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1. Introduction and statement of results. Given an integer se-
quence, it is natural to ask which primes divide at least one term in the
sequence. More generally, what is the density of such primes? A theorem
of Hasse shows that the density of primes dividing numbers of form 2n + 1
is 17

24 , a result that is intimately connected to a question asked by Sierpiń-
ski [10] on the multiplicative order of 2 in finite fields. Lagarias [7] (see the
correction [8]) extended Hasse’s methods to show that the density of primes
dividing a term of the Lucas sequence is 2

3 . Hasse and Lagarias’ methods in-
clude taking field extensions created from the characteristic polynomials of
sequences and analyzing the resulting Galois groups, which depend entirely
on the behavior of the sequence in Fp. The Chebotarev density theorem can
then be applied to these groups to calculate numerical values.

In [6], Jones and Rouse extend this theme and employ the techniques of
Galois theory to study sequences attached to elliptic curves. It has long been
known that Galois representations attached to an elliptic curve encode much
of the arithmetic of points on the curve. Classically, the Galois representation
is constructed using the action of the absolute Galois group on the N -torsion
points of the identity on the curve. In [6], the authors modify the classical
representation to study N -division points of a non-identity point P . Fix
a prime `; when the Galois group associated to the `-division points is
as large as possible, they use this arboreal representation to calculate the
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density of primes p for which the reduction of P modulo p has order coprime
to `.

In the present paper, we extend the bridge between sequences, Galois
theory, and elliptic curves by using Galois representations to determine the
density of primes dividing the following non-linear, integral recurrence se-
quence. The motiviation for our work is a Somos-like sequence coming from
an elliptic curve not covered by the work of Jones and Rouse. We call this
novel sequence the ECHO sequence, which is defined as follows.

Definition 1.1. We define the ECHO sequence {bn} recursively by
(b0, b1, b2, b3) = (1, 1, 2, 1) and for n ≥ 4,

bn =


bn−1bn−3 − b2n−2

bn−4
if n 6≡ 0 (mod 3),

bn−1bn−3 − 3b2n−2
bn−4

if n ≡ 0 (mod 3).

Consider the elliptic curve E : y2+y = x3−3x+4 and P = (4, 7) ∈ E(Q).
We show in Lemma 3.4 that

(2n+ 1)P =

(
g(n)

b2n
,
f(n)

b3n

)
,

where g(n) = 2b2n − bn−3bn+3, and

f(n) =


b3n + 3b2n−1bn+2 if n ≡ 0 (mod 3),

b3n + b2n−1bn+2 if n ≡ 1 (mod 3),

b3n + 9b2n−1bn+2 if n ≡ 2 (mod 3).

This equation relates the question of whether a prime p divides some element
of the sequence {bn} to whether P has odd order in E(Fp), and Galois theory
can be readily applied to the latter problem. We explain this connection in
Section 3.

The motivation for looking at this specific curve and sequence is that the
Galois representations of the 2k division fields are not as large as possible,
which was the case in the work of Jones and Rouse. Their work shows that a
sequence arising from an elliptic curve with surjective 2-adic representation
has divisibility-density 11

21 .

In comparison, below are some approximate densities for our sequence.
We define π′(x) as the number of primes p less than x such that p divides
some term of the sequence. We have:
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x π′(x) π(x) π′(x)
π(x)

10 3 4 0.75

102 13 25 0.52

103 91 168 0.541666667

104 636 1229 0.517493897

105 5118 9592 0.533569641

106 41856 78498 0.533211037

107 354158 664579 0.532905794

108 3069170 5761455 0.532707450

109 27092923 50847534 0.532826685

1010 242426819 455052511 0.532744712

1011 2193850226 4118054813 0.532739443

This data suggests that the fraction converges to a limit different from 11
21 =

0.523809. We prove that this limit exists, and we compute its value:

Theorem 1.2.

lim
x→∞

π′(x)

π(x)
=

179

336
= 0.5327380952.

In the process, we obtain a general result on the image of the arboreal
representation:

Theorem 1.3. Let E be an elliptic curve over Q and let P be a ra-
tional point on E. Suppose further that the classical Galois representation
is surjective, and that P has no rational 2-division points. Then there are
only two possibilities for the image of the 2-adic arboreal representation, up
to conjugacy: the entirety of AGL2(Z/2kZ), and an index 4 subgroup that
we denote by Hk. As a consequence, the density of primes p for which the
reduction of P modulo p has odd order is either 11

21 or 179
336 .

Last, we construct a surface whose rational points correspond to pairs
(E/Q, P ∈ E(Q)) such that the 2-adic arboreal representation attached to
(E,P ) has image contained in the subgroup Hk. We use this surface to prove
the following:

Theorem 1.4. There exists a one-parameter family of curve-point pairs
(E,P ) such that infinitely many pairs in the family have arboreal image
conjugate to Hk. In particular, infinitely many pairs (E,P ) in our family
have the property that the density of primes p for which the reduction of P
modulo p has odd order is 179

336 .

2. Background. An elliptic curve E is a non-singular cubic curve de-
fined over a field K with a K-rational point on it. Such a curve has an equa-
tion of the form y2 +a1xy+a3y = x3 +a2x

2 +a4x+a6. Let E(K) be the set
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of points on the projective closure of E in P1(K). This set has the structure
of an abelian group: if P,Q ∈ E(K), and R = (x, y) is the third intersection
of the line through P and Q with E, then P +Q = (x,−y − a1x− a3). We
denote the abelian group structure on E(K) additively.

Given an elliptic curve E/Q, we say that E has good reduction at a
prime p if E/Fp is non-singular. Otherwise, we say that E has bad reduction
at p.

If P ∈ E(C), the m-division points of P are defined to be the points Q
for which mQ = P . We let [m−1]P denote the set of such points; this set
has m2 elements.

If K/Q is a finite extension, let OK denote the ring of algebraic integers
in K. A prime number p ramifies in K if pOK factors as

∏r
i=1 p

ri
i , where

the pi are prime ideals of OK and ri > 1 for some i. If, in addition, K/Q is

Galois and p is unramified in K/Q, then we define
[K/Q

pi

]
to be the unique

element σ ∈ Gal(K/Q) such that

σ(α) ≡ αp (mod pi)

for all α ∈ OK . The set
{[K/Q

pi

]}
is a conjugacy class in Gal(K/Q) which we

denote by
[K/Q

p

]
. To prove Theorem 1.2 we will use the Chebotarev density

theorem. This theorem states the following.

Theorem 2.1 ([2, Theorem 8.17, p. 153] or [5, p. 143]). If C ⊆ Gal(K/Q)
is a conjugacy class, then

lim
x→∞

∣∣{p prime : p ≤ x,
[K/Q

p

]
= C

}∣∣
π(x)

=
|C|

|Gal(K/Q)|
.

If E/Q is an elliptic curve, let Q(E[m]) denote the field obtained by
adjoining to Q all the x- and y-coordinates of points in E[m], the set of
points on E of order dividing m. We have E[m](C) ∼= (Z/mZ)2. Because
the group law on E is given by rational functions, it commutes with the
action of the Galois group, and as a consequence we have the classical Galois
representation ρE,m : Gal(Q(E[m])/Q) → Aut(E[m]) ∼= GL2(Z/mZ). This
Galois representation has the properties that if σ is the Artin symbol of a
prime ideal above p, then

tr ρE,m(σ) ≡ p+ 1−#E(Fp) (mod m),

and that det ρE,m(σ) ≡ p (modm). Moreover, by the Néron–Ogg–Shafarevich
criterion [12, Theorem VII.7.1, p. 184], Q(E[m])/Q is ramified only at primes
that divide m and primes for which E/Fp has bad reduction.

If E/Q is an elliptic curve and P ∈ E(Q), the extension Q([m−1]P )/Q is
Galois, and if β is a chosen element of [m−1]P , we have an arboreal Galois
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representation

ωE,m : Gal(Q([m−1]P )/Q)→ E[m] o Aut(E[m])

given by ωE,m(σ) = (σ(β)−β, σ|E[m]). Proposition VIII.1.5 on p. 193 of [12]

implies that Q([m−1]P )/Q is ramified only at primes at which E has bad
reduction and primes dividing m. We are most interested in the case that
m = 2k, E : y2 + y = x3 − 3x + 4, and P = (4, 7). This elliptic curve has
bad reduction only at p = 3 and p = 5. We let Kk = Q([2−k]P ) and define

ωk : Gal(Kk/Q)→ AGL2(Z/2kZ) := (Z/2kZ)2 o GL2(Z/2kZ).

We represent elements of AGL2(Z/2kZ) as pairs (~v,M) of column vectors ~v
and 2× 2 matrices M . The group law is given by

(~v1,M1) ∗ (~v2,M2) = (~v1 +M1~v2,M1M2).

If E/K is an elliptic curve and K is a number field, then for each prime
ideal p above a prime p of OK for which E has good reduction, there is a
reduction homomorphism φp : E(K)→ E(OK/p). A point Q in E(K) maps
to the point at infinity in E(OK/p) if and only if the x- and y-coordinates of
Q have negative p-adic valuation. Another useful property of these reduction
maps is that (see [12, Proposition VII.3.1, p. 176]) the only points of finite
order in E(K) that can be contained in kerφp have order a power of p.

3. Connection between the ECHO sequence, E, and P . We first
translate the problem of finding the density of primes dividing a term in
the sequence into a question about elliptic curves by showing that p | bn for
some n ≥ 0 if and only if P = (4, 7) ∈ E(Fp) has odd order.

To prove this, we introduce several lemmas that establish integrality and
coprimality conditions on our sequence, and then prove the formula stated
in Lemma 3.4. As a quick remark, one can extend the sequence into negative
indices by noting that

bn =


bn+3bn+1 − b2n+2

bn+4
if n 6≡ 2 (mod 3),

bn+3bn+1 − 3b2n+2

bn+4
if n ≡ 2 (mod 3).

