
FUNDAMENTA

MATHEMATICAE

235 (2016)

Algorithms for Nielsen type periodic numbers of
maps with remnant on surfaces with boundary and on

bouquets of circles II

by

Evelyn L. Hart (Hamilton, NY), Philip R. Heath (St. John’s, NL),
and Edward C. Keppelmann (Reno, NV)

Abstract. In this second and final paper of the series, we sketch an algorithm for
the computation of the Nielsen type number NΦn(f) for periodic points of maps f of
remnant 2 on surfaces with boundary, and on bouquets of circles. The number NΦn(f)
is the second, and more complicated, of two Nielsen type periodic point numbers. In the
first paper we exhibited an algorithm for the computation of NPn(f), the first of these
numbers.

The class of spaces and maps under consideration in this paper do not satisfy the, by
now familiar, conditions that give rise to computational theorems for NΦn(f). Because
of this we are thrown back on the definition which requires that we find the minimum
height among all sets of n-representatives for f . Our technique, which is presented with
a view to clarity rather than for efficiency of computation, is to sketch an algorithm for
the construction of a finite weighted graph (U(h, n),D) whose nodes are orbits, and whose
edges are the “boosts” between individual orbits. The graph U(h, n) is universal in the
sense that the set of nodes contains all minimum sets of n-representatives. The graph is
weighted by means of data labels D, which we use to determine which subset of the nodes
of U(h, n) are sets of n-representatives and to compute their heights.

Two factors complicate the algorithmic computation of (U(h, n),D). The first is the
need to include certain nodes in U(h, n) that represent empty orbits, which of course are
not detectable by the Reidemeister trace. The second is the need to attach data D(P k)
to the nodes P k of U(h, n).

Our method requires that we modify and extend word length arguments from the first
paper. In the process we solve the twisted conjugacy problem for homomorphisms with
limited cancellation among the generators. This potentially important result is surprisingly
simple to prove.

2010 Mathematics Subject Classification: Primary 55M20.
Key words and phrases: Nielsen number, Nielsen periodic number, fixed point, periodic
point, Reidemeister number, surface, punctured disc, surface with boundary, bouquet of
circles, wedge of circles, figure eight, remnant.
Received 15 October 2014; revised 3 January 2016.
Published online 18 July 2016.

DOI: 10.4064/fm45-1-2016 [101] c© Instytut Matematyczny PAN, 2016

102 E. L. Hart et al.

1. Introduction. In this paper, which continues [2], we sketch an al-
gorithm for the computation of the Nielsen periodic point number NΦn(f)
for maps f that have limited cancellation between the images of generators
in the fundamental group (maps with remnant at least 2, Definition 2.5).
The number NΦn(f) is a homotopy invariant of f and a lower bound for
the number of periodic points of all periods dividing n.

The numbers NPn(f) and NΦn(f) are complicated (a) by the fact that
they are homotopy invariants of f rather than of the iterate fn, (b) because
we need to deal with orbits rather than classes (see [6] or [5] for an ex-
planation), and (c) because both the Nielsen and Reidemeister classes and
orbits at various levels interact. In particular a Nielsen or Reidemeister orbit
can “contain” Nielsen respectively Reidemeister orbits at lower levels. These
containments are registered algebraically by means of what we call boosting
functions (ιk,m for k |m |n, Section 2.1). In general the boosting functions
are not injective. If ιk,m(P k) = Om for Reidemeister orbits P k and Om at
levels k and m respectively, we say that P k boosts to Om, and that Om

reduces to P k. If an orbit reduces only to itself (ιk,k is the identity) then
that orbit is said to be irreducible.

The number NPn(f) is an f homotopy invariant lower bound for the
number of periodic points of period exactly n. It is computed by taking n
times the number of essential (Section 2.1 again) irreducible Reidemeister
orbits. Thus our task in computing NPn(f) in [2] was “simply” to determine
this latter number.

The definition of the Nielsen type number NΦn(f) (Definition 2.3) is
much trickier than that of NPn(f). It is easy to misunderstand, and even
more so to underestimate what is involved in giving an algorithm to com-
pute it (see Remark 6.6(ii)). The main complicating factor, when looking
at NPn(f) rather than NΦn(f), is that when two or more essential orbits
reduce to a single orbit P k at a lower level, the various essential orbits are
only detecting a single periodic point orbit. What complicates it even more
is that such a P k can be inessential, even empty (1). In this regard, it seems
prudent to remind the reader that a procedure outlined in [6] is wrong be-
cause it fails to take this important point into account (2) (see Remark 2.4).

In a large class of spaces and maps, the scenario just described cannot
occur. In particular this is the case if the space (all maps) or an individual

(1) A Reidemeister class is said to be empty if it is the image, under the usual inclusion,
of an empty Nielsen class. An orbit is empty if it is the union of empty classes.

(2) An example illustrating this is given in [5, Example 3.1]. It is accounted for geo-
metrically by the possibility that two or more periodic point orbits at higher iterates can,
through a homotopy of f , be coalesced to an inessential (or empty) orbit at the lower
level.

Nielsen type periodic numbers 103

map is essentially reducible (3). Under this and other conditions, algorith-
mic procedures, and even formulas, are more easily procured (see [5, 3]).
All maps on nil or solvmanifolds are essentially reducible [3, Corollary 4.5].
However there are many (perhaps even most) maps on the spaces under con-
sideration in this paper, that are not (4). What all this means in practice
is that when computing NΦn(f), we need to take into account the possi-
bility of a (potentially large) number of possibly empty orbits to which the
various essential orbits reduce. Of course, such orbits are not visible in the
Reidemeister trace.

Thus as far as this paper goes, we are thrown back on the definition
which requires that we compute the minimum height among all possible
sets of n-representatives (Definition 2.3) (5). Our strategy is to use the tech-
niques of [2] together with our modified word length arguments to algorith-
mically construct a weighted graph (U(h, n),D). Here U(h, n) is the graph
(Definition 3.3), h is the homomorphism induced by f , and D the weighting
of U(h, n) by data labels (Definition 4.4). The nodes of U(h, n) are orbits,
and there is a directed edge between two orbits precisely when one boosts
to the other (Definition 3.3). The graph is universal in the sense that its
nodes contain all minimum sets of n-representatives (Theorem 4.8). In par-
ticular it must contain all necessary empty orbits. We refer to the weighting
of each node of U(h, n) as data labels (D). More precisely, for each node
P k of of U(h, n), we attach certain data D(P k). This is needed in order to
algorithmically determine which subsets of the nodes of U(h, n) are sets of
n-representatives, and to determine their heights. After wrestling with the
problem for some time, we felt that the simplest way to proceed with our
algorithm is to construct U(h, n) and D simultaneously and progressively,
as the information becomes available.

Intuitively an abstract theoretical proof that (U(h, n),D) exists, is fi-
nite and satisfies the required properties, follows relatively easily from the
finite-to-one nature of reductions guaranteed by the modified word length
arguments we give here. On the other hand, when you start to look at the
details of how to construct both U(h, n) and D systematically, complicat-

(3) A map is essentially reducible if essential orbits reduce only to essential orbits [3,
Definition 4.1].

(4) In [2, Example 2.9 (part three)] the orbit 〈[1]1〉 of the wedge point is inessential at
level 1, but ι1,2(〈[1]1〉) = 〈[1]2〉 is essential at level 2. This phenomenon is not uncommon.
Though in principle it is not difficult to construct meaningful examples, they do tend to
be long and involved.

(5) The reader unfamiliar with the definitions might find it helpful to study the fic-
titious illustration (6.5) to see how a fixed set of geometric orbits (without specifying
which are essential) can exhibit a wide variety of possible values for NΦn(f) (see also [5,
Section 3]).

