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Topological radical of a Banach module

by

Oleg Yu. Aristov (Obninsk)

Abstract. We introduce the concept of the topological radical of a Banach module.
This closed submodule has two descriptions: as the intersection of the ranges of maximal
contractive monomorphisms and as the union of the ranges of small morphisms. The
topological radical is an analytic analogue of the radical of a module over a unital ring
and has similar categorical properties.

1. Introduction. Consideration of projective covers in [A] prompted
us to seek some analogue for the notion of small submodule in the Banach
module context. Recall that a submodule Y in a module X over a ring is
called small (other terms are ‘superfluous’ and ‘coessential’) if for a submod-
ule Z in X, Y +Z = X implies Z = X. A generalization of Dixon’s theorem
on topologically nilpotent Banach algebras (see Theorem 2.2) leads us to
the definition of a small morphism. The range of a small morphism is a sub-
module in a Banach module and can be considered as a functional-analytic
analogue of small submodule.

Our main aim is to extend the concept of Jacobson radical from Banach
algebras to Banach modules. As a pattern we take the notion of the radical of
a module from ring theory. But our approach offers some functional-analytic
modifications. The Jacobson radical of a unital ring can be described as the
intersection of all maximal left ideals or as the set of all r such that 1 + ar
is invertible for every a. This concept applies as well to a unital Banach
algebra A because every maximal left ideal is closed, and 1 +ar is invertible
for every a ∈ A iff ar is topologically nilpotent (i.e. ‖(ar)n‖1/n → 0 for every
a ∈ A).

On the other hand, it is well known that the notion of radical can be
extended to modules. The radical of a unital module X over a unital ring is
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the intersection of all maximal submodules and coincides with the union of
all small submodules (the notation is radX). Note that for an element r of a
ring A, the submodule Ar is small iff 1+ar is invertible for every a. The pure
algebraic notion of the radical of a module is useful in Banach module theory
only in particular cases, for example, for finitely generated modules [A]. In
general, neither a maximal submodule nor a small submodule of a Banach
module has to be closed. But then again we cannot restrict ourselves to some
classes of closed submodules because submodules of the form A · x (which
need not be closed) play an important role in the basic theory of module
radicals. As we see below, the right way is to consider ranges of bounded
module morphisms as an intermediate class between closed submodules and
all submodules. But it seems more appropriate from the ideological and
technical point of view to work with morphisms themselves instead of their
ranges.

In this article we introduce the concept of the topological radical of a
Banach module. This closed submodule has two descriptions: as the inter-
section of the ranges of maximal contractive monomorphisms or as the union
of the ranges of small morphisms.

2. Small morphisms of Banach modules. Let A be a Banach alge-
bra. We suppose that the norm of multiplication in A is not greater than 1.
For n ∈ N set

(2.1) S(n) := sup ‖r1 · · · rn‖1/n,
where r1, . . . , rn run over the unit ball of A. If limn→∞ S(n) = 0 then A is
called topologically nilpotent. Note that A is topologically nilpotent if and
only if for every bounded sequence (rn) ⊂ A,

lim
n→∞

‖r1 · · · rn‖1/n = 0.

Obviously, a topologically nilpotent Banach algebra is radical.

Recall that C[0, 1] and L1[0, 1] are radical Banach algebras with respect
to the cut-off convolution. The former algebra is topologically nilpotent but
the latter is not [P, Section 4.8.8].

In [D] P. G. Dixon shows that A · X 6= X for every non-trivial left
Banach module X over a topologically nilpotent Banach algebra A (see also
the proof in [P, Theorem 4.8.9]). But in fact his argument gives a stronger
assertion. Set

πAX : A ⊗̂X → X : r ⊗ x 7→ r · x
for a left Banach A-module X, where ⊗̂ denotes the projective tensor prod-
uct of Banach spaces. (We also suppose that the norm of multiplication in
X is not greater than 1.) Below, “a module” means an A-module.
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Theorem 2.1 (Dixon). If X is a non-trivial left Banach module over a
topologically nilpotent Banach algebra A, then ImπAX 6= X.

We need a more general result.

Theorem 2.2. Let A be a topologically nilpotent Banach algebra, and
let φ : Y → X be a morphism of left Banach modules such that X = Imφ+
ImπAX . Then φ is surjective.

Proof. The assumption of the theorem means that the morphism

Y ⊕ (A ⊗̂X)→ X : (y, u) 7→ φ(y) + πAX(u)

is surjective. (Here the sum is endowed with the `1-norm.) By the open
mapping theorem there is C > 0 with the following property. For every x in
X there exist y ∈ Y , ri ∈ A, and xi ∈ X such that

(2.2) x = φ(y) +
∞∑
i=1

ri · xi and ‖y‖+
∑
i

‖ri‖ ‖xi‖ ≤ C‖x‖.

