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Amalgamations of classes of Banach spaces
with a monotone basis

by

Ondřej Kurka (Praha)

Abstract. It was proved by Argyros and Dodos that, for many classes C of separable
Banach spaces which share some property P , there exists an isomorphically universal
space that satisfies P as well. We introduce a variant of their amalgamation technique
which provides an isometrically universal space in the case that C consists of spaces with
a monotone Schauder basis. For example, we prove that if C is a set of separable Banach
spaces which is analytic with respect to the Effros Borel structure and every X ∈ C is
reflexive and has a monotone Schauder basis, then there exists a separable reflexive Banach
space that is isometrically universal for C.

1. Introduction and the main result. Let C be a class of Banach
spaces. We say that a Banach space X is isomorphically [isometrically ] uni-
versal for C if it contains an isomorphic [isometric] copy of every member
of C.

The present paper deals with universality questions in separable Banach
space theory. Our aim is to find an isometric version of the amalgamation
theory of S. A. Argyros and P. Dodos [1] and provide a method of construct-
ing small isometrically universal spaces for small families of Banach spaces.
Many of the results considered in this paper employ methods from descrip-
tive set theory. The connection of universality problems and descriptive set
theory, discovered by J. Bourgain [4, 5], deepened the theory and enabled
several intrinsic questions to be understood. (See also [3], [11], [9], [13]; for
an introduction, see [19].)

In 1968, W. Szlenk [33] proved that the class of separable reflexive spaces
has no isomorphically universal element. (It had been shown some time ear-
lier by J. Lindenstrauss [28] that it has no isometrically universal element.)
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Szlenk proved that a Banach space which is isomorphically universal for sep-
arable reflexive spaces has non-separable dual. His proof led to the famous
Szlenk index which will also be useful in our proofs.

Later, J. Bourgain [4] proved that if a separable Banach space is isomor-
phically universal for separable reflexive spaces, then it is actually isomorphi-
cally universal for all separable Banach spaces. A somewhat different proof
of this result was provided by B. Bossard [3] who showed that if an analytic
set of separable Banach spaces contains all separable reflexive spaces up to
isomorphism, then it contains a space which is isomorphically universal for
all separable Banach spaces (an analytic set of Banach spaces is defined in
Section 2). For a separable Banach space X, the set of all Banach spaces
with an isomorphic copy in X is analytic. Therefore, Bourgain’s result fol-
lows from Bossard’s.

Bossard’s approach consists in constructing a tree space such that every
infinite branch supports a universal space and every tree without infinite
branches supports a reflexive space. One can apply this approach to analo-
gous questions concerning isometries as well. It was shown in [21] that if a
separable Banach space is isometrically universal for separable strictly con-
vex spaces, then it is actually isometrically universal for all separable Banach
spaces. The same result holds for the class of reflexive spaces [25].

In the work of S. A. Argyros and P. Dodos [1], the concept of a tree space
also turned out to be a powerful tool for constructing universal spaces (see
also [10]). When a set C of separable Banach spaces is simple (in the sense
that C is analytic and every member has a Schauder basis), then one can
construct a tree space such that the spaces supported by infinite branches
are isomorphic copies of all members of C. If the tree space is constructed
properly, the properties of spaces from C can be preserved.

Some results of the Argyros–Dodos amalgamation theory are summed up
in the following theorem (by a basis we mean a Schauder basis).

Theorem 1.1 ([1]). Let P be one of the following classes of separable
Banach spaces:

• the class of spaces with a shrinking basis,
• the class of reflexive spaces with a basis,
• the class of spaces with a basis which are not isomorphically universal
for all separable Banach spaces.

Let C be an analytic set of spaces from P. Then there exists a Banach space
E which belongs to P and which contains a complemented isomorphic copy
of every member of C.

Reliance on a basis was soon dropped in work of P. Dodos and V. Ferenczi
[11] and P. Dodos [9]. They proved that Theorem 1.1 also holds (without the
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property that the copies are complemented) for the following classes:

• the class of spaces with separable dual [11] (see also [14] for a quanti-
tative version achieved by different methods),
• the class of separable reflexive spaces [11] (see also [29] for a quantita-

tive version obtained by different methods),
• the class of separable spaces which are not isomorphically universal for

all separable Banach spaces [9].

In the present work, we study the problem of whether these results have
an isometric version (see also [20, Problem 9]). We establish an isometric
variant of Theorem 1.1.

A basis x1, x2, . . . is said to be monotone if the associated partial sum
operators Pn :

∑∞
k=1 akxk 7→

∑n
k=1 akxk satisfy ‖Pn‖ ≤ 1.

Theorem 1.2. Let P be one of the following classes of separable Banach
spaces:

• the class of spaces with a monotone shrinking basis,
• the class of reflexive spaces with a monotone basis,
• the class of spaces with a monotone basis which are not isometrically
universal for all separable Banach spaces,
• the class of strictly convex spaces with a monotone basis.

Let C be an analytic set of spaces from P. Then there exists a Banach space
E which belongs to P and which contains a 1-complemented isometric copy
of every member of C.

We do not know (1) whether reliance on a basis can be dropped, similarly
to the isomorphic setting. The monotone basis requirement is a weak point
of Theorem 1.2, but hopefully the theorem will help to obtain more powerful
results in the future.

We make several remarks concerning Theorem 1.2.
(I) For the class of spaces with a shrinking basis and the class of reflexive

spaces with a basis, it is not difficult to show that Theorem 1.1 follows from
Theorem 1.2.

