ON THE IRREDUCIBILITY OF A POLYNOMIAL ASSOCIATED WITH THE STRONG FACTORIAL CONJECTURE

BY
MICHAEL FILASETA and BRADY ROCKS (Columbia, SC)

Abstract

Asymptotically, more than $2 / 3$ of the polynomials from a sequence of polynomials in $\mathbb{Z}[x]$, arising from an example associated with the Strong Factorial Conjecture, are shown to be irreducible in $\mathbb{Z}[x]$.

1. Introduction. The Strong Factorial Conjecture of E. Edo and A. van den Essen [3] is concerned with the linear functional L on the space of complex polynomials defined by sending a monomial generator $z_{1}^{a_{1}} \cdots z_{n}^{a_{n}}$ to $\left(a_{1}!\right) \cdots\left(a_{n}!\right)$. The conjecture asserts that for a non-zero multi-variable complex polynomial F, the maximum number of consecutive zeroes that may appear in the sequence $\left\{L\left(F^{n}\right): n \geq 1\right\}$ is $N(F)-1$, where $N(F)$ is the number of monomials appearing in F with non-zero coefficient.

In $[12$, the second author considered the irreducibility in $\mathbb{Z}[x]$ of the polynomials

$$
f_{n, m}(x)=\sum_{j=0}^{n}\binom{n}{j}(m j)!x^{j}
$$

in connection with his studies on the Strong Factorial Conjecture, specifically in the case $F=1+\lambda z^{m}$ where $\lambda \in \mathbb{C}$. Among other results, $f_{n, m}(x)$ was established in [12] to be irreducible when $n=p^{r}$ where p is a prime $>m$ and r is a positive integer.

In this paper, we prove the following.
Theorem 1.1. Fix a positive integer m. Then

$$
\liminf _{X \rightarrow \infty} \frac{\mid\left\{n \leq X: f_{n, m}(x) \text { is irreducible }\right\} \mid}{X} \geq \log 2
$$

As $\log 2=0.693147 \ldots$, we deduce that more than $2 / 3$ of the polynomials $f_{n, m}(x)$ are irreducible in $\mathbb{Z}[x]$ for a fixed positive integer m. We do not know

[^0]of an instance where $f_{n, m}(x)$ is reducible, so presumably a much stronger result than Theorem 1.1 holds.
2. Preliminaries on Newton polygons. Let
$$
f(x)=\sum_{j=0}^{n} a_{j} x^{j} \in \mathbb{Z}[x] \quad \text { with } a_{0} a_{n} \neq 0
$$

Let p be a prime. For an integer $m \neq 0$, we denote by $\nu_{p}(m)$ the exponent in the largest power of p dividing m. We define $\nu_{p}(0)=\infty$. Let S be the set of lattice points $\left(j, \nu_{p}\left(a_{n-j}\right)\right)$, for $0 \leq j \leq n$, in the extended plane. We consider the lower edges along the convex hull of these points. The left-most edge has an endpoint $\left(0, \nu_{p}\left(a_{n}\right)\right)$ and the right-most edge has $\left(n, \nu_{p}\left(a_{0}\right)\right)$ as an endpoint. The polygonal path along the lower edges of the convex hull from $\left(0, \nu_{p}\left(a_{n}\right)\right)$ to $\left(n, \nu_{p}\left(a_{0}\right)\right)$ is called the Newton polygon of $f(x)$ with respect to the prime p. The endpoints of every edge belong to the set S, and each edge has a distinct slope that increases as we move along the Newton polygon from left to right.

The following important theorem due to G. Dumas [2] connects the Newton polygon of $f(x)$ with respect to a prime p with the Newton polygon of its factors with respect to the same prime.

Theorem 2.1. Let $g(x)$ and $h(x)$ be in $\mathbb{Z}[x]$ with $g(0) h(0) \neq 0$, and let p be a prime. Let k be a non-negative integer such that p^{k} divides the leading coefficient of $g(x) h(x)$ but p^{k+1} does not. Then the edges of the Newton polygon for $g(x) h(x)$ with respect to p can be formed by constructing a polygonal path beginning at $(0, k)$ and using translates of the edges in the Newton polygons for $g(x)$ and $h(x)$ with respect to the prime p, using exactly one translate for each edge of the Newton polygons for $g(x)$ and $h(x)$. Necessarily, the translated edges are translated in such a way as to form a polygonal path with the slopes of the edges increasing.