Now we fix x in X and choose by induction sequences (yn) ⊂ Y and
(vn) ⊂ X such that

(2.3) x = φ(yn) + vn,

where vn can be represented as

(2.4) vn =

∞∑
i=1

r1,i · · · rn,i · xi for some r1,i, . . . , rn,i ∈ A and xi ∈ X, i ∈ N,

and the following two conditions are satisfied:

‖yn+1 − yn‖ ≤ C
∑
i

‖r1,i · · · rn,i‖ ‖xi‖,(2.5) ∑
i

‖r1,i‖ · · · ‖rn,i‖ ‖xi‖ ≤ Cn‖x‖.(2.6)

Suppose that for n ∈ N we have elements y1, . . . , yn and v1, . . . , vn that
satisfy the above conditions, in particular, the condition (2.5) holds up to
n− 1. Fix decompositions in (2.3) and (2.4). Set ti := r1,i · · · rn,i. Applying
(2.2) we can write every xi as

(2.7) xi = φ(y′i) +
∑
j

sji · x′ji, where ‖y′i‖+
∑
j

‖sji‖ ‖x′ji‖ ≤ C‖xi‖.

Then

x = φ(yn) + vn = φ(yn) +
∑
i

ti · φ(y′i) +
∑
i,j

tisji · x′ji.

Now set yn+1 := yn+
∑

i ti ·y′i and vn+1 :=
∑

i,j tisji ·x′ji. It follows from (2.7)
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that ‖y′i‖ ≤ C‖xi‖. Hence,

‖yn+1 − yn‖ ≤
∑
i

‖ti‖ ‖y′i‖ ≤ C
∑
i

‖ti‖ ‖xi‖,

i.e. we obtain (2.5). By (2.6) and (2.7) we get∑
i,j

‖r1,i‖ · · · ‖rn,i‖ ‖sji‖ ‖x′ji‖ ≤ Cn+1‖x‖,

i.e. after an obvious change of notation we have (2.4) and (2.6) for n + 1.
By induction, there exist sequences with the desired properties.

Note that (2.6) implies (see (2.1))∑
i

‖r1,i · · · rn,i‖ ‖xi‖ ≤
∑
i

S(n)n‖r1,i‖ · · · ‖rn,i‖ ‖xi‖ ≤ S(n)nCn‖x‖

for every n. Therefore ‖vn‖≤S(n)nCn‖x‖ and ‖yn+1−yn‖≤S(n)nCn+1‖x‖
by (2.5). Hence for m > n we have

‖ym − yn‖ ≤
m−1∑
k=n

S(k)kCk+1‖x‖.

Since S(n) → 0, it follows that yn is a fundamental sequence and vn → 0.
Finally, from x = φ(yn) + vn we get x = φ(limn yn), i.e. x ∈ Imφ.

Notation 2.3. Let φ : Y → X and ψ : Z → X be morphisms of Banach
modules. Denote by φu ψ the morphism

Y ⊕ Z → X : (y, z) 7→ φ(y) + ψ(z).

Definition 2.4. We say that a morphism ψ : X0 → X of Banach
modules is small if for every morphism φ : Y → X such that φ u ψ is
surjective, φ is also surjective, i.e., Imφ+ Imψ = X implies Imφ = X.

Thus, Theorem 2.2 asserts that for every left Banach module X over a
topologically nilpotent Banach algebra A the morphism πAX is small.

Proposition 2.5. If ψ : X0 → X is a small morphism then τψ is small
for each module V and each morphism τ : X → V .

Proof. Let τ : X → V and φ : Y → V be morphisms of Banach modules
such that φu τψ is surjective. Consider the pullback diagram

Y ×V X //

φ′

��

Y

φ
��

X
τ // V

For every x ∈ X there are y ∈ Y and z ∈ X0 such that τ(x) = φ(y)+ τψ(z).
Then φ(y) = τ(x − ψ(z)). By explicit construction of Y ×V X this means
that w = (y, x − ψ(z)) ∈ Y ×X V and φ′(w) = x − ψ(z). Hence, φ′ u ψ is
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surjective. Since ψ is small, φ′ is also surjective. Therefore for every x ∈ X
there exists y ∈ Y such that φ(y) = τ(x). The assumption that φ u τψ is
surjective implies that φu τ is surjective. Thus, so is φ.

Proposition 2.6. Let ψ : X1 → X be a morphism of Banach modules,
and let ε : X0 → X1 be a surjective morphism of Banach modules such that
ψε is small. Then ψ is small.

Proof. Suppose that φ : Y → X is a morphism such that φ u ψ is
surjective. Then φuψε is also surjective. Since ψε is small, φ is surjective.

