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Michael’s theorem for Lipschitz cells in o-minimal structures

Małgorzata Czapla and Wiesław Pawłucki (Kraków)

Abstract. A version of Michael’s theorem for multivalued mappings definable in
o-minimal structures with M -Lipschitz cell values (M a common constant) is proven.
Uniform equi-LCn property for such families of cells is checked. An example is given
showing that the assumption about the common Lipschitz constant cannot be omit-
ted.

1. Introduction. Assume that R is any real closed field and an expan-
sion of R to some o-minimal structure is given. Throughout the paper we
will be talking about definable sets and mappings referring to this o-minimal
structure. (For fundamental definitions and results on o-minimal structures
the reader is referred to [vdD] or [C].) In this article we adopt the following
definition of a closed cell.

A subset S of Rm (m ∈ Z, m > 0) will be called a closed (respectively,
closed M -Lipschitz) cell in Rm, where M ∈ R, M > 0, if

(i) when m = 1: S is a closed interval [α, β] (α, β ∈ R, α ≤ β), or
S = [α,+∞), or S = (−∞, α] (α ∈ R), or S = R, and

(ii) when m > 1: S = [f1, f2] := {(y′, ym) : y′ ∈ S′, f1(y′) ≤ ym ≤
f2(y

′)}, where y′ = (y1, . . . , ym−1), S′ is a closed (respectively, closed
M -Lipschitz) cell in Rm−1, fi : S′ → R (i = 1, 2) are continuous (re-
spectively,M -Lipschitz) definable functions such that f1(y′) ≤ f2(y′)
for each y′ ∈ S′, or S = [f,+∞) = {(y′, ym) : y′ ∈ S′, ym ≥ f(y′)},
or S = (−∞, f ] = {(y′, ym) : y′ ∈ S′, ym ≤ f(y′)}, or S = S′ × R,
where S′ is as before and f : S′ → R is continuous (respectively,
M -Lipschitz).
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Let F : A⇒ Rm be a multivalued mapping defined on a subset A of Rn;
i.e. a mapping which assigns to each x ∈ A a nonempty subset F (x) of Rm.
Then F can be identified with its graph, a subset of Rn×Rm. If this subset
is definable, we will call F definable. F is called lower semicontinuous if for
each a ∈ A, each u ∈ F (a) and any neighborhood U of u, there exists a
neighborhood V of a such that U ∩ F (x) 6= ∅ for each x ∈ V .

The aim of the present article is to prove the following theorem.

Theorem 1.1. Let F : A ⇒ Rm be a definable lower semicontinuous
multivalued mapping on a definable subset A of Rn such that every value F (x)
is a closed M -Lipschitz cell in Rm, where the constant M > 0 is independent
of x ∈ A. Then F admits a continuous definable selection ϕ : A→ Rm.

The following generalization of Theorem 1.1 is immediate.

Corollary 1.2. Let F : A ⇒ Rm be a definable lower semicontinuous
multivalued mapping on a definable subset A of Rn. If there is a continuous
definable mapping Φ : A → Aut(Rm) with values in the space of linear
automorphisms (1) of Rm such that Φ(x)(F (x)) is a closed M -Lipschitz cell
in Rm, then F admits a continuous definable selection ϕ : A→ Rm.

Theorem 1.1 is true for the semilinear expansion of R provided that A
is bounded (see Remark 2.6 below). Moreover, every closed semilinear cell
is Lipschitz and for every semilinear family of semilinear cells they are M -
Lipschitz with a common M [vdD, Chapter 1, (7.4)]. In this way we obtain
the following generalization of [AT2, Theorem 4.10].

Corollary 1.3. Let F : A⇒ Rm be a semilinear lower semicontinuous
multivalued mapping on a semilinear bounded subset A of Rn such that every
value F (x) is a closed semilinear cell in Rm. Then F admits a continuous
semilinear selection ϕ : A→ Rm.

For other results on multivalued mappings in connection with o-minimal
geometry we refer the reader to [AT1], [AT2] and [DP].

