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Summary. The purpose of this paper is to define some notions of movability for mor-
phisms of inverse systems which extend the movability properties of inverse systems and
which are compatible with the equivalence relations which define pro-morphisms and shape
morphisms. Some properties and applications are given.

1. Introduction. The notion of movability for metric compacta was in-
troduced by K. Borsuk [2] as an important shape invariant. The movable
spaces are a generalization of spaces having the shape of ANR’s. The mov-
ability assumption allows a series of important results in algebraic topology
(like the Whitehead and Hurewicz theorems) to remain valid when the homo-
topy pro-groups are replaced by the corresponding shape groups. The term
“movability” comes from the geometric interpretation of the definition in the
compact case: if X is a compactum lying in a space M ∈ AR, one says that
X is movable if for every neighborhood U of X in M there exists a neigh-
borhood V ⊂ U of X such that for every neighborhood W ⊂ U of X there
is a homotopy H : V × [0, 1] → U such that H(x, 0) = x and H(x, 1) ∈ W
for every x ∈ V . One shows that the choice of M ∈ AR is irrelevant [2].
After the notion of movability had been expressed in terms of ANR-systems
[11], [12], it became clear that one could define it in arbitrary pro-categories.
The definition of a movable object in an arbitrary pro-category and that of
uniform movability were both given by Maria Moszyńska [14]. In the book
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of Sibe Mardešić and Jack Segal [12] all these approaches and applications
of various types of movability are discussed.

Some categorical approaches to movability in shape theory were given
by P. S. Gevorgyan [7], [8], I. Pop [15], P. S. Gevorgyan & I. Pop [9], and
T. A. Avakyan & P. S. Gevorgyan [1].

The approach of this paper started from the idea that some results in
shape theory, valid under some conditions of movability for inverse systems
or shape objects, could be obtained under weak conditions. More precisely,
the idea was to define some movability notions for morphisms of inverse
systems, so as to recover, when these morphisms are identity morphisms,
the definitions of the usual movability properties for pro-objects and shape
objects. Besides the classical case of movability of pro-objects and shape
objects, some notions of movability appear in the papers of T. Yagasaki [19],
[20] about shape fibrations, of Z. Čerin [3] on Lefschetz movable maps, and
of D. A. Edwards and P. Tulley MacAuley [6] about a shape theory of a
map.

Unfortunately, these approaches are just particular cases and they do
not deal with the movability of shape morphisms in the general case of an
abstract shape theory. The second author of this paper already approached
this problem in two previous articles [16], [17] in which some properties of
movability for morphisms of inverse systems and for pro-morphisms were
defined and studied. However, those properties could not be extended to
shape morphisms and maps.

In the present paper this problem is solved by a slight but useful mod-
ification of the previous notions of movability and uniform movability for
morphisms of inverse systems, the new definitions being compatible with the
relations which define pro-morphisms and shape morphisms. In this way we
obtain satisfactory notions of movability (simple and uniform) for shape mor-
phisms and in particular for maps. “Dual” notions of co-movability (simple
and uniform) are defined. Some properties and applications are given.

2. Movable morphisms of inverse systems and movable shape
morphisms. All sets of indices considered are supposed to be cofinite di-
rected sets. This condition is not restrictive (cf. [12, Ch. I, §1.2]).

First we recall from [12, Ch. II, §6.1] the following definition.

Definition 2.1. An object X = (Xλ, pλλ′ , Λ) of pro-C is movable pro-
vided every λ ∈ Λ admits a λ′ ≥ λ (called a movability index of λ) such that
each λ′′ ≥ λ admits a morphism r : Xλ′ → Xλ′′ of C which satisfies

(2.1) pλλ′′ ◦ r = pλλ′ ,

i.e., makes the following diagram commutative:
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Xλ′
pλλ′ //

r
""

Xλ

Xλ′′

pλλ′′

<<

Definition 2.2. LetX = (Xλ, pλλ′ , Λ) andY = (Yµ, qµµ′ ,M) be inverse
systems in a category C and (fµ, φ) : X→ Y a morphism of inverse systems.
We say that the morphism (fµ, φ) is movable if every µ ∈M admits a λ ∈ Λ
with λ ≥ φ(µ) such that each µ′ ∈ M with µ′ ≥ µ admits a morphism
u : Xλ → Yµ′ in C which satisfies

(2.2) fµ ◦ pφ(µ)λ = qµµ′ ◦ u,

i.e., makes the following diagram commutative:

Xφ(µ)

fµ // Yµ

Xλ

pφ(µ)λ

OO

u
// Yµ′

qµµ′

OO

The index λ is called a movability index (MI) of µ with respect to (fµ, φ).
The composition fµ◦pφ(µ)λ for λ ≥ φ(µ) is denoted by fµλ (cf. [12, Ch. II,

§2.1]). With this notation the relation (2.2) becomes fµλ = qµµ′ ◦ u.