(II) The theorem remains valid if we consider monotone finite-dimen-
sional decompositions instead of monotone bases. Consequently, a variant
of the space constructed by S. Prus [30] can be provided. Indeed, since the
class of superreflexive spaces is analytic, there exists a separable reflexive
space which contains a 1-complemented isometric copy of every superreflex-
ive space with a monotone finite-dimensional decomposition. Since F ⊕2 `2
is superreflexive for each finite-dimensional F , we also obtain the result of

(1) We already know. After the submission of this work, a version of Theorem 1.2 not
requiring the existence of a basis has been developed [26, 27].
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A. Szankowski [32] which states that there exists a separable reflexive space,
isometrically universal for all finite-dimensional spaces.

(III) The methods of this paper can be used to construct a Pełczyński
universal space which contains a 1-complemented isometric copy of every
Banach space with a monotone basis (see Definition 9.3). Similar examples
have been constructed by J. Garbulińska-Węgrzyn [15, 16].

(IV) Theorem 1.2 holds for more general classes than the class of non-
universal spaces. Let Z be a separable Banach space for which there are
a ∈ Z and a subset H ⊂ Z whose closed linear span contains an isometric
copy of Z and such that, for every h ∈ H, there is an ε > 0 with ‖a ±
εh‖ = ‖a‖. Then the theorem holds for the class of spaces with a monotone
basis not containing an isometric copy of Z. Besides the universal space
Z = C({0, 1}N), the required property is fulfilled e.g. by the spaces Z = c0
and Z = `1. (For Z = `1, we can consider a ∈ `1 whose coordinates are all
positive and H = {(1/2,−1/2, 0, 0, 0, . . . ), (0, 0, 1/2,−1/2, 0, . . . ), . . . }.)

(V) If a separable Banach space X is isomorphically universal for separ-
able Schur spaces, then it is actually isomorphically universal for all separable
Banach spaces. This follows from methods in [3] (see [6, Corollary 51]). We
are able to prove the isometric version of this statement (see Remark 3.7).

It is not known if the class of Schur spaces with a basis has the property
from Theorem 1.1. It is not clear whether the tree space method can be
used in this case. However, the property is fulfilled by the related class of
`1-saturated spaces with a basis (see [1, Theorem 91]).

2. Preliminaries. We denote by Λ<N the set of all finite sequences of
elements of a set Λ, including the empty sequence ∅. That is,

Λ<N =
∞⋃
l=0

Λl

where Λ0 = {∅}. The length of η ∈ Λ<N is denoted by |η|. If η ∈ Λ<N and
ν ∈ Λ<N ∪ ΛN, then by writing η ⊂ ν we mean that η is an initial segment
of ν, i.e., |η| ≤ |ν| and η(i) = ν(i) for 1 ≤ i ≤ |η|. By (n1, . . . , nk)

∧n we
mean (n1, . . . , nk, n). A subset T of Λ<N is called a tree on Λ if

η ⊂ ν& ν ∈ T ⇒ η ∈ T.

Moreover, a set T ⊂ Λ<N \ {∅} is called an unrooted tree on Λ if T ∪ {∅}
is a tree on Λ. An (unrooted) tree T is called pruned if every η ∈ T has a
proper extension ν ) η with ν ∈ T . The set of all infinite branches of T , i.e.,
sequences ν ∈ ΛN such that T contains all non-empty initial segments of ν,
is denoted by [T ]. An (unrooted) tree T is called well-founded if it does not
have an infinite branch.
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A Polish space [topology ] means a separable completely metrizable space
[topology]. A set P equipped with a σ-algebra is called a standard Borel
space if the σ-algebra is generated by a Polish topology on P . A subset of
a standard Borel space is called analytic if it is a Borel image of a Polish
space.

The following lemma can be found e.g. in [23, (25.2)].

Lemma 2.1. A subset A ⊂ NN is analytic if and only if there is a pruned
tree T on N × N such that A = p[T ] where p : NN × NN → NN denotes the
projection on the first coordinate.

For a topological space X, the set F(X) of all closed subsets of X is
equipped with the Effros Borel structure, defined as the σ-algebra generated
by the sets

{F ∈ F(X) : F ∩ U 6= ∅}

where U varies over open subsets of X. If X is Polish, then, equipped with
this σ-algebra, F(X) forms a standard Borel space.

The standard Borel space of separable Banach spaces is defined by

SE(C([0, 1])) =
{
F ∈ F(C([0, 1])) : F is linear

}
and considered as a subspace of F(C([0, 1])).

For a separable Banach space X and F ⊂ BX∗ , let

F ′ε = F \
⋃{

U ⊂ X∗ : U is w∗-open,diam(U ∩ F ) < ε
}
, ε > 0,

and recursively

F (0)
ε = F, F (α)

ε =
⋂
β<α

(F (β)
ε )′ε, ε > 0.

We define

Szε(F ) = min
(
{ω1} ∪ {α < ω1 : F

(α)
ε = ∅}

)
, ε > 0,

Sz(F ) = sup{Szε(F ) : ε > 0}.

