} = \operatorname{Exh}(\phi)$ for some lsc submeasure ϕ on ω .

It is easy to observe that:

FACT 2.2. For any lsc submeasure ϕ , $\operatorname{Exh}(\phi)$ is dense iff $\lim_{n\to\infty} \phi(\{n\}) = 0$.

For a function $g: \omega \to \mathbb{R}$ such that $\sum_{n \in \omega} g(n) = \infty$ the family

$$\mathcal{I}_g = \left\{ A \subset \omega : \sum_{n \in A} g(n) < \infty \right\}$$

is an analytic P-ideal called a summable ideal generated by g.

Let T be a topological Hausdorff space and \mathcal{I} be an ideal on ω . We say that a sequence $(x_n)_{n \in \omega}$ in T is \mathcal{I} -convergent to $x \in T$ if

$$\{n \in \omega : x_n \notin U\} \in \mathcal{I}$$

for every open neighborhood U of x.

We say that a sequence $(f_n : T \to \mathbb{R})_{n \in \omega}$ of functions is *pointwise* \mathcal{I} -*convergent* if $(f_n(x))_{n \in \omega}$ is \mathcal{I} -convergent for every $x \in T$.

Using this definition we can introduce ideal Baire classes of functions. We say that a function f is of \mathcal{I} -Baire class one if it is an \mathcal{I} -pointwise limit of continuous functions. The family of all \mathcal{I} -Baire class one functions over a Hausdorff space T is denoted by $\mathcal{B}_1^{\mathcal{I}}(T)$.

Laczkovich and Recław [8] proved the following theorem.

THEOREM 2.3. If \mathcal{I} is a non-pathological analytic *P*-ideal and *T* is a Hausdorff space, then $\mathcal{B}_1^{\mathcal{I}}(T) = \mathcal{B}_1(T)$.

The definition of a non-pathological analytic P-ideal is found in [8]; in particular, all summable ideals are non-pathological.

3. Katětov's problem

THEOREM 3.1. Let \mathcal{I} be a dense analytic P-ideal. There exists an embedding of the algebra $\mathcal{P}(\omega)$ /Fin into the family of summable ideals included in \mathcal{I} .

A weaker version of this theorem was proved independently by Meza-Alcántara [10] and published in [2].

To prove this theorem we start with the construction of a family of ideals. Fix a dense analytic P-ideal $\mathcal{I} = \text{Exh}(\phi)$ for some lsc submeasure ϕ .

Let $(p_n)_{n \in \omega}$ be a sequence of natural numbers such that

(1)
$$p_0 = 0$$
,

(2) $\frac{p_0}{2(p_0+p_1+\dots+p_{n-1})+1} > 2^{2^n},$

(3)
$$\phi(\{m\}) < 1/2^{2^{n+1}}$$
 for all $m > p_0 + p_1 + \dots + p_{n-1}$.

The fulfillment of the third condition is possible by Fact 2.2.

For all $n \ge 1$ let

 $S_n = \{p_0 + p_1 + \dots + p_{n-1}, p_0 + p_1 + \dots + p_{n-1} + 1, \dots, p_0 + p_1 + \dots + p_n\}.$ Obviously $\{S_n\}_{n \in \omega}$ is a partition of the naturals. For each *n* define two measures ϕ_n^0 and ϕ_n^1 on S_n by

$$\phi_n^0(A) = \frac{|A|}{2^{2^{n+1}}}, \quad \phi_n^1(A) = \frac{|A|}{2^{2^n}}$$

For each infinite set $M \subset \omega$ define the ideal

$$\mathcal{I}_M = \Big\{ A \subset \omega : \sum_{n \in M} \phi_n^1(A \cap S_n) < \infty, \sum_{n \in \omega \setminus M} \phi_n^0(A \cap S_n) < \infty \Big\}.$$

LEMMA 3.2. For each infinite set M the ideal \mathcal{I}_M is a summable ideal contained in \mathcal{I} .

Proof. To prove the summability it is enough to observe that \mathcal{I}_M is generated by the function

$$f_M(i) = \begin{cases} 1/2^{2^n} & \text{if } i \in S_n \text{ and } n \in M, \\ 1/2^{2^{n+1}} & \text{if } i \in S_n \text{ and } n \notin M. \end{cases}$$

To justify the inclusion in \mathcal{I} notice that $\phi \leq f_M$.

