Dyadic weights on \mathbb{R}^n and reverse Hölder inequalities

by

ELEFTHERIOS N. NIKOLIDAKIS and ANTONIOS D. MELAS (Athens)

Abstract. We prove that for any weight ϕ defined on $[0,1]^n$ that satisfies a reverse Hölder inequality with exponent p > 1 and constant $c \ge 1$ on all dyadic subcubes of $[0,1]^n$, its non-increasing rearrangement ϕ^* satisfies a reverse Hölder inequality with the same exponent and constant not more than $2^n c - 2^n + 1$ on all subintervals of the form $[0,t], 0 < t \le 1$. As a consequence, there is an interval $[p, p_0(p, c)) = I_{p,c}$ such that $\phi \in L^q$ for any $q \in I_{p,c}$.

1. Introduction. The theory of Muckenhoupt's weights has proved to be an important tool in analysis. One of the most important facts about these weights is their self-improving property. A way to express this is through the so called reverse Hölder inequalities (see [1], [3] and [7]).

Here we will study such inequalities in a dyadic setting. We will say that a measurable function $g : [0,1] \to \mathbb{R}^+$ satisfies a *reverse Hölder inequality* with exponent p > 1 and constant $c \ge 1$ if

(1.1)
$$\frac{1}{b-a}\int_{a}^{b}g(u)^{p}\,du \le c\left(\frac{1}{b-a}\int_{a}^{b}g(u)\,du\right)^{p}$$

for every subinterval [a, b] of [0, 1].

The following is proved in [2]:

THEOREM A. Let g be a nonincreasing function defined on [0, 1] which satisfies (1.1) for every interval $[a, b] \subseteq [0, 1]$. Define $p_0 > p$ as the root of the equation

(1.2)
$$\frac{p_0 - p}{p_0} \left(\frac{p_0}{p_0 - 1}\right)^p \cdot c = 1.$$

Then $g \in L^q([0,1])$ for any $q \in [p, p_0)$. Additionally for every q in the above

Received 23 May 2016. Published online 5 August 2016.

²⁰¹⁰ Mathematics Subject Classification: Primary 42B25.

Key words and phrases: non-increasing rearrangement, reverse Hölder inequality, Muck-enhoupt weight.

range, g satisfies a reverse Hölder inequality with possibly another constant $c' \geq 1$. Moreover the result is sharp, that is, the value p_0 cannot be increased.

In [4] and [5], the following is proved:

THEOREM B. If $\phi : [0,1] \to \mathbb{R}^+$ is integrable satisfying (1.1) for every $[a,b] \subseteq [0,1]$, then its non-increasing rearrangement ϕ^* satisfies the same inequality with the same constant c.

Here ϕ^* is defined on (0, 1] by

$$\phi^*(t) = \sup_{\substack{E \subseteq [0,1] \\ |E| = t}} \inf_{x \in E} |\phi(x)|, \quad t \in (0,1].$$

It can also be defined as the unique left continuous, non-increasing function equimeasurable to $|\phi|$, that is, for every $\lambda > 0$,

$$|\{\phi > \lambda\}| = |\{\phi^* > \lambda\}|,$$

where $|\cdot|$ denotes the Lebesgue measure on [0, 1].

An immediate consequence of Theorem B is that Theorem A can be generalized by omitting the assumption of the monotonicity of g.

Recently, in [8], the following was proved:

THEOREM C. Let $g : (0,1] \to \mathbb{R}^+$ be a non-increasing function which satisfies (1.1) on every interval $(0,t], 0 < t \leq 1$, that is,

(1.3)
$$\frac{1}{t}\int_{0}^{t}g(u)^{p} du \leq c \left(\frac{1}{t}\int_{0}^{t}g(u) du\right)^{p}$$

for every $t \in (0,1]$. Define p_0 by (1.2). Then for any $q \in [p, p_0)$,

(1.4)
$$\frac{1}{t}\int_{0}^{t}g(u)^{q}\,du \le c'\left(\frac{1}{t}\int_{0}^{t}g(u)\,du\right)^{q}$$

for every $t \in (0,1]$ and some constant $c' \geq c$. Thus $g \in L^q((0,1])$ for any such q. Moreover the result is sharp, that is, we cannot increase p_0 .