In fact, induction shows that the ECHO sequence is symmetric by the re-
lation bn = −b−(n+1). Thus, the formulas proven here can extend in both
directions, and we may use negative indices to establish base cases as needed.

Lemma 3.1. The denominator of bn is coprime to 3, and {bn (mod 3)}
is periodic.

Proof. Write bn = an/cn where an, cn ∈ Z are coprime. Interpret bn as
bn = anc

−1
n ∈ F3. We claim that for n ≡ 0 (mod 9),
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(bn, bn+1, bn+2, bn+3, bn+4, bn+5, bn+6, bn+7, bn+8)

≡ (1, 1, 2, 1, 0, 2, 1, 2, 2) (mod 3).

We will use induction to prove this; the base cases are simple to check.
Assume that the sequence is periodic for k < n, and suppose that n ≡ 0
(mod 9). Then the first eight congruences are easily checked.

To calculate bn+8, let a = bn, b = bn+1, c = bn+2, d = bn+3, and e = bn+4,
and write bn+5 through bn+7 in terms of b, c, d, e. Then writing bn+8 in terms
of b, c, d, e, we have

bn+8 =
Ke− bd7 + c2d6

b3c2de
,

where Ke = −9b3de4 − 3b2c2e4 + 9b2cd2e3 − 6b2d4e2 + bc3de3 − 3bc2d3e2 +
3bcd5e− c5e3 + 3c4d2e2 − 3c2d4e. Therefore

bn+8 =
Ke− bd7 + c2d6

b3c2de
=
Ke− d6(bd− c2)

b3c2de
=
K − ad6

b3c2d
≡ K − a ≡ K + 2 ≡ 2 (mod 3),

hence bn+8 ≡ 2 (mod 3).

Lemma 3.2. For n ≥ 0 we have bn ∈ Z and gcd(bn, bn−3) = gcd(bn, bn−2)
= gcd(bn, bn−1) = 1.

Proof. We will prove this by induction on the index n:

The base cases can be easily checked. Assume for k < n that bk ∈ Z and
that bk is coprime to bk−3, bk−2, and bk−1. Let bn−7 = a, bn−6 = b, bn−5 = c.
If n− 4 ≡ 1 (mod 3), then

bn−4bn−8 = bn−5bn−7 − b2n−6 ⇒ ac− b2 ≡ 0 (mod bn−4),

bn−3bn−7 = bn−4bn−6 − b2n−5 ⇒ bn−3 ≡ −c2/a (mod bn−4),

bn−2bn−6 = bn−3bn−5 − 3b2n−4 ⇒ bn−2 ≡ −c3/ab (mod bn−4),

bn−1bn−5 = bn−2bn−4 − b2n−3 ⇒ bn−1 ≡ −c3/a2 (mod bn−4).

Note that

bn−1bn−3 − b2n−2 ≡
−c3

a2
· −c

2

a
− c6

a2b2
≡ c5b2 − c6a

a3b2

≡ −c
5(ac− b2)
a3b2

(mod bn−4),

hence bn−1bn−3−b2n−2 is congruent to 0 modulo bn−4. Therefore, bn−4 divides
bn−1bn−3 − b2n−2, and so bn ∈ Z.

The other two cases can be similarly checked.

A straightforward argument can be made using Lemma 3.1 to show that
if p | bn, then p - bn−1, p - bn−2, and p - bn−3.
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We now turn to connecting the sequence to our elliptic curve. One pre-
liminary is required.

Lemma 3.3. For n ≥ 0, define

h(n) =


b2n−3b

2
n + bn−3b

3
n−1 + 3b3n−2bn − 3b2n−2b

2
n−1 if n ≡ 0 (mod 3),

3b2n−3b
2
n + bn−3b

3
n−1 + b3n−2bn − b2n−2b2n−1 if n ≡ 1 (mod 3),

b2n−3b
2
n + 3bn−3b

3
n−1 + b3n−2bn − 3b2n−2b

2
n−1 if n ≡ 2 (mod 3).

Then h(n) = 0 for all n ∈ N.

Proof. We proceed by induction. The base case of n = 1 is easy to verify
by computation.

Now suppose that the claim is true for k < n. If n ≡ 1 (mod 3), then

h(n) = 3b2n−3b
2
n + bn−3b

3
n−1 + b3n−2bn − b2n−2b2n−1

= bn(b3n−2 + 3b2n−3bn) + b2n−1(bn−3bn−1 − b2n−2)

= bn

(
b3n−2 + 3b2n−3 ·

bn−3bn−1 − b2n−2
bn−4

)
+ b2n−1bn−4 ·

(bn−3bn−1 − b2n−2)
bn−4

= bn

(
b3n−2 + 3b2n−3 ·

bn−3bn−1 − b2n−2
bn−4

)
+ b2n−1bn−4bn

=
bn
bn−4

· (b2n−4b2n−1 + bn−4b
3
n−2 + 3b3n−3bn−1 − 3b2n−3b

2
n−2)

=
bn
bn−4

· h(n− 1).

The equations for n ≡ 1, 2 (mod 3) similarly reduce, and in general, h(n) =
(bn/bn−4) · h(n− 1). Therefore, by induction, h(n) = 0 for all n ≥ 0.

This suffices to prove the following.

Lemma 3.4. Define P = (4, 7) on E : y2 + y = x3 − 3x + 4. Then for
n ≥ 0,

(2n+ 1)P =

(
g(n)

b2n
,
f(n)

b3n

)
,

where g(n) = 2b2n − bn−3bn+3, and

f(n) =


b3n + 3b2n−1bn+2 if n ≡ 0 (mod 3),

b3n + b2n−1bn+2 if n ≡ 1 (mod 3),

b3n + 9b2n−1bn+2 if n ≡ 2 (mod 3).

Furthermore, each coordinate in this expression is in reduced form.

As a consequence of Lemma 3.4, the proof of the following is easily
obtained.
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Corollary 3.5. Suppose p is a prime for which E(Fp) has good reduc-
tion. Then p | bn for some n ≥ 0 if and only if P ∈ E(Fp) has odd order.

Proof of Lemma 3.4. Proceed by induction. For n = 0, 1, 2,
(2 · 0 + 1)P = (4, 7), (2 · 1 + 1)P = (−1, 2), and (2 · 2 + 1)P =

(
1
4 ,
−19
8

)
; thus

the base cases are true.

Suppose that the claim is true for all n ≤ k ∈ N. Thus,

(2k + 1)P =

(
2b2k − bk−3bk+3

b2k
,
f(k)

b3k

)
.

This, along with 2P = (1, 1), implies that

(2(k + 1) + 1)P = (2k + 1)P + 2P =

(
2b2k − bk−3bk+3

b2k
,
f(k)

b3k

)
+ (1, 1).

By substituting the equation of the line in for y and examining the x2

coefficient, the x-coordinate of (2(k + 1) + 1)P is
(β−1
α−1

)2 − 1 − α for α =

(2b2k − bk−3bk+3)/b
2
k and β = f(k)/b3k. Let α′ = 2b2k+1 − bk−2bk+4/b

2
k+1; we

hope to show that α′ is the x-coordinate of (2(k + 1) + 1)P . In doing this,
it suffices to show that

(1)

(
β − 1

α− 1

)2

− 1− α− α′

is equal to 0.

Using our recursive definition for {bn}, we may substitute higher-valued
sequence points in terms of lower points in (1) so that (1) is written as a
rational fraction in terms of only the four sequence points bk−3 through bk.
Magma explicitly tells us that h(k) = 0 is a factor of the numerator (for
the same h(n) defined in Lemma 3.3). Therefore, (1) equals 0, and so the
x-coordinate is α′.

Next, because E : y2 + y = x3 − 3x + 4, the addition of the two points
is the third intersection point reflected over the line y = −1

2 . This action
sends any point (γ, δ) to (γ,−δ − 1).

The third point is given by substitution of the newly found x = α′. Thus,
using the line equation it suffices to show that

−β − 1

α− 1
(α′ − 1)− 2 =

f(k + 1)

b3k+1

if and only if

(2)

f(k)

b3k
− 1

2b2k − bk−3bk+3

b2k
− 1

·
(

2b2k+1 − bk−2bl+4

b2k+1

− 1

)
+ 2 +

f(k + 1)

b3k+1
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is zero. In similar fashion to finding the x-coordinate, (2) may be rewritten
with only terms bk−3 through bk by substitution. Magma tells us this has
h(k) as a factor of the numerator. Thus, (2) is always 0 and f(k + 1)/b3k+1
is the y-coordinate as desired, which completes the induction. Therefore,
(2n+ 1)P = (g(n)/b2n, f(n)/b3n).

To see that this is in reduced form, note that Proposition A.8 below
implies that gcd(bn, bn±3) = 1. Thus, the x-coordinate (2b2n − bn−3bn+3)/b

2
n

is already in reduced form, and hence so is the y-coordinate, having b3n in
its denominator.

4. Computing limx→∞ π
′(x)/π(x) up to 1011. The connection be-

tween the sequence and elliptic curve gives us a way to explicitly compute
π′(x) for x < ∞. We test whether P has odd order for those primes less
than x with good reduction.

If p is a prime of good reduction, Corollary 3.5 allows us to determine
whether or not p divides a term in the sequence, depending on whether
P ∈ E(Fp) has odd order. We must also consider the cases where the curve
has bad reduction. Since our curve has discriminant −35 · 52, the only bad
reductions are at p = 3, 5. As a result of Lemma 3.1, the prime 3 divides
a term in our sequence, and so is included in our calculation of π′(x). In
contrast, we show below that 5 does not divide any term in the sequence,
and so is not included in the computation of π′(x).