Remark 2.3. If λ is a movability index for µ with respect to (fµ, φ),
then so is any λ̃ > λ.

Theorem 2.4. An inverse system X = (Xλ, pλλ′ , Λ) is movable if and
only if the identity morphism 1X is movable.

Proof. Suppose X = (Xλ, pλλ′ , Λ) is movable. Consider an arbitrary
λ ∈ Λ. Note that a movability index λ′ ≥ λ is also a movability index
of λ with respect to 1X : X→ X.

Conversely, suppose 1X : X → X is a movable morphism. Note that
for any λ ∈ Λ a movability index λ′ ≥ λ of λ with respect to 1X is also a
movability index for the inverse system X = (Xλ, pλλ′ , Λ).

Theorem 2.5. Let X = (Xλ, pλλ′ , Λ), Y = (Yµ, qµµ′ ,M) and Z =
(Zν , rνν′ , N) be inverse systems in the category C and let (fµ, φ) : X → Y
and (gν , ψ) : Y → Z be morphisms of inverse systems. Suppose that (gν , ψ)
is movable. Then so is the composition (hν , χ) = (gν , ψ) ◦ (fµ, φ).

Proof. Recall that χ = φ ◦ ψ and hν = gν ◦ fψ(ν). If (gν , ψ) is movable
and ν ∈ N , then for a movability index µ ∈M of ν ∈ N with µ ≥ ψ(ν), an
index ν ′ ∈ N with ν ′ ≥ ν admits a morphism u : Yµ → Zν′ in C such that
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gν ◦ qψ(ν)µ = rνν′ ◦ u:

Yψ(ν)
gν // Zν

Yµ

qψ(ν)µ

OO

u // Zν′

rνν′

OO

Now consider λ ∈ Λ with λ ≥ φ(µ) and λ ≥ φ(ψ(ν)) such that fψ(ν) ◦
pφ(ψ(ν))λ = qψ(ν)µ ◦ fµ ◦ pφ(µ)λ. Then we can consider the morphism u′ :=
u ◦ fµ ◦ pφ(µ)λ : Xλ → Zν′ , for which we obtain

rνν′ ◦ u′ = (rνν′ ◦ u) ◦ fµ ◦ pφ(µ)λ = gν ◦ qψ(ν) ◦ fµ ◦ pφ(µ)λ
= gν ◦ fψ(ν) ◦ pφ(ψ(ν)) = hν ◦ pχ(ν)λ.

Corollary 2.6. Let X = (Xλ, pλλ′ , Λ) be an arbitrary inverse system
and Y = (Yµ, qµµ′ ,M) be movable. Then any morphism (fµ, φ) : X → Y is
movable.

Proof. Since (fµ, φ) = 1Y ◦ (fµ, φ) and 1Y : Y → Y is a movable mor-
phism by Theorem 2.4, (fµ, φ) is also movable according to Theorem 2.5.

Theorem 2.7. Let X = (Xλ, pλλ′ , Λ), Y = (Yµ, qµµ′ ,M) and Z =
(Zν , rνν′ , N) be inverse systems in the category C, and let (fµ, φ) : X → Y
and (gν , ψ) : Y → Z be morphisms of inverse systems. Suppose that (fµ, φ)
is movable. Then so is the composition (hν , χ) = (gν , ψ) ◦ (fµ, φ).

Proof. For any ν ∈ N , consider a movability index λ of ψ(ν), λ ≥
φ(ψ(ν)), with respect to (fµ, φ). Let us prove that λ is a movability index of
ν with respect to (hν , χ).

Let ν ′ ∈ N with ν ′ ≥ ν. Consider µ′ ≥ ψ(ν ′), ψ(ν) such that

rνν′ ◦ gν′ ◦ qψ(ν′)µ′ = gν ◦ qψ(ν)µ′ .

For qψ(ν)µ′ by the movability of (fµ, φ) : X→ Y there exists a morphism
u : Xλ → Yµ′ such that

fψ(ν) ◦ pφ(ψ(ν))λ = qψ(ν)µ′ ◦ u.

Define U : Xλ → Zν′ by

U = gν′ ◦ qψ(ν′)µ′ ◦ u.