Recall that a left Banach A-module P is called strictly projective if for
each surjective morphism ε : Y → P of Banach A-modules there exists a
morphism ρ : P → Y such that ερ = 1. Denote by `1 the infinite-dimensional
Banach `1-space with a countable basis.

Theorem 2.7 (cf. [K, Th. 11.5.5]). Let I be a closed left ideal in a unital
Banach algebra A, and let ι : I → A be the natural inclusion. The following
conditions are equivalent:

(A) I is topologically nilpotent.
(B) For every unital left Banach A-module X the morphism I ⊗̂A X →

X : a⊗A x 7→ a · x of Banach A-modules is small.
(C) For every strictly projective unital left Banach A-module P the mor-

phism I ⊗̂A P → P : a⊗A x 7→ a · x of Banach A-modules is small.
(D) The morphism (ι⊗ 1) : I ⊗̂ `1 → A ⊗̂ `1 of left Banach A-modules is

small.

Proof. (A)⇒(B). If I is topologically nilpotent and X is a left Banach
A-module then by Theorem 2.2, πIX is small as a morphism of left Banach
I-modules. Hence, it is small as a morphism of left Banach A-modules.
Since πIX is the composition of a surjective morphism I ⊗̂X → I ⊗̂AX and
a morphism I ⊗̂A X → X, Proposition 2.6 implies (B).

(B)⇒(C). This it is obvious.

(C)⇒(D). It is easy to see that A ⊗̂ `1 is strictly projective. By assump-
tion

(2.8) I ⊗̂A A ⊗̂ `1 → A ⊗̂ `1 : a⊗A b⊗ x 7→ ab⊗ x

is a small morphism of left Banach A-modules. Since A is unital, I ⊗̂AA ∼= I,
and we have (D).

(D)⇒(A). Let (an) be a bounded sequence in I, and let {ei}i∈N be the
canonical basis in `1. Consider

(2.9) φ : A ⊗̂ `1 → A ⊗̂ `1 :

∞∑
i=1

bi ⊗ ei 7→
∞∑
i=1

biai ⊗ ei+1.
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It is obvious that φ is a morphism of left Banach modules. Fix λ ∈ C. Since

∞∑
i=1

biai ⊗ ei+1 ∈ I ⊗̂ `1,

we have I ⊗̂`1+Im(1+λφ) = A⊗̂`1. Since ι⊗1 is small, 1+λφ is surjective.
If (1 + λφ)(u) = 0 for some u =

∑
i bi⊗ ei, then b1 = 0 and bi+1− λbiai = 0

for all i. It follows that bi = 0 for all i, so that 1+λφ is injective. Thus, 1+λφ
is an isomorphism for every λ ∈ C. This implies that φ is a topologically
nilpotent operator, i.e. limn→∞ ‖φn‖1/n = 0.

It is clear that

‖φn(1⊗ e1)‖ = ‖a1 · · · an ⊗ en+1‖ = ‖a1 · · · an‖.

Therefore ‖a1 · · · an‖ ≤ ‖φn‖. The rest is obvious.

Considering every Banach algebra as an ideal in the unitization we have

Corollary 2.8. A Banach algebra A is topologically nilpotent if and
only if for every Banach A-module X the morphism A ⊗̂A X → X is small
if and only if for every strictly projective left Banach A-module P the mor-
phism A ⊗̂A P → P is small.

Note that the definition of S(n) is invariant under replacement of left
multiplication by right multiplication. So all results above can be applied to
right Banach modules.

If X and Y are left Banach A-modules we denote by Ah(X,Y ) the set of
all bounded A-module morphisms from X to Y . Recall that a left A-module
X is called unital if 1 · x = x for all x ∈ X.

Proposition 2.9. Let A be a Banach algebra, X and Y unital left Ba-
nach A-modules, and α in Ah(X,Y ). The following conditions are equiva-
lent:

(1) 1 − αφ is right invertible in the unital algebra Ah(Y ) for every
φ ∈ Ah(Y,X).

(2) α ◦ Ah(Y,X) is a small right ideal in Ah(Y ).

Proof. (1)⇒(2). Let L be a right ideal in Ah(Y ) such that α ◦ Ah(Y,X)
+L = Ah(Y ). Then there are φ ∈ Ah(Y,X) and ψ ∈ L satisfying αφ+ψ = 1.
By assumption ψ has a right inverse ψ1, hence, as L is a right ideal in Ah(Y ),
we have 1 = ψψ1 ∈ L, so that L = Ah(Y ).

(2)⇒(1). Let φ ∈ Ah(Y,X). Set L := (1 − αφ) ◦ Ah(Y ). Then 1 − αφ
∈ L; so that 1 ∈ α ◦ Ah(Y,X) + L. Therefore α ◦ Ah(Y,X) + L = Ah(Y ).
Since α ◦ Ah(Y,X) is small, L = Ah(Y ). This implies that 1 − αφ is right
invertible.