Lemma 4.1. No term in the sequence is divisible by 5.

Proof. None of the first 24 terms of the sequence is congruent to 0 mod-
ulo 5. By induction, it can be shown that no element of the sequence is
divisible by 5 because the sequence is periodic modulo 5, with period 24.
Thus, the desired result follows.

In order to determine the primes less than 1011 for which P ∈ E(Fp) has
odd order, we wrote code using PARI/GP [9] to perform computations on
a server with 24 CPUs, each of which was an Intel Xeon E5-2630 2.3 GHz
processor. By dividing the task into 24 different processors, we essentially
divided 1011 by 24 and computed the number of primes for which P ∈ E(Fp)
has odd order for each of the 24 ranges. The completion of all computations
required approximately 4 days. Upon determining the primes of odd order,
we then calculated means using the equation

mean = π′(x)/number of primes,

where x = 10k for 1 ≤ k ≤ 11 and π′(x) equals the number of primes less
than x for which P ∈ E(Fp) has odd order.

With knowledge of the prime factorization of the denominator of the
fraction above, we made calculations to hypothesize which fraction correctly
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described the number of all primes for which P ∈ E(Fp) has odd order.
It was known, after studying the work of Rouse and Jones [6], that the
prime factorization of the denominator should contain a power of 2 and
some factor of 63. Therefore, there were approximately six cases, as the
power of 2 varied, and 3 and/or 7 were included in the factorization. With
the theoretical values for each mean depicting a value close to 0.53273,
the mean for the 1011 case was used to find the numerator of the fraction
by multiplying the denominator by 0.532739443. We model the computed
number of primes for which P ∈ E(Fp) has odd order as a binomial random
variable with probability p, where p is one of the fractions described above.
We computed the standard deviation, variance, and standard error, and z-
score for each choice of p to determine which was most consistent with our
data. After studying the z-scores for each of the six cases, we determined
that the denominator was 336, with a prime factorization of 24 · 3 · 7. We
calculated the numerator to be 179, using the mean of the 1011 case, and
so we predicted the fraction to be 179

336 , yielding a decimal of 0.532738095
with z-scores of an absolute value less than 0.7. The most positive z-score
was 0.582 for the 104 case and the most negative z-score was −0.674 for the
109 case. We determined that the same z-scores and fraction were the best
representation of three of the six different cases. Thus, our data supports the
notion that the fraction 179

336 is an adequate model for the density of primes
for which P ∈ E(Fp) has odd order.

5. Relating odd order to the arboreal representation. We now
define a condition equivalent to P = (4, 7) having odd order in E(Fp) for
a prime integer p. This will relate the current problem to arboreal Galois
representations, which gives us more tools to work with. From now on, we
consider only primes not equal to 2, 3, or 5, which are the ramified primes
or primes of bad reduction.

We fix the following terminology. Let {βk(i)} be the set of elements of

E(C) for which 2k ·βk(i) = P for i ∈ {1, . . . , 4k}. Let Kk be the field obtained
by adjoining to Q all the x- and y-coordinates of such points {βk(i)}. Also,
let x(βk(i)) and y(βk(i)) denote the x- and y-coordinates of βk(i).

Theorem 5.1. Let p be a prime unramified in Kk, (~v,M) ∈ ωk
([Kk/Q

p

])
,

and det(M − I) 6≡ 0 (mod 2k). Then the point P has odd order in E(Fp) if
and only if ~v is in the column space of M − I.

Proof. (⇒) Suppose that P has odd order in E(Fp) for some prime p.
Note that an element a in a finite abelian group G has odd order if and
only if for any positive integer k there exists βk ∈ G such that 2k · βk = a.
Thus, for every k, there exists βk(n) ∈ E(Fp) such that 2k · βk(n) = P
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for some n ∈ {1, . . . , 4k} for each integer k. There is a bijection between
the 2k-division points of P over Fp and the 2k-division points of P over Kk,
because the difference between any two 2k-division points of P is a 2k-torsion
point and the reduction modulo p map is injective on torsion points with
order coprime to the odd prime p. Therefore we know we may identify this
Fp-point βk(n) with one βk(n) in Kk.

As the reduction of βk(n) is in E(Fp), it is fixed by the Frobenius auto-

morphism, which corresponds to some element of
[Kk/Q

p

]
. Let σp =

[Kk/Q
p

]
for some prime ideal p over p be such an element. Then σp(βk(n))−βk(n) ≡ 0

(mod p). But σp(βk(n))−βk(n) is 2k-torsion and the reduction map is injective
on torsion coprime to p, so in fact σp(βk(n)) = βk(n).

Recall the homomorphism ωk : Gal(Kk/Q)→ AGL2(Z/2kZ). Define the
action of g = (~v,M) ∈ AGL2(Z/2kZ) on ~x ∈ (Z/2kZ)2 by

g(~x) = M · ~x+ ~v.

Fix some βk(m) ∈ [2k]−1P and then ωE,2k(σ) = (σ(βk(m))−βk(m), σ|E[2k]).

Note that the difference of any 2k-division points of P is a 2k-torsion point.
The set {βk(i) − βk(m)} is thus equal to the set of 2k-torsion points, which

is isomorphic to (Z/2kZ)2. Since we have a bijection between {βk(i)} and

{βk(i) − βk(m)}, we have a bijection between {βk(i)} and {~x ∈ (Z/2kZ)2}.
Furthermore, it is easy to check that this bijection respects the group actions
involved.

We have σp =
[Kk/Q

p

]
and βk(n) ∈ E(C) such that σp(βk(n)) = βk(n).

Let ωE,2k(σp) = (~v,M) and ~x correspond to βk(n) by our bijection. Finally,
σp(βk(n)) = βk(n), so ωE,2k(σp)(~x) = ~x, and M ·~x+~v = ~x. Hence, (M−I)~x =
−~v. Equivalently, ~v is in the column space of M − I.

(⇐) Conversely, suppose there exists an element (~v,M) of the image
of ωk, with ~v in the column space of M − I, det(M − I) 6≡ 0 (mod 2k), and

(~v,M) ∈ ωk
([Kk/Q

p

])
. Then (M − I)~x = −~v for some ~x, which implies that

M~x + ~v = ~x. Thus, there is a vector ~x fixed by the action of (~v,M). By
the above bijection, we know that the fixed point ~x corresponds to exactly

one βk(i), and that the pre-image of (~v,M), an element of
[Kk/Q

p

]
, fixes it.

Thus, the existence of a solution to the equation (M − I)~x = −~v implies
that the coordinates of some βk(i) are fixed in Kk by σp. By definition of
the Artin symbol, this implies that σp fixes the coordinates of βk(i) (mod p).
Since σp is the Artin symbol of Gal(Kk/Q) over a prime ideal, it is in fact
the Frobenius automorphism, defined by σp(x) ≡ xp (mod p). Furthermore,

the Frobenius automorphism is a generator of Gal
(OKk/p

Fp

)
. Thus, βk(i) is

fixed by all of Gal
(OKk/p

Fp

)
, and we conclude that βk(i) is Fp-rational.
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Finally, the classical theory of Galois representations shows that
det(M − I) is equal to the order of E(Fp) (mod 2k). Now det(M − I) 6≡ 0
(mod 2k), so the order of E(Fp) is not congruent to 0 (mod 2k). Recall

that if a is an element of a group, then order(na) = order(a)
gcd(order(a),n) . Since the

order of βk(i) divides the order of the group, it follows that order(2P ) =

order(2k+1βk(i)) = order(P ). We conclude that P has odd order.

Thus, P has odd order in E(Fp) for an unramified integer prime p pre-
cisely when −~v is in the column space of M − I, where (~v,M) ∈ im(ωk),

det(M − I) 6≡ 0 (mod 2k), and (~v,M) ∈ im
([Kk/Q

p

])
.

6. Kinetic subgroups of AGL2(Z/2kZ). The work so far suggests that
understanding the image of the arboreal representation will help to relate
P to fields Fp for which P ∈ E(Fp) has odd order. This becomes a group
theory question concerning the affine general linear groups. We present a
system of subgroups that help dissect the image. As preliminaries, we use
the following terminology.

Definition 6.1. Let a subgroup G ⊂ AGL2(Z/2kZ) be called kinetic if
both the following projection maps are surjective:

pr : G� GL2(Z/2kZ), φ : G� AGL2(Z/2Z).

Definition 6.2. A calculation in Magma shows that exactly one proper
subgroup G ⊂ AGL2(Z/22Z) is kinetic, up to conjugacy; let H2 denote a
specific representative of the conjugacy class. Let ϕk : AGL2(Z/2kZ) →
AGL2(Z/2k−1Z) be the canonical projection from AGL2(Z/2kZ) down to
AGL2(Z/2k−1Z) for k ≥ 2. Then for k ≥ 3, Hk is recursively defined as

Hk := ϕ−1k (Hk−1).

For future use, it should be noted Magma also shows H3 to be the only
proper kinetic subgroup of AGL2(Z/23Z) (up to conjugacy).

For reference, a set of generators for H2 is{([
1

2

]
,

[
2 1

3 0

])
,

([
3

3

]
,

[
2 3

1 3

])}
.

Furthermore, H2 is an index 4, maximal subgroup of AGL2(Z/22Z) (1).

Note that the kinetic conditions are given by surjectivity of maps. A
consequence is that if a group surjects onto a kinetic group, it tends to
inherent kinetic conditions. We claim that the only kinetic subgroups of

(1) For computational purposes, it is easier to use a representation of AGL2(Z/nZ)
embedded in GL3(Z/nZ) with the bijection (~v,M) ↔ [M ~v

0 1 ].
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AGL2(Z/2kZ) for k ≥ 2 are exactly Hk (up to conjugacy) and the whole
group AGL2(Z/2kZ) itself. One direction is given here:

Lemma 6.3. Both AGL2(Z/2kZ) and Hk are kinetic subgroups of
AGL2(Z/2kZ).

