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Dyadic weights on Rn and reverse Hölder inequalities

by

Eleftherios N. Nikolidakis and Antonios D. Melas (Athens)

Abstract. We prove that for any weight φ defined on [0, 1]n that satisfies a reverse
Hölder inequality with exponent p > 1 and constant c ≥ 1 on all dyadic subcubes of
[0, 1]n, its non-increasing rearrangement φ∗ satisfies a reverse Hölder inequality with the
same exponent and constant not more than 2nc − 2n + 1 on all subintervals of the form
[0, t], 0 < t ≤ 1. As a consequence, there is an interval [p, p0(p, c)) = Ip,c such that φ ∈ Lq

for any q ∈ Ip,c.

1. Introduction. The theory of Muckenhoupt’s weights has proved to
be an important tool in analysis. One of the most important facts about
these weights is their self-improving property. A way to express this is
through the so called reverse Hölder inequalities (see [1], [3] and [7]).

Here we will study such inequalities in a dyadic setting. We will say that
a measurable function g : [0, 1] → R+ satisfies a reverse Hölder inequality
with exponent p > 1 and constant c ≥ 1 if

(1.1)
1

b− a

b�

a

g(u)p du ≤ c
(

1

b− a

b�

a

g(u) du

)p
for every subinterval [a, b] of [0, 1].

The following is proved in [2]:

Theorem A. Let g be a nonincreasing function defined on [0, 1] which
satisfies (1.1) for every interval [a, b] ⊆ [0, 1]. Define p0 > p as the root of
the equation

(1.2)
p0 − p
p0

(
p0

p0 − 1

)p
· c = 1.

Then g ∈ Lq([0, 1]) for any q ∈ [p, p0). Additionally for every q in the above
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range, g satisfies a reverse Hölder inequality with possibly another constant
c′ ≥ 1. Moreover the result is sharp, that is, the value p0 cannot be increased.

In [4] and [5], the following is proved:

Theorem B. If φ : [0, 1] → R+ is integrable satisfying (1.1) for every
[a, b] ⊆ [0, 1], then its non-increasing rearrangement φ∗ satisfies the same
inequality with the same constant c.

Here φ∗ is defined on (0, 1] by

φ∗(t) = sup
E⊆[0,1]
|E|=t

inf
x∈E
|φ(x)|, t ∈ (0, 1].

It can also be defined as the unique left continuous, non-increasing function
equimeasurable to |φ|, that is, for every λ > 0,

|{φ > λ}| = |{φ∗ > λ}|,
where | · | denotes the Lebesgue measure on [0, 1].

An immediate consequence of Theorem B is that Theorem A can be
generalized by omitting the assumption of the monotonicity of g.

Recently, in [8], the following was proved:

Theorem C. Let g : (0, 1] → R+ be a non-increasing function which
satisfies (1.1) on every interval (0, t], 0 < t ≤ 1, that is,

(1.3)
1

t

t�

0

g(u)p du ≤ c
(

1

t

t�

0

g(u) du

)p
for every t ∈ (0, 1]. Define p0 by (1.2). Then for any q ∈ [p, p0),

(1.4)
1

t

t�

0

g(u)q du ≤ c′
(

1

t

t�

0

g(u) du

)q
for every t ∈ (0, 1] and some constant c′ ≥ c. Thus g ∈ Lq((0, 1]) for any
such q. Moreover the result is sharp, that is, we cannot increase p0.

A consequence of Theorem C is that under the assumption that g is
non-increasing, the hypothesis that (1.1) is satisfied only on all intervals
(0, t] is enough for the existence of a p′ > p for which g ∈ Lp′([0, 1]).

In several dimensions, as far as we know, there does not exist any result
similar to Theorems A, B and C. All we know is the following, which can
be found in [3].

Theorem D. Let Q0 ⊆ Rn be a cube and φ : Q0 → R+ a measurable
function that satisfies

(1.5)
1

|Q|

�

Q

φp ≤ c
(

1

|Q|

�

Q

φ

)p
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for fixed constants p > 1 and c ≥ 1, and every cube Q ⊆ Q0. Then there
exists ε = ε(n, p, c) such that

(1.6)
1

|Q|

�

Q

φq ≤ c′
(

1

|Q|

�

Q

φ

)q
for every q ∈ [p, p+ε), any cube Q ⊆ Q0 and some constant c′ = c′(q, p, n, c).