A consequence of Theorem C is that under the assumption that g is non-increasing, the hypothesis that (1.1) is satisfied only on all intervals (0, t] is enough for the existence of a p' > p for which $g \in L^{p'}([0, 1])$.

In several dimensions, as far as we know, there does not exist any result similar to Theorems A, B and C. All we know is the following, which can be found in [3].

THEOREM D. Let $Q_0 \subseteq \mathbb{R}^n$ be a cube and $\phi : Q_0 \to \mathbb{R}^+$ a measurable function that satisfies

(1.5)
$$\frac{1}{|Q|} \int_{Q} \phi^{p} \leq c \left(\frac{1}{|Q|} \int_{Q} \phi \right)^{p}$$

for fixed constants p > 1 and $c \ge 1$, and every cube $Q \subseteq Q_0$. Then there exists $\varepsilon = \varepsilon(n, p, c)$ such that

(1.6)
$$\frac{1}{|Q|} \int_{Q} \phi^{q} \le c' \left(\frac{1}{|Q|} \int_{Q} \phi \right)^{q}$$

for every $q \in [p, p+\varepsilon)$, any cube $Q \subseteq Q_0$ and some constant c' = c'(q, p, n, c).

In several dimensions no estimate of the quantity ε has been found. The purpose of this work is to study the multidimensional case in the dyadic setting. More precisely, we consider a measurable function ϕ defined on $[0,1]^n = Q_0$ which satisfies (1.5) for any dyadic subcube Q of Q_0 . These cubes can be realized by bisecting the sides of Q_0 , then bisecting every side of the resulting dyadic cube and so on. We denote by \mathcal{T}_{2^n} the tree consisting of the above mentioned dyadic subcubes of $[0,1]^n$. We will prove the following:

THEOREM 1. Let
$$\phi: Q_0 = [0, 1]^n \to \mathbb{R}^+$$
 be such that
(1.7)
$$\frac{1}{|Q|} \int_Q \phi^p \le c \left(\frac{1}{|Q|} \int_Q \phi\right)^p$$

for any $Q \in \mathcal{T}_{2^n}$ and some fixed constants p > 1 and $c \ge 1$. Let $h = \phi^*$ be the non-increasing rearrangement of ϕ . Then

(1.8)
$$\frac{1}{t} \int_{0}^{t} h(u)^{p} du \leq (2^{n}c - 2^{n} + 1) \left(\frac{1}{t} \int_{0}^{t} h(u) du\right)^{p}$$

for any $t \in [0, 1]$.

As a consequence, $h = \phi^*$ satisfies the assumptions of Theorem C, which produces an $\varepsilon_1 = \varepsilon_1(n, p, c) > 0$ such that $h \in L^q([0, 1])$ for any $q \in [p, p + \varepsilon_1)$. Thus $\phi \in L^q([0, 1]^n)$ for any such q. That is, we can find an explicit value of ε_1 . This is stated as Corollary 3.1.

As a matter of fact we prove Theorem 1 in a much more general setting of a non-atomic probability space (X, μ) equipped with a tree \mathcal{T}_k , which is a k-homogeneous tree for a fixed integer k > 1, and plays the role of dyadic sets as in $[0, 1]^n$ (see the definition in Section 2).

As we shall see later, Theorem 1 is independent of the shape of the dyadic sets and depends only on the homogeneity of the tree \mathcal{T}_k . Additionally we mention that the inequality (1.8) need not be satisfied, under the assumptions of Theorem 1, if one replaces the intervals (0, t] by (t, 1]. That is, ϕ^* is not necessarily a weight on (0, 1] satisfying a reverse Hölder inequality on all subintervals of [0, 1], and one can easily construct a relevant counterexample.

Additionally we mention that a study of dyadic A_1 -weights appears in [6], where one can find for any c > 1 the best possible range [1, p) for which the following holds: $\phi \in A_1^d(c) \Rightarrow \phi \in L^q$ for any $q \in [1, p)$. Finally, results connected with A_1 dyadic weights ϕ and the behavior of ϕ^* as an A_1 -weight on \mathbb{R} can be found in [9].