Proof. It is clear that the maps φ : AGL2(Z/2kZ) → AGL2(Z/2Z) and
pr : AGL2(Z/2kZ)→ GL2(Z/2kZ) are both always surjective.

For Hk, the claim is true by induction. By definition, H2 was defined
to be a proper kinetic subgroup of AGL2(Z/22Z). For all k > 2, since Hk

was defined as the pre-image of Hk−1, it is clear that both Hk projects
onto all of GL2(Z/2kZ) since Hk−1 has second component intersecting all of
GL2(Z/2k−1Z) and also that Hk surjects onto AGL2(Z/2Z).

To show the converse, namely, that Hk is the only proper kinetic sub-
group of AGL2(Z/2kZ), it turns out to be sufficient to examine only the
case k = 3 by Lemma 6.6, which will follow from some standard preliminary
facts. (Recall that the Frattini subgroup Φ(G) of a group G is the intersection
of all maximal subgroups of G.)

Proposition 6.4. Let G be a group and Φ(·) be the Frattini subgroup.

• Suppose N E G is a normal subgroup. Then Φ(N) ⊂ Φ(G).
• Suppose G is a 2-group. Then for all g in G, g2 ∈ Φ(G).

Proposition 6.5. |GL2(Z/2kZ)| = 6 · 16k−1 and |AGL2(Z/2kZ)| =
24 · 64k−1.

Lemma 6.6. Fix k ≥ 3 and consider r ∈ N such that 3 ≤ r ≤ k. If
there exists (~x,M) ∈ AGL2(Z/2kZ) such that (~x,M) ≡ (~0, I) (mod 2r),
then (~x,M) ∈ Φ(AGL2(Z/2kZ)).

Proof. Let Nk :=ker(φk). Recall that φk : AGL2(Z/2kZ)� AGL2(Z/2Z)
is defined as the natural quotient map. And by the counting formula,

|Nk| =
|AGL2(Z/2kZ)|
|AGL2(Z/2Z)|

=
24 · 64k−1

24
= 26(k−1).

Thus, Nk is a 2-group.

We proceed by induction on the value k − r. For the case r = k, it is
clear that (~0, I) ∈ AGL2(Z/2kZ) and is in Φ(AGL2(Z/2kZ)).

Suppose that the claim is true for all r ≥ l+1. Then examine an arbitrary
element (~x,M) ∈ AGL2(Z/2kZ) such that

(~x,M) ≡ (~0, I) (mod 2l).

Thus, (~x,M) = (2l~y, I+ 2lN) for some ~y ∈ (Z/2kZ)2 and N ∈ GL2(Z/2kZ).
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Note that (2l−1~y, I + 2l−1N) ∈ AGL2(Z/2kZ) as well. Then since l ≥ 3
⇔ 2(l − 1) ≥ l + 1, we have

(~x,M)2 = (2l−1~y, I + 2l−1N)2

= (2l−1~y + 2l−1~y + 22(l−1)N~y, I + 2lN + 22(l−1)N2)

= (2l~y + 22(l−1)N~y, I2 + 2lN + 22(l−1)N2)

≡ (2l~y, I + 2lN) (mod 22(l−1)) ≡ (2l~y, I + 2lN) (mod 2l+1).

Equivalently,

(~x,M)2 · (2l~y, I + 2lN)−1 ≡ (~0, I) (mod 2l+1).

Hence, by our inductive hypothesis we must have (~x,M)2 ·(2l~y, I+2lN)−1 ∈
Φ(AGL2(Z/2kZ)).

Note that (2l−1~y, I + 2l−1N)2 ∈ Φ(Nk) ⊂ Φ(AGL2(Z/2kZ)) by Proposi-
tion 6.4. Thus, closure implies (2l~y, I + 2lN) = (~x,M) ∈ Φ(AGL2(Z/2kZ))
as well, and so by induction we are finished.

Note that any subgroup lies in a maximal subgroup. Because the kinetic
conditions come from surjectivity of predefined maps, if a subgroup H of
AGL2(Z/2kZ) is kinetic, all groups G ⊂ AGL2(Z/2kZ) containing H are
also kinetic. Thus, to find kinetic subgroups, we may in general examine
maximal subgroups.

Corollary 6.7. Suppose M ( AGL2(Z/2kZ) for k ≥ 3 is a maximal
kinetic subgroup. Then M and Hk are conjugate subgroups.

Proof. Examine the map ϕ : M → AGL2(Z/23Z) by composition of the
ϕi maps. By Lemma 6.6, every maximal subgroup of AGL2(Z/2kZ) contains
Nk, the kernel. By the correspondence theorem, there is a bijection between
subgroups containing the kernel and subgroups of the image. Since ϕ is sur-
jective, M is in bijection with a maximal proper subgroup of AGL2(Z/23Z).
Furthermore, it is clear that this subgroup of AGL2(Z/23Z) is also kinetic
because these maps preserve surjectivity.

Recall by computation that conjugates of H3 are the only maximal ki-
netic subgroups of AGL2(Z/23Z). Thus, ϕ(M) = gH3g

−1, and by definition
of the Hk subgroups, M ⊂ ϕ−1(g)Hkϕ

−1(g−1) is a subset of a conjugate
of Hk. By the assumption that M is maximal, M is a conjugate of Hk.

Notice that this corollary followed from the fact that any kinetic max-
imal subgroup of AGL2(Z/2kZ) would have to show up in AGL2(Z/23Z)
by Lemma 6.6. In fact, we may make a similar statement about maximal
subgroups of Hk.

We will later show that |Hk| = 6 ·64k−1. Since Hk is kinetic, we have the
following surjection:

φk : Hk � AGL2(Z/2Z).
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Thus, by the counting formula we have∣∣ker(φk)|Hk
∣∣ =

|Hk|
|AGL2(Z/2Z)|

=
6 · 64k−1

24
= 26(k−1)−2,

and ker(φk)|Hk is a 2-group.

Lemma 6.8. Suppose (2l~v, 2lM) ∈ Hk. Then also (2l−1~v, 2l−1M) ∈ Hk.

Proof. We proceed by induction on k. For k = 2, a calculation in Magma
verifies the claim.

Suppose that the claim is true for all k ≤ n ∈ N. Then take an arbitrary
(2l~v, 2lM) ∈ Hn+1. By the quotient map ϕn+1, we have (2l~v, 2lM) ∈ Hn.
Then by our inductive hypothesis, we know that (2l−1~v, 2l−1M) ∈ Hn. By
the definition of the Hk, since ϕn+1((2

l−1~v, 2l−1M)) = (2l−1~v, 2l−1M), we
must have (2l−1~v, 2l−1M) ∈ Hn+1. Therefore, by induction we are done.

Notice that every step of the proof of Lemma 6.6 holds for Hk as the
main group, and so we similarly have the following corollary.

Corollary 6.9. For k ≥ 3, there exists a bijection between maximal
kinetic subgroups of Hk and maximal kinetic subgroups of H3.

Proof. The natural mapping ϕ : Hk → H3 is the same as the map ϕ :
Hk → AGL2(Z/23Z) because the ϕi maps of Hi are contained in Hi−1. Thus,
similarly to Lemma 6.6, all maximal subgroups of Hk contain the kernel of ϕ.
Therefore, there is a bijection between maximal kinetic subgroups of Hk and
maximal kinetic subgroups of H3, as desired.

This suffices to show the converse of the original claim.

Theorem 6.10. Let k ≥ 2. The only kinetic subgroups of AGL2(Z/2kZ)
are AGL2(Z/2kZ) itself and Hk.

Proof. For k = 2, we know from our initial definition of H2 that H2 was
the only proper kinetic subgroup of AGL2(Z/22Z).

By Corollary 6.7, we know that for k ≥ 3, the only maximal kinetic
subgroups of AGL2(Z/2kZ) are Hk. Thus, we must check that no proper
subgroups of Hk are also kinetic. However, by Corollary 6.9, kinetic proper
subgroups of Hk are in bijection with proper kinetic subgroups of H3. By a
Magma computation, we find that that there are no proper kinetic subgroups
of H3, hence there are no proper kinetic subgroups of Hk.

7. The image of the arboreal representation. The significance of
the kinetic groups considered is that they are exactly the images of arboreal
representations. We can say more for our specific curve and point.

Lemma 7.1. For all k ≥ 2, im(ωk) = Hk.
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Proof. Our strategy is to show that im(ωk) must be kinetic but not
the whole of AGL2(Z/2kZ), since by Theorem 6.10, the only two kinetic
subgroups of AGL2(Z/2kZ) are the entire group and Hk.

To see that im(ωk) is kinetic, we may check the surjectivity conditions.

• The first condition for kinetic subgroups, namely that ωk surjects onto
GL2(Z/2kZ), can be verified using the criteria of [4]. The main theorem there
shows that ωk surjects onto GL2(Z/2kZ) for all k precisely when the curve
E satisfies the following conditions: |∆(E)| /∈ Q2, |∆(E)| /∈ 2Q2, E has no
rational 2-torsion, and there is no t such that j(E) = −4t3(t+ 8). The dis-
criminant conditions can be checked by hand, and Magma easily determines
that there are no rational solutions of the equation j(E) = −4t3(t + 8).
The criteria in [4] then guarantee that im(ωk) satisfies the first kinetic
condition.

• We now show that the image of the representation satisfies the second
kinetic condition. Basic Galois theory applied to each coordinate ofQ implies
that an element of [2]−1P is im(ωk)-invariant if and only if there is a rational
point Q such that 2Q = P .