In several dimensions no estimate of the quantity ε has been found. The
purpose of this work is to study the multidimensional case in the dyadic
setting. More precisely, we consider a measurable function φ defined on
[0, 1]n = Q0 which satisfies (1.5) for any dyadic subcube Q of Q0. These
cubes can be realized by bisecting the sides of Q0, then bisecting every
side of the resulting dyadic cube and so on. We denote by T2n the tree
consisting of the above mentioned dyadic subcubes of [0, 1]n. We will prove
the following:

Theorem 1. Let φ : Q0 = [0, 1]n → R+ be such that

(1.7)
1

|Q|

�

Q

φp ≤ c
(

1

|Q|

�

Q

φ

)p
for any Q ∈ T2n and some fixed constants p > 1 and c ≥ 1. Let h = φ∗ be
the non-increasing rearrangement of φ. Then

(1.8)
1

t

t�

0

h(u)p du ≤ (2nc− 2n + 1)

(
1

t

t�

0

h(u) du

)p
for any t ∈ [0, 1].

As a consequence, h = φ∗ satisfies the assumptions of Theorem C, which
produces an ε1 = ε1(n, p, c) > 0 such that h ∈ Lq([0, 1]) for any q ∈ [p, p+ε1).
Thus φ ∈ Lq([0, 1]n) for any such q. That is, we can find an explicit value
of ε1. This is stated as Corollary 3.1.

As a matter of fact we prove Theorem 1 in a much more general setting
of a non-atomic probability space (X,µ) equipped with a tree Tk, which is
a k-homogeneous tree for a fixed integer k > 1, and plays the role of dyadic
sets as in [0, 1]n (see the definition in Section 2).

As we shall see later, Theorem 1 is independent of the shape of the dyadic
sets and depends only on the homogeneity of the tree Tk. Additionally we
mention that the inequality (1.8) need not be satisfied, under the assump-
tions of Theorem 1, if one replaces the intervals (0, t] by (t, 1]. That is, φ∗ is
not necessarily a weight on (0, 1] satisfying a reverse Hölder inequality on all
subintervals of [0, 1], and one can easily construct a relevant counterexample.

Additionally we mention that a study of dyadic A1-weights appears in [6],
where one can find for any c > 1 the best possible range [1, p) for which the
following holds: φ ∈ Ad1(c) ⇒ φ ∈ Lq for any q ∈ [1, p). Finally, results
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connected with A1 dyadic weights φ and the behavior of φ∗ as an A1-weight
on R can be found in [9].

2. Preliminaries. Let (X,µ) be a non-atomic probability space. We
introduce the notion of a k-homogeneous tree on X.

Definition 2.1. Let k > 1 be an integer. A set Tk will be called a
k-homogeneous tree on X if:

(i) X ∈ Tk.
(ii) For every I ∈ Tk, there is a subset C(I) ⊆ Tk consisting of k subsets

of I such that

(a) the elements of C(I) are pairwise disjoint,
(b) I =

⋃
C(I),

(c) µ(J) = k−1µ(I) for every J ∈ C(I).

(iii) Tk differentiates L1(X,µ), that is, for every φ ∈ L1(X,µ),

lim
x∈I∈Tk
µ(I)→0

1

µ(I)

�

I

φdµ = φ(x)

µ-almost everywhere on X.

For example one can consider X = [0, 1]n, the unit cube of Rn. Let µ be
the Lebesgue measure on this cube. Then the set Tk of all dyadic subcubes of
X is a tree of homogeneity k = 2n, with C(Q) being the set of 2n subcubes
of Q, obtained by bisecting the sides of every Q ∈ Tk, starting from Q = X.

Let now (X,µ) be as above and let Tk be a tree on X as in Definition
2.1. From now on, we fix k and write T = Tk. For any I ∈ T , I 6= X, we
denote by I∗ the smallest element of T such that I∗ ) I. That is, I∗ is the
unique element of T such that I ∈ C(I∗). Then µ(I∗) = kµ(I).