Now we have
rνν′ ◦ U = rνν′ ◦ gν′ ◦ qψ(ν′)µ′ ◦ u = gν ◦ qψ(ν)µ′ ◦ u

= gν ◦ qψ(ν)µ ◦ fµ ◦ pφ(µ)λ = gν ◦ fψ(ν) ◦ pχ(ν)λ
= hν ◦ pχ(ν)λ.
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Corollary 2.8. Let X=(Xλ, pλλ′ , Λ) be movable and Y=(Yµ, qµµ′ ,M)
be an arbitrary inverse system. Then any morphism (fµ, φ) : X → Y is
movable.

Proof. Since (fµ, φ) = (fµ, φ) ◦ 1X and 1X : X → X is a movable mor-
phism by Theorem 2.4, (fµ, φ) is also movable according to Theorem 2.7.

Proposition 2.9. Let (fµ, φ), (f
′
µ, φ

′) : X = (Xλ, pλλ′ , Λ) → Y =
(Yµ, qµµ′ ,M) be equivalent morphisms of inverse systems. If (fµ, φ) is mov-
able then so is (f ′µ, φ

′).

Proof. Let µ ∈M with λ a movability index for µ with respect to (fµ, φ).
Now by the definition of the equivalence relation between morphisms of
inverse systems (see [12, Ch. I, §1.1]), there exists λ′ ≥ φ(µ), φ′(µ) such that

(2.3) fµ ◦ pφ(µ)λ′ = f ′µ ◦ pφ′(µ)λ′ ,
and we can suppose that λ′ ≥ λ, so that we refer to λ′ as a movability index
of µ with respect to (fµ, φ). Then λ′ is also a movability index for µ with
respect to (f ′µ, φ

′). Let µ′ ∈ M with µ′ ≥ µ. Then there exists a morphism
u : Xλ′ → Yµ′ such that fµλ′ = qµµ′ ◦ u.

But by (2.3) we have fµλ′ = f ′µλ′ , so that f ′µλ′ = qµµ′ ◦ u.

Recall that the pro-category pro-C of a category C has as objects all inverse
systems X in C (over all directed sets Λ), and as morphisms f : X→ Y the
equivalence classes of morphisms (fµ, φ) : X → Y of inverse systems with
respect to the equivalence relation ∼ considered above.

Thanks to Proposition 2.9 we can make the following definition.

Definition 2.10. A morphism f : X → Y in pro-C is called movable if
f admits a representation (fµ, φ) : X→ Y which is movable.

The next theorem follows from Theorems 2.5 and 2.7 and Corollaries 2.6
and 2.8.

Theorem 2.11. A (pre- or post-) composition of an arbitrary pro-morph-
ism with a movable pro-morphism is a movable pro-morphism. In particular,
if for a pro-morphism f : X→ Y, one of X or Y is a movable system, then
f is a movable pro-morphism.

Corollary 2.12. Let X = (Xλ, pλλ′ , Λ) and Y = (Yµ, qµµ′ ,M) in
pro-C. If Y is movable and X is dominated by Y in pro-C, then X is also
movable.

Proof. By assumption there exist pro-morphisms f : X → Y and g :
Y → X such that g ◦ f = 1X. Because Y is movable, by Theorem 2.11 it
follows that f , g and 1X are movable pro-morphisms, and henceX is movable
by Theorem 2.4.
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Remark 2.13. Corollary 2.12 is a new proof of an important result in
the theory of shape (see [12, Theorem 1, Ch. II, §6.1]).

Based on Proposition 2.9, we can introduce the following definition.

Definition 2.14. A shape morphism F : X → Y is movable if it can be
represented by a movable pro-morphism f : X→ Y.

3. Uniformly movable shape morphisms

Definition 3.1. LetX = (Xλ, pλλ′ , Λ) andY = (Yµ, qµµ′ ,M) be inverse
systems in a category C, and (fµ, φ) : X→ Y a morphism of inverse systems.
We say that (fµ, φ) is uniformly movable if every µ ∈M admits λ ∈ Λ with
λ ≥ φ(µ) (called a uniform movability index of µ with respect to (fµ, φ))
such that there is a morphism of inverse systems u : Xλ → Y satisfying

(3.1) fµλ = qµ ◦ u,
i.e., the following diagram commutes:

Xλ

fµλ //

u
  

Yµ

Y

qµ

>>

where qµ : Y → Yµ is the morphism of inverse systems given by 1µ :
Yµ → Yµ.

Remark 3.2. If λ is a uniform movability index, then so is any λ̃ > λ.