As a particular consequence of Theorem 2.1, we have the following. Let $f(x) \in \mathbb{Z}[x]$ with $f(0) \neq 0$. Let

$$
\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{r}, y_{r}\right), \quad \text { with } 0=x_{0}<x_{1}<\cdots<x_{r}=\operatorname{deg} f
$$

denote the lattice points along the edges of the Newton polygon of $f(x)$ with respect to a prime p. Set $d_{j}=x_{j}-x_{j-1}$ for $1 \leq j \leq r$. Then the set $\{1, \ldots, r\}$ can be written as a disjoint union of sets S_{1}, \ldots, S_{t} where t is the number of irreducible factors of $f(x)$ (counted with multiplicities) and the t numbers $\sum_{u \in S_{j}} d_{u}$, for $1 \leq j \leq t$, are the degrees of the irreducible factors of $f(x)$. Note that it is important here to consider all lattice points along the edges of the Newton polygon of $f(x)$ with respect to p and not just lattice points of the form $\left(j, \nu_{p}\left(a_{n-j}\right)\right)$ used in the construction of the Newton polygon.

Before applying Theorem 2.1 to obtain information about the factorization of $f_{n, m}(x)$, we first obtain information on Newton polygons of $f_{n, m}(x)$. We begin with a classical result on the largest power of a prime dividing a binomial coefficient that we use to compute $\nu_{p}\left(a_{j}\right)$ where $a_{j}=\binom{n}{j}(m j)$! is the coefficient of x^{j} in $f_{n, m}(x)$.

Lemma 2.2. Let n and j be non-negative integers with $n>0$, and let p be a prime. If b is the number of borrows needed when j is subtracted from n in base p, then

$$
\nu_{p}\left(\binom{n}{j}\right)=b
$$

Lemma 2.2 is due to E. E. Kummer [7] but originally stated in the form of carries when adding j and $n-j$ in base p. Kummer uses another classical result due to A.-M. Legendre [8], connecting the largest power of p dividing n ! with the sum of the base p digits of n.

The next lemma can be found in [12]. The proof given here is based on a somewhat different analysis.

LEMMA 2.3. Let k, m and r be positive integers, and let q be a prime $>m k$. Let $n=k q^{r}$. Then the Newton polygon of $f_{n, m}(x)$ with respect to q consists of a single edge which has slope $-m\left(q^{r}-1\right) /\left(q^{r}(q-1)\right)$.

Proof. For $0 \leq j \leq n$, we set $a_{j}=\binom{n}{j}(m j)$! so that $f_{n, m}(x)=\sum_{j=0}^{n} a_{j} x^{j}$. In particular,

$$
\nu_{q}\left(a_{0}\right)=\nu_{q}(1)=0
$$

Since $q>m k$, we have
$\nu_{q}\left(a_{n}\right)=\nu_{q}((m n)!)=\sum_{u=1}^{\infty}\left\lfloor\frac{m n}{q^{u}}\right\rfloor=\sum_{u=1}^{r}\left\lfloor\frac{m k q^{r}}{q^{u}}\right\rfloor=\sum_{u=1}^{r} \frac{m k q^{r}}{q^{u}}=\frac{m k\left(q^{r}-1\right)}{q-1}$.
We deduce that the line through $\left(0, \nu_{q}\left(a_{n}\right)\right)$ and $\left(n, \nu_{q}\left(a_{0}\right)\right)$ has slope equal to $-m\left(q^{r}-1\right) /\left(q^{r}(q-1)\right)$ and equation

$$
y=\frac{-m\left(q^{r}-1\right)}{q^{r}(q-1)} \cdot x+\frac{m k\left(q^{r}-1\right)}{q-1}
$$

We want to prove that, for $0<j<n$, the point $\left(n-j, \nu_{q}\left(a_{j}\right)\right)$ is above this line, that is,

$$
\nu_{q}\left(a_{j}\right) \geq \frac{-m\left(q^{r}-1\right)}{q^{r}(q-1)} \cdot(n-j)+\frac{m k\left(q^{r}-1\right)}{q-1}=\frac{m j\left(q^{r}-1\right)}{q^{r}(q-1)}
$$