104 E. L. Hart et al.

ing factors start to reveal themselves. We need to know where to start (for
example, do we start with orbits at the bottom or the top, or with essen-
tial orbits?). Having chosen where to start, we need to know how to choose
representatives of the chosen orbits. Depending on the choices, these orbits
may or may not be visible in the reduced Reidemeister trace. This is where
the work of [2] comes in. As we shall see with our choice of U(h, n) (see Re-
mark 3.5), the graph has the structure of the disjoint union of components
indexed by the non-empty orbits (denoted On) at the top (level n), and
this is where we start. These orbits need not be essential, and when they
are not, they are not of course detected by the reduced Reidemeister trace.
They are however detected by the geometry of the special representative of
the homotopy class of f (see [2] for details). This choice of starting point
also furnishes us with a natural way to choose representatives. In particu-
lar the extended Wagner algorithm given in [2] allows us to choose Wagner
tails, u say, of shortest length as representatives of the On (Subsection 2.2).
Using these u, we use our modified word length arguments (Lemma 4.1)
to find all group element reductions of u, at each level dividing n. Word
length arguments again can then be used, at each level, to determine from
the group element reductions first the Reidemeister classes, and then or-
bits. We can also easily add the edges from our reduced set of orbits to
On at this point, and deduce that what we have constructed thus far is
finite.

At this stage we have constructed what we call the skeleton Sk(S(On))
of the support S(On) of On (Definitions 5.3 and 3.1). The graph Sk(S(On))
is a subgraph of the component of U(h, n) determined by On. It does not
yet contain all the edges, and we need to find a way to systematically add
them. By way of illustration, the skeleton Sk(S(A4)) of the support of a
single orbit A4 at level 4 could be represented by the diagram

n = 4 A4

n = 2 B2

OO

C2

ff

D2

ii

n = 1 F 1

II

G1

UU

H1

\\

where B2, C2 and D2 represent all reductions of A4 to level 2, and F 1, G1

and H1 represent all orbit reductions to level 1. We need to know how the
last three orbits F 1, G1 and H1 boost to A4, that is, how they factor through
B2, C2 and D2. Of course the skeletons can be much more complex than

Nielsen type periodic numbers 105

in this illustration. The skeleton of the support of a single orbit at level 12,
for example, will be missing edges from level 1 to levels 2, 3, 4 and 6, from
level 2 to levels 4 and 6, and from level 3 to level 6.

If all that was needed was to add these edges, we could do this in the
illustration for example by computing each of ι1,2(F

1), ι1,2(G
1) and ι1,2(H

1)
and then, using word length arguments, to identify the boosted orbits among
B2, C2 and D2. In fact if we were to construct U(h, n) in this way, it would
contain, abstractly at least, most (6) of the information we need in order
to determine which subsets of the nodes are sets of n representatives, and
to compute their heights. In particular the crucial information about the
depth (7) of each orbit would already be encoded in U(h, n). However, ac-
cessing this information in an algorithmic way is a different question. On
the other hand, with the construction of the skeleton of the support of each
orbit, its depth comes for free. For example in the illustration the depth
of A4 is 1. For this reason, the way we construct the component S(On) of
U(h, n) is to construct the skeleta of each of the nodes of Sk(S(On)), and
then merge (Lemma 5.5) the newly constructed skeletons into Sk(S(On)).
Since we know the depth of each skeleton we are merging, we can encode
this information into the data labels at this time. In this way we are able to
construct both U(h, n) and D simultaneously and progressively as indicated
earlier.

We illustrate the merging of the skeleton Sk(S(B2)) of the support S(B2)
of B2 into Sk(S(A4)) in the illustration above. Suppose that Sk(S(B2)) is
represented by the diagram

n = 2 B2

n = 1 J1

>>

K1.

aa

The depth ofB2 is of course 1, and we record this as one component (Dd(B2),
d for depth) of the data label D(B2) for B2. We have labeled the reductions
J1 and K1, because our procedure will not immediately identify these orbits
among F 1, G1 and H1. And of course, the next step is to do exactly that,
using word length arguments again (8). Suppose that J1 = G1 and K1 = F 1.

(6) We would also need essentiality, which is easily obtained by identifying essential
orbits using the techniques of [2], and then using word length arguments to match them
in the constructed graph.

(7) The depth of an orbit is the lowest level to which the orbit reduces. The height of
a set of n-representatives is the sum of the depths of its members (Section 2.1).

(8) Alternatively, after Sk(S(On)) has been constructed, we can use information thus
obtained to construct and merge the other Sk(S(Pm)). It is, however, not as easily de-
scribed (see Section 6.2).

106 E. L. Hart et al.

Then the merged graph of the latter skeleton into the former skeleton will
look like

n = 4 A4

n = 2 B2

OO

C2

ff

D2

ii

n = 1 F 1

>>

II

G1

``

UU

H1

\\

In the illustration the depth of B2 could have been easily determined without
the process of merging. However, the more factors a divisor m of n has,
the more complex an algorithmic procedure would be for determining the
depth of an orbit at that level from U(h, n) alone. As we have also said,
our primary goal is to show the process can be made algorithmic. Though
perhaps the process of merging is not the most efficient way to show this,
having wrestled with it for some time we think it is probably the simplest
way to understand the dual tasks of algorithmically adding the edges, and
determining the depth of each orbit (9). In the end, if we combine it with
the ideas outlined in the efficiency section, merging may also turn out to be
the most efficient way to construct (U(h, n),D).

As remarked in the Abstract, the word length argument here is a modifi-
cation of one we used in [2]. It required that we solve the twisted conjugacy
problem for homomorphisms with remnant 2 (Theorem 4.2). Since it par-
tially solves the general (difficult) twisted conjugacy problem in algebra, it
is our belief that its easy proof belies its importance.

The paper is organized as follows: After this introduction, in Section 2,
we outline the definitions and notation we need to make the paper some-
what (but not completely) self-contained. We assume some familiarity with
[2] (where our algorithm for NPn(f) was given). In Section 3, we give the
definition and structure of our choice of the universal graph U(h, n). In Sec-
tion 4, we give our word length arguments, solving the Twisted Conjugacy
Theorem for maps of remnant 2. We define the data labels and show that
U(h, n) is universal in the sense indicated. The algorithm itself comes next
in Section 5. Finally in Section 6 we make the comments that relate to sim-
plifying and making the computation of NΦn(f) more tractable. We use a
fictitious example that illustrates how it might be possible to shortcut, in
various ways, full details in the construction of U(h, n).

(9) The reader is invited to attempt an algorithmic way of computing NΦn(f) using
the method suggested in the earlier paragraph that starts with “If all that was needed.”

Nielsen type periodic numbers 107

2. Preliminaries. Though the definitions of NPn(f) and NΦn(f) can
be made on more general spaces, we work in this paper (as in [2]) with
spaces X which have the homotopy type of a bouquet (wedge) of circles
with r oriented loops. Since X is a K(π, 1), we can, without loss, regard
X as any compact surface with boundary of the same homotopy type as f .
Also each homotopy class of self-maps is uniquely determined by the induced
homomorphism f∗ : π1(X)→ π1(X). Therefore we may concentrate largely
on the homomorphism f∗ which we denote by h. The fundamental group
of X is a free group G := π1(X) = 〈a1, . . . , ar〉 of rank r with generators
G = {a1, . . . , ar}. By abuse of notation, having chosen a fixed orientation
for each loop of X, we label the loops by the same ai for i = 1, . . . , r.

2.1. NPn(f) and NΦn(f) and the basic periodic point defini-
tions. In this subsection we recall the basic definitions. Let w1, w2 ∈ G and
m,n ∈ N be such that m |n and n is fixed throughout the paper. We say
that w1 and w2 are Reidemeister equivalent at level m (or that w1 and w2

are Reidemeister equivalent for hm) if there is a z ∈ G satisfying the equa-
tion zw1h

m(z−1) = w2. We write w1 ∼m w2, and use the symbol R(hm) to
denote the set of Reidemeister classes at level m. The Reidemeister class of
α for hm is denoted [α]m. We use RO(hm) to denote the set of Reidemeister
orbits at level m. The Reidemeister orbit containing [α]m is the set

〈[α]m〉 := {[α]m, [h(α)]m, [h2(α)]m, . . . , [h`−1(α)]m}.
Here ` (called the length of the orbit) is the number of classes in the orbit.
That is, ` is the smallest positive integer for which [h`(α)]m = [α]m. Note
that ` |m and can be strictly smaller than m (i.e. the length of a represen-
tative group element, see [4]). We write 〈[α]m〉 ∈ RO(hm), but we will also
use symbols such as Om, Pm and Qm etc. to denote orbits at level m.