LEMMA 3.3. Let A, B be infinite subsets of ω . If $B \subset^* A$, then $\mathcal{I}_A \subset \mathcal{I}_B$.

Proof. This follows from the easy observation that $B \subset^* A$ implies that $f_B(n) \leq f_A(n)$ for sufficiently large n.

LEMMA 3.4. $\mathcal{I}_A \leq_K \mathcal{I}_B$ iff $B \subset^* A$.

Proof. The implication \leftarrow follows from Lemma 3.3 and from the implication

$$\mathcal{I} \subset \mathcal{J} \Rightarrow \mathcal{I} \leq_K \mathcal{J}.$$

To prove the converse, suppose that $B \setminus A$ is infinite and $\mathcal{I}_A \leq_K \mathcal{I}_B$. Hence there exists a function $f: \omega \to \omega$ such that $f^{-1}(I) \in \mathcal{I}_B$ for any $I \in \mathcal{I}_A$.

For each $n \in \omega$ we have two possibilities:

- (a) $\{i \in S^n : f(i) \in \bigcup_{i \ge n} S_i\}$ has at least 2^{2^n} elements,
- (b) $\{i \in S^n : f(i) \in \bigcup_{i < n}^{-} S_i\}$ has at least $p_n/2$ elements.

One of them holds for infinitely many n in $B \setminus A$. Let N be the set of all such n.

Suppose that N consists of those n for which (a) holds. For each $n \in N$ choose $D_n \subset S_n$ such that $|D_n| = 2^{2^n}$ and $f(D_n) \subset \bigcup_{i>n} S_i$. Define

$$E = \bigcup_{n \in \omega} f(D_n).$$

Notice that for each n,

$$\sum_{m\in\omega}\phi_m^0(f(D_n)\cap S_m)\leq \frac{1}{2^{2^n}}.$$

Hence $E \in \mathcal{I}_A$. On the other hand, for each $n \in N$ we have $|f^{-1}(E) \cap S_n| \ge 2^{2^n}$, hence $\phi_n^1(f^{-1}(E) \cap S_n) = 1$. Finally $f^{-1}(E) \notin \mathcal{I}_B$, a contradiction.

Suppose now that N consists of those n for which (b) holds. For each $n \in N$ choose e_n such that $|f^{-1}(\{e_n\}) \cap S_n| > 2^{2^n}$ (this is possible by the condition (1) on $(p_n)_n$ and the pigeonhole principle). Let $E \subset \{e_n\}_{n \in N}$ be such that

- $|E \cap S_i| \leq 1$ for all $i \in \omega$,
- $|f^{-1}(E) \cap S_n| > 2^{2^n}$ for infinitely many $n \in N$.

The first condition guarantees that $E \in \mathcal{I}_A$. By the second condition $\phi_n^1(f^{-1}(E) \cap S_n) \geq 1$ for infinitely many $n \in N \subset B$. This implies that $f^{-1}(E) \notin \mathcal{I}_B$, a contradiction.

Proof of Theorem 3.1. Consider the mapping

$$\mathcal{P}(\omega)/\mathrm{Fin} \ni M \mapsto \mathcal{I}_M.$$

It is well defined since if $A \triangle B \in \text{Fin}$, then $f_A = f_B$ almost everywhere, hence $\mathcal{I}_A = \mathcal{I}_B$. The fact that it is an embedding follows from Lemma 3.4.

DEFINITION 3.5. We call a family $\{\mathcal{I}_{\alpha}\}_{\alpha}$ of ideals an \leq_{K} -antichain if

$$\mathcal{I}_{\alpha} \leq_K \mathcal{I}_{\alpha'} \Leftrightarrow \alpha = \alpha'.$$

Notice that this definition is different from the classical definition of the antichain in a Boolean algebra, where there is no element of the algebra smaller than two distinct elements of the antichain. Such a definition would be too strong since for any two ideals \mathcal{I}, \mathcal{J} we have $\mathcal{I} \oplus \mathcal{J} \leq_K \mathcal{I}, \mathcal{J}$ where $\mathcal{I} \oplus \mathcal{J}$ is the disjoint union of \mathcal{I} and \mathcal{J} .

Hrušák and García Ferreira [3] showed that below any dense ideal there is a \leq_K -antichain of size continuum. The ideals constructed by them are generated by maximal almost disjoint families, so by the result of Mathias [9] they are not analytic. Since there exists an almost disjoint family in $\mathcal{P}(\omega)$ of cardinality continuum, we get the following corollary:

COROLLARY 3.6. Let \mathcal{I} be a dense analytic P-ideal. Below \mathcal{I} , there exists $a \leq_{K}$ -antichain of cardinality continuum consisting of summable ideals.