2. Preliminaries. Let (X, μ) be a non-atomic probability space. We introduce the notion of a k-homogeneous tree on X.

DEFINITION 2.1. Let k > 1 be an integer. A set \mathcal{T}_k will be called a *k*-homogeneous tree on X if:

- (i) $X \in \mathcal{T}_k$.
- (ii) For every $I \in \mathcal{T}_k$, there is a subset $C(I) \subseteq \mathcal{T}_k$ consisting of k subsets of I such that
 - (a) the elements of C(I) are pairwise disjoint,
 - (b) $I = \bigcup C(I)$,
 - (c) $\mu(J) = k^{-1}\mu(I)$ for every $J \in C(I)$.
- (iii) \mathcal{T}_k differentiates $L^1(X,\mu)$, that is, for every $\phi \in L^1(X,\mu)$,

$$\lim_{\substack{x \in I \in \mathcal{T}_k \\ \mu(I) \to 0}} \frac{1}{\mu(I)} \int_I \phi \, d\mu = \phi(x)$$

 μ -almost everywhere on X.

For example one can consider $X = [0, 1]^n$, the unit cube of \mathbb{R}^n . Let μ be the Lebesgue measure on this cube. Then the set \mathcal{T}_k of all dyadic subcubes of X is a tree of homogeneity $k = 2^n$, with C(Q) being the set of 2^n subcubes of Q, obtained by bisecting the sides of every $Q \in \mathcal{T}_k$, starting from Q = X.

Let now (X, μ) be as above and let \mathcal{T}_k be a tree on X as in Definition 2.1. From now on, we fix k and write $\mathcal{T} = \mathcal{T}_k$. For any $I \in \mathcal{T}, I \neq X$, we denote by I^* the smallest element of \mathcal{T} such that $I^* \supseteq I$. That is, I^* is the unique element of \mathcal{T} such that $I \in C(I^*)$. Then $\mu(I^*) = k\mu(I)$.

DEFINITION 2.2. For any (X, μ) and \mathcal{T} as above we define the *dyadic* maximal operator on X with respect to \mathcal{T} , denoted $\mathcal{M}_{\mathcal{T}}$, by

(2.1)
$$\mathcal{M}_{\mathcal{T}}\phi(x) = \sup\left\{\frac{1}{\mu(I)}\int_{I} |\phi| \, d\mu : x \in I \in \mathcal{T}\right\}$$

for any $\phi \in L^1(X, \mu)$ and $x \in X$.

REMARK 2.1. It is not difficult to see that the maximal operator defined by (2.1) satisfies a weak-type (1,1) inequality

$$\mu(\{\mathcal{M}_{\mathcal{T}}\phi > \lambda\}) \leq \frac{1}{\lambda} \int_{\{\mathcal{M}_{\mathcal{T}}\phi > \lambda\}} \phi \, d\mu, \quad \lambda > 0.$$

The above inequality is best possible for every $\lambda > 0$. Also some results in [4] connect such inequalities with differentiation properties of the tree \mathcal{T} .

We will also need the following lemma which can again be found in [4].

LEMMA 2.1. Let ϕ be a non-negative function defined on $E \cup \widehat{E} \subseteq X$ such that

(2.2)
$$\frac{1}{\mu(E)} \int_{E} \phi \, d\mu = \frac{1}{\mu(\widehat{E})} \int_{\widehat{E}} \phi \, d\mu \equiv A$$

Additionally suppose that

(2.3)
$$\phi(x) \le A \quad \text{for every } x \notin E \cap \widehat{E},$$

and

(2.4)
$$\phi(x) \le \phi(y) \quad \text{for all } x \in \widehat{E} \setminus E \text{ and } y \in E.$$

Then, for every p > 1,

(2.5)
$$\frac{1}{\mu(E)} \int_{E} \phi^{p} d\mu \leq \frac{1}{\mu(\widehat{E})} \int_{\widehat{E}} \phi^{p} d\mu.$$

3. Weights on (X, μ, \mathcal{T})

Proof of Theorem 1. We suppose that ϕ is non-negative defined on (X, μ) and satisfies a reverse Hölder inequality of the form

(3.1)
$$\frac{1}{\mu(I)} \int_{I} \phi^{p} d\mu \leq c \cdot \left(\frac{1}{\mu(I)} \int_{I} \phi d\mu\right)^{p}$$

for every $I \in \mathcal{T}$, where c, p are fixed such that p > 1 and $c \ge 1$. We will prove that for any $t \in (0, 1]$ we have