The Szlenk index of X is defined by Sz(X) = Sz(BX∗).
For an (unrooted) tree T and a system {xη : η ∈ T} of elements of a

Banach space, we define∑
η∈T

xη = lim
S→T

∑
η∈S

xη (if the limit exists),

where the limit is taken over all finite subtrees S ⊂ T directed by inclusion.
The notions and notation we use but do not introduce here are classical

and well explained e.g. in [12] and [23].
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3. The initial tree space construction. In this section, we introduce
our basic tool for constructing tree spaces. Basically, two ways have been
developed of extracting the norm of a tree space from the norms of the
subspaces supported by infinite branches (excluding the norm constructed
in [25]). The first way, based on the well known James tree space [22], was
employed mainly in works of B. Bossard [3] and S. A. Argyros and P. Do-
dos [1].

However, we follow the second way which is more suitable for isometric
problems. The method was introduced by B. Bossard [2] and employed later
by G. Godefroy [18] and G. Godefroy and N. J. Kalton [21]. In fact, the tree
space in the following definition is a simplified version of the original tree
space from [2], which will be introduced later in Definition 5.1 nevertheless.

Definition 3.1. Let Λ be a countable set and let T be a pruned unrooted
tree on Λ. For every σ ∈ [T ], let (Fσ, ‖ · ‖σ) be a Banach space with a
monotone basis fσ1 , fσ2 , . . . and suppose these bases have the property that
fσ1 , . . . , f

σ
l and fϕ1 , . . . , f

ϕ
l are 1-equivalent whenever σ and ϕ have the same

initial segment of length l.
Let a norm on c00(T ) be defined by

(1) ‖x‖ = sup
σ∈[T ]

∥∥∥∑
η⊂σ

x(η)fσ|η|

∥∥∥
σ

and for every unrooted subtree S ⊂ T consider the projection

(2) PSx = 1S · x.

From the monotonicity of the bases fσn , we obtain

(3) ‖PSx‖ ≤ ‖x‖.

Finally, we define E as a completion of (c00(T ), ‖ · ‖). The members of
the canonical basis of c00(T ) will be denoted by eη (i.e., eη = 1{η}). We
note that the system {eη : η ∈ T} is a basis of E, which follows from the
observation that the property x = limS→T PSx extends from c00(T ) to its
closure E, due to the uniform boundedness of the projections PS . The basis
is monotone in the sense of (3).

Since {eη : η ∈ T} is a basis of E, we are allowed to consider all elements
of E as systems x = {x(η)}η∈T of scalars. In this way, formulae (1)–(3) re-
main valid for every x ∈ E. We will denote the members of the corresponding
dual system by e∗η (i.e., e∗η(x) = x(η)).

For every σ ∈ [T ], we further define spaces

(4)
Eσ = {x ∈ E : η 6⊂ σ ⇒ x(η) = 0},
E∗σ = {x∗ ∈ E∗ : η 6⊂ σ ⇒ x∗(eη) = 0}
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and a projection

(5) Pσ = P{(σ1),(σ1,σ2),... }.

We also denote

(6) Φ =
⋃
σ∈[T ]

BEσ and Ψ =
⋃
σ∈[T ]

BE∗σ .

Fact 3.2. For every σ ∈ [T ], the basis fσ1 , f
σ
2 , . . . of Fσ is 1-equivalent

to the basis e(σ1), e(σ1,σ2), . . . of Eσ. In particular, the space E contains a
1-complemented isometric copy of Fσ for every σ ∈ [T ].

Proof. Let f =
∑∞

n=1 rnf
σ
n and x =

∑∞
n=1 rne(σ1,...,σn) where rn 6= 0 for

finitely many n only. We have∥∥∥∑
η⊂σ

x(η)fσ|η|

∥∥∥
σ
=
∥∥∥ ∞∑
n=1

rnf
σ
n

∥∥∥
σ
= ‖f‖σ,

and so it remains to check that∥∥∥∑
ν⊂τ

x(ν)f τ|ν|

∥∥∥
τ
≤ ‖f‖σ

for each τ ∈ [T ] \ {σ}. Let η be the longest segment such that η ⊂ σ and
η ⊂ τ , and let l be its length. Then∥∥∥∑

ν⊂τ
x(ν)f τ|ν|

∥∥∥
τ
=
∥∥∥ l∑
n=1

rnf
τ
n

∥∥∥
τ
=
∥∥∥ l∑
n=1

rnf
σ
n

∥∥∥
σ
≤ ‖f‖σ.

The second part of the assertion follows from Eσ = PσE.

Fact 3.3. For x ∈ E, we have

‖Pσx‖ = sup
x∗∈BE∗σ

|x∗(x)|.

For x∗ ∈ E∗, we have

‖P ∗σx∗‖ = sup
x∈BEσ

|x∗(x)|.

Proof. The fact follows directly from the observation that PσBE = BEσ
and P ∗σBE∗ = BE∗σ .

Lemma 3.4. The set Ψ is compact in the weak ∗ topology of E∗ and its
convex hull is w∗-dense in BE∗ .

Proof. To show that Ψ is w∗-compact, we just write

Ψ = BE∗ \
⋃
{x∗ ∈ E∗ : x∗(eη) 6= 0&x∗(eν) 6= 0}
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where the union is taken over all couples η, ν of incomparable segments in T .
Using (1) in combination with Facts 3.2 and 3.3, we deduce for x ∈ E that

‖x‖ = sup
σ∈[T ]

‖Pσx‖ = sup
σ∈[T ]

sup
x∗∈BE∗σ

|x∗(x)| = sup
x∗∈Ψ

|x∗(x)|.

Now, to prove that the convex hull of Ψ is w∗-dense in BE∗ , it is sufficient
to apply the Hahn–Banach theorem.

Proposition 3.5. If the basis fσ1 , f
σ
2 , . . . is shrinking for every σ ∈ [T ],

then the basis {eη : η ∈ T} is also shrinking.