Topological radical of a Banach module 155

Theorem 2.10. Let X and P be unital left Banach A-modules. Suppose
that P is strictly projective and α ∈ Ah(X,P ). The following conditions are
equivalent:

(1) α is small.
(2) 1− αφ is right invertible in Ah(P ) for all φ ∈ Ah(P,X).
(3) α ◦ Ah(P,X) is a small right Ah(P )-submodule in Ah(P ).

Proof. (1)⇒(2). Let φ ∈ Ah(P,X). Then (1− αφ) u α : P ⊕X → P is
obviously surjective. Since α is small, 1−αφ is surjective. Since P is strictly
projective, 1− αφ admits a right inverse.

(2)⇒(1). Suppose η ∈ Ah(Y, P ) for some Y and ηuα is surjective. Since
P is strictly projective, ηuα is right invertible, i.e. there exist ψ1 ∈ Ah(P, Y )
and ψ2 ∈ Ah(P,X) such that ηψ1 + αψ2 = 1. By assumption ηψ1 is right
invertible. Hence, η is surjective.

(3)⇔(2) follows from Proposition 2.9.

A surjective morphism ε : X → V of Banach A-modules is said to be a
cover if a morphism φ : Y → X of Banach A-modules is surjective whenever
εφ is [A].

Proposition 2.11. A surjective morphism ε : X → V of Banach mod-
ules is a cover if and only if the embedding Ker ε→ X is a small morphism.

Proof. Denote the embedding Ker ε → X by ker ε. Suppose that ε is a
cover. Let φ : Y → X be a morphism of Banach modules such that φuker ε
is surjective. Note that ε(φuker ε) = εφ is also surjective. Since ε is a cover,
φ is surjective. Thus, ker ε is a small morphism.

Conversely, suppose that ker ε is small. Let φ : Y → X be a morphism
of Banach modules such that εφ is surjective. Then for every x ∈ X there
is y ∈ Y such that ε(x) = εφ(y). Hence x = φ(y) + (x − φ(y)) where
x− φ(y) ∈ Ker ε. Therefore φu ker ε is surjective. Since ker ε is small, φ is
surjective. Thus, ε is a cover.

3. Maximal contractive monomorphisms. Fix a unital Banach al-
gebra A and a left unital Banach A-module X. Consider a pre-order on the
set of contractive monomorphisms with range in X, defined by β � γ if
there exists a contractive morphism κ such that γ = βκ. We say that β and
γ are equivalent if κ is an isometric isomorphism. The pre-order induces an
order on the set of equivalence classes of contractive monomorphisms.

Remark 3.1. If X is unital and β : Y → X is a monomorphism then Y
is also unital. To see this, consider the decomposition Y = Y0 ⊕ Y1, where
Y0 = {y ∈ Y : 1 · y = 0} and Y1 = {y ∈ Y : 1 · y = y}. Since X is unital,

Ah(Y0, X) = 0. Therefore Y0 = 0. Thus, we do not need the restriction on
the initial module of a monomorphism.



156 O. Aristov

Definition 3.2. Let β : Y → X and γ : Z → X be contractive
monomorphisms.

(1) Denote by β ∨ γ the natural morphism (Y ⊕ Z)/Ker(β u γ) → X
associated with β u γ.

(2) Denote by β∧γ the natural morphism Y ×X Z → X, where Y ×X Z
is the pullback of β and γ.

It is not hard to check that β ∨ γ and β ∧ γ are contractive monomor-
phisms. For equivalence classes [β] and [γ] we set [β] ∨ [γ] := [β ∨ γ] and
[β] ∧ [γ] := [β ∧ γ]. It is easy to see that these operations are well-defined.

Proposition 3.3. Let β and γ be contractive monomorphisms. Then,
with respect to the order define above, [β]∨[γ] and [β]∧[γ] are the supremum
and the infimum of [β] and [γ], respectively.

The proof is standard.

Definition 3.4. We say that a contractive monomorphism α : Y → X
of left unital Banach A-modules is maximal if α is not surjective and for ev-
ery non-surjective contractive monomorphism β and every contractive mor-
phism κ the equality α = βκ implies that κ is an isometric isomorphism.

Thus, α is maximal iff [α] is maximal in the set of equivalence classes of
all non-surjective monomorphisms with range in X.

Recall that a morphism ε : Y → X is called a C-epimorphism for some
C ≥ 1 if for every x ∈ X there exist y ∈ Y such that x = φ(y) and
‖y‖ ≤ C‖x‖.

Proposition 3.5. For x0 ∈ X, set

τ : A→ X : a 7→ a · x0.
Suppose that φ : Y → X is a morphism such that x0 /∈ Imφ and φu τ is a
C-epimorphism for C ≥ 1. Then dist(x0, Imφ) ≥ 1/C.