Let k,m ∈ N be such that k |m |n. We define ιk,m : G→ G on α ∈ G by

ιk,m(α) = αhk(α)h2k(α) · · ·hm−k(α).

Note firstly that ιk,m is not a homomorphism on these spaces, but that
it is well-defined on Reidemeister classes, and also on Reidemeister orbits
(see [4]). By abuse of notation we use ιk,m to denote all three functions:
ιk,m : G → G, ιk,m : R(hk) → R(hm), and ιk,m : RO(hk) → RO(hm).
We call the ιk,m boosting functions for all three contexts (group elements,
Reidemeister classes, orbits). If ιk,m(y) = z, we say that y boosts to z and
that z reduces to y, or that y is a reduction of z, and for any divisor r of k,
the set ι−1r,k({z}) is called the set of reductions of y from level k to level r.

The depth d of y at level k is the minimum d for which the set (set of classes,
set of orbits) ι−1d,k({y}) is non-empty. Depth is the same on group elements,

Reidemeister classes and orbits (see Lemma 2.1 below). Finally, the element
y at level k is said to be irreducible if its depth is k. Otherwise, it is reducible.

108 E. L. Hart et al.

The following lemma from [1] allows us to refer to reducibility, irreducibility
and depth simultaneously on elements, classes and orbits without ambiguity.
We refer to it as “on the nose” boosting at the group level.

Lemma 2.1 (On the nose boosting, Hart–Keppelmann [1]). Let 〈[α]m〉 ∈
RO(hm) and 〈[β]k〉 ∈ RO(hk) be such that ιk,m(〈[β]k〉) = 〈[α]m〉. Further-
more let γ ∈ G be such that [γ]m ∈ 〈[α]m〉. Then there exists a ν ∈ G for
which [ν]k ∈ 〈[β]k〉 and ιk,m(ν) = γ.

We assume that the reader is familiar with the concept of essential and
inessential Reidemeister classes and orbits, as found in the modified funda-
mental group approach (i.e. [4, 3, 2]). In particular we assign essentiality
(or not) to each Reidemeister class or orbit. So [v]k is essential if it is in
the image, under the usual inclusion, of an essential Nielsen class into the
corresponding Reidemeister class. Otherwise it is inessential. Clearly empty
orbits are inessential (see footnote 1). Essentiality is a property of orbits
[4, Corollary 1]. We use the symbol EO(hm) ⊆ RO(hm) to denote the set
of essential orbits at level m, while IEO(hm) denotes the set of irreducible
essential orbits. The depth of an orbit is the lowest level to which the orbit
reduces. The height of a set of n-representatives is the sum of the depths of
its members.

Definition 2.2 (Set of n-representatives for h). A subset S of⋃
m|nRO(hm) is a set of n-representatives for h if each orbit in

⋃
m|nEO(hm)

reduces (10) to some orbit in S. A minimal set of n-representatives for h is
a set of n-representatives with minimal height.

The reader will recall that NPm(f) := m · #(IEO(hm)), and that the
set
⋃
m|n IEO(hm) is a subset of any set of n-representatives for h [6, 5].

Definition 2.3 (Jiang [6]). The Nielsen type periodic point number
NΦn(f) for f is the height of a minimal set of n-representatives for h.

Remark 2.4 (Misunderstanding NΦn(f)). The definition of NΦm(f)
is due to Boju Jiang [6], and is quite brilliant. It is however very easy to
misunderstand, and there are many pitfalls (see [5] for a discussion of this).
It seems prudent therefore to remind the reader that a procedure suggested
for its computation in [6] does not work. The suggestion, if correct, would
greatly simplify things and in fact make redundant many of the things we
do here. The suggestion in question was to take the height of the set S of
all essential orbits of any period m |n, which do not reduce to any essential
orbit of lower period. However, two or more such orbits may reduce to a

(10) We include identity boosts, in other words we regard an element as reducing to
itself.

Nielsen type periodic numbers 109

single inessential orbit at a lower level, and hence be detecting only one
periodic point orbit. An example of this is given in [5, Example 3.1], where
for n = 6 on a simply connected space, the single orbits at each of the levels
6, 3 and 2 are all essential, but reduce to the single orbit at level 1. This
orbit is inessential. In fact the given map can be homotoped to one with
a single periodic point which occurs at level 1. In particular NΦ6(f) = 1,
while the false procedure suggested above would compute it as 3 (see also
[5, comments on p. 226]).

2.2. Wagner tails, the sets WO(hm), remnant. In this subsection
we briefly recall the definitions and concepts from [2] that we need in the
first step of the construction of U(h, n). We refer the reader there for details.

Let G± = {a1, . . . , ar, A1, . . . , Ar}, where Ai denotes the inverse of ai.
Then any element w ∈ G (= π1(X), recall) is a finite word in the alpha-
bet G±. We will denote the length of a reduced word w ∈ G by |w|, with
the usual understanding that the identity element has length 0. Recall from
[2, Section 2.2, p. 108] that using only h, we construct a very precise piece-
wise linear representative f of the single homotopy class of maps that in-
duces h. We call f the special representative of its homotopy class. If we
write hm(ai) = c1 · · · cs as the unreduced image of ai where each cj is in G±,
then there is a one-to-one correspondence between fixed points of fm and
the occurrences of ai or Ai in the unreduced word hm(ai). We emphasize
that this has to be unreduced, since this one-to-one correspondence fails if
the words are reduced. Moreover (as discussed in [2, p. 110]), certain sub-
words of the hm(ai) determine the Reidemeister classes of fm at level m.
We call the set of all such subwords Wagner tails. The Reidemeister classes
determined by the Wagner tails represent all non-empty Nielsen classes of
our special representative f . Such classes may however become empty for
maps homotopic to f .

Let

WO(hm) = {Pm ∈ RO(hm) : Pm is represented by a Wagner tail}.

We call such Pm Wagner orbits. Since essential classes are non-empty under
deformation, they can also be represented by one or more of the Wagner
tails. Similarly for orbits. Thus we have the following inclusions:

(2.1) IEO(hm) ⊆ EO(hm) ⊆ WO(hm) ⊆ RO(hm).

Definition 2.5 (Remnant). Let h : G→ G be a homomorphism. Given
a generator a ∈ G, h(a) is said to have remnant if there is a subword w of
h(a) such that for every b ∈ G± − {A} the subword w does not cancel from
h(a) in the products h(a)h(b) and h(b)h(a). The longest such subword, Ra,
is defined to be the remnant of h(a). The homomorphism h has remnant if

110 E. L. Hart et al.

h(a) has remnant for each generator a ∈ G. Let s := min{|Ra| : a ∈ G}. If
s ≥ 1 we say that h has remnant s.

We remind the reader that for maps with remnant, the Wagner tails
completely determine the N(fm) (see [10]). However as seen in [2] this is
not enough to determine either NPn(f) or NΦn(f). The tools given in [2]
allow us to determine if a Wagner orbit is essential or not. If Pm is not a
Wagner orbit, it is automatically inessential.

The next lemma is a summary of results from [2]. Its proof needed the
extension of Wagner’s algorithm [10], proved in [2].

Lemma 2.6 ([2]). If h has remnant greater than or equal to 2, then for
each m |n the determination of each of the sets IEO(hm), EO(hm) and
WO(hm) is algorithmic.

3. The definition and structure of U(h, n). In this section we give
the definition of the universal graph U(h, n), and show that it has the struc-
ture of a disjoint union of components indexed by WO(hn). This fact will
allow us to construct U(h, n) component by component starting at the top.
We will assume throughout that we have fixed G, h and n, and that h has
remnant at least 2. We start with the definition of the support of a collection
of orbits.

Definition 3.1 (Support). Let A be a set of Reidemeister orbits at
various levels, that is, let A ⊆

⋃
m|nRO(hm). Let B(A) be the union of A

together with the set of all orbits that boost to an orbit in A. The support
S(A) of A is the transitive directed graph that has B(A) as the set of nodes,
and which contains an edge from an orbit P k at level k to an orbit Om at
level m if and only if ιk,m(P k) = Om.