(3.2)
$$\frac{1}{t} \int_{0}^{t} [\phi^{*}(u)]^{p} \, du \leq (kc - k + 1) \left(\frac{1}{t} \int_{0}^{t} \phi^{*}(u) \, du\right)^{p},$$

where ϕ^* is the non-increasing rearrangement of ϕ , defined on (0, 1], and k is the homogeneity of \mathcal{T} . Fix a $t \in (0, 1]$ and set

$$A_t = \frac{1}{t} \int_0^t \phi^*(u) \, du.$$

Define

$$(3.3) E_t = \{ x \in X : \mathcal{M}_{\mathcal{T}} \phi(x) > A_t \}.$$

Then for any $x \in E_t$, there exists $I_x \in \mathcal{T}$ such that

(3.4)
$$x \in I_x \text{ and } \frac{1}{\mu(I_x)} \int_{I_x} \phi \, d\mu > A_t.$$

Obviously, $I_x \subseteq E_t$. We set $S_{\phi,t} = \{I_x : x \in E_t\}$. This is a family of elements of \mathcal{T} such that $\bigcup \{I : I \in S_{\phi,t}\} = E_t$. Consider now those $I \in S_{\phi,t}$ that are maximal with respect to \subseteq . We write this subfamily of $S_{\phi,t}$ as $S'_{\phi,t} = \{I_j : j = 1, 2, \ldots\}$; it may be finite. Then $S'_{\phi,t}$ is a disjoint family of

elements of \mathcal{T} , because of the maximality of every I_j and the tree structure of \mathcal{T} (see Definition 2.1).

Then by construction, this family still covers E_t , that is, $E_t = \bigcup_{j=1}^{\infty} I_j$. For any $I_j \in S'_{\phi,t}$ we have $I_j \neq X$, because if $I_j = X$ for some j, then (3.4) would yield

$$\int_{0}^{1} \phi^{*}(u) \, du = \int_{X} \phi \, d\mu = \frac{1}{\mu(I_{j})} \int_{I_{j}} \phi \, d\mu > A_{t} = \frac{1}{t} \int_{0}^{t} \phi^{*}(u) \, du,$$

which is impossible, since ϕ^* is non-increasing on (0, 1]. Thus, for every $I_j \in S'_{\phi,t}$ we see that I_j^* is well defined, but may be common for two or more elements of $S'_{\phi,t}$. We may also have $I_j^* \subseteq I_i^*$ for some $I_j, I_i \in S'_{\phi,t}$.

We now consider the family

$$L_{\phi,t} = \{I_j^* : j = 1, 2, \ldots\} \subseteq \mathcal{T}$$

As mentioned above, this is not necessarily a pairwise disjoint family. We choose a pairwise disjoint subcollection, by considering those I_j^* that are maximal with respect to \subseteq . We denote this family as

$$L'_{\phi,t} = \{I^*_{j_s} : s = 1, 2, \ldots\}.$$

Then of course

$$\bigcup\{J: J \in L_{\phi,t}\} = \bigcup\{J: J \in L'_{\phi,t}\}$$

Since each $I_j \in S'_{\phi,t}$ is maximal under the above mentioned integral inequality, we have

(3.5)
$$\frac{1}{\mu(I_{j_s}^*)} \int_{I_{j_s}^*} \phi \, d\mu \le A_t.$$

Now note that every $I_{j_s}^*$ contains at least one element I of $S'_{\phi,t}$ such that $I \in C(I_{j_s}^*)$ (one such is I_{j_s}). Consider for any s the family of all those I such that $I^* \subseteq I_{j_s}^*$. We write it as

$$S'_{\phi,t,s} = \{ I \in S'_{\phi,t} : I^* \subseteq I^*_{j_s} \}.$$

For any $I \in S'_{\phi,t,s}$ we have of course

$$\frac{1}{\mu(I)} \int_{I} \phi \, d\mu > A_t, \quad \text{so if we set} \quad K_s = \bigcup \{I : I \in S'_{\phi,t,s}\},$$

we must have, because of the disjointness of the elements of $S'_{\phi,t}$,

(3.6)
$$\frac{1}{\mu(K_s)} \int_{K_s} \phi \, d\mu > A_t.$$

Additionally, $K_s \subseteq I_{i_s}^*$ and by the comments above we easily see that