Remark 3.3. Note that the morphism u : Xλ → Y determines for every
µ1 ∈ M a morphism uµ1 : Xλ → Yµ1 in C such that for µ1 ≤ µ2 we have
qµ1µ2 ◦ uµ2 = uµ1 and uµ = fµλ. In particular, for µ′ ∈ M with µ′ ≥ µ, we
have qµµ′ ◦uµ′ = uµ = fµλ, so that uniform movability of morphisms implies
movability.

Theorem 3.4. An inverse system X = (Xλ, pλλ′ , Λ) is uniformly mov-
able if and only if the identity morphism 1X is uniformly movable.

Proof. Suppose X = (Xλ, pλλ′ , Λ) is uniformly movable. Let λ ∈ Λ. Note
that a uniform movability index λ′ ≥ λ is also a uniform movability index of
λ with respect to 1X : X→ X.

Conversely, suppose 1X : X→ X is a uniformly movable morphism. Note
that for any λ ∈ Λ a uniform movability index λ′ ≥ λ of λ with respect to
1X is also a uniform movability index for X = (Xλ, pλλ′ , Λ).

Theorem 3.5. Let X=(Xλ, pλλ′ , Λ), Y=(Yµ, qµµ′ ,M), Z=(Zν , rνν′ , N)
be inverse systems in the category C, and let (fµ, φ) : X → Y and (gν , ψ) :
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Y → Z be morphisms of inverse systems. If (gν , ψ) is uniformly movable,
then so is (hν , χ) = (gν , ψ) ◦ (fµ, φ).

Proof. We use the notation from the proof of Theorem 2.5 replacing
rνν′ : Zν′ → Zν by rν : Z → Zν and u : Yµ → Zν′ by u : Yµ → Z. Then we
have gν ◦ qψ(ν)µ = rν ◦ u. And by defining u′ = u ◦ fµλ : Xλ → Z, we obtain
rν ◦ u′ = hνλ.

Corollary 3.6. Let X = (Xλ, pλλ′ , Λ) be an arbitrary inverse system
and Y = (Yµ, qµµ′ ,M) be uniformly movable. Then any morphism (fµ, φ) :
X→ Y is uniformly movable.

Proof. Since (fµ, φ) = 1Y ◦ (fµ, φ) and 1Y : Y → Y is uniformly movable
by Theorem 3.4, we conclude that (fµ, φ) is also uniformly movable according
to Theorem 3.5.

Theorem 3.7. Let X = (Xλ, pλλ′ , Λ), Y = (Yµ, qµµ′ ,M) and Z =
(Zν , rνν′ , N) be inverse systems in the category C, and let (fµ, φ) : X → Y
and (gν , ψ) : Y → Z be morphisms of inverse systems. Suppose that (fµ, φ)
is uniformly movable. Then so is (hν , χ) = (gν , ψ) ◦ (fµ, φ).

Proof. In the notation from the proof of Theorem 2.7, there exists u :
Xλ → Y such that fψ(ν)λ = qψ(ν) ◦ u. Then for U = g ◦ u : Xλ → Z, we
have hνλ = gν ◦ fψ(ν)λ = rν ◦U.

Corollary 3.8. Let X = (Xλ, pλλ′ , Λ) be uniformly movable and Y =
(Yµ, qµµ′ ,M) be an arbitrary inverse system. Then any morphism (fµ, φ) :
X→ Y is uniformly movable.

Proof. Since (fµ, φ) = (fµ, φ)◦1X and 1X : X→ X is uniformly movable
by Theorem 3.4, (fµ, φ) is also uniformly movable according to Theorem
3.7.

Proposition 3.9. Let (fµ, φ), (f
′
µ, φ

′) : X = (Xλ, pλλ′ , Λ) → Y =
(Yµ, qµµ′ ,M) be two equivalent morphisms of inverse systems. If (fµ, φ) is
uniformly movable then so is (f ′µ, φ

′).

Proof. We use the notation from the proof of Proposition 2.9. For µ ∈M
let λ′ ∈ Λ be a uniform movability index with respect to (fµ, φ) such that
(2.3) holds. This means fµλ′ = f ′µλ′ and therefore f ′µλ′ = fµλ′ = qµ ◦ u.

Thanks to Proposition 3.9 we can make the following definition.

Definition 3.10. A morphism f : X → Y in a pro-category pro-C is
called uniformly movable if f admits a representation (fµ, φ) : X→ Y which
is uniformly movable.

The next theorem follows from Theorems 3.5 and 3.7 and Corollaries 3.6
and 3.8.
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Theorem 3.11. A (pre- or post-) composition of an arbitrary pro-morph-
ism with a uniformly movable pro-morphism is a uniformly movable pro-
morphism. In particular, if for a pro-morphism f : X → Y, one of X or Y
is a uniformly movable system, then f is a uniformly movable pro-morphism.