Since it is convenient to regard an orbit as reducing to itself, we au-
tomatically include the identity edges in S(A). In the illustration in the
introduction, the support S(A4) of A4 would be complete after the skele-
tons Sk(S(B2)), Sk(S(C2)) and Sk(S(D2)) are merged into Sk(S(A4)). We
did not, however, show the identity edges there. With some extra details,
our algorithm essentially generalizes that illustration.

The easy proof of the following lemma is left to the reader.

Lemma 3.2. Let B ⊆ A ⊆
⋃
m|nRO(hm). Then S(B) is a subgraph of

S(A).

Definition 3.3 (The universal graph). For fixed n, the universal graph
U(h, n) is defined to be the support S(WO(hn)) of WO(hn).

We cannot take U(h, n) to be the support of all orbits at level n, since
this set is infinite. It is enough to consider only Wagner orbits at this level.

Nielsen type periodic numbers 111

We will, however, need to consider all reductions of Wagner orbits at each
of the lower levels. This will include many non-Wagner, and in particular
empty, orbits.

Proposition 3.4 (Components of U(h, n)). The universal graph U(h, n)
is the disjoint union of connected components indexed by WO(hn). In par-
ticular, two nodes Oq1 and Or2 are in the same component of U(h, n) if and
only if ιq,n(Oq1) = ιr,n(Or2) (∈ WO(hn)). Thus

U(h, n) =
⊔

On∈WO(hn)

S(On)

is a disjoint union. Furthermore S(
⋃
m|n EO(hm)) ⊆ U(h, n).

Remarks 3.5. (i) Another option for our universal graph would be
to take S(

⋃
m|n EO(hm)) rather than S(WO(hn)). Both of these graphs

satisfy the fundamental properties of Theorem 4.8 in the next section. How-
ever, because not every orbit in WO(hn) need be essential, the graph
S(
⋃
m|n EO(hm)) may not contain all of WO(hn). When this happens, the

components of S(
⋃
m|n EO(hm)) would be more complex than those of

U(h, n), and we would not be able to use Proposition 3.4 to construct our
universal graph componentwise from the top down. Though likely more ef-
ficient, it would make the algorithm more complex to describe. See also the
introductory remarks to Section 6.3.

(ii) Part of what we did in [2] was essentially to create a subgraph of
U(h, n) from the geometry of our special representative. In general this will
be a proper subgraph of U(h, n) (unless, for example, f happens to be es-
sentially reducible [3, Definition 4.1]). Though it does in fact contain all the
essential irreducible orbits, it is not big enough even for the computation
of NPn(f). This is because it fails to include reductions to empty orbits,
which of course are not detectable in the Reidemeister trace. Neither is the
geometric graph big enough for the computation of NΦn(f). To attempt to
use it for its computation is to make a similar mistake to the one mentioned
in Remark 2.4.

Proof of Proposition 3.4. Clearly for each On ∈ WO(hn) we have {On}
⊆ WO(hn), so then S(On) := S({On}) ⊆ S(WO(hn)) for all On ∈ WO(hn)
by Lemma 3.2. So the (ordinary) union of the S(On) is contained in U(h, n).

Now let Qk and Pm be nodes in U(h, n). Clearly if ιk,n(Qk) = ιm,n(Pm)
(= On say), then there is an edge from Qk to On and an edge from Pm

to On, so Qk and Pm are in the same component of U(h, n) by definition.
Conversely, suppose Qk and Pm are in the same component of U(h, n). Since
U(h, n) is a directed graph, and all edges go from lower levels to higher
levels, then either both Qk and Pm boost to a third orbit, T s say, or one
of them boosts to the other. In any case (considering identity boosts) we

112 E. L. Hart et al.

have ιk,n(Qk) = ιs,nιk,s(Q
k) = ιs,n(T s) = ιs,nιm,s(P

m) = ιm,n(Pm) and so
Qk and Pm are in the component determined by ιs,n(T s).

4. Word length arguments, the Twisted Conjugacy Theorem,
data labels, and more properties of U(h, n). In this section we make the
modifications to the word length arguments mentioned in the introduction.
In the process, we solve the twisted conjugacy problem for the class of maps
of remnant at least 2, and exhibit more properties of U(h, n).

For the computation of NPn(f) in [2], we used an extended form of
Wagner’s algorithm (on the unreduced form of iterates) to find Reidemeis-
ter equivalences between Wagner elements of h, and to determine the es-
sentiality or not of these classes. Other techniques were used to find orbits.
In order to complete the computation of NPn(f) we then needed only to
determine, for each essential orbit Om ∈ EO(hm), if there was a reduc-
tion of Om or not. In order to do this we used word length arguments
on the readily discernible shortest Wagner tail that represented the given
orbit.

In the proof that the computation of NΦn(f) is algorithmic we need to
do much more than this. In fact, we need to compute all possible reductions
of a multitude of orbits, including many not represented by Wagner tails
(i.e. not visible in the Reidemeister trace). We start by defining a procedure
which determines all reductions of a given word at the group level. We do
this by extending the result of [2, Theorem 5.4].

Lemma 4.1 (Finite Reduction Lemma—Words). Let h have remnant at
least 2, k |m and u and v be words such that ιk,m(u) = v. Then |u| ≤ |v|,
and the set RED(v,m, k) = {u : ιk,m(u) = v} of all such words is finite. The
procedure which tries all words u with |u| ≤ |v| in the equation ιk,m(u) = v
is algorithmic.

Proof. For any u′ with ιk,m(u′) = v we know from [2, Theorem 5.4] that
|u′| ≤ |v|. But |v| and G are finite, so in any case there are only a finite
number of words u′ ∈ G with |u′| ≤ |v|. Thus we search among all words
u with |u| ≤ |v| for those u which satisfy ιk,m(u) = v. This will determine
RED(v,m, k).

Let g = hm. In the definition below, which we recall from [2], we assume
that all words g(ai) are written in reduced form. So

MR(m) := min{|Ri| : Ri is the remnant of g(ai)}

is the minimum length of the remnants Ri of g(ai). It seems worth remarking
that for most homomorphisms the minimum remnant of the mth iterate
increases with m.

Nielsen type periodic numbers 113

Theorem 4.2 (Twisted Conjugacy Theorem (11)). For homomorphisms
h with remnant at least 2, the twisted conjugacy problem for all iterates of
h is reducible to a finite search.

More precisely, if G, h are as in this paper, and if MR(m) = q ≥ 2, then
for u, v ∈ G, [u]m = [v]m if and only if there is a word w ∈ G for which

|w| ≤ |u|+ |v|
q − 1

and wuhm(w−1) = v.

In particular, if u 6= v and 1 > |u|+|v|
q−1 , then [u]m 6= [v]m.

Proof. Let MR(m) = q ≥ 2. By the definition of remnant, for any w ∈ G
we have |hm(w)| ≥ q ·|w|. Let u, v ∈ G be such that u 6= v. Suppose that w ∈
G is such that wvhm(w−1) = u. Then |u| = |wvhm(w−1)| ≥ (q− 1)|w| − |v|.
Thus |w| ≤ |u|+|v|q−1 .

Theorem 4.2 allows us to see (sometimes trivially) that a number of
computations and procedures needed in the computation of NΦn(f) are
algorithmic. We start with

Corollary 4.3 (Equiv). Let w1, w2 ∈ G, m |n and MR(m) ≥ 2. The
procedure Equiv(w1, w2,m), which returns “yes” if there is a word z ∈ G
with w1 = zw2h

m(z−1) and “no” otherwise, is algorithmic.

It should be clear that we need to include the m in the procedure
Equiv(w1, w2,m), since w1 and w2 may well be equivalent at one level but
not at another.

We introduce the concept of “data labels” which we attach to each orbit
to give a “weight” to U(h, n). These labels are extremely useful for our
algorithm.

Definition 4.4 (Data labels). A data label for Pm ∈ RO(hm) is a
five-tuple D(Pm) = (Dp(Pm),Dr(Pm),D`(Pm),DE(Pm),Dd(Pm)), where
Dp(Pm) = m is the period (level) of Pm (i.e. Pm ∈ RO(hm)), Dr(Pm) is a
word that represents Pm (i.e. if Dr(Pm) = w, then Pm = 〈[w]m〉), D`(Pm)
is the algebraic length of Pm, DE(Pm) ∈ {0, 1} denotes that Pm is essential
if DE(Pm) = 1, or is 0 otherwise, and finally Dd(Pm) is the depth of Pm.