Proof. Assume that ‖x0−φ(y)‖ < 1/C for some y ∈ Y . Since φuτ is a C-
epimorphism, there exist y′ ∈ Y and a ∈ A such that x0−φ(y) = φ(y′)+a·x0
and

‖y′‖+ ‖a‖ ≤ C‖x0 − φ(y)‖ < 1.

Thus, ‖a‖ < 1, hence 1− a is invertible in A. Therefore

x0 = φ((1− a)−1 · (y′ + y)).

Hence, x0 ∈ Imφ. We get a contradiction.

Theorem 3.6. Every maximal contractive monomorphism is an isome-
try.

Proof. Let α : Y → X be a maximal contractive monomorphism, so
Imα 6= X. Suppose that x0 ∈ X \ Imα. Define τ as in Proposition 3.5.
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Denote by β the natural monomorphism (Y ⊕ A)/Ker(αu τ)→ X and by
κ the composition

Y → Y ⊕A→ (Y ⊕A)/Ker(αu τ).

We claim that β is surjective. Indeed, assume otherwise. Since α is max-
imal, κ is an isometric isomorphism. In particular, there is y ∈ Y such that

(y, 0)− (0, 1) ∈ Ker(αu τ).

Hence, α(y) = x0, a contradiction.

Since β is surjective, so is α u τ . By the open mapping theorem,
α u τ is a C-epimorphism for some C ≥ 1. It follows Proposition 3.5 that
dist(x0, Imφ) ≥ 1/C. Since x0 is arbitrary, Imα is closed. Let γ : Imα→ X
be the natural embedding. Since α = γα and α is maximal, α is an isometry.

Theorem 3.7. Let X ′ be a closed submodule of X. Then the natural
embedding ι : X ′ → X is a maximal contractive monomorphism if and only
if X/X ′ is an irreducible module.

Proof. (⇒) Assume that ι is maximal. Let x0 ∈ X \ X ′ and x1 ∈ X.
Since α is maximal, X ′+A · x0 = X. In particular, there is a ∈ A such that
x1−a ·x0 ∈ X ′. Therefore x0 +X ′ is a cyclic element of X/X ′. Hence, X/X ′

is irreducible.

(⇐) Assume that X/X ′ is irreducible. Suppose that there are a non-
surjective contractive monomorphism β and a contractive morphism κ such
that βκ = ι.

Since X ′ ⊂ Imβ 6= X and X/X ′ is irreducible, Imβ = X ′. Therefore,
βκ = 1. Since β is a monomorphism, it is an isomorphism. Since β and κ
are contractive, κ is isometric.

Note that X/X ′ is irreducible iff X ′ is a maximal submodule in the alge-
braic sense. Thus, maximal monomorphisms can be described as embeddings
of closed maximal submodules.

Lemma 3.8. Let Z be a closed submodule of X and α : Y → X/Z a
maximal contractive monomorphism. Denote the projection X → X/Z by σ.
Then there exists a commutative diagram

W
µ //

β
��

Y

α
��

X
σ // X/Z

where β is a maximal contractive monomorphism.

Proof. Set W := Y ×X/Z X or, more precisely, W = {(y, x) ∈ Y ×X :
α(y) = σ(x)}. Denote by β and µ the morphisms (y, x) 7→ x and (y, x) 7→ y,
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respectively. Note that µ is surjective and Z ⊂ Imβ. It is obvious that β is
a contractive monomorphism.

Suppose that γ : V → X is a non-surjective contractive monomorphism
and κ : W → V is a contractive morphism such that β = γκ.

Assume that Imα + Im(σγ) = X/Z. Since Imα = Im(αµ) = Im(σβ) =
Im(σγκ), we have Im(σγ) = X/Z. It follows from Z ⊂ Imβ ⊂ Im γ that γ
is surjective, a contradiction. Hence, Imα+ Im(σγ) 6= X/Z.

Since α is maximal, Im(σγ) ⊂ Imα. By Theorem 3.6, α is an isometry,
therefore there is a well-defined contractive morphism δ : V → Y such
that αδ = σγ. The pull-back property implies that there is a contractive
morphism ρ : V → W such that βρ = γ. Then [β] = [γ]. Thus, β is
maximal.

Lemma 3.9. Let α and β be non-surjective contractive monomorphisms
with ranges in X such that β � α, and let φ be a morphism such that αu φ
is a C-epimorphism for some C ≥ 1. Then β u φ is a C-epimorphism.

Proof. Suppose that κ : Y → Z is a contractive morphism such that
α = βκ. Since αuφ is a C-epimorphism, for every x ∈ X there exist x0 ∈ X0

and y ∈ Y such that x = φ(x0) +α(y) and ‖x0‖+ ‖y‖ ≤ C‖x‖. Denote κ(y)
by z. Then x = φ(x0)+β(z) and ‖x0‖+‖z‖ ≤ ‖x0‖+‖y‖ ≤ C‖x‖. Therefore,
φu β is a C-epimorphism.