Corollary 3.12. Let X = (Xλ, pλλ′ , Λ) and Y = (Yµ, qµµ′ ,M) in
pro-C. If Y is uniformly movable and X is dominated by Y in pro-C, then
X is uniformly movable.

Proof. By assumption there exist pro-morphisms f : X → Y and g :
Y → X such that g ◦ f = 1X. Because Y is uniformly movable, Theorem
3.11 shows that f , g and 1X are uniformly movable pro-morphisms, and
hence X is uniformly movable by Theorem 3.4.

Remark 3.13. Corollary 3.12 is a new proof of an important result in
the theory of shape (see [12, Theorem 2, Ch. II, §6.1]).

Definition 3.14. A shape morphism F : X → Y is uniformly movable
if it can be represented by a uniformly movable pro-morphism f : X→ Y.

4. Co-movability

Definition 4.1. LetX = (Xλ, pλλ′ , Λ) andY = (Yµ, qµµ′ ,M) be inverse
systems in a category C, and (fµ, φ) : X→ Y a morphism of inverse systems.
We say that (fµ, φ) is co-movable provided every µ ∈M admits λ ∈ Λ with
λ ≥ φ(µ) (called a co-movability index of µ relative to (fµ, φ)) such that
each λ′ ≥ φ(µ) admits a morphism r : Xλ → Xλ′ of C which satisfies

(4.1) fµλ = fµλ′ ◦ r,

i.e., makes the outside diagram below commutative:

Yµ

Xφ(µ)

fµ

OO

Xλ

fµλ

EE

pφ(µ)λ

<<

r
// Xλ′

pφ(µ)λ′

bb
fµλ′

YY

Definition 4.2. LetX = (Xλ, pλλ′ , Λ) andY = (Yµ, qµµ′ ,M) be inverse
systems in a category C, and (fµ, φ) : X→ Y a morphism of inverse systems.
We say that (fµ, φ) is uniformly co-movable provided every µ ∈ M admits
λ ∈ Λ with λ ≥ φ(µ) (called a uniform co-movability index of µ relative to
(fµ, φ)) such that there is a morphism r : Xλ → X in pro-C satisfying

(4.2) fµλ = fµ ◦ r,
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i.e., making the outside diagram below commutative:

Yµ

Xφ(µ)

fµ

OO

Xλ

fµλ

EE

pφ(µ)λ

<<

r
// X

pφ(µ)

aa
fµ

XX

where fµ = fµ ◦ pφ(µ).

Remark 4.3. The pro-morphism r : Xλ → X is given by some mor-
phisms rλ′ : Xλ → Xλ′ such that if λ′1 ≤ λ′2 then rλ′1 = pλ′1λ′2 ◦ rλ′2 . The
relation fµλ = fµ ◦ r means fµλ = fµ ◦ rφ(µ). Therefore, λ′ ≥ φ(µ) implies
fµλ = fµ ◦ pφ(µ)λ′ ◦ rλ′ = fµλ′ ◦ rλ′ . Thus uniform co-movability implies
co-movability.

Remark 4.4. Suppose (fµ, φ) : X = (Xλ, pλλ′ , Λ) → Y = (Yµ, qµµ′ ,M)
is a morphism of inverse systems and let µ ∈ M . If λ ≥ φ(µ) is a co-
movability (or uniform co-movability) index of µ with respect to (fµ, φ),
then so is any λ′ > λ.

Definition 4.5. Amorphism of inverse systems (fµ, φ) : ((Xλ, ∗), pλλ′ , Λ)
→ ((Yµ, ∗), qµµ′ ,M) of pointed sets is said to have the Mittag-Leffler property
provided every µ ∈ M admits a λ ∈ Λ with λ ≥ φ(µ) (an ML index for µ
with respect to (fµ, φ)) such that for any λ′ ∈ Λ with λ′ ≥ λ one has

(4.3) fµλ′(Xλ′) = fµλ(Xλ).

If (fµ, φ) is replaced by 1(X,∗) we obtain the Mittag-Leffler property for
an inverse system in the category pro-Set∗ (cf. [12, Ch. II, §6.2]).

Theorem 4.6. A morphism of inverse systems of pointed sets is co-
movable if and only if it has the Mittag-Leffler property.