Since P = (4, 7) is a generator of E/Q, there is no rational point that
doubles to P , and thus no element of E[2] ∼= (Z/2kZ)2 that is fixed by
im(ωk) ⊂ AGL2(Z/2kZ). Note that 6 divides |im(ωk)| since it surjects onto
GL2(Z/2Z), and that |im(ωk)| ≥ 6.

- Suppose |im(ω1)| = 6. In this case the image must be conjugate to
{1} ×GL2(Z/2Z), which we check in Magma. Consider first the case
that the image is {1}×GL2(Z/2Z). Recall that the affine part of ω1 is
defined by the mapping ω1(σ) = σ(Q)−Q. In particular, if the affine
part of the image is trivial, σ(Q)−Q = 0 for all σ in our Galois group.
But then Q is a rational point that doubles to P , a contradiction.
To take care of the conjugate cases we note that a subgroup fixes an
element if and only if a conjugate subgroup fixes a similar element.

- Suppose |im(ω1)| = 12. Note that AGL2(Z/2Z) ∼= S4, and the only
index 2 subgroup is A4. By calculation, an explicit representation of
A4 in AGL2(Z/2Z) does not surject onto GL2(Z/2Z), a contradiction.

- Thus, the only possible option is that |im(ω1)| = 24.

Therefore, we see that ωk : Gal(Kk/Q)� AGL2(Z/2Z) is surjective.

To see that im(ωk) is not all of AGL2(Z/2kZ), we use a criterion of
Jones and Rouse. In [6, Theorem 5.2], the authors show that an arboreal
representation with surjective classical representation is surjective if and
only if P is not twice a rational point and Q(β1) * Q(E[4]). We show that,
in the case of our curve E, we have Q(β1) ⊆ Q(E[4]).
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Consider the tower of fields below:

Q

Q(x( 1
2
P ))

Q(x(E[4]))K1

Q(E[4])M

Using division polynomials, we may calculate the size of the Galois group
of Q(x(E[4]))/Q, and thus the size of the extension itself. Indeed, Magma
tells us that the degree of the extension is 48. On the left side of the diagram,
K1 must have degree 24 because |Gal(K1/Q)| = |AGL2(Z/2Z)| = 24. If we
calculate the degree of Q

(
x
(
1
2P
))

using division polynomials, we get an
extension of degree 24. Thus, the left side tower has collapsed, and the
defining polynomial for each extension on the left is actually just equal
to the polynomial that defines the x-coordinates. Now we can determine
whether or not Q(β1) ⊆ Q(E[4]), since the smallest field containing both
Q(x(E[4])) and Q

(
1
2P
)

will be the splitting field of the product of their
respective defining polynomials. Magma lets us know that this splitting field
has degree 48, and so the smallest field containing both is Q(x(E[4])). But
Q(x(E[4])) ⊆ Q(E[4]).

Therefore, since im(ωk) is kinetic but not equal to AGL2(Z/2kZ), it must
be equal to Hk.

As defined above,H2 is the non-trivial kinetic subgroup of AGL2(Z/22Z),
up to conjugacy. Since Hk consists of lifts of H2, the structure of Hk is then
determined by the structure of H2. To understand Hk well, we present some
facts about H2.

Size. By parity arguments, |GL2(Z/2kZ)| is easily computed. It fol-
lows that |AGL2(Z/2kZ)| = 24 · 64k−1. Also computationally we find that
[AGL2(Z/22Z) : H2] = 4. Since ϕk : Hk → Hk−1 is a surjective homo-
morphism, one has [AGL2(Z/2kZ) : Hk] = [AGL2(Z/2k−1Z) : Hk−1] for all
k ≥ 3. So by induction, we see that for all k ≥ 2, [AGL2(Z/2kZ) : Hk] = 4 and

|Hk| = |AGL2(Z/2kZ)|/4 = 6 · 64k−1.
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Structure. We use the following terminology.

Definition 7.2. Fix M ∈ GL2(Z/2kZ). Let VM := {~a : (~a,M) ∈ Hk}.
We call VM the set of associated vectors of M .

Definition 7.3. For any k ∈ N, define

Vi,j :=
{
~x ∈ (Z/2kZ) : ~x ≡

[
i
j

]
(mod 2)

}
.

Because H2 is finite and we have an explicit representation, computa-
tionally we find the following.

Proposition 7.4. The group H2 is the disjoint union of the sets V0,0×J ,
V0,1 ×

[
1 3
0 1

]
J , V1,0 ×

[
1 2
0 1

]
J , and V1,1 ×

[
1 1
0 1

]
J where J is a subgroup of

GL2(Z/22Z) that is isomorphic to Z/3Z oD4 by the action kernel V4.

Proof. Magma shows this to be true. For reference,
{[

0 3
1 0

]
,
[
1 3
3 0

]}
gen-

erates J .

8. Computing the fraction. Recall that if p is a prime unramified in

Kk, (~v,M) ∈ ωk
([Kk/Q

p

])
, and det(M − I) 6≡ 0 (mod 2k), then the point P

has odd order in E(Fp) if and only if ~v is in the column space of M − I.

By the Chebotarev density theorem,

lim
x→∞

∣∣{p prime and unramified in Kk : p ≤ x,
[Kk/Q

p

]
⊆S
}∣∣

π(x)
=

|S|
|Gal(Kk/Q)|

,

where S is a union of conjugacy classes in Gal(Kk/Q). This is not quite
the limit required to compute the fraction of primes dividing the ECHO

sequence. We will choose S so that
[Kk/Q

p

]
⊆ S for all k precisely when some

σp ∈
[Kk/Q

p

]
fixes some βk(i).

We observe that if this fact is true for a certain k, it is true for j ≤ k as
well. Thus, to find the primes for which that is true for all k we need only
consider its limit as k approaches infinity. Therefore,

lim
x→∞

π′(x)

π(x)

= lim
k→∞

lim
x→∞

∣∣{p prime and unramified in Kk : p ≤ x,
[Kk/Q

p

]
⊆ S

}∣∣
π(x)

.

Moreover, since

|S|
|Gal(Kk/Q)|

=
|ωk(S)|

|ωk(Gal(Kk/Q))|
=
|{(~v,M) ∈ Hk : ~v ∈ im(M − I)}|

|Hk|
,

we may compute the density in terms of the structure of Hk.

We must make two separate choices of S to compute this fraction. We
consider |S1|/|Gal(Kk/Q)| where S1 is the set of all elements in Gal(Kk/Q)
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such that

(~v,M) ∈ Hk, det(M − I) 6≡ 0 (mod 2k), and ~v ∈ im(M − I).

This contains only elements corresponding to primes p for which P has odd
order in E(Fp). Secondly, we consider |S2|/|Gal(Kk/Q)| where S2 is the set
of all elements in Gal(Kk/Q) such that for all (~v,M) ∈ Hk, ~v is in the
column space of M − I. This contains all the elements corresponding to
primes p for which P has odd order in E(Fp), but not exclusively those
elements. Both S1 and S2 are unions of conjugacy classes.

Consider

lim
k→∞

|S2| − |S1|
|Gal(Kk/Q)|

= lim
k→∞

|S2 − S1|
|Gal(Kk/Q)|

.

We then note

lim
k→∞

|S2 − S1|
|Gal(Kk/Q)|

= lim
k→∞

|{(~v,M) ∈ Hk : det(M − I) ≡ 0 (mod 2k), ~v ∈ im(M − I)}|
|Gal(Kk/Q)|

= 0.

Thus, we may use

lim
k→∞

|S1|
|Gal(Kk/Q)|

= lim
k→∞

|S2|
|Gal(Kk/Q)|

to evaluate limx→∞
π′(x)
π(x) , since

lim
k→∞

|S1|
|Gal(Kk/Q)|

≤ lim
x→∞

π′(x)

π(x)
≤ lim

k→∞

|S2|
|Gal(Kk/Q)|

.

For our computation of the fraction, we chose to evaluate the larger limit

lim
k→∞

|S2|
|Gal(Kk/Q)|

= lim
k→∞

|{(~v,M) ∈ Hk : ~v ∈ im(M − I)}|
|Hk|

.

Considering the above discussion, we make the following essential defi-
nition:

Definition 8.1. Let M ∈M2(Z/2rZ), and S ⊆ Z/2kZ. We define

µ(M, r, S) = lim
k→∞

|{(~v,M ′) : ~v ∈ S, ~v ∈ im(M ′),M ′ ≡M (mod 2r)}|
|Hk|

.

Note that if r > 1, M is invertible and im(M − I) ∩ VM 6= ∅, we have
the special case

µ(M−I, r, V0,0)= lim
k→∞

|{(~v,M ′) ∈ Hk : ~v∈ im(M ′ − I),M ′ ≡M (mod 2r)}|
|Hk|

.

By partitioning Hk at every level into lifts of matrices in H2, the limit
that we want to compute from the Chebotarev density theorem discussion
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becomes

µ(H2) :=
∑

M∈GL2(Z/4Z)

µ(M − I, 2, VM ).

We first note that if im(M − I) ∩ VM is empty at level k = 2, it must be
empty for every lift. (Otherwise we could reduce the matrix and vector and
get an element of the intersection at k = 2.) Thus, we must only compute
µ(M) for those M where im(M − I) ∩ VM is non-empty at level k = 2.

We now observe that∑
M∈GL2(Z/4Z)

µ(M − I, 2, VM ) = lim
k→∞

∑
M∈GL2(Z/2kZ)

|im(M − I) ∩ VM |/|VM |
|GL2(Z/2kZ)|

.

This fraction changes, however, depending on k and on the determinant of
M − I.