Proof. Let us fix an increasing sequence T1, T2, . . . of finite unrooted trees
with

⋃∞
n=1 Tn = T . We show first that

x∗ ∈ Ψ ⇒ P ∗Tnx
∗ → x∗.

Given a σ ∈ [T ], we check the implication for the elements ofBE∗σ . By Fact 3.2,
the sequence e(σ1), e(σ1,σ2), . . . is a shrinking basis of Eσ. By Fact 3.3, the
elements of E∗σ satisfy

‖x∗‖ = sup
x∈BEσ

|x∗(x)|, x∗ ∈ E∗σ.

Hence E∗σ is (isometric to) the dual of Eσ indeed. The dual sequence
e∗(σ1), e

∗
(σ1,σ2)

, . . . is a basis of E∗σ. It follows that P ∗Tnx
∗ → x∗ for each

x∗ ∈ E∗σ.
Now, let y∗ ∈ BE∗ . By Lemma 3.4 and a standard integral representation

argument (see e.g. [31, Theorem 3.28]), there exists a probability measure µ
on Ψ such that

y∗ =
�

Ψ

x∗ dµ(x∗).

Therefore,

lim
n→∞

‖y∗ − P ∗Tny
∗‖ = lim

n→∞

∥∥∥ �

Ψ

(x∗ − P ∗Tnx
∗) dµ(x∗)

∥∥∥
≤ lim

n→∞

�

Ψ

‖x∗ − P ∗Tnx
∗‖ dµ(x∗)

=
�

Ψ

lim
n→∞

‖x∗ − P ∗Tnx
∗‖ dµ(x∗) =

�

Ψ

0 dµ(x∗) = 0.

This proves that y∗ belongs to the closed linear span of the functionals e∗η,
η ∈ T .

Lemma 3.6. If the space Fσ is reflexive for every σ ∈ [T ], then the set Φ
is compact in the weak topology of E.

Proof. Let x1, x2, . . . be a sequence in Φ. We want to find a subsequence
xnk which converges weakly to an x ∈ Φ. By Proposition 3.5, it is sufficient
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to check that
xnk(η)→ x(η), η ∈ T.

Using a diagonal argument, we choose the subsequence xnk so that

xnk(η)→ u(η), η ∈ T,
for a system u = {u(η)}η∈T of scalars. It remains to show that this system
forms the coordinates of an x ∈ Φ.

First, we observe that there is a σ ∈ [T ] such that u is supported by the
branch {(σ1), (σ1, σ2), . . . }. Indeed, if u(η) 6= 0 6= u(ν) for some incompara-
ble η, ν ∈ T , then xnk(η) 6= 0 6= xnk(ν) for a large enough k, which is not
allowed by the definition of Φ.

By Fact 3.2 and our assumption, Eσ is reflexive. A subsequence of Pσxnk
converges weakly to an x ∈ BEσ , and this limit satisfies x(η) = u(η) for
every η ∈ T .

Remark 3.7. (a) If S ⊂ T is a well-founded unrooted subtree, then the
subspace

(7) H(S) = span{e∗η : η ∈ S}
of E∗ has the Schur property. Let us assume that H(S) is not Schur and
denote Hν(S) = span{e∗η : η ∈ S& ν ⊂ η} for ν ∈ T ∪ {∅}. It is sufficient to
prove that

Hν(S) is not Schur ⇒ Hν∧n(S) is not Schur for some n,

as this allows us to find an infinite branch of S. One can show that∥∥∥ m∑
n=1

x∗n

∥∥∥ ≥ 1

2

m∑
n=1

‖x∗n‖, x∗n ∈ Hν∧n(S), n = 1, . . . ,m.

Therefore, a hyperplane of Hν(S) (or Hν(S) itself when ν = ∅) is isomorphic
to the `1-sum of Hν∧1(S), Hν∧2(S), . . . , and the implication follows.

(b) If a separable Banach space X contains an isometric copy of every
separable Schur space, then it contains an isometric copy of every separable
Banach space. To show this, we follow the method of B. Bossard [3]. Let
x1, x2, . . . be a monotone basis of C([0, 1]) (see e.g. [8, p. 34]) and f1, f2, . . .
be the dual basic sequence in C([0, 1])∗. Let T = N<N \ {∅}, fσn = fn and
Fσ = span{fn : n ∈ N} for every σ ∈ NN. In this setting, let H(S) be given
by (7). Let Tr be the subspace of 2T consisting of all unrooted trees on N
and let WF be the set of all well-founded S ∈ Tr. Consider the set

A = {S ∈ Tr : X contains an isometric copy of H(S)}.
Then A is analytic (see [18, Lemmas 7 and 8]) and it contains WF, due to
our assumption. Since WF is not analytic (see e.g. [23, (27.1)]), there is an
S ∈ A \WF. So, X contains an isometric copy of H(S) for some S /∈ WF,
which contains an isometric copy of C([0, 1]).
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(c) Assume that, for every σ ∈ [T ], the space span{f∗n : n ∈ N} has
the Schur property, where f∗1 , f∗2 , . . . is the dual basic sequence of the basis
fσ1 , f

σ
2 , . . . . We do not know whether H = span{e∗η : η ∈ T} necessarily has

the Schur property in that case. One can show that BH = co(H ∩ Ψ) and
that every weakly convergent sequence in H ∩Ψ is convergent, but this does
not seem to be sufficient for H to be Schur.