Proof. Let (fµ, φ) : ((Xλ, ∗), pλλ′ , Λ)→ ((Yµ, ∗), qµµ′ ,M) be a morphism
with the Mittag-Leffler property. Then for µ ∈M there is a ML index λ ∈ Λ
with λ ≥ φ(µ) such that (4.3) holds for each λ′ ≥ λ. We can prove that λ is
a co-movability index of µ with respect to (fµ, φ). If λ′ ≥ φ(µ) and λ′ ≥ λ,
then (4.3) defines a map of pointed sets r : (Xλ, ∗) → (Xλ′ , ∗) such that
fµλ′ ◦ r = fµλ. For any other λ′′ ≥ φ(µ), one chooses λ′′′ ≥ λ′′, φ(µ) and
consider r′ : Xλ → Xλ′′′ such that fµλ′′′ ◦ r′ = fµλ. Then r := pλ′′λ′′′ ◦ r′
satisfies fµλ′′ ◦ r = fµλ′′ ◦ pλ′′λ′′′ ◦ r′ = fµλ′′′ ◦ r′ = fµλ.

Conversely, assume (fµ, φ) is co-movable. Let µ ∈M and let λ ∈ Λ with
λ ≥ φ(µ) be a co-movability index of µ with respect to (fµ, φ). Then for
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λ′ ≥ λ there exists r : (Xλ, ∗)→ (Xλ′ , ∗) such that fµλ′◦r = fµλ. This implies
fµλ(Xλ) ⊆ fµλ′(Xλ′). The converse inclusion follows from fµλ◦pλλ′ = fµλ′ .

Proposition 4.7. Let X = (Xλ, pλλ′ , Λ) and Y = (Yµ, qµµ′ ,M) be in-
verse systems in a category C, and (fµ, φ) : X → Y a morphism of inverse
systems. If X is a movable [uniformly movable] system and Y is an arbitrary
system, then (fµ, φ) is a co-movable [uniformly co-movable] morphism.

Proof. If µ ∈M , then a movability [uniform movability] index λ′ ∈ Λ for
φ(µ) is a co-movability [uniform co-movability] index for µ with respect to
(fµ, φ).

Theorem 4.8. An inverse system X = (Xλ, pλλ′ , Λ) is movable [uni-
formly movable] if and only if the identity morphism 1X is co-movable [uni-
formly co-movable].

Proof. If X is movable [uniformly movable], then by Proposition 4.7,
the morphism 1X is co-movable [uniformly co-movable]. Conversely, if 1X is
co-movable [uniformly co-movable], then a co-movability [uniform co-movab-
ility] index of λ ∈ Λ with respect to 1X = (1Xλ , idΛ) is a movability [uniform
movability] index for λ.

Proposition 4.9. Let (fµ, φ), (f
′
µ, φ

′) : X = (Xλ, pλλ′ , Λ) → Y =
(Yµ, qµµ′ ,M) be equivalent morphisms of inverse systems. If (fµ, φ) is co-
movable then so is (f ′µ, φ

′).

Proof. Let µ ∈M and let λ ∈ Λ with λ ≥ φ(µ) be a co-movability index
for µ relative to (fµ, φ). Consider λ ∈ Λ with λ ≥ λ and λ ≥ φ(µ), φ′(µ)
such that

fµλ = f ′
µλ
.

We now prove that λ is a co-movability index of µ relative to (f ′µ, φ
′). If

λ′ ≥ φ′(µ), consider λ′ ≥ λ′, φ(µ). There exists a morphism r : Xλ → Xλ′

such that
fµλ = fµλ′ ◦ r.

Consider the morphism r : Xλ → Xλ′ defined as

r = pλ′λ′ ◦ r ◦ pλλ.
Then

f ′
µλ′
◦ r = f ′µ ◦ pφ′(µ)λ′ ◦ r = f ′µ ◦ pφ′(µ)λ′ ◦ pλ′λ′ ◦ r ◦ pλλ

= f ′µ ◦ pφ′(µ)λ′ ◦ r ◦ pλλ = fµ ◦ pphi(µ)λ′ ◦ r ◦ pλλ
= fµ ◦ pφ(µ)λ ◦ pλλ = fµ ◦ pφ(µ)λ = f ′µ ◦ pφ′(µ)λ,

i.e., f ′
µλ′
◦ r = f ′

µλ
.
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Proposition 4.10. Let (fµ, φ), (f
′
µ, φ

′) : X = (Xλ, pλλ′ , Λ) → Y =
(Yµ, qµµ′ ,M) be equivalent morphisms of inverse systems. If (fµ, φ) is uni-
formly co-movable then so is (f ′µ, φ

′).

Proof. We use the notation from the proof of Proposition 4.9 with the
necessary changes: λ is a uniform co-movability index for µ relative to (fµ, φ)
and we prove that λ is a uniform co-movability index of µ relative to (f ′µ, φ

′).
The morphism r is replaced by the pro-morphism r : Xλ → X satisfying
fµλ = fµ ◦ r. Then defining r : Xλ → X by r = r ◦ pλλ it can be verified that
f ′
µλ

= f ′µ ◦ r.