Therefore, instead of taking the sum of |im(M − I) ∩ VM |/|VM | divided
by |GL2(Z/2kZ)|, we consider

|im(M − I) ∩ VM |
|VM |

=
|im(M − I) ∩ VM |
|im(M − I)|

|im(M − I)|
|VM |

=
|im(M − I) ∩ VM |
|im(M − I)|

· 4|det(M − I)|2.

Here |s|2 denotes the 2-adic absolute value of s, namely, |s|2 = 2−ord2(s). The
second equality above follows from a result of [3]: if det(M) = 2rs, with s odd
and r < k, then |im(M)|/|(Z/2kZ)2| = |det(M − I)|2 := 1/2r. From now on
we define fM := |im(M − I) ∩ VM |/|im(M − I)|. Since ωk is not surjective,
the intersection of the column space of M − I for a given M ∈ GL2(Z/2kZ)
and the set of vectors ~v ∈ (Z/2kZ)2 such that (~v,M) ∈ Hk may be empty, or
may be a fraction of im(M−I). Since Vi,j contains one-fourth of the vectors
in (Z/2kZ)2 for each i, j, the fraction of the column space that contains a
subset of VM , the set of vectors for which {(~v,M) : ~v ∈ VM} is in Hk, may
take on one of a few values between 0 and 1.

We may easily determine the possible values for fM and divide the sum
in the above limit into subsums by the following result.

Lemma 8.2. If im(M − I)∩ VM 6= ∅, then we have |im(M − I)∩ VM | =
|im(M − I) ∩ V0,0|. Therefore, fM may take the values 1, 1

2 , 1
4 , or 0.

Proof. Suppose im(M − I) ∩ VM 6= ∅. Consider σ : im(M − I) ∩ V0,0 →
im(M − I) ∩ VM given by σ(~w) = ~v + ~w. Any element of im(M − I) ∩ VM
differs from a fixed ~v ∈ im(M − I)∩ VM by an element of im(M − I)∩ V0,0,
including ~v itself. Thus, σ is a bijection, since ~w1 + ~v = ~w2 + ~v implies that
~w1 = ~w2 and given any ~x ∈ im(M−I)∩VM we know ~x−~v ∈ im(M−I)∩V0,0.
Therefore, |im(M − I) ∩ V0,0| = |im(M − I) ∩ VM |.
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By the second isomorphism theorem for modules,

[im(M − I) : im(M − I) ∩ V0,0] = [im(M − I) + V0,0 : V0,0].

Since V0,0 has index 4 in the entire set of vectors, it has index 2 or 1 in
im(M − I) + V0,0, and so we are done. Finally, if im(M − I)∩ VM = ∅, then
fM = 0.

We next observe that the fraction fM for a given M ∈ GL2(Z/4Z) is the
same for all lifts of M in GL2(Z/2kZ).

Lemma 8.3. The fraction fM equals fMk
for all lifts Mk ∈ GL2(Z/2kZ)

of M ∈ GL2(Z/4Z).

Proof. Since V0,0 ∈ (Z/4Z)2 lifts to V0,0 ∈ (Z/2kZ)2 for any k and be-
cause M ′ ≡M (mod 4), the image of M − I ∈ GL2(Z/4Z) lifts to the image
of M ′ − I in GL2(Z/2kZ) and we conclude im(M ′ − I) ∩ V0,0 is a lift of
im(M−I)∩V0,0. Therefore, the index of both intersections in the respective
images remains fM .

We can now explicitly calculate the fraction using the following cases.

Case 1: det(M − I) is invertible. Any lift of an invertible matrix is
invertible. Indeed, for these matrices and all of their lifts, the image of
M − I is the entirety of (Z/2kZ)2, so |V0,0 ∩ im(M − I)|/|V0,0| = 1, and
µ(M, 2, V0,0) = 1

96 . Since there are 32 matrices with invertible determinant,

their total contribution to the sum is 32
96 = 1

3 .

Case 2: det(M − I) ≡ 2 (mod 4). For all of the matrices with at least
one associated vector in the image of M − I, of which there are 12 in H2,
fM = 1

2 and |det(M − I)|2 = 1
2 . The total contribution of these matrices is

12
96 · 4 ·

1
2 ·

1
2 = 1

8 .

Case 3: det(M − I) = 0 and M − I has at least one odd entry. For
this case, we use two lemmas of [3]: First, given a matrix M ∈ M2(Z/2kZ)
where det(M − I) = 0 and M − I has at least one odd entry, half of the
lifts in M2(Z/2k+1Z) have determinant 2k and half have determinant zero.
Second, as we used before, if det(M) = 2rs, with s odd and r < k, then
|im(M)|/|(Z/2kZ)2| = 1/2r. We will also use the fact that for any lift M ′ of
M − I, fM ′ = fM . A computation in Magma shows that, for the matrices
M with at least one associated vector in the image of M − I, fM = 1

2 .
Thus, for M ∈ H2 with det(M − I) = 0 and with M − I having at least

one odd entry,

µ(M, 2, V0,0) =
1

96
lim
n→∞

n∑
i=2

4fM |det(M − I)|2
1

2i−1

= lim
n→∞

n∑
i=2

4 · 1

2
· 1

2i
· 1

2i−1
=

1

3
,
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where the sum corresponds to the fact that at level i, 1/2i−1 of lifts of
M have |det(M ′ − I)|2 = 1/2i. A Magma computation shows that there
are 12 matrices M ∈ H2 that have at least one associated vector in the
image of M − I. Therefore, the total contribution from these 12 matrices is
12 · 1

96 ·
1
3 = 1

24 .

Case 4: det(M − I) = 0 and M − I has all even entries.

Lemma 8.4. Suppose M has all even entries, and r > 1. Then

µ(M, r, V0,0) = 1
16µ(M/2, r − 1, (Z/2r−1Z)2).

Further, when r = 1, µ(M, 1, (Z/2Z)2) = 1
64µ(M/2, 0, {0}).

Proof. We have ~v ∈ im(M) if and only if ~v/2 ∈ im(M/2). Thus, the
numerators of the two limits in µ(M, r, V0,0) and µ(M/2, r− 1, (Z/2r−1Z)2)
are equal, but reducing r by 1 reduces the denominator of µ(M/2, r − 1,
(Z/2r−1Z)2) by 64. The change of the ambient set of vectors then gives the
extra factor of 4. The second case has a factor of 1

64 because we do not
readjust for the ambient set of vectors.

If M−I has all even entries, clearly im(M−I) ⊆ V0,0. Therefore, we need
only compute (M−I)/2 for M in J1, since im(M−I)∩VM will be empty for
M in all other cosets. For three matrices in J1, (M − I)/2 is invertible. For
these three, as in the invertible case with r = 2, an analogous computation
to Case 1 gives µ((M − I)/2, 1, (Z/2Z)2) = 1/|GL2(Z/2Z)| = 1/6. By our
lemma, each contributes to the total sum at level r = 2 an amount of
µ(M, 2, V0,0) = 1

16µ((M − I)/2, 1, (Z/2Z)2) = 1
16 ·

1
6 . Since there are three

such matrices, their total contribution is 1
16 ·

1
6 · 3 = 1

32 .

For only one of them (the identity matrix), (M − I)/2 =
(
0 0
0 0

)
. In this

case, µ(
(
0 0
0 0

)
, 2, V0,0) = 1

16µ
((

0 0
0 0

)
, 1, (Z/2Z)2

)
since M − I has all entries

even. Now we apply our lemma again:

µ
((

0 0
0 0

)
, 1, (Z/2Z)2

)
=

1

64
µ
((

0 0
0 0

)
, 0, {0}

)
=

1

64

∑
M∈M2(Z/2Z)

µ
(
M, 1, (Z/2Z)2

)
.

The last equality comes from the observation that all matrices at level k = 1
are lifts of the unique matrix modulo 1. Continuing,

1

64
·

∑
M∈M2(Z/2Z)

µ
(
M, 1, (Z/2Z)2

)
=

1

64
µ
((

0 0
0 0

)
, 1, (Z/2Z)2

)
+

1

64

∑
M∈M2(Z/2Z),
M 6=
(
0 0
0 0

) µ
(
M, 1, (Z/2Z)2

)
.
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From here we may solve for our unknown:

63

64
µ
((

0 0
0 0

)
, 1, (Z/2Z)2

)
=

1

64

∑
M∈M2(Z/2Z)
M 6=
(
0 0
0 0

) µ
(
M, 1, (Z/2Z)2

)
.

Of the matrices appearing on the right hand side of the above sum, nine
have even determinant and at least one non-zero entry, and six have odd
determinant. Those six contribute 1

6 as before, and an identical infinite sum

argument as in Case 3 gives a µ value of 1
18 for the remaining nine. So

µ
((

0 0
0 0

)
, 1, (Z/2Z)2

)
= 63

64

(
6 · 16 + 9 · 1

18

)
= 1

42 . We thus conclude that, at

level r = 2, the identity matrix contributes a µ value of 1
16 ·

1
42 = 1

672 .

Since these four cases partition the elements of H2, µ(H2) = 1
3 + 1

24 +
1
8 + 1

32 + 1
672 = 179

336 . This concludes our proof of Theorems 1.2 and 1.3.

9. A family of elliptic curves with arboreal representation Hk.
In proving the original fact concerning the density of primes dividing the
ECHO sequence, we have found that for an elliptic curve and rational point
with certain conditions, the arboreal representation has image conjugate
to Hk, the only proper kinetic subgroup of AGL2(Z/2kZ) (up to conjugacy).
These Hk subgroups are especially interesting because they only arise from
looking at arboreal representations modulo a power of 2. In [6], the authors
showed that the arboreal representations for primes ` larger than 2 (with
the similar condition that no rational `-division point exists) always surject
onto AGL2(Z/`kZ) if the classical Galois representations are surjective. We
thus ask whether the exceptional subgroups Hk appear as images of the
arboreal representations for infinitely many pairs (E,P ).