Note that n in base q consists of the single digit $m k$ followed by r zeroes. Fix $j \in(0, n)$, and let $t=\nu_{q}(j)$. Then $j<n$ implies $t \in[0, r]$, and j in base q ends with exactly t digits that are zero. It follows that when j is subtracted
from n in base q, exactly $r-t$ borrows are required. Hence,

$$
\nu_{q}\left(\binom{n}{j}\right)=r-t .
$$

Using the fact that $q^{t} \mid j$, we now deduce that

$$
\begin{aligned}
\nu_{q}\left(a_{j}\right) & \geq \nu_{q}\left(\binom{n}{j}(m j)!\right)=\nu_{q}\left(\binom{n}{j}\right)+\nu_{q}((m j)!) \\
& =r-t+\sum_{u=1}^{\infty}\left\lfloor\frac{m j}{q^{u}}\right\rfloor=r-t+\sum_{u=1}^{t}\left\lfloor\frac{m j}{q^{u}}\right\rfloor+\sum_{u=t+1}^{r}\left\lfloor\frac{m j}{q^{u}}\right\rfloor \\
& =r-t+\sum_{u=1}^{t} \frac{m j}{q^{u}}+\sum_{u=t+1}^{r}\left\lfloor\frac{m j}{q^{u}}\right\rfloor \\
& \geq r-t+\sum_{u=1}^{t} \frac{m j}{q^{u}}+\sum_{u=t+1}^{r}\left(\frac{m j}{q^{u}}-1\right)=\sum_{u=1}^{r} \frac{m j}{q^{u}}=\frac{m j\left(q^{r}-1\right)}{q^{r}(q-1)} .
\end{aligned}
$$

The lemma follows.
Lemma 2.4. Let k and m be positive integers, and let q be a prime number $\geq(m+1)^{2} /(k m)$. Let p be a prime in the interval $(k q m /(m+1), k q]$, and let $n=k q$. Then the Newton polygon of $f_{n, m}(x)$ with respect to p has an edge with slope $-m / p$.

Comment. Though not needed for this paper, the statement of Lemma 2.4 seemingly holds for a larger range of primes p.

Proof of Lemma 2.4. Again, we set $f_{n, m}(x)=\sum_{j=0}^{n} a_{j} x^{j}$ where $a_{j}=$ $\binom{n}{j}(m j)$! for $0 \leq j \leq n$. Observe that

$$
2 p>\frac{2 k q m}{m+1} \geq k q \geq n
$$

so $\nu_{p}(n!)=1$. One checks that

$$
\nu_{p}\left(\binom{n}{j}\right)= \begin{cases}1 & \text { if } n-p<j<p \tag{2.1}\\ 0 & \text { otherwise }\end{cases}
$$

If the expression $(m j)$! is divisible by p, then $j \geq p / m$. On the other hand, the condition $p>k q m /(m+1)$ is equivalent to $p / m>n-p$. Thus,

$$
\nu_{p}\left(\binom{n}{j}(m j)!\right)=0 \quad \text { for } 0 \leq j \leq n-p .
$$

The inequality $q \geq(m+1)^{2} /(k m)$ implies

$$
p^{2}>\left(\frac{m n}{m+1}\right)^{2} \geq m n
$$

From $p \in(k q m /(m+1), k q]$, we have

$$
m \leq m n / p<m+1
$$

Hence,

$$
\nu_{p}\left(a_{n}\right)=\nu_{p}((m n)!)=\lfloor m n / p\rfloor+\left\lfloor m n / p^{2}\right\rfloor+\cdots=\lfloor m n / p\rfloor=m .
$$

We justify that the Newton polygon of $f_{n, m}(x)$ with respect to p consists of the segment s from $(0, m)$ to $(p, 0)$ together with the segment from $(p, 0)$ to $(n, 0)$. What is left to establish is that the points $\left(n-j, \nu_{p}\left(a_{j}\right)\right)$, for $n-p<j<n$, lie on or above the segment s. Since the line through $(0, m)$ and $(p, 0)$ has equation $y=(-m / p) x+m$, we want to prove

$$
\begin{equation*}
\nu_{p}\left(a_{j}\right) \geq-m(n-j) / p+m \tag{2.2}
\end{equation*}
$$

for $n-p<j<n$. As $p \leq n$, we have

$$
-m(n-j) / p+m=-m n / p+m j / p+m \leq-m+m j / p+m=m j / p
$$

Thus, for $j \in(n-p, n)$, it suffices to show that either (2.2) holds or

$$
\begin{equation*}
\nu_{p}\left(a_{j}\right) \geq m j / p \tag{2.3}
\end{equation*}
$$