Definition 2.2. For any (X,µ) and T as above we define the dyadic
maximal operator on X with respect to T , denoted MT , by

(2.1) MT φ(x) = sup

{
1

µ(I)

�

I

|φ| dµ : x ∈ I ∈ T
}

for any φ ∈ L1(X,µ) and x ∈ X.

Remark 2.1. It is not difficult to see that the maximal operator defined
by (2.1) satisfies a weak-type (1, 1) inequality

µ({MT φ > λ}) ≤ 1

λ

�

{MT φ>λ}

φdµ, λ > 0.

The above inequality is best possible for every λ > 0. Also some results in
[4] connect such inequalities with differentiation properties of the tree T .

We will also need the following lemma which can again be found in [4].
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Lemma 2.1. Let φ be a non-negative function defined on E ∪ Ê ⊆ X
such that

(2.2)
1

µ(E)

�

E

φdµ =
1

µ(Ê)

�

Ê

φdµ ≡ A.

Additionally suppose that

(2.3) φ(x) ≤ A for every x /∈ E ∩ Ê,
and

(2.4) φ(x) ≤ φ(y) for all x ∈ Ê \ E and y ∈ E.
Then, for every p > 1,

(2.5)
1

µ(E)

�

E

φp dµ ≤ 1

µ(Ê)

�

Ê

φp dµ.

3. Weights on (X,µ, T )

Proof of Theorem 1. We suppose that φ is non-negative defined on (X,µ)
and satisfies a reverse Hölder inequality of the form

(3.1)
1

µ(I)

�

I

φp dµ ≤ c ·
(

1

µ(I)

�

I

φdµ

)p
for every I ∈ T , where c, p are fixed such that p > 1 and c ≥ 1. We will
prove that for any t ∈ (0, 1] we have

(3.2)
1

t

t�

0

[φ∗(u)]p du ≤ (kc− k + 1)

(
1

t

t�

0

φ∗(u) du

)p
,

where φ∗ is the non-increasing rearrangement of φ, defined on (0, 1], and k
is the homogeneity of T . Fix a t ∈ (0, 1] and set

At =
1

t

t�

0

φ∗(u) du.

Define

(3.3) Et = {x ∈ X :MT φ(x) > At}.
Then for any x ∈ Et, there exists Ix ∈ T such that

(3.4) x ∈ Ix and
1

µ(Ix)

�

Ix

φdµ > At.

Obviously, Ix ⊆ Et. We set Sφ,t = {Ix : x ∈ Et}. This is a family of
elements of T such that

⋃
{I : I ∈ Sφ,t} = Et. Consider now those I ∈ Sφ,t

that are maximal with respect to ⊆. We write this subfamily of Sφ,t as
S′φ,t = {Ij : j = 1, 2, . . .}; it may be finite. Then S′φ,t is a disjoint family of
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elements of T , because of the maximality of every Ij and the tree structure
of T (see Definition 2.1).

Then by construction, this family still covers Et, that is, Et =
⋃∞
j=1 Ij .

For any Ij ∈ S′φ,t we have Ij 6= X, because if Ij = X for some j, then (3.4)
would yield

1�

0

φ∗(u) du =
�

X

φdµ =
1

µ(Ij)

�

Ij

φdµ > At =
1

t

t�

0

φ∗(u) du,

which is impossible, since φ∗ is non-increasing on (0, 1]. Thus, for every
Ij ∈ S′φ,t we see that I∗j is well defined, but may be common for two or more

elements of S′φ,t. We may also have I∗j ⊆ I∗i for some Ij , Ii ∈ S′φ,t.
We now consider the family

Lφ,t = {I∗j : j = 1, 2, . . .} ⊆ T .
As mentioned above, this is not necessarily a pairwise disjoint family. We
choose a pairwise disjoint subcollection, by considering those I∗j that are
maximal with respect to ⊆. We denote this family as

L′φ,t = {I∗js : s = 1, 2, . . .}.
Then of course ⋃

{J : J ∈ Lφ,t} =
⋃
{J : J ∈ L′φ,t}.

Since each Ij ∈ S′φ,t is maximal under the above mentioned integral inequal-
ity, we have

(3.5)
1

µ(I∗js)

�

I∗js

φdµ ≤ At.