Since if Pm 6∈ WO(hn) then Pm represents an empty orbit (see [2,
p. 104]), for such a Pm we must have DE(Pm) = 0.

Corollary 4.5 (GOrb(z,m) and orbit length D`(〈[z]m〉)). Let z ∈ G.
There are algorithmic procedures, described below, for determining the length

(11) Chris Staeker has some analogous results for coincidences, which were discovered
independently. He apparently improved his result after seeing our methods. He explains
all this in [9].

114 E. L. Hart et al.

` = D`(〈[z]m〉) of 〈[z]m〉 and for GOrb(z,m) := {z, f(z), . . . , f `−1(z)} ⊆ G
at level m. The level of course is indicated by Dp(Pm).

Note that we are not claiming that f `(z) = z, only that f `(z) is Nielsen
equivalent to z at level m. Of course ` |m [4, Lemma 1.13].

Proof. We compute ` as the smallest positive integer for which the pro-
cedure Equiv(z, f `(z),m) returns yes (Corollary 4.3). The algorithmic de-
termination of GOrb(z,m) follows trivially.

Corollary 4.5 and the definitions easily show that the determination of
when two orbits are equal is also algorithmic. It is convenient to name this
as a procedure.

Corollary 4.6 (Orbit identification: OrbIdn). Let P1, P2 ∈ RO(hm)
with w1 = Dr(P1) and w2 = Dr(P2) chosen. Then P1 = P2 if and only
if there is a u ∈ GOrb(w1, k) with w2 ∼k u, and this can be determined
algorithmically using the procedure above.

We can now give an orbit version of Lemma 4.1. For each Om ∈ RO(hm),
define OrbRedn(Om, k,m) := {P k ∈ RO(hk) : ιk,m(P k) = Om}. So the set
OrbRedn(Om, k,m) is the set of all orbits at level k that boost to Om.

Corollary 4.7 (Orbit reduction). Let MR(1) ≥ 2, Om ∈ RO(hm) and
u = Dr(Om) be given or chosen. Then OrbRedn(Om, k,m) is finite and
there are algorithmic procedures for determining it (provided below), and
Dr(P k) and D`(P k) for each P k ∈ OrbRedn(Om, k,m) can be determined
algorithmically using RED(u,m, k) (Lemma 4.1).

Proof. Use the algorithm from Lemma 4.1 to determine the set
RED(u,m, k) = {v ∈ G : ιk,m(v) = u}. We show first that any P k ∈
OrbRedn(Om, k,m) is represented by some element of RED(u,m, k). Thus
#(OrbRedn(Om, k,m)) ≤ #(RED(u,m, k)) and so OrbRedn(Om, k,m) is
finite. So suppose P k = 〈[z]k〉 for some z (not necessarily in RED(u,m, k)).
By Lemma 2.1 there is a word v with v ∼k z and ιk,m(v) = u. Clearly
v ∈ RED(u, k,m), and P k = 〈[z]k〉 = 〈[v]k〉.

Next if k = m then OrbRedn(Om, k,m) := {Om}, so we may assume
k < m without loss. We give the following pseudo code to determine
OrbRedn(Om, k,m). The above shows that this process determines the whole
of OrbRedn(Om, k,m).

Step 1. Set OrbRedn(Om, k,m) := ∅.
Step 2. If RED(u,m, k) = ∅, print OrbRedn(Om, k,m), else choose v ∈

RED(u,m, k). Reset OrbRedn(Om, k,m) :=OrbRedn(Om, k,m)
∪ {〈[v]k〉}.

Step 3. Set Dr(〈[v]k〉) = v.
Step 4. Compute D` := `(〈[v]k〉), and GOrb(v, k) (Corollary 4.5).

Nielsen type periodic numbers 115

Step 5. Determine O(v) := {v′ ∈ RED(u,m, k) : ∃z ∈ GOrb(v, k) with
v′ ∼k z}. Reset RED(u,m, k) := RED(u,m, k)−O(v).

Step 6. Return to step 2.

Theorem 4.8 (More properties of U(h, n)). Let G, f and n be as given
earlier, and MR(1) ≥ 2. Then the directed graph U(h, n) is finite, and each
minimal set of n-representatives for f is a subset of N (U(h, n)), the set of
nodes of U(h, n).

Proof. For each On ∈ WO(hn) we have

N (S(On)) =
⋃
m|n

OrbRedn(On,m, n),

by definition. By Corollary 4.7 each OrbRedn(On,m, n) is finite, and from
[2] we know that WO(hn) is finite. The finiteness of U(h, n) follows.

For the second part, we prove that if B is a set of n-representatives, then
it contains a (not necessarily proper) subset C ⊂ N (U(h, n)) that is also a set
of n-representatives. Note first that for any essential Om at level m we have
Om ∈ WO(hm), and from [2, Lemma 3.5] we have ιm,n(Om) ∈ WO(hn).
So let B be a set of n-representatives for h. Then for each essential or-
bit Om there is an orbit P q ∈ B that boosts to Om. Since Om boosts to
some orbit (On say) in WO(hn), then P q boosts to On too. Since U(h, n)
contains all reductions of WO(hn), by Definition 3.1 for such a P q we
must have P q ∈ N (U(h, n)). This means that C = B ∩ N (U(h, n)) will
also be a set of n-representatives for h. Clearly for any such C we have
height(C) ≤ height(B). That is, any set B of n representatives has a subset
C of n representatives of height at least as small as that of B and that is
contained in N (U(h, n)). In particular, any minimal set of n-representatives
of h is a subset of N (U(h, n)).

It seems worth remarking that the point of the second part of the proof
of Theorem 4.8 is that a set of n-representatives can contain orbits which are
not nodes of U(h, n). The proof shows such orbits are completely redundant.
Since they are allowed by the definition, it means that the collection of all
sets of n-representatives on these spaces is infinite!

5. The algorithm for NΦn(f). We are now ready to give our algorithm
for NΦn(h). As will be obvious from the proof of Corollary 5.2, the main
step (and the main work of this section) is in the following theorem.

Theorem 5.1 (The algorithm for (U(h, n),D)). Suppose that MR(1)
≥ 2. Then there are algorithms, which we provide, for (a) the construction of
U(h, n), and (b) the assignment of a data label D for each Pm ∈ N (U(h, n)).

116 E. L. Hart et al.

Corollary 5.2 (The algorithm for NΦn(h)). Let G, h and n be given
as in this paper, with MR(1) ≥ 2. Then there is an algorithm, provided
below, for the determination of NΦn(h).

Proof of Corollary 5.2. The following steps give the result:

Step 1. Determine U(h, n) and D as in Theorem 5.1.
Step 2. Enumerate all subsets of N (U(h, n)). Using the data labels, dis-

card those subsets that are not sets of n-representatives.
Step 3. Using the data labels, compute the height of each set of n-repre-

sentatives determined in step 2 and determine the minimum
height.

Step 4. Return the minimum height determined in step 3. This is
NΦn(h).

The rest of the section is devoted to the proof of Theorem 5.1. Our plan
is to construct the skeleton (Definition 5.3) of each orbit On at level n,
and then inductively construct the support of On from the bottom up by
merging the skeletons of each of the orbits at each level. While we are doing
this, we simultaneously add the depth component of the data label of each
orbit. The other components of the data labels are added at appropriate
times.

Definition 5.3 (Skeleton). Let Om∈RO(hm). The skeleton Sk(S(Om))
of S(Om) is the subgraph of S(Om) which consists of all the nodes P k of
S(Om) (for all k |m) together with exactly one edge from P k to Om.

As illustrated in the introduction, Sk(S(A4)) contains all of the arrows
from nodes at levels 1 and 2 to A4, but no arrows from nodes at levels 1
to 2. These were filled in later as we merged the skeletons of the nodes of
Sk(S(A4)) at level 2.