4. The interpolation method. The aim of this section is to provide
a reflexive variant of the tree space from Definition 3.1. Just as the authors
of [1], we apply the Davis–Figiel–Johnson–Pełczyński interpolation method.

Definition 4.1 ([7]). LetW be a bounded, closed, convex and symmet-
ric subset of a Banach space X. For each n ∈ N, let ‖ · ‖n be the equivalent
norm given by

B(X,‖·‖n) = 2nW + 2−nBX .

The 2-interpolation space of the pair (X,W ) is defined as the space (Y, |||·|||)
where

|||x||| =
( ∞∑
n=1

‖x‖2n
)1/2

, x ∈ X,

Y = {x ∈ X : |||x||| <∞}.

Lemma 4.2. Let P : X → X be a projection such that ‖P‖ ≤ 1 and
PW ⊂W . Then

|||Px||| ≤ |||x|||, x ∈ X.

If, moreover, PW = PBX , then there is a constant c > 0 such that

|||x||| = c‖x‖, x ∈ PX.

In particular, Y contains a 1-complemented isometric copy of PX.

Proof. The inequality |||Px||| ≤ |||x||| (which can be proven quite eas-
ily actually) follows from [7, p. 316, Lemma 1(viii)]. To provide a suitable
constant c > 0, it is sufficient to show that

‖x‖n =
1

2n + 2−n
‖x‖, x ∈ PX.

Let x ∈ PX. We will assume that ‖x‖ = 1. Since x ∈ BX and x =
Px ∈ PBX = PW ⊂ W , we have (2n + 2−n)x ∈ B(X,‖·‖n). Therefore,
(2n + 2−n)‖x‖n ≤ 1 = ‖x‖.

Choose 0 < θ < 1/‖x‖n. We have ‖θx‖n < 1, and so θx ∈ 2nW +2−nBX .
Thus θx = 2nw + 2−ny for some w ∈ W and y ∈ BX . Since Pw ∈ PW =
PBX ⊂ BX , we have θx = θPx = 2nPw + 2−nPy and θ‖x‖ ≤ 2n + 2−n, so
‖x‖ ≤ (2n + 2−n)‖x‖n due to the choice of θ.
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Definition 4.3. Adopting the notation from Definition 3.1, we define
A as the 2-interpolation space of the pair (E, coΦ).

Fact 4.4. The system {eη : η ∈ T} is a monotone basis of A.

Proof. The associated projections PS satisfy |||PSx||| ≤ |||x||| by (3) and
Lemma 4.2. The fact thus follows from [7, p. 316, Lemma 1(ix)].

Fact 4.5. A contains a 1-complemented isometric copy of Fσ for every
σ ∈ [T ].

Proof. Recall that Fσ is isometric to Eσ = PσE by Fact 3.2. The as-
sumptions of Lemma 4.2 are met for P = Pσ, since Pσ(coΦ) ⊂ coΦ and
Pσ(coΦ) = BEσ = PσBE .

Proposition 4.6. If the space Fσ is reflexive for every σ ∈ [T ], then the
space A is also reflexive.

Proof. By Lemma 3.6 and the Krein–Smulian theorem, the set coΦ is
weakly compact. To show that A is reflexive, it is sufficient to apply [7,
p. 313, Lemma 1(iv)].

5. A rotund version of the tree space. The following definition of
a tree space is based on a construction from [2] which was also applied in
[18] and [21]. Regarding the results from these papers, it is not surprising
that this tree space preserves strict convexity of the norm. However, it turns
out that the method is also suitable for amalgamating spaces which are not
isometrically universal (see Proposition 5.5).

Definition 5.1. Let Λ, T, (Fσ, ‖ · ‖σ) and fσn be as in Definition 3.1.
Suppose moreover that there are positive constants c1, c2, . . . such that, for
every σ ∈ [T ],

(8) ‖πnf‖2σ ≥ ‖πn−1f‖2σ + c2n|f∗n(f)|2, f ∈ Fσ, n ∈ N,

where f∗1 , f∗2 , . . . is the dual basic sequence and π0, π1, . . . is the sequence of
partial sum operators associated with the basis fσ1 , fσ2 , . . . .

For every x ∈ c00(T ), let us consider the formulae

(9) |||x|||2σ =
∥∥∥∑
η⊂σ

x(η)fσ|η|

∥∥∥2
σ
+
∑
η 6⊂σ

c2|η||x(η)|
2, σ ∈ [T ],

(10) |||x||| = sup
σ∈[T ]
|||x|||σ

and

(11) PSx = 1S · x,
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where S ⊂ T is an unrooted subtree. From the monotonicity of the bases
fσn , we obtain

(12) |||PSx||| ≤ |||x|||.
Finally, we define B as a completion of (c00(T ), |||·|||). Again, the system

{bη = 1{η} : η ∈ T} is a basis of B which is monotone in the sense of (12).
Therefore, we are allowed to consider all elements of B as systems x =
{x(η)}η∈T of scalars. In this way, formulae (9)–(12) remain valid for every
x ∈ B.

For every σ ∈ [T ], we further denote

Bσ = {x ∈ B : η 6⊂ σ ⇒ x(η) = 0},(13)
Pσ = P{(σ1),(σ1,σ2),... }.(14)

Fact 5.2. For every σ ∈ [T ], the basis fσ1 , f
σ
2 , . . . of Fσ is 1-equivalent to

the basis b(σ1), b(σ1,σ2), . . . of Bσ. In particular, B contains a 1-complemented
isometric copy of Fσ for every σ ∈ [T ].