(3.7)
$$\frac{1}{k}\mu(I_{j_s}^*) \le \mu(K_s) < \mu(I_{j_s}^*).$$

By (3.5) and (3.6) we can now choose (because μ is non-atomic), for any s, a measurable set $B_s \subseteq I_{j_s}^* \setminus K_s$ such that if we define $\Gamma_s = K_s \cup B_s$, then

$$\frac{1}{\mu(\Gamma_s)} \int_{\Gamma_s} \phi \, d\mu = A_t.$$

We now set

$$E_t^* = \bigcup_s I_{j_s}^*, \quad \Gamma = \bigcup_s \Gamma_s, \quad \Delta = \bigcup_s \Delta_s,$$

where $\Delta_s = I_{i_s}^* \setminus \Gamma_s$ for any $s = 1, 2, \dots$ Then by the above,

$$\Gamma \cup \Delta = E_t^*$$
 and $\frac{1}{\mu(\Gamma)} \int_{\Gamma} \phi \, d\mu = A_t$

which is true in view of the pairwise disjointness of $(I_{j_s}^*)_{s=1}^{\infty}$.

Define

$$h := (\phi/\Gamma)^* : (0, \mu(\Gamma)] \to \mathbb{R}^+$$

Then obviously

$$\frac{1}{\mu(\Gamma)}\int_{0}^{\mu(\Gamma)}h(u)\,du=\frac{1}{\mu(\Gamma)}\int_{\Gamma}\phi\,d\mu=A_{t}.$$

By the definition of h we have $h(u) \leq \phi^*(u)$ for any $u \in (0, \mu(\Gamma)]$. Thus

(3.8)
$$\frac{1}{\mu(\Gamma)} \int_{0}^{\mu(\Gamma)} \phi^{*}(u) \, du \ge \frac{1}{\mu(\Gamma)} \int_{0}^{\mu(\Gamma)} h(u) \, du = A_{t} = \frac{1}{t} \int_{0}^{t} \phi^{*}(u) \, du.$$

From (3.8), we see that $\mu(\Gamma) \leq t$, since ϕ^* is non-increasing.

We now consider a set $E \subseteq X$ such that $(\phi/E)^* = \phi^*/(0, t]$ with $\mu(E) = t$ and for which $\{\phi > \phi^*(t)\} \subseteq E \subseteq \{\phi \ge \phi^*(t)\}$. Its existence is guaranteed by the equimeasurability of ϕ and ϕ^* , and the fact that (X, μ) is non-atomic. Then we see immediately that

$$\frac{1}{\mu(E)} \int_E \phi \, d\mu = \frac{1}{t} \int_0^t \phi^*(u) \, du = A_t$$

We are now going to construct a second set $\widehat{E} \subseteq X$. We first set $\widehat{E}_1 = \Gamma$. Let $x \notin \widehat{E}_1$. Since $\Gamma \supseteq \{\mathcal{M}_T \phi > A_t\}$, we must have $\mathcal{M}_T \phi(x) \leq A_t$. But since \mathcal{T} differentiates $L^1(X, \mu)$, we obviously have $\phi(y) \leq \mathcal{M}_T \phi(y)$ for μ -almost every $y \in X$. Thus the set $\Omega = \{x \notin \widehat{E}_1 : \phi(x) > \mathcal{M}_T \phi(x)\}$ has μ -measure zero.

Finally, we set $\widehat{E} = \widehat{E}_1 \cup \Omega = \Gamma \cup \Omega$. Then $\mu(\widehat{E}) = \mu(\Gamma)$ and $\phi(x) \leq \mathcal{M}_{\mathcal{T}}\phi(x) \leq A_t$ for every $x \notin \widehat{E}$.

Let now $x \notin E$. By the construction of E we immediately see that $\phi(x) \leq \phi^*(t) \leq (1/t) \int_0^t \phi^*(u) du = A_t$. Thus, if $x \notin E$ or $x \notin \widehat{E}$, we must

have $\phi(x) \leq A_t$, that is, (2.3) of Lemma 2.1 is satisfied for these choices of E and \widehat{E} . Let now $x \in \widehat{E} \setminus E$ and $y \in E$. Then obviously by the above discussion, $\phi(x) \leq \phi^*(t) \leq \phi(y)$. Thus (2.4) is also satisfied. Also since $\widehat{E} = \Gamma \cup \Omega$, we obviously have $\mu(\widehat{E})^{-1} \int_{\widehat{E}} \phi \, d\mu = A_t$, and as a consequence (2.2) is also satisfied.