Thanks to Propositions 4.9 and 4.10 we can introduce the following def-
inition.

Definition 4.11. A morphism f : X → Y in a pro-category pro-C is
called co-movable [uniformly co-movable] if f admits a representation (fµ, φ) :
X→ Y which is a co-movable [uniformly co-movable] morphism.

Theorem 4.12. Let X = (Xλ, pλλ′ , Λ), Y = (Yµ, qµµ′ ,M) and Z =
(Zν , rνν′ , N) be inverse systems in the category C, and let f = [(fµ, φ)] :
X → Y and g = [(gν , ψ)] : Y → Z be pro-morphisms. Suppose that f is
a co-movable [uniformly co-movable] pro-morphism. Then the composition
h = g ◦ f , h = [(hν , χ)] = [(gν ◦fψ(ν), φ◦ψ)], is also a co-movable [uniformly
co-movable] pro-morphism.

Proof. Suppose that (fµ, φ) is co-movable. Let ν ∈ N . Consider ψ(ν)∈M
and let λ ∈ Λ with λ ≥ φ(ψ(ν)) be a co-movability index of ψ(ν) relative
to (fµ, φ). Then λ is a co-movability index of ν relative to (hν , χ). Indeed, if
λ′ ≥ χ(ν) = φ(ψ(ν)) then there is a morphism r : Xλ → Xλ′ such that

fψ(ν)λ = fψ(ν)λ′ ◦ r.

Then

hνλ′ ◦ r = hν ◦ pφ(ψ(ν))λ′ ◦ r = gν ◦ (fψ(ν) ◦ pφ(ψ(ν))λ′) ◦ r = gν ◦ (fψ(ν)λ′ ◦ r)
= gν ◦ fψ(ν)λ = (gν ◦ fψ(ν)) ◦ pφ(ψ(ν))λ = hν ◦ pχ(ν)λ = hνλ.

The case of uniform co-movability is similar.

Definition 4.13. A shape morphism F : X → Y is co-movable [uni-
formly co-movable] if it can be represented by a co-movable [uniformly co-
movable] pro-morphism f : X→ Y.

Remark 4.14. All properties of co-movability and uniform co-movability
of morphisms of inverse systems and of pro-morphisms can be transferred
to appropriate properties for shape morphisms and for morphisms in the
category T of a shape theory Sh(T ,P).
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5. Applications. If p : X → X, q : Y → Y are inverse limits of
X,Y ∈ pro-C, then a morphism f : X → Y in pro-C induces a morphism
f : X → Y in C satisfying q ◦ f = f ◦ p. In general, if f = lim f is an
epimorphism in C, then f need not be an epimorphism in pro-C (see [12,
Ch. II, §6.1]). But if Y ∈ pro-C is uniformly movable, then the statement is
true (see [12, Ch. II, §6.1, Theorem 3] and [14]). The following theorem is a
generalization of this result.

Theorem 5.1. Let f = [(fµ, φ)] : X=(Xλ, pλλ′ , Λ) → Y=(Yµ, qµµ′ ,M)
be a morphism in pro-C, let p = [(pλ)] : X → X and q = [(qµ)] : Y → Y be
inverse limits in C and let f = lim f : X → Y . If f is an epimorphism in C,
f is uniformly movable and for each µ ∈M the composition fµ ◦ pφ(µ) is an
epimorphism in C, then f is an epimorphism in pro-C.

Proof. Let g = [(gν , ψ)],g
′ = [(g′ν , ψ

′)] : Y → Z = (Zν , rνν′ , N) be
morphisms in pro-C such that g ◦ f = g′ ◦ f . We must prove that g = g′.
Since f ◦ p = q ◦ f , it follows that g ◦ q ◦ f = g′ ◦ q ◦ f , i.e., for every
ν ∈ N ,

gν ◦ qψ(ν) ◦ f = g′ν ◦ qψ′(ν) ◦ f,
and therefore

(5.1) gν ◦ qψ(ν) = g′ν ◦ qψ′(ν).