We do not prove this fact, as an analogous statement appeared in [18]
and [21]. Actually, the fact can be proven similarly to Fact 3.2, with the
difference that (8) is applied. The proof of the following lemma, which is
essentially contained in [21, p. 186], is also skipped.

Lemma 5.3 ([21]). For every x ∈ B, the supremum in (10) is attained.

Lemma 5.4. Let [u, v] be a non-degenerate line segment in B such that
|||·||| is constant on [u, v]. Let w = 1

2(u + v) and suppose the supremum in
(10) for x = w is attained at a σ ∈ [T ]. Then v − u ∈ Bσ and [Pσu, Pσv] is
also a non-degenerate line segment on which |||·||| is constant.

Proof. Consider the seminorm

|x|2σ =
∑
η 6⊂σ

c2|η||x(η)|
2, x ∈ B.

Using Fact 5.2, we obtain

|||x|||2σ = |||Pσx|||2 + |x|2σ, x ∈ B.
We can compute

|||w||| = |||w|||σ ≤
1
2(|||u|||σ + |||v|||σ) ≤

1
2(|||u|||+ |||v|||) = |||w|||,

and it is clear that all these norms must be equal. Thus,

0 = 2|||u|||2σ + 2|||v|||2σ − 4|||w|||2σ
= 2|||Pσu|||2 + 2|||Pσv|||2 − 4|||Pσw|||2 + 2|u|2σ + 2|v|2σ − 4|w|2σ
= (|||Pσu||| − |||Pσv|||)2 + (|||Pσu|||+ |||Pσv|||)2 − |||Pσ(u+ v)|||2

+ (|u|σ − |v|σ)2 + (|u|σ + |v|σ)2 − |u+ v|2σ.
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It follows that

|||Pσu||| = |||Pσv|||, |||Pσ(u+ v)||| = |||Pσu|||+ |||Pσv|||,(15)
|u|σ = |v|σ, |u+ v|σ = |u|σ + |v|σ.(16)

By (15), the norm |||·||| is constant on [Pσu, Pσv]. By (16), the points u and
v satisfy u(η) = v(η) for every η 6⊂ σ. That is, u−Pσu = v−Pσv. Therefore,
v − u = Pσv − Pσu ∈ Bσ and the segment [Pσu, Pσv] is non-degenerate.

Proposition 5.5.

(a) If no Fσ, σ ∈ [T ], is isometrically universal for all separable Banach
spaces, then B is also non-universal.

(b) If every Fσ, σ ∈ [T ], is strictly convex, then so is B.

Proof. (a) Assume that B is isometrically universal for all separable Ba-
nach spaces. Set

∆ = {0, 1}N, ∆(i) = {γ ∈ ∆ : γ(1) = i}, i = 0, 1,

Z = C(∆), Z(i) = {h ∈ Z : γ /∈ ∆(i)⇒ h(γ) = 0}, i = 0, 1.

Considering an isometry I : Z → B, we denote

x = I(1∆(0)).

By Lemma 5.3, the supremum in (10) is attained at some σ ∈ [T ]. We claim
that Bσ (and therefore Fσ by Fact 5.2) is universal, showing that I maps
Z(1) into Bσ.

Given an h ∈ Z(1) with ‖h‖ ≤ 1, we observe that ‖1∆(0)‖ = ‖1∆(0) ± h‖
= 1, and so |||x||| = |||x± Ih||| = 1. By Lemma 5.4, we have Ih ∈ Bσ.

(b) Assume that B is not strictly convex. This means that |||·||| is con-
stant on a non-degenerate line segment [u, v]. Let x = 1

2(u + v) and let the
supremum in (10) be attained at σ ∈ [T ] (Lemma 5.3). By Lemma 5.4, the
space Bσ is not strictly convex. Since Bσ and Fσ are isometric (see Fact 5.2),
the proof is finished.

6. Construction of branches. In the isomorphic setting, it is possible
to construct a tree space such that isomorphic copies of the spaces we want
to amalgamate are placed on the infinite branches (as mentioned in the
introduction). In the isometric setting, we are not allowed to renorm the
spaces, and an additional embedding result is needed.

We prove that a Banach space X with a monotone basis can be embed-
ded into another (not much bigger) Banach space F with a monotone basis
f1, f2, . . . such that the subspaces span{f1, . . . , fd} are chosen from a count-
able family of spaces. To this end, we employ the following notion which was
also useful in [15, 16, 17, 24].
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Definition 6.1. A Banach space Z is called rational if Z = Rd with
a norm whose unit ball is generated by finitely many points with rational
coordinates.

Spaces which have a basis consisting of d elements will often be identified
with Rd in the obvious way.

The main goal of this section is to prove the following result. Its proof
is based on a construction provided in [25, Section 4] (which in turn was
based on a construction from [21]), but the present method is considerably
simpler.

Proposition 6.2. Let X be a Banach space and e1, e2, . . . be a mono-
tone basis of X. Then there exists a Banach space F with a monotone basis
f1, f2, . . . such that:

(1) F is isomorphic to `2(X).
(2) If the basis e1, e2, . . . is shrinking, then so is f1, f2, . . . .
(3) For every d ∈ N, the space span{f1, . . . , fd}, identified with Rd, is

rational.
(4) F contains a 1-complemented isometric copy of X.