Lemma 5.4. For Om ∈ RO(hm), there are algorithms, given below, for
the determination of (a) Sk(S(Om)) from a given or chosen u := Dr(Om),
(b) a data label D(Om) of Om, and (c) a canonical choice of Dr(P k) for
every P k ∈ N (S(Om)) (⊆ N (Sk(S(Om)))).

In practice the “given or chosen u” will either be a Wagner tail of smallest
length representing Om or, if not available, a reduction of such a Wagner
tail.

Proof. Set Dp(Om) = m and Dr(Om) = u. We define Sk(S(Om)) induc-
tively starting with Sk(S(Om)) = {Om}. Let 1 = d1 < · · · < dν(m) = m be
the ordered list of positive divisors of m, where ν(m) is the number of such
divisors.

For each j = 1, . . . , ν(m) − 1 determine OrbRedn(Om, dj ,m) by Corol-
lary 4.7, using u = Dr(Om). If Dd(Om) is determined, proceed to the next

Nielsen type periodic numbers 117

step (below). Else if OrbRedn(Om, dj ,m) 6= ∅, set Dd(Om) = dj , and then
proceed to the next step.

Next, for each orbit P dj ∈ OrbRedn(Om, dj ,m) add the node P dj and
an arrow from P dj to Om to the inductively constructed Sk(S(Om)). If
j = ν(m)− 1, record Sk(S(Om)) and proceed to the next step, else proceed
to the next j.

Determine the orbit length D`(Om) from Dr(Om) using Corollary 4.5.

To determine DE(Om) (essentiality), note first that the determination of
EO(hm) is algorithmic by Lemma 2.6. We then simply use OrbIdn (Corol-
lary 4.6) to determine if Om is in this set. If it is, set DE(Om) = 1, otherwise
it is 0.

We can of course apply Lemma 5.4 to each On ∈ WO(hn) to obtain
Sk(S(On)), and this already has all the nodes of S(On). As was illustrated
in the introduction, what we do not have is all the arrows. We fill in the
missing arrows by using the following procedure inductively. We remark that
the Dd(Pm) can be determined efficiently here.

Lemma 5.5 (Merge). Let On ∈ WO(hn), and suppose that Sk(S(On))
and D(On) have been constructed and recorded together with Dr(P k) for
each P k ∈ N (Sk(On)) computed from w = Dr(On) all as in Lemma 5.4. Let
Pm ∈ N (Sk(S(On))) and A be a graph with Sk(S(On)) ⊆ A ⊆ S(On). The
following steps constitute an algorithm for the determination of Dd(Pm) and
Merge(A, Sk(S(Pm))).

Step 1. Set Merge(A, Sk(S(Pm))) = A.
Step 2. For each k |m use Lemma 4.1 to construct RED(u, k,m), where

u = Dr(Pm), and determine Dd(Pm) as the smallest k for which
RED(u, k,m) 6= ∅.

Step 3. Choose a k |m. If RED(u, k,m) = ∅, go to step 7, else go to
step 4.

Step 4. Choose a v ∈ RED(u, k,m), and identify 〈[v]k〉 with the corre-
sponding Qk ∈ N (Sk(S(On))) (Corollary 4.6), and reset
Merge(A,Sk(S(Pm))) by adding an arrow from Qk to Pm.

Step 5. Determine O(v) defined in step 5 of Corollary 4.7. Reset
RED(u,m, k) := RED(u,m, k)−O(v).

Step 6. If RED(u, k,m) = ∅, go to step 7, else return to step 4.
Step 7. If all k are exhausted, return Merge(A, Sk(S(Pm))), else choose

a new k in step 3.

By way of illustration, note that there are no arrows from level 1 to 2, and
none from level 1 to 3 in Merge(Sk(S(O12)),Sk(S(P 6))). In fact to compute
S(O12), we need merge the Sk(S(Qk)) for all Qk ∈ N (Sk(O12)). As the

118 E. L. Hart et al.

proof of Theorem 5.1 (next) shows, we do this divisor by divisor starting
with the smallest and moving to the largest.

Proof of Theorem 5.1 (The algorithm for U(h, n)). Using Lemma 2.6 and
Corollary 4.5 determine the set WO(hn), together with data label compo-
nents Dp(On) = n, Dr(On), D`(On) and DE(On) for each On ∈ WO(hn).

Let 1 = d1 < · · · < dν(n) = n be the ordered list of positive divisors of
n. For each On ∈ WO(hn) determine S(On) and the data labels for each
P k ∈ N (S(On)) according to the following steps which are algorithmic as
indicated.

Step 1. Compute Sk(S(On)) and Dd(On), together with the data label
components Dp(P k) and Dr(P k) for each P k ∈ N (Sk(S(On)))
(= N (S(On))) as in Lemma 5.4.

Step 2. For each P k ∈ N (Sk(S(On))) compute D`(P k) and DE(P k)
using Dr(P k), Corollaries 4.5 and 4.6, and Lemma 2.6.

Step 3. Set S(On) := Sk(S(On)).
Step 4. Assign Dd(Q1) to be 1 for any Q1 ∈ N (S(On)) at level 1.
Step 5. For j = 2, . . . , ν(n) − 1, and for each P dj ∈ N (S(On)) at

level dj , compute Sk(S(P dj)) and Dd(P dj) using Dr(P dj) (Lem-
ma 5.4).

Step 6. Compute Merge(S(On), Sk(S(P dj))) (Lemma 5.5).
Step 7. Reset S(On) := Merge(S(On),Sk(S(P dj))).
Step 8. Continue to the next orbit in step 6 at level dj . If the P dj are

exhausted at level dj , proceed to step 9.
Step 9. Proceed to the next j in step 5, unless j = ν(n), in which case

go to step 10.
Step 10. Go to the next On ∈ WO(hn) and return to step 1, unless the

On are exhausted, in which case go to step 11.
Step 11. Collect the components of each of the data labels, and set

U(h, n) to be
⋃
On∈WO(hn) S(On). Record (U(h, n),D).

After Wagner produced her algorithm for the ordinary Nielsen number
on the same spaces under consideration in this paper, various attempts have
been made to produce an algorithm that does not require remnant or the
like [8, 7]. This leads us to the following open (and difficult) question.

Open Question 5.6. To what extent can the condition of remnant
greater than or equal to two be improved, or eliminated, in the case of the
Nielsen periodic point numbers NPn(f) and NΦn(f)?

6. Remarks on practicality and efficiency. In the preceding sec-
tions we have focused on simplicity of description when sketching pseudo
code for our algorithm. In particular we have done this without regard to

Nielsen type periodic numbers 119

efficiency. With the growth of n, of the number of generators and of the
length of the images of generators, the inefficiencies in the described pseudo
code will at some stage outstrip the ability of even the largest computer
to complete the necessary searches. For this reason we have sought, in this
section, to outline a number of ways to make our algorithm more efficient.
In particular we give some hints as to how the algorithm can perhaps be
made a little more practical. We do not claim that our list is exhaustive.

We have deliberately put word length arguments first, since they can
often be incorporated into the efficiencies described later.

6.1. Efficiencies in word length arguments. There are a number
of (potential) improvements in terms of the efficiency of our word length
arguments. Theorem 4.2 already points out that the remnant of hm tends to
increase as m increases. Thus we obviously use MR(m) in Equiv(w1, w2,m)
in this procedure outlined in 4.3. But we can do more.

Enhanced remnant. This idea works at all levels, but we illustrate it
at level 1. Consider the example where G = {a, b}, so we are working on
the figure eight. Suppose that h(a) = BABa and h(b) = ABABAbbaBBAb.
Then h has remnant 2, so if |z| = t, then of course h(z) ≥ 2t. But note
that h(b) has remnant 10, and if z in reduced form contains r b’s or B’s,
then |h(z)| ≥ 10r + 2s, where r + s = |z|. And this can be used to reduce
the number of words z that need to be tried in the fundamental equations
zw1h(z−1) = w2. In particular, in the example, if r and s are as above, then
no z with 10r+ 2s− |w1| − (r+ s) > |w2| can have a solution. Clearly such
z can be eliminated without a computer search. This idea of course can be
extended to more than two generators.