Choose µ ∈M with µ ≥ ψ(ν), ψ′(ν), and let λ ∈ Λ with λ ≥ φ(µ) be a uni-
form movability index of µ with respect to (fµ, φ). Then there is a morphism
u : Xλ′ → Y in pro-C such that

fµλ = qµ ◦ u.
Setting u = limu : Xλ′ → Y , so that q ◦ u = u, we obtain

fµλ = qµ ◦ u.
Consequently, gν ◦ qψ(ν)µ ◦ fµλ = gν ◦ qψ(ν)µ ◦ fµλ = gν ◦ qψ(ν) ◦ qµ ◦ u =
gν ◦ qψ(ν) ◦ u. Similarly,

g′ν ◦ qψ′(ν)µ ◦ fµ ◦ pφ(µ)λ = g′ν ◦ qψ′(ν) ◦ u,
so that (5.1) implies

gν ◦ qψ(ν)µ ◦ fµλ = g′ν ◦ qψ′(ν)µ ◦ fµλ,
and composing on the right with pλ we have

gν ◦ qψ(ν)µ ◦ (fµ ◦ pφ(µ)) = g′ν ◦ qψ′(ν)µ ◦ (fµ ◦ pφ(µ)).
By the hypothesis this implies

gν ◦ qψ(ν)µ = g′ν ◦ qψ′(ν)µ,

which shows that (gν , ψ) ∼ (g′ν , ψ
′) and therefore g = g′ in pro-C.
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Remark 5.2. The additional condition from Theorem 5.1, that fµ◦pφ(µ)
is an epimorphism, depends only on the pro-morphism f . Indeed, if (f ′µ, φ′) ∼
(fµ, φ), then for every µ ∈M there exists λ ≥ φ(µ), φ′(µ) such that we have
fµ ◦ pφ(µ)λ = f ′µ ◦ pφ′(µ)λ. From this, by composing on the right with pλ, we
obtain fµ ◦ pφ(µ) = f ′µ ◦ pφ′(µ).

We recall that if C is a category with zero objects, then a morphism
f : A → B of C is a weak epimorphism if u ◦ f = 0 implies u = 0. Weak-
ened versions of the categorical notions of monomorphism and epimorphism
have proved to be of some interest in pointed homotopy theory. In 1986,
J. Roitberg [18] used the properties of a remarkable group discovered by
G. Higman [10] to exhibit examples in the pointed homotopy category of
weak epimorphisms which are not epimorphisms. Obviously, pro-Grp and
pro-HTop∗ are categories with zero objects. Generally, if a category C is
with zero objects then the pro-category pro-C is with zero objects. Now the
proof of Theorem 5.1 is perfectly adaptable to yield the following weakened
version.

Theorem 5.3. With the notation of Theorem 5.1 and supposing that
the category C is with zero objects, f is a weak epimorphism in C and f is
uniformly movable such that for each µ ∈M the composition fµ ◦ pφ(µ) is a
weak epimorphism in C, then f is a weak epimorphism in pro-C.

Remark 5.4. If Y is movable, then we obtain a weakened version of
Moszyńska’s Theorem [14] (see also [12, Ch. II, §6.1, Theorem 3]).

Corollary 5.5. Let f = [(fµ)] : X → Y = (Yµ, qµµ′ ,M) be a morphism
in pro-C and f = lim f : X → Y = limY. If f and every fµ : X → Yµ,
µ ∈ M , are epimorphisms [weak epimorphisms] in C, then f is an epimor-
phism [a weak epimorphism] in pro-C.

In particular, if p = (pλ) : X → X = (Xλ, pλλ′ , Λ) is an inverse limit
with all projections pλ being epimorphisms [weak epimorphisms] in C, then
p is an epimorphism [weak epimorphism] in pro-C.

Now we can state two variants of Dydak’s infinite-dimensional Whitehead
theorem in shape theory [5].

Theorem 5.6. Let F : (X, ∗) → (Y, ∗) be a weak shape equivalence of
pointed connected topological spaces. Suppose that X is of finite shape di-
mension, and F is a movable pointed shape domination. Then F is a pointed
shape equivalence.

Proof. F being a pointed shape domination means that there exists a
shape morphism G : (Y, ∗) → (X, ∗) such that FG = 1(Y,∗). Then we can
apply Theorem 2.11 to deduce that (Y, ∗) is movable. Now the conclusion
follows from [12, Ch. II, §7.2, Theorem 6(i)].
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Theorem 5.7. Let F : (X, ∗) → (Y, ∗) be a weak shape equivalence
of pointed connected topological spaces. Suppose that Y is of finite shape
dimension, and F is a co-movable pointed shape morphism which has a left
inverse. Then F is a pointed shape equivalence.

Proof. By Theorem 4.12 in the shape version, (X, ∗) is movable. Then
the conclusion follows from [12, Ch. II, §7.2, Theorem 6(ii)].

Acknowledgements. The authors are grateful to the referee for valu-
able suggestions.
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