To answer this question, we examine a certain family of elliptic curves
to find a parametrization of elliptic curves and points that have the same
arboreal image as our original curve. Keep in mind the conditions that we
must show these curves obey:

• E/Q is an elliptic curve with a point P such that P has no rational
2-division point.
• The classical map ρk : Gal(Kk/Q)→ GL2(Z/2kZ) is surjective.
• The arboreal map ωk : Gal(Kk/Q)→ AGL2(Z/2kZ) is not surjective.

We examine the family of curves Ea,b : y2 +axy+ by = x3 + bx2 with the
point (0, 0). By Exercise 3.1 of Silverman [11], any elliptic curve E/K with
a point P ∈ E(K) such that P, 2P, 3P 6= 0 has an equation of the form of
Ea,b with P corresponding to (0, 0). We will later take E such that P does
not have any rational 2-division points and such that the classical Galois
representation attached to E is surjective. These conditions will ensure that
P, 2P, 3P 6= 0.
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To find curves with arboreal image equal to Hk, we first construct a
surface that parametrizes pairs (E,P ) with arboreal image contained in Hk

(or, sufficiently, H2). This result is summarized as follows.

Lemma 9.1. Let Ea,b/Q be the elliptic curve y2 + axy + by = x3 + bx2

such that the j-invariant is not equal to 2048t3

3(t+1)(t+3)2
for some t ∈ Q. Further-

more, let P = (0, 0) be on Ea,b, K2 = Q([4−1]P ), and ω2 : Gal(K2/Q) →
AGL2(Z/4Z). Then im(ω2) is conjugate to a subgroup of H2 if and only if
the “fabulous” polynomial

fa,b(x) = x4− 768b2x3 − 2048(a4b3 + a3b3 − 8a2b4 + 36ab4 − 16b5 + 81b4)x2

+ 1048576(a4b5 − a3b5 + 8a2b6 − 36ab6 + 16b7)x

+ 262144(−a10b5 + a9b5 − 16a8b6 + 72a7b6 − 96a6b7 − 55a6b6

+ 512a5b7 − 256a4b8 − 1724a4b7 + 896a3b8 + 1272a3b7 − 256a2b9

− 3984a2b8 − 256ab9 + 18144ab8 − 8256b9 − 8748b8)

has a rational root.

Proof. Regard a and b as indeterminates and Ea,b as a curve over K =
Q(a, b). Let β2 be a 4-division point of P ; all 4-division points of P have the
form β2 + cA+ dB, where 0 ≤ c, d ≤ 3, and A,B generate E[4] ∼= (Z/4Z)2.
For each of the four left cosets C of H2 in AGL2(Z/4Z), define

ζC =
∑
σ∈C

σ(x(β2 +A)) · σ(x(β2 +B)) · σ(x(β2 +A+B)).

Now for σ ∈ Gal(K2/Q) ⊂ AGL2(Z/4Z) we have σ(ζC) = ζσC , and hence
the polynomial

fa,b(x) :=
∏
C

(x− ζC)

has coefficients in K. We computed the degree 16 polynomial whose roots are
the x-coordinates of the 4-division points of P and found that the coefficients
are in Z[a, b]. This implies that the ζC are integral over Z[a, b]. Since Z[a, b]
is integrally closed in K, the coefficients of fa,b(x) are integral over K and
hence are in Z[a, b].

If we imagine our curve as Ea,b,c : y2 + axy + bcy = x3 + bx2, making
the change of variables x 7→ s2x and y 7→ s3y, the coefficients rescale as
a 7→ sa, b 7→ s2b and c 7→ sc. (We say that a and c have weight 1, while
b has weight 2.) This shifts the roots of an analogous fa,b,c from ζ to s6ζ
(since each ζ has three factors of x-coordinates). It follows that the weight
of the coefficient of xi in fa,b,c is 24 − 6i. Specializing to c = 1, we have an
upper bound on the degree of the coefficients of fa,b.

To numerically compute fa,b(x), we determine how automorphisms of K2

act on the x-coordinates. Let σ ∈ Gal(K2/Q) and let ω2(σ) = (~v,M) where
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~v is a vector in (Z/4Z)2 and M ∈ AGL2(Z/4Z). Then σ(β2 + cA + dB) =
β2+eA+fB where e, f are the vector coordinates computed by the equation[ e
f

]
= M

[
c
d

]
+ ~v.

We created a function σ in Magma that produces the x-coordinate of
β2+eA+fB based on the input

[
c
d

]
by using the periods of E and the elliptic

logarithm and elliptic exponential functions. We computed fa,b for many
values of a and b and then determined the coefficients of fa,b as polynomials
in a and b using linear algebra and the degree bound proven above.

The discriminant of fa,b is −b15∆a,bg(a, b) with ∆a,b the discriminant of
the curve Ea,b and

g(a, b) = a9 + 16a7b− 46a6b+ 96a5b2 − 360a4b2

+ 256a3b3 + 512a3b2 − 672a2b3 + 256ab4 + 128b4.

In fact, g(a, b) defines a curve of genus 0, and this curve is isomorphic to P1.
Elliptic curves defined by a and b on this bad locus have j-invariant equal
to 2048t3

3(t+1)(t+3)2
. We do not consider this case, and so we may assume that

g(a, b) 6= 0. Similarly, ∆a,b or b = 0 make Ea,b singular. Thus, we may
assume the discriminant is non-zero and fa,b has distinct roots.

Following the argument of [4], we find that σ ∈ Gal(K2/Q) acts on the
roots of fa,b by σ(ζC) = ζσC . Since the roots are distinct, we see that fa,b
has a rational root if and only if for all σ ∈ Gal(K2/Q), there is a coset C
such that σC = C. This is equivalent to the image of ω2 being contained in
a conjugate of H2.

If we consider fa,b(x) as a polynomial in three variables f(x, a, b), then
there is a rational curve lying on the surface f(x, a, b) = 0 which yields a one-
parameter family of curves Ea(t),b(t). Indeed, the polynomial f(−96b2, a, b) is
a curve of genus 0 with a rational point, which implies that the points on the
curve can be parametrized. Using Magma, one finds that a parametrization
is given by (p1(t) : p2(t) : p3(t)), where

p1(t) = (t− 25)(t+ 35)(t2 − 29t+ 676)(t2 − 10t− 279)2(t2 + 10t+ 97),

p2(t) = (t− 25)(t+ 35)2(t2 − 29t+ 676)3,

p3(t) = (t2 − 10t− 279)4(t2 + 10t+ 97).

Thus, rational points on f(−96b2, a, b) are of the form (a, b) =
(p1(t)
p3(t)

, p2(t)p3(t)

)
.

Having computed this family, we proceed with the proof of our final
theorem, restated here:

Theorem 1.4. There exists a one-parameter family of curve-point pairs
(E,P ) such that infinitely many pairs in the family have arboreal image
conjugate to Hk. In particular, infinitely many pairs (E,P ) in our family
have the property that the density of primes p for which the reduction of P
modulo p has odd order is 179

336 .
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Proof. We invoke Hilbert’s irreducibility theorem to show that the image
of the arboreal representation is kinetic for curves in our one-parameter
family. The conditions for a subgroup to be kinetic, as described in Section 6,
are all irreducibility conditions on various polynomials. First, the conditions
for surjectivity of the classical Galois representation given in [4] are defined
by the irreducibility over Q of the 2-torsion polynomials, x2 −∆t, x

2 +∆t,
x2− 2∆t, x

2 + 2∆t, and jt + 4x3(x+ 8). This irreducibility also ensures that
the curves are not in the bad locus of our surface, since it can be checked
that all curves in the bad locus have rational 2-torsion. The second kinetic
condition is satisfied if the point (0, 0) is not twice a rational point, which
is ensured if the 2-division polynomial of (0, 0) is irreducible.

Now a Magma computation shows that all of these polynomials are ir-
reducible over Q(t) for the ∆t and jt associated to our family of curves Et.
Hilbert’s irreducibility theorem then implies that there are infinitely many
specializations of t such that all of the required polynomials stay irreducible
over Q simultaneously. Furthermore, neither the j-invariant nor the discrim-
inant of our family are constant. We conclude that there are infinitely many
non-isomorphic and non-singular elliptic curves in our family that have as
im(ωk) a kinetic subgroup of AGL2(Z/2kZ).

Since the image of the arboreal representation is kinetic for infinitely
many curves in this family, and every rational point on f(x, a, b) = 0 corre-
sponds to a pair (E,P ) with arboreal representation contained within H2,
we deduce that these infinitely many curves in fact have image equal to Hk

for all k. This concludes the proof of Theorem 1.4.

Appendix. A second look at the ECHO sequence. Recall that the
ECHO sequence was itself motivated by finding a sequence whose elliptic
curve partner has special Galois-theoretic properties. The inspiration behind
this first definition (presented in the introduction and duplicated here) was
to mirror the general form of the Somos-4 sequence that inspired the work
of Rouse and Jones’ paper. We hence derived an analogous family of curves.
However, proceeding in this ad hoc manner we have only a clunky definition
that gives no hints as to why the sequence is structured the way it is; for ex-
ample, why does this definition have different recurrence relations modulo 3?

We present here a second definition of the ECHO sequence that is per-
haps a little more mathematically pleasing, and also gives better insight
into the structure of the sequence by providing a more involved recursive
definition that might make any properties derived from the sequence better
explained. Furthermore, to flesh out a more whole picture of the sequence,
we prove the main result of Section 3 using the added flexibility of the two
equivalent definitions.