Definition 6.3. We will denote by π the bijection N → N2 given by
π(1) = (1, 1), π(2) = (1, 2), π(3) = (2, 1), π(4) = (1, 3) etc.

s s s s
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Definition 6.4. For every d ∈ N, let us fix an ordering of all monotone
rational norms on Rd into a sequence | · |d,1, | · |d,2, . . . .

Let e1, e2, . . . be a normalizedmonotone basis of a Banach space (X, ‖·‖X).
Let fi = eπ(i) where e(n,k) stands for the element of `2(X) which has ek on
the nth place and 0 elsewhere. Let us moreover denote

(17) Fd = span{f1, . . . , fd}.
For every d ∈ N, let ld = ld(e1, e2, . . . ) be the least natural number such that
the monotone rational norm | · |d = | · |d,ld satisfies

(18)
(
1− 1

22d+1

)
‖f‖`2(X) ≤ |f |d ≤

(
1− 1

22d+2

)
‖f‖`2(X), f ∈ Fd.
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This condition is valid for some monotone rational norm on Fd, as f1, f2, . . .
is a monotone basis of `2(X).

We define a space F = F (e1, e2, . . . ) with a norm ‖ · ‖ by

(19) B(F,‖·‖) = co

∞⋃
d=1

B(Fd,|·|d).

We also define operators

T : `2(X)→ X, (x1, x2, . . . ) 7→
√
3

2

(
x1 +

1
2x2 +

1
4x3 + · · ·

)
,(20)

U : X → `2(X), x 7→
√
3

2

(
x, 12x,

1
4x, · · ·

)
.(21)

The sequence of partial sum operators associated with the basis f1, f2, . . .
will be denoted by P1, P2, . . . .

Lemma 6.5. We have F = `2(X) and the norm ‖ · ‖ fulfills

(22) 7
8‖f‖`2(X) ≤ ‖f‖ ≤ ‖f‖`2(X), f ∈ F.

The basis f1, f2, . . . is a monotone basis of (F, ‖ · ‖), and it is shrinking if
e1, e2, . . . is shrinking. Finally, for every d ∈ N,

(23) B(Fd,‖·‖) = co
d⋃
j=1

B(Fj ,|·|j).

In particular, the space (Fd, ‖ · ‖) is rational.

Proof. By (18), we have 7
8‖f‖`2(X) ≤ |f |d ≤ ‖f‖`2(X) for f ∈ Fd. Thus,

B(Fd,|·|d) ⊂
8
7B`2(X) and B`2(X) ∩ Fd ⊂ B(Fd,|·|d) ⊂ B(F,‖·‖),

and it follows that

B(F,‖·‖) ⊂ 8
7B`2(X) and B`2(X) ⊂ B(F,‖·‖).

Clearly, if e1, e2, . . . is shrinking, then so is f1, f2, . . . . To show that the
latter basis is monotone with respect to ‖ · ‖, it is sufficient to note that the
associated partial sum operators P1, P2, . . . map the unit ball of (Fd, | · |d)
into itself, and consequently the unit ball of (F, ‖ · ‖) has the same property.
To show (23), it is sufficient to prove that Pd maps the unit ball of (Fj , | · |j),
where j > d, into the unit ball of (Fd, | · |d). Indeed, for f ∈ Fj ,

|Pdf |d ≤
(
1− 1

22d+2

)
‖Pdf‖`2(X) ≤

(
1− 1

22j+1

)
‖f‖`2(X) ≤ |f |j .

Lemma 6.6. We have ‖Tf‖X ≤ ‖f‖ for f ∈ F .
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Proof. For n ∈ N and x1, . . . , xn ∈ X, we can write

‖T (x1, . . . , xn, 0, 0, . . . )‖X =

√
3

2

∥∥∥∥x1 + 1

2
x2 + · · ·+

1

2n−1
xn

∥∥∥∥
X

≤
√
3

2

(
‖x1‖X +

1

2
‖x2‖X + · · ·+ 1

2n−1
‖xn‖X

)
≤
√
3

2

√
1 +

1

4
+ · · ·+ 1

4n−1

√
‖x1‖2X + ‖x2‖2X + · · ·+ ‖xn‖2X

=
√

1− 1/4n ‖(x1, . . . , xn, 0, 0, . . . )‖`2(X).

It follows that

‖Tf‖X ≤
√

1− 1/4d ‖f‖`2(X), f ∈ Fd, d ∈ N,

as the elements of Fd are supported by the first d coordinates (obvious from
the definition of π).

Now, given d ∈ N, for f ∈ Fd we obtain

‖Tf‖X ≤
√

1− 1/4d ‖f‖`2(X) ≤ (1− 1/22d+1)‖f‖`2(X) ≤ |f |d.

Therefore, the unit ball of (Fd, | · |d), where d ∈ N, and consequently the unit
ball of (F, ‖ · ‖), are subsets of {f ∈ F : ‖Tf‖X ≤ 1}.

Lemma 6.7. We have ‖Ux‖ = ‖x‖X for x ∈ X and the range of U is
1-complemented in (F, ‖ · ‖).

Proof. It can be easily shown that

TUx = x and ‖Ux‖`2(X) = ‖x‖X
for x ∈ X. Using Lemmas 6.6 and 6.5, we can write

‖x‖X = ‖TUx‖X ≤ ‖Ux‖ ≤ ‖Ux‖`2(X) = ‖x‖X , x ∈ X.

Moreover, UT : F → F is a projection onto UX with ‖UT‖ ≤ 1.

The proof of Proposition 6.2 is complete. Nevertheless, we prove one more
lemma which will be useful later.