2. Proof of Theorem 1.1. The proof will be by induction on m. Con-
sider first the case m = 1. Then F (x) = {t ∈ R : f(x) ≤ t ≤ g(x)} for each
x ∈ A, where f : A → R ∪ {−∞} and g : A → R ∪ {+∞} are definable
functions (2). It is easy to check that F is lower semicontinuous if and only
if g is lower semicontinuous and f is upper semicontinuous. Therefore, the
problem reduces to the following.

Proposition 2.1. Let f : A → R ∪ {−∞} and g : A → R ∪ {+∞} be
definable functions such that f(x) ≤ g(x) for each x ∈ A, and f is upper

(1) The space Aut(Rm) is naturally identified with a subset of Rm2

.
(2) This means that f |f−1(R) and g|g−1(R) are definable.
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semicontinuous while g is lower semicontinuous. Then there exists a definable
continuous function ϕ : A→ R such that f ≤ ϕ ≤ g.

To prove Proposition 2.1, which is a definable version of the Katětov–
Tong Insertion Theorem, we need the following definable version of the Tietze
Theorem.

Theorem 2.2 (Definable Tietze Theorem). Let X and Y be definable
subsets of Rn such that Y is closed in X. Then every definable continuous
function ψ : Y → R has a continuous definable extension Ψ : X → R.

For a proof of Theorem 2.2 see [vdD, Chapter 8, (3.10)] (compare also
[AF, Lemma 6.6]).

Remark 2.3. According to [AT2, Theorem 3.3] Theorem 2.2 holds true
in the semilinear expansion of R, provided that Y is bounded.

Proof of Proposition 2.1. We use induction on d := dimA. The case
d = 0 is trivial. Assume that d > 0. Let

B := {a ∈ A : f and g are both continuous in a neighborhood of a in A}.
Then B is a definable, open and dense subset of A. Hence A \ B is de-
finable closed in A and dim(A \ B) < d. By induction hypothesis there
exists a definable continuous function ψ : A \ B → R such that f(x) ≤
ψ(x) ≤ g(x) for each x ∈ A \ B. By the Definable Tietze Theorem there
exists a definable continuous extension Ψ : A → R of ψ. Now set ϕ(x) :=
min(max(Ψ(x), f(x)), g(x)) for x ∈ A. It is clear that f ≤ ϕ ≤ g. Continuity
of ϕ on B is obvious, since Ψ, f and g are continuous on B.

We now check the continuity of ϕ at any a ∈ A \ B. We have ϕ(a) =
ψ(a) ∈ [f(a), g(a)]. Fix any ε > 0. There exists a neighborhood V of a
in A such that ψ(a) + ε > f(x), ψ(a) − ε < g(x), ψ(a) + ε > Ψ(x) and
ψ(a)− ε < Ψ(x) for each x ∈ V . Then

ϕ(a)− ε = ψ(a)− ε < Ψ(x) ≤ max(Ψ(x), f(x)) < ψ(a) + ε = ϕ(a) + ε

and ϕ(a)− ε < g(x). Hence

ϕ(a)− ε < min
(
max(Ψ(x), f(x)), g(x)

)
< ϕ(a) + ε.

Remark 2.4. The proof of Proposition 2.1 holds true in the semilinear
expansion of R under the assumption that A is semilinear bounded, provided
we apply a semilinear version of Theorem 2.2 with X = A (see Remark 2.3).

Assume now that m > 1 and our theorem is true for m− 1. To make the
induction hypothesis work we prove the following.

Proposition 2.5. Under the assumptions of Theorem 1.1, let

π : Rm 3 y = (y1, . . . , ym) 7→ y′ = (y1, . . . , ym−1) ∈ Rm−1
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be the natural projection. Let π ◦ F : A ⇒ Rm−1 be defined by (π ◦ F )(x) =
π(F (x)). Then, after identifying π ◦ F with its graph π ◦ F ⊂ Rn × Rm−1,
the multivalued mapping

G : π ◦ F 3 (x, y′) 7→ {ym ∈ R : (y′, ym) ∈ F (x)} ⊂ R
is lower semicontinuous.