“Remnant” of boosting functions. Lemma 4.1 which states that if
ιk,m(u) = v, then |u| ≤ |v|, is ridiculously (if not criminally) inefficient.
We illustrate by boosting from level 1 to 3. Suppose that h has remnant q.
Then we can define a remnant for ι1,3. In particular if a ∈ G, then |h(a)| ≥ q
and |h2(a)| = |h(h(a))| ≥ q2 so |h(a)h2(a)| ≥ q + q2. So allowing for the
possibility that the whole of a cancels, we have |ι1,3(a)| = |ah(a)h2(a)| ≥ q2
and we can think of ι1,3(a) as having remnant q2. In this way we can define
remnant for each ιk,s, and use it to greatly improve the bound |u| ≤ |v| in
Lemma 4.1, and of course places where it is used.

Enhanced remnant of boosting functions. In the same way that
the remnant of individual generators can enhance the ordinary remnant, the
individual remnants of the boosting function remnant can also be enhanced.
Details are left to the reader.

6.2. Efficiencies using the data labels. In the process of identifying
orbits in Merge, or determining depth etc., we can use the data labels.

120 E. L. Hart et al.

Lemma 6.1. Two orbits P k and Qm are equal if and only if all of the
following hold true: Dp(P k) = Dp(Qm), D`(P k) = D`(Qm), DE(P k) =
DE(Qm), Dd(P k) = Dd(Qm) and OrbIdn using Dr(P k) and Dr(Qm) pro-
duces a match.

One way to use Lemma 6.1 would be in identifying orbits in step 4 of
Merge (Lemma 5.5): sort out those orbits with the same length and depth.
Only orbits with the same length and depth and level can be equal. Notice
also that since length divides depth [4], if for an orbit Pm we have Dp(Pm)
= D`(Pm), then Pm is irreducible.

Matching the Dr in the construction of the Sk(S(Pm)), m 6= n.
If we follow the pattern for the construction of the Sk(S(Pm)) outlined
in Lemma 5.4, we will need for each k |m firstly that we determine the
set RED(u,m, k) from some given u, secondly that we determine the set
OrbRedn(Om, k,m) from RED(u,m, k), and finally that we add the edges
using Lemma 5.4. However, after we have constructed Sk(S(On)) we can,
without word length arguments, create and merge the Sk(S(Pm)) (for
m < n) using information present in the construction of Sk(S(On)).

To explain this, let k |m |n, and suppose that we have already created
Sk(S(On)) as just outlined, together with the Dr component of the labels for
each of its nodes. Then clearly RED(Dr(Pm), k,m) ⊂ RED(Dr(On), k, n).
From the proof of Corollary 4.7 we observe that RED(Dr(On), k, n) is the
disjoint union of subsets of the form O(Dr(Qk)). It follows that the set
RED(Dr(Pm), k,m) is the disjoint union of subsets of the form O(Dr(Qk))∩
RED(Dr(Pm), k,m). Now some of these may be empty (representing orbits
that do not boost to Pm), but the non-empty ones determine a unique or-
bit (node) at this level k, and this unique orbit lies in both Sk(S(On)) and
Sk(S(Pm)). Now the Dr component of the label has already been assigned
in Sk(S(On)), and we simply assign this same Dr component of the label
to the node considered as sitting in Sk(S(Pm)). The point is that the orbit
reductions of Pm can be both constructed and labeled in this way, without
going through the whole process described in Lemma 5.4. What is more,
when we come to merge Sk(S(Pm)), we now have the obvious strengthened
form of Lemma 6.1 to assist us in the process.

6.3. Writing NΦn(f) as
∑

m|nNPm(f)+min(height(T)). In this sub-

section we give an alternative (potentially simpler) more tractable algo-
rithmic procedure for finding NΦn(f). In Remark 3.5 we suggested that
a possibly more efficient option for our universal graph would be to take
S(
⋃
m|n EO(hm)). However, the suggestion of this subsection is likely to be

more tractable.

Nielsen type periodic numbers 121

When a map satisfies the condition of essential reducibility (footnotes 3
and 4), we can deduce (see [5]) that

NΦn(f) =
∑
m|n

NPm(f).

When this is the case, we can simply use the algorithms of [2] to compute
NΦn(f). Actually, the above equation holds true under weaker hypothe-
sis than that of essential reducibility (see Proposition 6.3). However, since⋃
m|n IEO(hm) is always a subset of any set of n representatives, it is always

the case that NΦn(f) ≥
∑

m|nNPm(f), so it will always be true that

NΦn(f) =
∑
m|n

NPm(f) + (something ≥ 0),

and the “something” is potentially easier to compute.

We need some preliminaries. We define the fruit of
⋃
m|n IEO(hm) to be

the set

F
(⋃
m|n

IEO(hm)
)

:=
{
Pm ∈

⋃
m|n

EO(hm) : ∃Qk ∈
⋃
m|n

IEO(hm) with ιk,m(Qk) = Pm
}
.

The set F(
⋃
m|n IEO(hm)) includes

⋃
m|n IEO(hm) together with all es-

sential classes that reduce to some element of
⋃
m|n IEO(hm). The sym-

bol C(F(
⋃
m|n IEO(hm))) denotes the complement of F(

⋃
m|n IEO(hm)) in⋃

m|n EO(hm).

A subset T of
⋃
m|nRO(hm) is said to be a set of complement n-represen-

tatives if each orbit in C(F(
⋃
m|n IEO(hm))) reduces to some orbit in T . The

height of T is the sum of the depths of the orbits in T .

Definition 6.2 (The universal complement graph). The universal com-
plement graph UC(h, n) is the support S(C(F(

⋃
m|n IEO(hm)))) of the graph

C(F(
⋃
m|n IEO(hm))).

The easy proof of the following proposition is left to the reader.

Proposition 6.3. The number NΦn(f) is equal to
∑

m|nNPm(f) +

height(T), where T is a set of complement n-representatives of minimal
height. In particular

NΦn(f) =
∑
m|n

NPm(f) if and only if C
(
F
(⋃
m|n

IEO(hm)
))

= ∅.

We are now ready for our alternative algorithm.

122 E. L. Hart et al.

Alternative Algorithm 6.4. Let G, h and n be given as in this
paper, with MR(1) ≥ 2. The determination of NΦn(h) by the following
steps is algorithmic.

Step 1. Determine
⋃
m|n EO(hm) and

⋃
m|n IEO(hm) using the algo-

rithms of [2].
Step 2. Determine F(

⋃
m|n IEO(hm)) using the methods of [2].

Step 3. Determine C(F(
⋃
m|n IEO(hm))) using steps 1 and 2.

Step 4. Use the techniques of this paper, construct (UC(h, n),D) by
merging the support S(P k) of each P k in C(F(

⋃
m|n IEO(hm))),

while simultaneously constructing the complement data labelsD.
Step 5. As in the proof of Corollary 5.2, determine all sets T of comple-

ment n-representatives.
Step 6. Compute height(T) of each set of complement n-representatives

using the complement data labels. Record the minimum height
min(height(T)).

Step 7. For each m|n compute NPm(f) using the techniques of [2].
Step 8. Compute NΦn(f) as

∑
m|nNPm(f) + min(height(T)).

6.4. Ad hoc methods, an illustration. Even from the illustration in
the introduction it was clear that our algorithm was not efficient, and that
ad hoc methods could likely short circuit the lengthy inefficient procedures
outlined here. In particular, the ad hoc methods outlined in [2] can also
be used to identify IEO(hm), EO(hm) and WO(hm) in Lemma 2.6, or in
the alternative Algorithm 6.4. We briefly illustrate some of these things
below.

Illustration 6.5. For the purpose of illustration we look at one com-
ponent of a fictitious example. In this illustration (see Figure 1), we specify
the Wagner orbits (the non-empty orbits to use the language of [2]), but
we are not specifying essentiality (or not). We are looking at n = 6, and a
component topped by the Wagner orbit A, which we specify has algebraic
length 1. We further assume that the single orbit A contains two geometric
orbits, one of length 3 and the other of length 2. These of course give rise
to Wagner orbits which we label B and C at heights 3 and 2 respectively
(see [2] for explanations). Since A has algebraic length 1, and reduces to
both B and C, they also have algebraic length 1 at their respective levels.
By specifying only this much, we leave open a wide range of possibilities
for NΦn(f). We tabulate these possibilities below. For now, we just want
to point out a number of things, to show why in the illustration we do not
need to compute the whole of either U(h, n) or CU(h, n).