Applying Lemma 2.1, we conclude that

$$\frac{1}{\mu(E)} \int_{E} \phi^{p} d\mu \leq \frac{1}{\mu(\widehat{E})} \int_{\widehat{E}} \phi^{p} d\mu,$$

or by the definitions of E and \hat{E} ,

(3.9)
$$\frac{1}{t} \int_{0}^{t} [\phi^*(u)]^p \, du \leq \frac{1}{\mu(\Gamma)} \int_{\Gamma} \phi^p \, d\mu.$$

Our aim now is to show that the right integral average in (3.9) is less than or equal to $(kc - k + 1)(A_t)^p$. We proceed as follows:

We set $\ell_{\Gamma} = \mu(\Gamma)^{-1} \int_{\Gamma} \phi^p d\mu$. Then with the notation above, we have

(3.10)
$$\ell_{\Gamma} = \frac{1}{\mu(\Gamma)} \left(\int_{E_t^*} \phi^p \, d\mu - \int_{\Delta} \phi^p \, d\mu \right)$$
$$= \frac{1}{\mu(\Gamma)} \left(\sum_{s=1}^{\infty} \int_{I_{j_s}^*} \phi^p \, d\mu - \sum_{s=1}^{\infty} \int_{\Delta_s} \phi^p \, d\mu \right) = \frac{1}{\mu(\Gamma)} \sum_{s=1}^{\infty} p_s,$$

where the p_s are given by

$$p_s = \int_{I_{j_s}^*} \phi^p \, d\mu - \int_{\Delta_s} \phi^p \, d\mu \quad \text{for any } s = 1, 2, \dots$$

We now find an effective lower bound for $\int_{\Delta_s} \phi^p d\mu$. By Hölder's inequality,

(3.11)
$$\int_{\Delta_s} \phi^p \, d\mu \ge \frac{1}{\mu(\Delta_s)^{p-1}} \Big(\int_{\Delta_s} \phi \, d\mu\Big)^p,$$

Since $\Delta_s = I_{j_s}^* \setminus \Gamma_s$, (3.11) can be written as

(3.12)
$$\int_{\Delta_s} \phi^p \, d\mu \ge \frac{\left(\int_{I_{j_s}^*} \phi \, d\mu - \int_{\Gamma_s} \phi \, du\right)^p}{(\mu(I_{j_s}^*) - \mu(\Gamma_s))^{p-1}}.$$

We now use Hölder's inequality in the form

$$\frac{(\lambda_1 + \lambda_2)^p}{(\sigma_1 + \sigma_2)^{p-1}} \le \frac{\lambda_1^p}{\sigma_1^{p-1}} + \frac{\lambda_2^p}{\sigma_2^{p-1}} \quad \text{for } \lambda_i \ge 0 \text{ and } \sigma_i > 0,$$

which holds since p > 1. Thus (3.12) gives

(3.13)
$$\int_{\Delta_s} \phi^p \, d\mu \ge \frac{1}{\mu(I_{j_s}^*)^{p-1}} \Big(\int_{I_{j_s}^*} \phi \, d\mu \Big)^p - \frac{1}{\mu(\Gamma_s)^{p-1}} \Big(\int_{\Gamma_s} \phi \, d\mu \Big)^p.$$

Since $\mu(\Gamma_s)^{-1} \int_{\Gamma_s} \phi \, d\mu = A_t$, (3.13) gives

$$\int_{\Delta_s} \phi^p \, d\mu \ge \frac{1}{\mu(I_{j_s}^*)^{p-1}} \Big(\int_{I_{j_s}^*} \phi \, d\mu\Big)^p - \mu(\Gamma_s) \cdot (A_t)^p,$$

so we conclude, by the definition of p_s , that

(3.14)
$$p_s \leq \int_{I_{j_s}^*} \phi^p \, d\mu - \frac{1}{\mu(I_{j_s}^*)^{p-1}} \Big(\int_{I_{j_s}^*} \phi \, d\mu \Big)^p + \mu(\Gamma_s) \cdot (A_t)^p.$$

Using now (3.1) for $I = I_{j_s}^*$, s = 1, 2, ..., we have

(3.15)
$$p_s \le (c-1) \frac{1}{\mu(I_{j_s}^*)^{p-1}} \Big(\int_{I_{j_s}^*} \phi \, d\mu \Big)^p + \mu(\Gamma_s) \cdot (A_t)^p.$$