First recall our original definition.
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Definition A.1. Define the ECHO sequence {bn} recursively by
(b0, b1, b2, b3) = (1, 1, 2, 1) and for n ≥ 4,

bn =


bn−1bn−3−b2n−2

bn−4
if n 6≡ 0 (mod 3),

bn−1bn−3−3b2n−2

bn−4
if n ≡ 0 (mod 3).

However, a second look upon our work offered to us by Michael Somos
lends us another perspective.

Definition A.2. Define the ECHO sequence {bn} by

(b0, b1, b2, b3, b4, b5, b6) = (1, 1, 2, 1,−3,−7,−17),

and further recursively for n ≥ 7 by

bn :=
−bn−6b−1 + 5bn−4bn−3

bn−7
.

And again, using the relationship bnbn+7 = −bn+1bn+6 + 5bn+3bn+4, the
second definition also defines the ECHO sequence for negative indices.

The flexibility of this new definition is that it need not be concerned
with indexing; the use of more previous elements of the sequence, while
more “restrictive” in some sense, also gives us more ability to manipulate
coprimality conditions.

To prove that the definitions are equivalent, recall this lemma from sec-
tion 3 and consider the following derived sequence that will bridge the gap
between the two definitions.

Lemma A.3. For n ≥ 0, define

h(n) =


b2n−3b

2
n + bn−3b

3
n−1 + 3b3n−2bn − 3b2n−2b

2
n−1 if n ≡ 0 (mod 3),

3b2n−3b
2
n + bn−3b

3
n−1 + b3n−2bn − b2n−2b2n−1 if n ≡ 1 (mod 3),

b2n−3b
2
n + 3bn−3b

3
n−1 + b3n−2bn − 3b2n−2b

2
n−1 if n ≡ 2 (mod 3).

Then h(n) = 0 for all n ∈ N.

Definition A.4. For all n ∈ N, define dn := bnbn+5 − bn+2bn+3.

We truly mean that {dn} is well-defined for either definition {bn} of the
ECHO sequence. However, before having proved equality, one may consider
there to be two sequences d1,n and d2,n, one for each definition of the ECHO
sequence. This is of short-lived consequence to us, however, because we
directly prove their equivalence here.

Corollary A.5. For all n ∈ N, bn+7d1,n = bn+1d1,n+3.

Proof. For all k ∈ N, we hope to show

bk+7dk = bk+1dk+3

⇔ bkbk+5bk+7 + bk+1bk+5bk+6 − bk+2bk+3bk+7 − bk+1bk+3bk+8 = 0.
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Again after rewriting this expression with terms bk through bk+4 with sub-
stitution by our (first) definition, factoring with Magma we find that h(k+3)
= 0 is a factor. And equivalently, bk+2dk = bk−4dk+3 as desired.

Proposition A.6. For all n ∈ N, bn+7d2,n = bn+1d2,n+3.

Proof. By substitution, we seek to show that for n ∈ N,

bnbn+5bn+7 − bnbn+2bn+3 = bn+1bn+3bn+8 − bn+1bn+5bn+6.

By substitutions with our recursive (second) definition, we have

−bn+1bn+5bn+6 − bnbn+2bn+3 = −bn+2bn+3bn+7 − bn+1bn+5bn+6,

−bn+1bn+5bn+6 + 5bn+3bn+4bn+5 − bnbn+2bn+3

= −bn+2bn+3bn+7 + 5bn+3bn+4bn+5 − bn+1bn+5bn+6,

bn+5(−bn+1bn+6 + 5bn+3bn+4)− bnbn+2bn+3

= bn+3(−bn+2bn+7 + 5bn+4bn+5)− bn+1bn+5bn+6,

bnbn+5bn+7 − bnbn+2bn+3 = bn+1bn+3bn+8 − bn+1bn+5bn+6.

Thus, we are done.

We note that both definitions of the ECHO sequence satisfy the equation

bkbk+5bk+7 + bk+1bk+5bk+6 = bk+2bk+3bk+7 + bk+1bk+3bk+8,

and since we may compute the first few values, induction shows both def-
initions produce identical sequences, as desired. Moreover, this derived se-
quence {dn} reveals even stronger statements about the ECHO sequence.

Corollary A.7. For all n > 1,

dn =

{
bn+1bn+4 if n ≡ 0, 1 (mod 3),

3bn+1bn+4 if n ≡ 2 (mod 3).

Proof. Examine first the case n ≡ 0 (mod 3). Computationally, d3 =
b3b8− b5b6 = (−3)(247)− (−17)(2) = −707 = (−7)(101) so the claim is true
for n = 3. For the sake of induction, suppose that all n ≤ k satisfy the claim
for some k ≡ 0 (mod 3). Then

bk+1bk+4 = dk, bk+1bk+4 =
bk+1dk+3

bk+7
⇒ dk+3 = bk+4bk+7.

Thus, for all n ∈ N with n ≡ 0 (mod 3), our claim is true by induction. The
other two cases modulo 3 are identical.

This is sufficient to see integrality. (The structure of the following proof
was inspired by a proof of the integrality of the Somos-5 sequence given
in [14].)

Proposition A.8. For n ≥ 3, both bn ∈ Z and (bn, bn−3) = (bn, bn−2) =
(bn, bn−1) = 1.
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Proof. Proceed by induction. Note that the first four terms are 1, 1, 2, 1,
so the base case is true.

Suppose for all n ≤ k+4 for some k that bn is integral and the coprimality
condition is true. Note since k + 1 < k + 4 that (bk, bk+1) = 1. By Bézout’s
lemma, there are r, s ∈ Z such that 1 = rbk + sbk+1 ⇒ bk+5 = rbkbk+5 +
sbk+1bk+5.

By the definition of the sequence, for some coefficient c1 ∈ {1, 3} we have
bk+1bk+5 = bk+4bk+2 − c1b2k+3. By the corollary above,

bkbk+5 − bk+2bk+3 = dk = c2bk+1bk+4 ⇒ bkbk+5 = c2bk+1bk+4 + bk+2bk+3

for some c2 ∈ {1, 3}. Therefore, by the inductive hypothesis we deduce that
bk+1bk+5, bkbk+5 ∈ Z, hence bk+5 = rbkbk+5 + sbk+1bk+5 ∈ Z, as desired.

To see that bk+5 is coprime to the three terms before it, note that
(bk+1bk+4, bk+2bk+3) = 1 because by the inductive hypothesis, both bk+1

and bk+4 are coprime to bk+2bk+3. Thus,

(bk+1bk+4, bk+2bk+3) = 1, (bk+1bk+4, c2bk+1bk+4 + bk+2bk+3) = 1,

(bk+1bk+4, bkbk+5) = 1.

Therefore, bk+5 is coprime to bk+4, as desired.
Similarly, bk+1bk+5 = bk+4bk+2 + {−1,−3} · b2k+3 by the first definition,

meaning that (bk+1bk+5, b
2
k+3) = (bk+4bk+2, b

2
k+3) = 1, and so bk+5 is coprime

to bk+3 as well.
Last, bk−2bk+5 = −bk−1bk+4 +5bk+1bk+2 by the second definition, mean-

ing that (bk−2bk+5, bk+1bk+2) = (bk−1bk+4, bk+1bk+2) = 1, and so bk+5 is
coprime to bk+2 as well.

Therefore, bk+5 is coprime to the previous three terms, as desired.

Lastly, knowing that the ECHO sequence is integral, the proof of our
main lemma of Section 3, Lemma 3.4, follows identically as before.

Lemma A.9. Define P = (4, 7) on E : y2 + y = x3 − 3x + 4. Then for
n ≥ 0,

(2n+ 1)P =

(
g(n)

b2n
,
f(n)

b3n

)
,

where g(n) = 2b2n − bn−3bn+3, and

f(n) =


b3n + 3b2n−1bn+2 if n ≡ 0 (mod 3),

b3n + b2n−1bn+2 if n ≡ 1 (mod 3),

b3n + 9b2n−1bn+2 if n ≡ 2 (mod 3).

Acknowledgements. We would like to acknowledge Sagemath [13] and
Magma [1], which we extensively used for computations. We would also like
to thank Wake Forest University for providing resources for this research
project. Thanks also to Michael Somos for providing input on the structure of



100 A. Block Gorman et al.

the ECHO sequence. We also wish to thank the anonymous referee for helpful
comments. All authors were supported by the NSF grant DMS-1461189.

References

[1] W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The user
language, J. Symbolic Comput. 24 (1997), 235–265.

[2] D. A. Cox, Primes of the Form x2 +ny2. Fermat, Class Field Theory, and Complex
Multiplication, 2nd ed., Pure Appl. Math. (Hoboken), Wiley, Hoboken, NJ, 2013.

[3] B. Davis, R. Kotsonis, and J. Rouse, The density of primes dividing a term in the
Somos-5 sequence, arXiv:1507.05896 (2015).

[4] T. Dokchitser and V. Dokchitser, Surjectivity of mod 2n representations of elliptic
curves, Math. Z. 272 (2012), 961–964.

[5] H. Iwaniec and E. Kowalski, Analytic Number Theory, Amer. Math. Soc. Colloq.
Publ. 53, Amer. Math. Soc., Providence, RI, 2004.

[6] R. Jones and J. Rouse, Galois theory of iterated endomorphisms, Proc. London
Math. Soc. (3) 100 (2010), 763–794.

[7] J. C. Lagarias, The set of primes dividing the Lucas numbers has density 2/3, Pacific
J. Math. 118 (1985), 449–461.

[8] J. C. Lagarias, Errata to [7], Pacific J. Math., ibid. 162 (1994), 393–396.
[9] PARI/GP version 2.7.0, The PARI Group, Bordeaux, 2014, http://pari.math.

u-bordeaux.fr/.
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