This initial data is then represented by the stars and the solid lines be-
tween them in our picture. A star may or may not be essential. The circles

Nielsen type periodic numbers 123

Fig. 1. Illustration 6.5

in the picture indicate inessential and possibly empty reductions. The dot-
ted lines are edges in U(f, 6) which will exist when the circle orbits exist.
Note that there can be multiple D’s and multiple F ’s (and actually multiple
G’s too, not shown). The question mark at the bottom is to indicate the
possibility that some of the D’s and F ’s are the same. This of course would
affect the computation of NΦ6(f). The G is there because, independently
of the existence of D’s and F ’s, there could be orbits G which, while they
must necessarily boost to levels 2 and 3, need not boost to any of the B’s
or C’s.

As an indication of just how inefficient our algorithm is, we note that
even allowing for multiple G’s, the diagram for S(A) could be far larger than

124 E. L. Hart et al.

indicated. In particular there could be many empty orbits (not shown) at
levels 2 and 3 that boost to A. We have not shown these possibilities because
(with the exception that they may reduce to a G) their existence does not
affect the computation of NΦn(f). In fact the only time we will need to
know about the existence of G is when the B’s and C’s are irreducible. In
this case we need to determine the depth of A, and finding if such G exist
is the most efficient way to do this. We note, in particular, that the only
time G appears in a set of complement 6-representatives is in case 11 in
Figure 2.

We list the spectrum of possibilities for NΦ6(f) in Figure 2. To explain
our convention, we use “Es” for Essential, and “In” for Inessential. The sym-
bols ∃ and 6 ∃ have the usual meaning of “exist” or “do not exist”. Finally
the blank spaces represent questions we need not ask, because the various
options have no effect on the outcome.

Case A B C D F G D, F
⋃

m|n IEO(f,m) minT NΦ6(f)

1 Es Es 6 ∃ 6 ∃ {B,C} ∅ 5

2 Es Es ∃ 6∃ {C} {Di} 3

3 Es Es 6 ∃ ∃ {B} {Fj} 4

4 Es Es ∃ ∃ ∃Di = Fi ∅ {Di} 1

5 Es Es ∃ ∃ 6∃Di = Fi ∅ {Di, Fj} 2

6 Es In 6 ∃ {B} ∅ 3

7 Es In ∃ {∅} {Di} 1

8 In Es 6 ∃ {C} ∅ 2

9 In Es ∃ ∅ {F} 1

10 In In In ∅ ∅ 0

11 Es In In ∃ ∅ {G} 1

12 Es In In ∃ ∅ {Fj} 1

13 Es In In ∃ ∅ {Di} 1

14 Es In In 6 ∃ 6 ∃ 6 ∃ ∅ {C} 2

Fig. 2. Illustration 6.5

We make a few observations. Note firstly that reductions of A (or not)
play no role if either B or C are essential (first nine cases). Secondly, we
never need to know all of the G’s, and we only need to know existence when
A is essential and both B and C are inessential, and not always even then
(see cases 12 and 13). In particular, for this scenario, we never need to com-
pute the whole of CU(h, 6) before we know NΦn(f). In the case where A is
essential and B and C are inessential, we need only know the depth of A as
cases 11 to 14 show.

Nielsen type periodic numbers 125

Finally, it seems worth pointing out that the table of values for NΦ6(f)
covers all possible options for 0 to 5. There is no need to stop there. For
example, still with just one single orbit A at level 6, we could have NΦ6(f)
= 6 either for a single essential irreducible A, or two essential irreducible
B’s. The number NΦ6(f) can take the value 7, for example, as a single
essential irreducible B together with two essential irreducible C’s etc.

Remarks 6.6. (i) It should be obvious, even from our simple illustra-
tion 6.5, that there are many cases where the determination of appropriate
T ’s involves a lot less work than the determination of U(h, n). Case 1 of
that illustration and the combined example 4.1 and 4.1 (part 2) of [2] give
cases where Proposition 6.3 is useful. Illustration 6.5 also shows that many
times we do not need to complete either U(h, n) or CU(h, n) before we know
NΦn(f).

(ii) It would be interesting to have a computer program that incorporated
some of the efficiencies of this section and that could give reasonable length
examples illustrating this paper and its predecessor.

Acknowledgements. We would like to thank the referee for extremely
useful comments that led us to completely rewrite this paper in what we
believe is a much more readable and comprehensible way.

References

[1] E. Hart and E. Keppelmann, Explorations in Nielsen periodic point theory for the
double torus, Topology Appl. 95 (1999), 1–30.

[2] E. Hart, P. R. Heath and E. Keppelmann, Algorithms for Nielsen type periodic
numbers of maps with remnant on surfaces with boundary and on bouquets of circles
I, Fund. Math. 200 (2008), 101–132.

[3] P. R. Heath and E. Keppelmann, Fibre techniques in Nielsen periodic point theory
on nil and solvmanifolds. I, Topology Appl. 76 (1997), 217–247.

[4] P. R. Heath, R. Piccinini and C. Y. You, Nielsen-type numbers for periodic points. I,
in: Topological Fixed Point Theory and Applications (Tianjin, 1988), Lecture Notes
in Math. 1411, Springer, Berlin, 1989, 88–106.

[5] P. R. Heath and C. Y. You, Nielsen-type numbers for periodic points. II, Topology
Appl. 43 (1992), 219–236.

[6] B. Jiang, Lectures on Nielsen Fixed Point Theory, Contemp. Math. 14, Amer. Math
Soc., Providence, RI, 1983.

[7] S. Kim, The WYK algorithm for maps of aspherical figure-eight type finite polyhedra,
J. Pure Appl. Algebra 216 (2012), 1652–1666.

[8] S. Kim and P. Yi, Nielsen numbers of maps of aspherical figure-eight type polyhedra,
Forum Math. 27 (2015), 1277–1307.

[9] C. Staecker, Remnant inequalities and doubly-twisted conjugacy in free groups,
J. Pure Appl. Algebra 215 (2011), 1702–1710.

[10] J. Wagner, An algorithm for calculating the Nielsen number on surfaces with bound-
ary, Trans. Amer. Math. Soc. 351 (1999), 41–62.

http://dx.doi.org/10.1016/S0166-8641(97)00277-0
http://dx.doi.org/10.4064/fm200-2-1
http://dx.doi.org/10.1016/S0166-8641(96)00100-9
http://dx.doi.org/10.1016/0166-8641(92)90158-V
http://dx.doi.org/10.1016/j.jpaa.2011.10.032
http://dx.doi.org/10.1016/j.jpaa.2010.10.005
http://dx.doi.org/10.1090/S0002-9947-99-01827-9

126 E. L. Hart et al.

Evelyn L. Hart
Department of Mathematics
Colgate University
13 Oak Drive
Hamilton, NY 13346-1398, U.S.A.
E-mail: ehart@colgate.edu

Edward C. Keppelmann
Department of Mathematics
University of Nevada – Reno
1664 N. Virginia Street
Reno, NV 89557-0084, U.S.A.
E-mail: keppelma@unr.edu

Philip R. Heath
Department of Mathematics and Statistics

Memorial University of Newfoundland
St. John’s, NL, Canada, A1C 5S7

E-mail: prheath@mun.ca

	1 Introduction
	2 Preliminaries
	2.1 NPn(f) and Nn(f) and the basic periodic point definitions
	2.2 Wagner tails, the sets WO(hm), remnant

	3 The definition and structure of U(h,n)
	4 Word length arguments, the Twisted Conjugacy Theorem, data labels, and more properties of U(h,n)
	5 The algorithm for Nn(f)
	6 Remarks on practicality and efficiency
	6.1 Efficiencies in word length arguments
	6.2 Efficiencies using the data labels
	6.3 Writing Nn(f) as m|nNPm(f) + min(height(T))
	6.4 Ad hoc methods, an illustration

	References