Proof. By the definition of a closed cell, one can write, for each x ∈ A,
F (x) = {(y′, ym) : y′ ∈ π(F (x)), ym ∈ R, fx(y′) ≤ ym ≤ gx(y′)},

where fx, gx : π(F (x))→R are M -Lipschitz (or maybe fx=−∞, or gx=∞;
these cases will follow by a simple modification of the argument below).
Fix any (a, b′) ∈ π ◦ F , u ∈ G(a, b′) = {ym ∈ R : fa(b

′) ≤ ym ≤ ga(b
′)}

and any open interval (u − ε, u + ε). Let W be the open ball {y′ ∈ Rm−1 :
|y′−b′| < ε/(4M)}, where |·| is defined by |y′| = |(y1, . . . , ym−1)| = maxj |yj |.
By lower semicontinuity of F there exists a neighborhood V of a in A such
that F (x) ∩ (W × (u− ε/2, u+ ε/2)) 6= ∅ whenever x ∈ V .

Let (x, y′) ∈ (π◦F )∩(V ×W ). There exists (z′, v) ∈ F (x)∩(W×(u−ε/2,
u + ε/2)). Then y′ ∈ π(F (x)) and z′ ∈ π(F (x)); hence |y′ − z′| < ε/(2M)
and fx(z′) ≤ v ≤ gx(z

′). Thus, |fx(y′) − fx(z′)| ≤ M |y′ − z′| < 1
2ε. Hence

fx(y
′) ≤ fx(z′)+ 1

2ε ≤ v+
1
2ε < u+ε. Similarly, |gx(y′)−gx(z′)| < 1

2ε and so
gx(y

′) ≥ gx(z′)− 1
2ε ≥ v > u− ε. Finally, [fx(y′), gx(y′)]∩ (u− ε, u+ ε) 6= ∅,

which ends the proof.

To finish the proof of Theorem 1.1, observe that the mapping π◦F is lower
semicontinuous as the composition of a lower semicontinuous mapping with
a continuous one, so by the induction hypothesis there exists a continuous
definable selection ϕ′ for π ◦ F . We identify ϕ′ with its graph. By Proposi-
tion 2.5, G|ϕ′ : ϕ′ ⇒ R is lower semicontinuous; hence, by Proposition 2.1, it
admits a continuous definable selection σ : ϕ′ → R, which gives the required
selection ϕ = (ϕ′, σ ◦ (idA, ϕ′)).

Remark 2.6. The proof of Proposition 2.5 holds true for the semilinear
expansion of R, so in view of Remark 2.4, Theorem 1.1 holds true for the
semilinear structure under the assumption that A is semilinear and bounded.

3. A counterexample. We now give a semialgebraic example showing
that in Theorem 1.1 the assumption of common boundedness of the Lip-
schitz constants of the Lipschitz cells F (x) cannot be omitted, even if F is
continuous.

Let A = T1 ∪ T2 ⊂ R2, where

T1 = {(x1, x2) : x1 ∈ [0, 1], −x1 ≤ x2 ≤ x1},
T2 = {(x1, x2) : x1 ∈ [−1, 0], x1 ≤ x2 ≤ −x1}.
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We define F : A⇒ R2 by

F (x1, x2) =



{0} × [0, 1], (x1, x2) = (0, 0),
{(y, |y|/|x1|) : −x1 + x2 ≤ y ≤ x1}, x1 > 0, x2 ≥ 0,
{(y, |y|/|x1|) : −x1 ≤ y < x1 + x2}, x1 > 0, x2 ≤ 0,
{(y, 1− |y|/|x1|) : x1 + x2 ≤ y < −x1}, x1 < 0, x2 ≥ 0,
{(y, 1− |y|/|x1|) : x1 ≤ y ≤ −x1 + x2}, x1 < 0, x2 ≤ 0.