Lemma 3.10. Let C ≥ 1, and let φ be a contractive morphism with range
in X. Denote by Γ the family of all contractive monomorphisms α with range
in X such that

(1) α is not surjective;
(2) αu φ is a C-epimorphism.

Suppose that there are δ > 0 and x0 ∈ X such that dist(x0, Imα) ≥ δ for
every α ∈ Γ . Then for every α0 ∈ Γ there exists a maximal contractive
monomorphism γ such that γ ∈ Γ and γ � α0.

Proof. Set Γ ′ := {α ∈ Γ : α ≥ α0}. Suppose that Γ0 is a linearly ordered
subset of Γ ′. We claim that Γ0 has an upper bound.

Denote by Yα the initial module of α ∈ Γ0 and by καα′ the connecting
contractive morphism for α and α′ in Γ0 such that α′ � α. Then the family
(καα′) has an inductive limit Y in the category of contractive morphisms.
In particular, there is a family (κα : Yα → Y ) of contractive morphisms and
β : Y → X such that α = βκα for every α. Note that

⋃
Γ0

Imκα is dense
in Y , hence

⋃
Γ0

Imα is dense in Imβ. Since dist(x0, Imα) ≥ δ for all α, we
have dist(x0, Imβ) ≥ δ. Hence, β is not surjective. Applying Lemma 3.9 we
find that β u φ is a C-epimorphism. Therefore, β ∈ Γ ′ and β � α for every
α ∈ Γ0.
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Since Γ ′ is not empty and every linearly ordered subset in Γ ′ has an upper
bound, there is a maximal element γ in Γ ′. Now we claim that γ is a maximal
contractive monomorphism. Suppose that γ′ : Z → X is a non-surjective
contractive monomorphism and κ : Y → Z is a contractive morphism such
that γ = γ′κ. It follows from Lemma 3.9 that γ′ u φ is a C-epimorphism.
Hence, γ′ ∈ Γ ′. Since γ is maximal in Γ ′, κ is an isometric isomorphism.
Thus γ is a maximal contractive monomorphism. By construction γ � α0.

Remark 3.11. In the proof we have found the supremum of a directed
set of contractive monomorphisms implicitly. It is not hard to see that the
constructions of ∨ and ∧ from Definition 3.2 can be applied to arbitrary sets
of monomorphisms.

Proposition 3.12. Suppose that X is finitely generated. Then for every
non-surjective contractive monomorphism α0 with range in X there exists a
maximal contractive monomorphism γ such that γ � α0.

Proof. Let x1, . . . , xn be generators of X. Consider the morphisms

τi : A→ X : a→ a · xi (i = 1, . . . , n).

Since α0 is not surjective and α0 u τ1 u · · ·u τn is surjective, there exists a
minimal k in {1, . . . , n} such that α0uτ1u · · ·uτk is surjective. This implies
that there exists C ≥ 1 such that α0 u τ1 u · · ·u τk is a C-epimorphism.

Denote by Γ the family of all contractive monomorphisms β with range
in X such that β is not surjective and β u τk is a C-epimorphism. Set
β0 = α0 ∨ α1 ∨ · · · ∨ αk−1, where αi is a contractive monomorphism such
that Imαi = Im τi. Note that xk /∈ Imβ for every β ∈ Γ . It follows from
Proposition 3.5 that dist(xk, Imβ) ≥ 1/C for every β ∈ Γ . Thus, the condi-
tions of Lemma 3.10 are satisfied. Hence, there exists a maximal contractive
monomorphism γ such that γ � β0. Therefore γ � α0.

4. Topological radical of a Banach module. Note that the equiv-
alence classes of contractive morphisms form a lattice with respect to the
operations ∨ and ∧. Under some conditions there is a standard way to define
a radical in a lattice using small and maximal elements (see, for example,
[K, Ch. 9, Exercises]). But on the way we meet two difficulties. First, we de-
fine small and maximal morphisms in different categories of Banach modules
(the topological and the metric categories). Second, there are not sufficiently
many compact elements in our lattice. However, using Proposition 3.5 and
its corollaries we can find the desired topological interplay between small
and maximal morphisms.

Proposition 4.1. Let X be a left unital Banach A-module and let
x0 ∈ X. If

τ : A→ X : a→ a · x0
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is not small then there exists a maximal contractive monomorphism γ such
that x0 /∈ Im γ.

Proof. Since τ is not small, there exists a non-surjective morphism α0 :
Y → X such that α0 u τ is surjective. By the open mapping theorem, there
is C ≥ 1 such that α0 u τ is a C-epimorphism. We can assume α0 is a
contractive monomorphism.