Here we cannot replace a dense analytic P-ideal by any dense ideal. Recall that if \mathcal{A} is an almost disjoint family in $\mathcal{P}(\omega)$ then

 $\{B \subset \omega : A \cap B \text{ is infinite only for finitely many } A \in \mathcal{A}\}$

is an ideal.

THEOREM 3.7. If \mathcal{I} is an ideal generated by an almost disjoint family \mathcal{A} , and \mathcal{J} is any dense P-ideal, then $\mathcal{J} \leq_K \mathcal{I}$.

Proof. Suppose that $\mathcal{J} \leq_K \mathcal{I}$. Let $f: \omega \to \omega$ be a function from the definition of the Katětov order.

Choose a countable family $\{A_n\}_{n \in \omega} \subset \mathcal{A}$. Let N be the set of all n such that $f(A_n)$ is infinite.

Suppose that N is infinite. Since \mathcal{J} is a dense ideal, for each n we can choose an infinite set $E_n \subset f(A_n)$ and $E_n \in \mathcal{J}$. Let $E \in \mathcal{J}$ be such that $E_n \subset^* E$ for each $n \in N$. Notice that $f^{-1}(E) \cap A_n$ is infinite for each $n \in N$, hence $f^{-1}(E) \notin \mathcal{J}$ —a contradiction.

Suppose that N is finite. For each $n \in \omega \setminus N$ choose $e_n \in f(A_n)$ such that $f^{-1}(e_n)$ is infinite. Let $E \subset \{e_n\}_{n \in \omega}$ be an infinite set such that $E \in \mathcal{J}$. Observe that $f^{-1}(E) \cap A_n$ is infinite for each $n \in N$. Hence $f^{-1}(E) \notin \mathcal{I}$ —a contradiction.

Finally, as a corollary from Theorem 2.3 and Corollary 3.6 we get the following answer to Katětov's problem:

COROLLARY 3.8. Let \mathcal{I} be a dense analytic *P*-ideal. There exists a family $\{\mathcal{I}_{\alpha}\}_{\alpha < \mathfrak{c}}$ of ideals pairwise incomparable in the Katětov order such that $\mathcal{I}_{\alpha} \leq_{K} \mathcal{I}$ and $\mathcal{B}_{1}^{\mathcal{I}_{\alpha}}(T) = \mathcal{B}_{1}(T)$ for each $\alpha < \mathfrak{c}$ and every Hausdorff space *T*.

4. Wilczyński's problem. Recall the definition of the *bounded num*ber b:

 $\mathfrak{b} = \min\{|F| : F \subset \omega^{\omega} \text{ and } \forall_{g \in \omega^{\omega}} \exists_{f \in F} \forall_{n \in \omega} \exists_{m > n} g(m) < f(m)\}.$

Recall that $\aleph_0 < \mathfrak{b} \leq \mathfrak{c}$. Obviously CH implies $\mathfrak{b} = \mathfrak{c}$, but in the Cohen model we have $\aleph_1 = \mathfrak{b} < \mathfrak{c}$.

DEFINITION 4.1. Let γ be an ordinal number. We call a family $\{\mathcal{I}_{\alpha}\}_{\alpha < \gamma}$ of ideals an *increasing* \leq_{K} -chain if for any $\alpha, \alpha' < \gamma$,

$$\alpha \leq \alpha' \iff \mathcal{I}_{\alpha} \leq_K \mathcal{I}_{\alpha'}.$$

Since there are increasing chains of length \mathfrak{b} in $\mathcal{P}(\omega)/\text{Fin}$, we get the following corollary from Theorem 3.1.

COROLLARY 4.2. Let \mathcal{I} be an analytic *P*-ideal. Below \mathcal{I} , there exists an increasing \leq_K -chain of length \mathfrak{b} of summable ideals.

In Theorem 4.4 we will use this \leq_K -chain to answer Wilczyński's problem, but first we need the following proposition: PROPOSITION 4.3. If $\mathcal{I}_0 \subset \mathcal{I}_1 \subset \cdots \subset \mathcal{I}_n \subset \cdots$ is a strictly increasing sequence of ideals, then $\bigcup_{n \in \omega} \mathcal{I}_n$ is an ideal which is not a P-ideal.