Now note that every I∗js contains at least one element I of S′φ,t such that
I ∈ C(I∗js) (one such is Ijs). Consider for any s the family of all those I such
that I∗ ⊆ I∗js . We write it as

S′φ,t,s = {I ∈ S′φ,t : I∗ ⊆ I∗js}.
For any I ∈ S′φ,t,s we have of course

1

µ(I)

�

I

φdµ > At, so if we set Ks =
⋃
{I : I ∈ S′φ,t,s},

we must have, because of the disjointness of the elements of S′φ,t,

(3.6)
1

µ(Ks)

�

Ks

φdµ > At.

Additionally, Ks ⊆ I∗js and by the comments above we easily see that

(3.7)
1

k
µ(I∗js) ≤ µ(Ks) < µ(I∗js).
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By (3.5) and (3.6) we can now choose (because µ is non-atomic), for any s,
a measurable set Bs ⊆ I∗js \Ks such that if we define Γs = Ks ∪Bs, then

1

µ(Γs)

�

Γs

φdµ = At.

We now set

E∗t =
⋃
s

I∗js , Γ =
⋃
s

Γs, ∆ =
⋃
s

∆s,

where ∆s = I∗js \ Γs for any s = 1, 2, . . . . Then by the above,

Γ ∪∆ = E∗t and
1

µ(Γ )

�

Γ

φdµ = At,

which is true in view of the pairwise disjointness of (I∗js)
∞
s=1.

Define
h := (φ/Γ )∗ : (0, µ(Γ )]→ R+.

Then obviously

1

µ(Γ )

µ(Γ )�

0

h(u) du =
1

µ(Γ )

�

Γ

φdµ = At.

By the definition of h we have h(u) ≤ φ∗(u) for any u ∈ (0, µ(Γ )]. Thus

(3.8)
1

µ(Γ )

µ(Γ )�

0

φ∗(u) du ≥ 1

µ(Γ )

µ(Γ )�

0

h(u) du = At =
1

t

t�

0

φ∗(u) du.

From (3.8), we see that µ(Γ ) ≤ t, since φ∗ is non-increasing.
We now consider a set E ⊆ X such that (φ/E)∗ = φ∗/(0, t] with µ(E) = t

and for which {φ > φ∗(t)} ⊆ E ⊆ {φ ≥ φ∗(t)}. Its existence is guaranteed
by the equimeasurability of φ and φ∗, and the fact that (X,µ) is non-atomic.
Then we see immediately that

1

µ(E)

�

E

φdµ =
1

t

t�

0

φ∗(u) du = At.

We are now going to construct a second set Ê ⊆ X. We first set Ê1 = Γ .
Let x /∈ Ê1. Since Γ ⊇ {MT φ > At}, we must have MT φ(x) ≤ At.

But since T differentiates L1(X,µ), we obviously have φ(y) ≤ MT φ(y) for

µ-almost every y ∈ X. Thus the set Ω = {x /∈ Ê1 : φ(x) >MT φ(x)} has
µ-measure zero.

Finally, we set Ê = Ê1 ∪ Ω = Γ ∪ Ω. Then µ(Ê) = µ(Γ ) and φ(x) ≤
MT φ(x) ≤ At for every x /∈ Ê.

Let now x /∈ E. By the construction of E we immediately see that
φ(x) ≤ φ∗(t) ≤ (1/t)

	t
0 φ
∗(u) du = At. Thus, if x /∈ E or x /∈ Ê, we must
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have φ(x) ≤ At, that is, (2.3) of Lemma 2.1 is satisfied for these choices

of E and Ê. Let now x ∈ Ê \ E and y ∈ E. Then obviously by the above
discussion, φ(x) ≤ φ∗(t) ≤ φ(y). Thus (2.4) is also satisfied. Also since

Ê = Γ ∪ Ω, we obviously have µ(Ê)−1
	
Ê
φdµ = At, and as a consequence

(2.2) is also satisfied.

Applying Lemma 2.1, we conclude that

1

µ(E)

�

E

φp dµ ≤ 1

µ(Ê)

�

Ê

φp dµ,

or by the definitions of E and Ê,

(3.9)
1

t

t�

0

[φ∗(u)]p du ≤ 1

µ(Γ )

�

Γ

φp dµ.