Denote by Γ the family of all contractive monomorphisms α with range
in X such that α is not surjective and α u τ is a C-epimorphism for C
chosen above. Note that x0 /∈ Imα for every α ∈ Γ . Proposition 3.5 implies
that dist(x0, Imα) ≥ 1/C for every α ∈ Γ . It follows from Lemma 3.10
that there exists a maximal contractive monomorphism γ such that γ ∈ Γ .
Hence, x0 /∈ Im γ.

Theorem 4.2. Let X be a left unital Banach A-module. Set X1 =⋃
Imψ, where ψ runs all small morphisms with range in X, and set X2 =⋂
Im γ, where γ runs all maximal contractive monomorphisms with range

in X. Then X1 = X2 and this submodule of X is closed.

Proof. (1) Let x0 ∈ X2. Assume that τ : A → X : a → a · x0 is not
small. By Proposition 4.1 there exists a maximal contractive monomorphism
γ such that x0 /∈ Im γ. Therefore x0 /∈ X2. This contradiction implies that
τ is small. Thus, X2 ⊂ X1.

(2) Suppose that ψ is a small morphism with range in X. We can as-
sume ψ is a contractive monomorphism. Suppose that there is a maximal
contractive monomorphisms γ such that Imψ is not a subset of Im γ. Then
γ ∨ ψ = 1. Therefore, Im γ + Imψ = Im(γ ∨ ψ) = X. Since ψ is small, γ is
surjective. This contradiction implies that Imψ ⊂ Im γ. Thus, X1 ⊂ X2.

It follows from Theorem 3.6 that X2 is closed.

Definition 4.3. Let X be a left unital Banach A-module. We say that
the closed submodule of X from Theorem 4.2 is the topological radical of X,
and we denote it by t-radX.

Proposition 4.4. The topological radical of an irreducible Banach mod-
ule is trivial.

Proof. Let X be an irreducible Banach module, and let φ be a small
morphism with range in X. Then Imφ = X or Imφ = 0. Since φ is small and
X 6= 0, φ is not surjective. Hence, φ = 0. This implies that t-radX = 0.

Proposition 4.5. Let X be a finitely-generated Banach module. Then
the natural embedding ι : t-radX → X is a small morphism.

Proof. Let φ be a contractive monomorphism such that φuι is surjective.
If φ is not surjective it follows from Proposition 3.12 that there is a maximal
contractive monomorphism γ such that γ � φ. Then γ u ι is surjective and
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γ � ι (by the definition of the topological radical). This contradiction implies
that φ is surjective.

Proposition 4.6. If X is a unital finitely generated Banach module
over a unital Banach algebra A, then t-radX = radX. In particular, t-radA
coincides with the Jacobson radical of A.

The proposition follows immediately from Theorem 3.6 and the following
lemma.

Lemma 4.7. Every algebraically maximal submodule in a finitely gener-
ated Banach module is closed.

Proof. Let X0 be an algebraically maximal submodule in a finitely gen-
erated Banach A-module X. Let k be the minimal number such that for any
finite set generating X only k generators are not contained in X0. Note that
k > 0.

Fix generators x1, . . . , xn of X such that x1, . . . , xk ∈ X \X0. Then we
have xk+1, . . . , xn ∈ X0. Denote by U the set of all elements of the form

x =
∑
i>1

ai · xi + (1− a1) · x1,

where
∑

i ‖ai‖ < 1.
If there exists x0 ∈ X0 ∩ U , then x0 =

∑
i>1 ai · xi + (1− a1) · x1, where

‖a1‖ < 1. Therefore, 1− a1 is invertible and

x1 = (1− a1)−1
(
x0 −

∑
i>1

ai · xi
)
.

Hence, x0, x2, . . . , xn are generators of X but only k − 1 generators are not
in X0. This contradicts the minimality of k, so implies that X0 ∩ U = ∅.

It follows from the open mapping theorem that the surjective map

A ⊗̂ `1n → X : ei 7→ xi

is open. Therefore U is open. Since x1 ∈ U , we have x1 6∈ X0.
Now assume that X0 6= X0 and take y ∈ X0 \X0. Since X0 is maximal,

we have X0 + A · y = X. Therefore there are a ∈ A and x0 ∈ X0 such that
x0 +a ·y = x1. Note that x1 +a · (y′−y) = x0 +a ·y′ ∈ X0 for every y′ ∈ X0.
However, since x1 6∈ X0, we can take y′ ∈ X0 sufficiently close to y to satisfy
x1 + a · (y′ − y) 6∈ X0. This contradiction implies that X0 is closed.

Now we can establish the main properties of the topological radical,
which are similar to the algebraic case (cf. [K, Secs. 9.1, 9.2]).

Theorem 4.8. Let X be a unital left Banach A-module.