Summing (3.15) for $s = 1, 2, \ldots$ we obtain, in view of (3.10),

(3.16)
$$\ell_{\Gamma} \leq \frac{1}{\mu(\Gamma)} \bigg[(c-1) \sum_{s=1}^{\infty} \frac{1}{\mu(I_{j_s}^*)^{p-1}} \Big(\int_{I_{j_s}^*} \phi \, d\mu \Big)^p + \Big(\sum_{s=1}^{\infty} \mu(\Gamma_s) \Big) (A_t)^p \bigg].$$

Now from $\mu(I_{j_s}^*)^{-1} \int_{I_{j_s}^*} \phi \, d\mu \le A_t$, we see that

(3.17)
$$\ell_{\Gamma} \leq \frac{1}{\mu(\Gamma)} \Big[(c-1) \sum_{s=1}^{\infty} \mu(I_{j_s}^*) \cdot (A_t)^p + \mu(\Gamma) \cdot (A_t)^p \Big]$$
$$= \Big[(c-1) \frac{\mu(E_t^*)}{\mu(\Gamma)} + 1 \Big] \cdot (A_t)^p.$$

Since now $E_t^* \supseteq \Gamma \supseteq E_t$, by (3.7) we have

$$\mu(E_t^*) \le k\mu(E_t) \le k\mu(\Gamma).$$

Thus (3.17) gives

$$\frac{1}{\mu(\Gamma)} \int_{\Gamma} \phi^p \, d\mu \le [k(c-1)+1](A_t)^p.$$

Using now (3.9) and the last inequality we obtain the desired result.

COROLLARY 3.1. If ϕ satisfies (3.1) for every $I \in \mathcal{T}$, then $\phi \in L^q$ for any $q \in [p, p_0)$, where p_0 is defined by

$$\frac{p_0 - p}{p_0} \cdot \left(\frac{p_0}{p_0 - 1}\right)^p \cdot (kc - k + 1) = 1.$$

Proof. Immediate from Theorems 1 and A. \blacksquare

REMARK 3.1. All the above holds if we replace the condition (3.1) by the known Muckenhoupt condition on ϕ over the dyadic sets of X. Then the same proof shows that the Muckenhoupt condition should hold for ϕ^* for intervals of the form (0, t], and for the constant kc - k + 1. This is true since there exists a lemma analogous to Lemma 2.1 for this case (as can be seen in [4]). Also the inequality that is used in order to produce (3.13) from (3.12) is true even for p < 0. We omit the details.

Acknowledgments. This research has been co-financed by the European Union and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF), aristeia code: MAXBELLMAN 2760, research code: 70/3/11913.

References

- R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241–350.
- [2] L. D'Apuzzo and C. Sbordone, Reverse Hölder inequalities. A sharp result, Rend. Mat. Appl. 10 (1990), 357–366.
- F. W. Gehring, The L^p integrability of the partial derivatives of a quasiconformal mapping, Acta Math. 130 (1973), 265–277.
- [4] A. A. Korenovskii, Mean Oscillations and Equimeasurable Rearrangements of Functions, Lecture Notes Un. Mat. Ital. 4, Springer, 2000.
- [5] A. A. Korenovskii, The exact continuation of a reverse Hölder inequality and Muckenhoupt's condition, Math. Notes 52 (1992), 1192–1201.
- [6] A. D. Melas, A sharp L^p inequality for dyadic A_1 weights in \mathbb{R}^n , Bull. London Math. Soc. 37 (2005), 919–926.
- B. Muckenhoupt, Weighted norm inequalities for the Hardy-Littlewood maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226.
- [8] E. N. Nikolidakis, A Hardy inequality and applications to reverse Hölder inequalities for weights on R, arXiv:1312.1991 (2013).
- E. N. Nikolidakis, Dyadic A₁ weights and equimeasurable rearrangements of functions, J. Geom. Anal. 26 (2016), 782–790.

Eleftherios N. Nikolidakis, Antonios D. Melas Department of Mathematics National and Kapodistrian University of Athens Zografou, GR-15784, Athens, Greece E-mail: lefteris@math.uoc.gr amelas@math.uoa.gr