For $n-p<j<p$, using (2.1), we see that

$$
\nu_{p}\left(a_{j}\right)=\nu_{p}\left(\binom{n}{j}(m j)!\right)=1+\nu_{p}((m j)!) \geq 1+\lfloor m j / p\rfloor>m j / p,
$$

so that (2.3) holds for such j. For $p \leq j<n$, we have

$$
\nu_{p}\left(a_{j}\right)=\nu_{p}((m j)!) \geq\lfloor m j / p\rfloor \geq\lfloor m p / p\rfloor=m,
$$

implying (2.2) for these j. The lemma follows.
3. Proof of Theorem 1.1, H. Cramér [1] showed that if the Riemann Hypothesis holds and p_{n} is the nth prime number, then $p_{n+1}-p_{n}=$ $O\left(\sqrt{p_{n}} \log p_{n}\right)$. According to C. J. Moreno [10], P. Erdős posed the related problem of establishing that, for every $\varepsilon>0$, almost all numbers n are a distance $\leq n^{(1 / 2)+\varepsilon}$ from a prime. More specifically, Erdős asked whether there is a constant $c<1$ such that

$$
\sum_{\substack{p_{n+1}-p_{n}>x^{(1 / 2)+\varepsilon} \\ p_{n+1} \leq x}}\left(p_{n+1}-p_{n}\right) \ll x^{c} .
$$

Moreno establishes this asymptotic in a weaker form with x^{c} replaced nevertheless by a function which is small compared to x as x tends to infinity. D. Wolke [13] resolved the problem of Erdős in the affirmative, and a number of other authors (cf. [5, 6, 6, 11]) have since improved on the value of c
in the asymptotic. In particular, K. Matomäki's work 9] implies that

$$
\begin{equation*}
\sum_{\substack{p_{n+1}-p_{n}>\sqrt{p_{n}} \\ p_{n} \leq x}}\left(p_{n+1}-p_{n}\right) \ll x^{2 / 3} \tag{3.1}
\end{equation*}
$$

For our purposes, the weaker result of Moreno would suffice, but we use (3.1).
Fix a positive integer m. Let $M=(m+1)^{2} / m$. Note that $M \geq 4$. Let \mathcal{A} be the set of positive integers n that have a prime factor $q>\sqrt{M n}$. Let \mathcal{B} be the set of positive integers n for which there exists a prime p satisfying $n-\sqrt{n}<p \leq n$. Set $\mathcal{C}=\mathcal{A} \cap \mathcal{B}$. We next obtain the asymptotic densities of the sets \mathcal{A} and \mathcal{B} in the set of integers, that is, the values of

$$
\lim _{x \rightarrow \infty} \frac{|\{n \leq x: n \in \mathcal{A}\}|}{x} \quad \text { and } \quad \lim _{x \rightarrow \infty} \frac{|\{n \leq x: n \in \mathcal{B}\}|}{x} .
$$

The asymptotic density of \mathcal{A} is connected with the distribution of smooth numbers (numbers with only small prime factors) and is easily explained. Using the notation $\pi(x)$ for the number of primes $\leq x$, and p to represent a prime, observe that

$$
\begin{aligned}
&|\{x<n \leq 2 x: n \in \mathcal{A}\}| \\
&=\sum_{\sqrt{M x}<p \leq 2 x}\left(\left\lfloor\frac{2 x}{p}\right\rfloor-\left\lfloor\frac{x}{p}\right\rfloor\right)+O\left(\sum_{\sqrt{M x}<p \leq \sqrt{2 M x}}\left(\left\lfloor\frac{2 x}{p}\right\rfloor-\left\lfloor\frac{x}{p}\right\rfloor\right)\right) \\
&=\left(\sum_{\sqrt{M x}<p \leq 2 x} \frac{x}{p}\right)+O(\pi(2 x))+O\left(\sum_{\sqrt{M x}<p \leq \sqrt{2 M x}} \frac{x}{p}\right) .
\end{aligned}
$$

Using Mertens' estimate for the sum of the reciprocals of the primes (cf. [4, Theorem 427]) and a Chebyshev estimate (cf. [4, Theorem 7]), we can deduce from the above that

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{|\{n \leq x: n \in \mathcal{A}\}|}{x}=\log 2 \tag{3.2}
\end{equation*}
$$

For the asymptotic density of \mathcal{B}, we consider first the asymptotic density of the complement of \mathcal{B} in the set of positive integers. Fix a positive integer n in the complement of \mathcal{B}. Let p^{\prime} and $p^{\prime \prime}$ be the consecutive primes for which $p^{\prime} \leq n<p^{\prime \prime}$. Since $n \notin \mathcal{B}$, we have $p^{\prime} \leq n-\sqrt{n}$. Thus,

$$
p^{\prime \prime}-p^{\prime}>n-(n-\sqrt{n})=\sqrt{n} \geq \sqrt{p^{\prime}}
$$

Therefore, such n lie in an interval $\left[p^{\prime}, p^{\prime \prime}\right)$ where p^{\prime} and $p^{\prime \prime}$ are consecutive primes for which $p^{\prime \prime}-p^{\prime}>\sqrt{p^{\prime}}$. By (3.1), the n in the complement of \mathcal{B} have asymptotic density 0 . Therefore,

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{|\{n \leq x: n \in \mathcal{B}\}|}{x}=1 \tag{3.3}
\end{equation*}
$$

Combining (3.2) and (3.3), we deduce that

$$
\lim _{x \rightarrow \infty} \frac{|\{n \leq x: n \in \mathcal{C}\}|}{x}=\log 2 .
$$

Thus, to establish Theorem 1.1, it suffices to show that if n is a sufficiently large element of \mathcal{C}, then $f_{n, m}(x)$ is irreducible.