Proof. It is easy to observe that $\mathcal{I} = \bigcup_{n \in \omega} \mathcal{I}_n$ is an ideal.

We now show that \mathcal{I} is not a P-ideal. Since $(\mathcal{I}_n)_{n\in\omega}$ is a strictly increasing sequence of ideals, for each $n \in \omega$ we can choose $A_n \in \mathcal{I}_{n+1} \setminus \mathcal{I}_n$. Suppose that A is such that $A_n \setminus A$ is finite for each $n \in \omega$. Fix $n \in \omega$. Since $A_n \notin \mathcal{I}_n$, also $A \notin \mathcal{I}_n$. Hence $A \notin \mathcal{I}$.

Let $\alpha = \lambda + n$ be an ordinal, where $n \in \omega$ and λ is a limit number or zero. We call α an *even* [odd] ordinal if n is even [odd].

THEOREM 4.4. Let \mathcal{I} be a dense analytic P-ideal. There exists a sequence $(\mathcal{K}_{\alpha})_{\alpha < \mathfrak{b}}$ of dense analytic ideals such that

- (1) $\mathcal{K}_{\alpha} \subset \mathcal{K}_{\beta} \subset \mathcal{I} \text{ for } \alpha < \beta < \mathfrak{b},$
- (2) \mathcal{K}_{α} is a *P*-ideal iff α is even.

Proof. Let $\{\mathcal{I}_{\alpha}\}_{\alpha < \mathfrak{b}}$ be an increasing \leq_{K} -chain of ideals from Corollary 4.2 (constructed as in the proof of Theorem 3.1). By Lemma 3.3, if $\alpha < \beta < \mathfrak{b}$, then $\mathcal{I}_{\alpha} \subset \mathcal{I}_{\beta}$.

For $\alpha < \mathfrak{b}$ define ideals

 $\mathcal{J}_{\alpha} = \begin{cases} \mathcal{I}_{\omega \cdot \alpha} & \text{if } \alpha \text{ is an even ordinal,} \\ \bigcup_{n \in \omega} \mathcal{I}_{\omega \cdot \alpha + n} & \text{if } \alpha \text{ is an odd ordinal.} \end{cases}$

Since $(\mathcal{I}_{\alpha})_{\alpha < \mathfrak{b}}$ is an increasing sequence of ideals, the sequence $(\mathcal{J}_{\alpha})_{\alpha < \mathfrak{b}}$ is also increasing. Conclusion (2) holds by Proposition 4.3.

References

- P. Barbarski, R. Filipów, N. Mrożek, and P. Szuca, When does the Katětov order imply that one ideal extends the other?, Colloq. Math. 130 (2013), 91–102.
- [2] O. Guzmán-González and D. Meza-Alcántara, Some structural aspects of the Katětov order on Borel ideals, Order, to appear.
- M. Hrušák and S. García Ferreira, Ordering MAD families à la Katětov, J. Symbolic Logic 68 (2003), 1337–1353.
- [4] M. Katětov, Products of filters, Comment. Math. Univ. Carolin. 9 (1968), 173–189.
- [5] M. Katětov, On descriptive classes of functions, in: Theory of Sets and Topology (in honour of Felix Hausdorff, 1868–1942), Deutsch. Verlag Wiss., Berlin, 1972, 265–278.
- [6] P. Kostyrko, T. Šalát, and W. Wilczyński, *I-convergence*, Real Anal. Exchange 26 (2000/01), 669–685.
- [7] A. Kwela, A note on a new ideal, J. Math. Anal. Appl. 430 (2015), 932–949.
- [8] M. Laczkovich and I. Recław, Ideal limits of sequences of continuous functions, Fund. Math. 203 (2009), 39–46.
- [9] A. R. D. Mathias, *Happy families*, Ann. Math. Logic 12 (1977), 59–111.
- [10] D. Meza-Alcántara, Ideals and filters on a countable set, Ph.D. thesis, Univ. Nacional Autónoma de México, 2009.

- [11] S. Solecki, Analytic ideals and their applications, Ann. Pure Appl. Logic 99 (1999), 51–72.
- [12] S. Solecki, Filters and sequences, Fund. Math. 163 (2000), 215–228.

Nikodem Mrożek Institute of Mathematics Faculty of Mathematics, Physics, and Informatics University of Gdańsk Wita Stwosza 57 80-952 Gdańsk, Poland E-mail: nmrozek@mat.ug.edu.pl