(1) If φ ∈ Ah(X,Y ) then φ(t-rad(X)) ⊂ t-radY .
(2) τ : A→ X : a→ a · x0 is small iff x0 ∈ t-radX.
(3) R ·X ⊂ t-radX, where R is the Jacobson radical of A.
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(4) t-rad(X/t-radX) = 0.
(5) If Z is a closed submodule in X such that t-rad(X/Z) = 0 then

t-radX ⊂ Z.

Proof. (1) follows from the definition and Proposition 2.5.
(2) See the proof of Theorem 4.2.
(3) Let x0 ∈ X. It is sufficient to show that τ ′ : R → X : r 7→ r · x0

is small. Since τ ′ is the composition of R → A, which is small by Proposi-
tions 4.5 and 4.6, and τ : A→ X, Proposition 2.5 implies that τ ′ is small.

(4) Suppose that x ∈ X is such that x+ t-radX ∈ t-rad(X/t-radX). By
the definition x + t-radX ∈ Imα for every maximal contractive monomor-
phism α : Y → X/t-radX. By Lemma 3.8 there exists a maximal contrac-
tive monomorphism β : W → X such that x ∈ Imβ. This implies that
x ∈ t-radX.

(5) Denote by σ the projection X → X/Z. It follows from (1) that
σ(t-radX) = 0. Therefore t-radX ⊂ Z.

Corollary 4.9. radX⊂ t-radX for each unital left BanachA-moduleX.

Proof. Suppose that x0 ∈ radX. Then A · x0 is a small submodule in X
[K, Sec. 9.1.3(a)]. Consider τ : A → X : a → a · x0. If φ : Y → X is such
that φ u τ is surjective then X = A · x0 + Imφ. Since A · x0 is small, φ is
surjective. Thus τ is a small morphism. By Theorem 4.8(2), x0 ∈ t-radX.

IfA is not unital we can treat each BanachA-moduleX as a unital Banach
module over the unitization A+ and consider the topological radical of X.

Lemma 4.10. Let A be a radical Banach algebra. Then

(1) radA = A2 and A2 ⊂ t-radA;

(2) if A admits a right b.a.i. then radA = A2 = A2 = t-radA.

Proof. (1) Since A+/A is classically semisimple, A is a left good ring [K,
9.7.2, 9.7.3(a)]. Therefore radX = A ·X for every left unital A+-module X

[K, 9.7.1]. In particular, radA = A2. The inclusion A2 ⊂ t-radA follows
from Theorem 4.8(3).

The second statement follows from the Cohen factorization theorem.

Consider C[0, 1] and L1[0, 1] as Banach algebras with respect to the
cut-off convolution

(f ∗ g)(s) :=

s�

0

f(t)g(s− t) dt.

It is well known that both algebras are radical.

Proposition 4.11.

(1) If A = (L1[0, 1], ∗), then t-radA = radA.
(2) If A = (C[0, 1], ∗), then t-radA 6= radA.
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Proof. (1) Since A = L1[0, 1] admits a b.a.i., Lemma 4.10 implies that
t-radA = radA.

(2) It is easy to see that I0 := {f ∈ C[0, 1] : f(0) = 0} is a closed
ideal in A = C[0, 1] and A2 ⊂ I0. Since smooth functions vanishing at 0
are dense in I0 and every such function is the convolution of a derivative
and a constant, we have A2 = I0. Note that A/I0 is one-dimensional. This
implies that I0 → A is a maximal contractive monomorphism. Therefore
radA ⊂ t-radA ⊂ I0. By Lemma 4.10, radA = A2 and I0 = A2 = t-radA.
To see that A2 6= I0 note that every function in A2 is majorized by a linear
function, therefore f(s) =

√
s is not in A2.

Recall that a left Banach A-module P is called projective if a morphism
of Banach A-modules with range in P admits a right inverse morphism
provided it admits a right inverse bounded operator.

Proposition 4.12. If P is a unital projective module with the approx-
imation property, then t-radP = R · P , where R is the Jacobson radical
of A.

Proof. By Theorem 4.8(3), R · P ⊂ t-radP .

On the other hand, suppose that x0 ∈ t-radP . Since P is projective and
has the approximation property, [S, Theorem 1(3)] implies that x0 can be
approximated in the norm topology by elements of the form

∑n
i=1 χi(x0) ·yi

where χ1, . . . , χn ∈ Ah(P,A) and y1, . . . , yn ∈ P . It follows from Theo-
rem 4.8(1) that χi(x0) ∈ R. Hence, x0 ∈ R · P .

Remark 4.13. It is not hard to check that in the case when P is free,
i.e. has the form A ⊗̂ E for some Banach space E, the argument of Propo-
sition 4.12 can be applied to the case when A or E has the approximation
property.
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