Consider such an n. Then $n \in \mathcal{A}$ implies that we can write $n=k q$ where k is a positive integer and q is a prime satisfying

$$
q>\sqrt{M n}=\sqrt{M k q} \Rightarrow q>M k>m k .
$$

By Lemma 2.3, we deduce that the Newton polygon of $f_{n, m}(x)$ with respect to the prime q consists of a single edge with slope $-m / q$. Since q is a prime $>m$, the fraction $-m / q$ is reduced. As a consequence of Theorem 2.1, we can deduce that each irreducible factor of $f_{n, m}(x)$ has degree divisible by q (as noted in [12]).

Next, we apply Lemma 2.4. Since $q>M k$ where $M=(m+1)^{2} / m$, we see that

$$
q>\frac{(m+1)^{2} k}{m} \geq \frac{(m+1)^{2}}{k m} .
$$

We set p to be the largest prime $\leq n$. To apply Lemma 2.4, we want to show that

$$
p>\frac{n m}{m+1} .
$$

Since n is sufficiently large and m is fixed, this inequality is an easy consequence of the Prime Number Theorem (i.e., that there is a prime number in the interval $((1-\varepsilon) n, n]$, where $\varepsilon=1 /(m+1))$. Lemma 2.4 implies that the Newton polygon of $f_{n, m}(x)$ with respect to the prime p has an edge with slope $-m / p$. Theorem 2.1 now shows that $f_{n, m}(x)$ has an irreducible factor of degree $\geq p$.

To establish that $f_{n, m}(x)$ is irreducible, it is now sufficient to show that the smallest multiple of q that is $\geq p$ is $n=k q$. This is equivalent to establishing that $n-q<p$. Since $q>\sqrt{M n}>\sqrt{n}$, we need only show that $n-\sqrt{n}<p$. The latter inequality follows from $n \in \mathcal{B}$, completing the proof of Theorem 1.1.

Acknowledgments. The first author expresses his gratitude to the NSA for grant support during the period of this research.

REFERENCES

[1] H. Cramér, Some theorems concerning prime numbers, Ark. Mat. Astronom. Fys. 15 (1920), no. 5, 33 pp .
[2] G. Dumas, Sur quelques cas d'irréductibilité des polynomes à coefficients rationnels, J. Math. Pures Appl. 2 (1906), 191-258.
[3] E. Edo and A. van den Essen, The Strong Factorial Conjecture, J. Algebra 397 (2014), 443-456.
[4] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, New York, 1979.
[5] D. R. Heath-Brown, The differences between consecutive primes, J. London Math. Soc. (2) 18 (1978), 7-13.
[6] M. N. Huxley, A note on large gaps between prime numbers, Acta Arith. 38 (1980/81), 63-68.
[7] E. E. Kummer, Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen, J. Reine Angew. Math. 44 (1852), 93-146.
[8] A.-M. Legendre, Théorie des Nombres, Firmin Didot Frères, Paris, 1830.
[9] K. Matomäki, Large differences between consecutive primes, Q. J. Math. 58 (2007), 489-518.
[10] C. J. Moreno, The average size of gaps between primes, Mathematika 21 (1974), 96-100.
[11] A. S. Peck, Differences between consecutive primes, Proc. London Math. Soc. (3) 76 (1998), 33-69.
[12] B. J. Rocks, Incompatibility of Diophantine equations arising from the Strong Factorial Conjecture, Arts \& Sciences Electronic Theses and Dissertations, Washington Univ. in St. Louis, paper 439 (2015).
[13] D. Wolke, Grosse Differenzen zwischen aufeinanderfolgenden Primzahlen, Math. Ann. 218 (1975), 269-271.

Michael Filaseta, Brady Rocks
Mathematics Department
University of South Carolina
Columbia, SC 29208, U.S.A.
E-mail: filaseta@math.sc.edu
ROCKS@math.sc.edu

[^0]: 2010 Mathematics Subject Classification: Primary 11R09; Secondary 11C08, 12E05. Key words and phrases: Strong Factorial Conjecture, irreducible, Newton polygon. Received 14 September 2015.
 Published online 11 July 2016.