Our aim now is to show that the right integral average in (3.9) is less than
or equal to (kc− k + 1)(At)

p. We proceed as follows:

We set `Γ = µ(Γ )−1
	
Γ φ

p dµ. Then with the notation above, we have

`Γ =
1

µ(Γ )

( �

E∗t

φp dµ−
�

∆

φp dµ
)

(3.10)

=
1

µ(Γ )

( ∞∑
s=1

�

I∗js

φp dµ−
∞∑
s=1

�

∆s

φp dµ
)

=
1

µ(Γ )

∞∑
s=1

ps,

where the ps are given by

ps =
�

I∗js

φp dµ−
�

∆s

φp dµ for any s = 1, 2, . . . .

We now find an effective lower bound for
	
∆s
φp dµ. By Hölder’s inequality,

(3.11)
�

∆s

φp dµ ≥ 1

µ(∆s)p−1

( �

∆s

φdµ
)p
,

Since ∆s = I∗js \ Γs, (3.11) can be written as

(3.12)
�

∆s

φp dµ ≥

(	
I∗js
φdµ−

	
Γs
φdu

)p
(µ(I∗js)− µ(Γs))p−1

.

We now use Hölder’s inequality in the form

(λ1 + λ2)
p

(σ1 + σ2)p−1
≤ λp1
σp−11

+
λp2
σp−12

for λi ≥ 0 and σi > 0,
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which holds since p > 1. Thus (3.12) gives

(3.13)
�

∆s

φp dµ ≥ 1

µ(I∗js)
p−1

( �

I∗js

φdµ
)p
− 1

µ(Γs)p−1

( �

Γs

φdµ
)p
.

Since µ(Γs)
−1 	

Γs
φdµ = At, (3.13) gives

�

∆s

φp dµ ≥ 1

µ(I∗js)
p−1

( �

I∗js

φdµ
)p
− µ(Γs) · (At)p,

so we conclude, by the definition of ps, that

(3.14) ps ≤
�

I∗js

φp dµ− 1

µ(I∗js)
p−1

( �

I∗js

φdµ
)p

+ µ(Γs) · (At)p.

Using now (3.1) for I = I∗js , s = 1, 2, . . . , we have

(3.15) ps ≤ (c− 1)
1

µ(I∗js)
p−1

( �

I∗js

φdµ
)p

+ µ(Γs) · (At)p.

Summing (3.15) for s = 1, 2, . . . we obtain, in view of (3.10),

(3.16) `Γ ≤
1

µ(Γ )

[
(c− 1)

∞∑
s=1

1

µ(I∗js)
p−1

( �

I∗js

φdµ
)p

+
( ∞∑
s=1

µ(Γs)
)

(At)
p

]
.

Now from µ(I∗js)
−1 	

I∗js
φdµ ≤ At, we see that

`Γ ≤
1

µ(Γ )

[
(c− 1)

∞∑
s=1

µ(I∗js) · (At)
p + µ(Γ ) · (At)p

]
(3.17)

=

[
(c− 1)

µ(E∗t )

µ(Γ )
+ 1

]
· (At)p.

Since now E∗t ⊇ Γ ⊇ Et, by (3.7) we have

µ(E∗t ) ≤ kµ(Et) ≤ kµ(Γ ).

Thus (3.17) gives

1

µ(Γ )

�

Γ

φp dµ ≤ [k(c− 1) + 1](At)
p.

Using now (3.9) and the last inequality we obtain the desired result.

Corollary 3.1. If φ satisfies (3.1) for every I ∈ T , then φ ∈ Lq for
any q ∈ [p, p0), where p0 is defined by

p0 − p
p0

·
(

p0
p0 − 1

)p
· (kc− k + 1) = 1.

Proof. Immediate from Theorems 1 and A.
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Remark 3.1. All the above holds if we replace the condition (3.1) by
the known Muckenhoupt condition on φ over the dyadic sets of X. Then
the same proof shows that the Muckenhoupt condition should hold for φ∗

for intervals of the form (0, t], and for the constant kc− k + 1. This is true
since there exists a lemma analogous to Lemma 2.1 for this case (as can be
seen in [4]). Also the inequality that is used in order to produce (3.13) from
(3.12) is true even for p < 0. We omit the details.
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