The graph of F is shown in Fig 1.
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Fig. 1. The graph of F

Suppose that F admits a continuous semialgebraic selection ϕ = (σ, ρ) :
A → R2. Then, for x1 > 0, σ(x1, x1) ≥ 0 and σ(x1,−x1) ≤ 0; hence, there
exists ξ ∈ [−x1, x1] such that σ(x1, ξ) = 0, so ρ(x1, ξ) = |σ(x1, ξ)|/|x1| = 0
and ϕ(x1, ξ) = (0, 0). Consequently, by continuity, ϕ(0, 0) = (0, 0). Similarly,
for any x1 < 0, there exists ξ ∈ [x1,−x1] such that ϕ(x1, ξ) = (0, 1); hence
ϕ(0, 0) = (0, 1), a contradiction.

Notice that in the above example the dimensions of both the domain and
the target space are minimal (see [CzP]).

4. M-Lipschitz cells as a uniformly equi-LCp family, with arbi-
trary p. Let SmM denote the set of all closedM -Lipschitz cells in Rm, where
M > 0 is a constant. We will show that SmM is uniformly equi-LCp, with ar-
bitrary p, in the sense of Michael [M]. This follows immediately from the fact
that every closed cell is contractible, together with the following proposition.

Proposition 4.1. Let M, ε ∈ R, M ≥ 1, ε > 0. Set k1 = l1 = 1
and km = 22m−2 and lm = 22m−3 for m ≥ 2. Endow Rm with the metric
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|(a1, . . . , am)−(b1, . . . , bm)| = maxj |aj−bj |. For any a = (a1, . . . , am) ∈ Rm,
consider the following cuboids with center a:

P (a, ε) := [a1 − k1ε, a1 + k1ε]× · · · × [am − kmMm−1ε, am + kmM
m−1ε],

Q(a, ε) := [a1 − l1ε, a1 + l1ε]× · · · × [am − lmMm−1ε, am + lmM
m−1ε].

Then, for any S ∈ SmM , if S ∩Q(a, ε) 6= ∅, then S ∩ P (a, ε) ∈ SmM .

Proof. The assertion is trivial for m = 1, so assume that m ≥ 2 and the
assertion is true for m − 1. Let π : Rm 3 (a1, . . . , am) 7→ (a1, . . . , am−1) ∈
Rm−1. Then π(P (a, ε)) = P (π(a), ε) and π(Q(a, ε)) = Q(π(a), ε). Let S ∈
SmM and S∩Q(a, ε) 6= ∅. Then π(S)∩Q(π(a), ε) 6= ∅. Hence, by the induction
hypothesis, T := π(P (a, ε)) ∩ π(S) is an M -Lipschitz cell in Rm−1. We
distinguish three cases.

(I) S = [f1, f2] = {y = (y′, ym) : y′ ∈ π(S), f1(y
′) ≤ ym ≤ f2(y

′)},
where y′ = (y1, . . . , ym−1) and fi : π(S)→ R (i = 1, 2) are M -Lipschitz. By
assumption, there exists u = (u′, um) ∈ S ∩ Q(a, ε). Then u′ ∈ T , f1(u′) ≤
um ≤ f2(u

′) and am − lmMm−1ε ≤ um ≤ am + lmM
m−1ε. Thus, for any

y′ ∈ T ,
f1(y

′) ≤ f1(u′) +M |y′ − u′| ≤ um +Mdiamπ(P (a, ε))

≤ am + lmM
m−1ε+M · 2km−1Mm−2ε = am + kmM

m−1ε,

and similarly

f2(y
′) ≥ f2(u′)−M |y′ − u′| ≥ um −Mdiamπ(P (a, ε))

≥ am − lmMm−1ε−M · 2km−1Mm−2ε = am − kmMm−1ε.

Consequently,

S ∩ P (a, ε) = {(y′, ym) : y′ ∈ T,
max(f1(y

′), am − kmMm−1ε) ≤ ym ≤ min(f2(y
′), am + kmM

m−1ε)}
is an M -Lipschitz cell.

In the cases (II) S = [f,+∞) and (III) S = (−∞, f ] we argue in a similar
way.
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