Lemma 6.8. We have

‖f‖ ≥ ‖Pnf‖+
1

22n+4
‖f − Pnf‖, f ∈ F, n ∈ N.

Proof. As in the proof of Lemma 6.6, it is sufficient to show that the
unit ball of (Fd, | · |d), where d ∈ N, is a subset of {f ∈ F : ‖Pnf‖ +

1
22n+4 ‖f − Pnf‖ ≤ 1}. So, we just need to check that

‖Pnf‖+
1

22n+4
‖f − Pnf‖ ≤ |f |d, f ∈ Fd.
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The inequality is clear when d ≤ n, as Pnf = f . If d ≥ n+ 1, then

‖Pnf‖ ≤ |Pnf |n ≤
(
1− 1

22n+2

)
‖Pnf‖`2(X) ≤

(
1− 1

22n+2

)
‖f‖`2(X),

and so

‖Pnf‖+
1

22n+4
‖f − Pnf‖

=

(
1− 1

22d+1

)
‖Pnf‖+

1

22d+1
‖Pnf‖+

1

22n+4
‖f − Pnf‖

≤
(
1− 1

22d+1

)(
1− 1

22n+2

)
‖f‖`2(X) +

1

22n+3
‖f‖+ 1

22n+4
· 2‖f‖

≤
(
1− 1

22n+2

)
|f |d +

1

22n+3
|f |d +

1

22n+4
· 2|f |d = |f |d

for every f ∈ Fd.

7. Renorming I. For the class of reflexive spaces and the class of spaces
with a shrinking basis, the construction of the space F from Definition 6.4
is satisfactory. For the other two classes from Theorem 1.2, the space F has
to be renormed so that the relevant isometric properties of the initial space
X are preserved.

In fact, we renorm the space in two steps (renormings ‖ · ‖I and ‖ · ‖II).
For the class of non-universal spaces, one renorming is sufficient. For the
class of strictly convex spaces, one more renorming is needed.

Let us emphasize two aspects of the renormings. Firstly, the new norm on
Fd = span{f1, . . . , fd} depends only on the old norm on Fd itself. In this way,
only countably many possibilities for the norm of Fd may occur. Secondly,
the norm is not changed on the subspace UX which is still a 1-complemented
copy of X.

Definition 7.1. We define a seminorm by

(24) β(f)2 =

∞∑
n=1

∞∑
k=1

1

24π−1(n+1,k)
|e∗(n,k)(f)− 2e∗(n+1,k)(f)|

2, f ∈ F,

where e∗(n,k) is the system biorthogonal to the basic system e(n,k).

The proof of the following observation is skipped.

Fact 7.2. For f ∈ F , the following assertions are equivalent:

(i) β(f) = 0,
(ii) e∗(n,k)(f)− 2e∗(n+1,k)(f) = 0 for all n, k,
(iii) f ∈ UX.
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Lemma 7.3. Let d ∈ N ∪ {0}. Then every f ∈ span {fd+1, fd+2, . . . }
satisfies

β(f) ≤ 2

22d
‖f‖.

In particular, β(f) ≤ 2‖f‖ for every f ∈ F .

Proof. We can compute

|e∗(n,k)(f)| ≤ ‖e
∗
(n,k)‖`2(X)‖f‖`2(X) ≤ 2 · 87‖f‖,(25)

|e∗(n,k)(f)− 2e∗(n+1,k)(f)| ≤ 3 · 2 · 87‖f‖ ≤ 2
√
15‖f‖.(26)

Moreover, from f ∈ span {fd+1, fd+2, . . . } we obtain

π−1(n, k) ≤ d ⇒ e∗(n,k)(f) = 0,

and consequently

π−1(n+ 1, k) ≤ d ⇒ e∗(n,k)(f)− 2e∗(n+1,k)(f) = 0.

Therefore,

β(f)2 ≤
∑

π−1(n+1,k)>d

1

24π−1(n+1,k)
· (2
√
15‖f‖)2

≤
∑
j>d

1

24j
· 4 · 15‖f‖2 = 4

24d
‖f‖2.

Definition 7.4. We define

(27) ‖f‖2I = ‖f‖2 +
1

27
β(f)2, f ∈ F.

A simple application of Lemma 7.3 gives

(28) ‖f‖ ≤ ‖f‖I ≤ 2‖f‖.

Lemma 7.5. We have ‖Ux‖I = ‖x‖X for x ∈ X and the range of U is
1-complemented in (F, ‖ · ‖I).

Proof. Using Fact 7.2 and Lemma 6.7, we can write ‖Ux‖I = ‖Ux‖ =
‖x‖X for x ∈ X. The projection UT works as in the proof of Lemma 6.7,
because ‖UTf‖I = ‖UTf‖ ≤ ‖f‖ ≤ ‖f‖I for f ∈ F .

Lemma 7.6. Let [u, v] be a non-degenerate line segment in F such that
‖ · ‖I is constant on [u, v]. Then v − u ∈ UX.

Proof. By the same argument as in the proof of Lemma 5.4, we arrive at

‖u‖ = ‖v‖, ‖u+ v‖ = ‖u‖+ ‖v‖,
β(u) = β(v), β(u+ v) = β(u) + β(v),

and consequently
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e∗(n,k)(u)− 2e∗(n+1,k)(u) = e∗(n,k)(v)− 2e∗(n+1,k)(v), n, k ∈ N.
It follows that v − u ∈ UX by Fact 7.2.

Proposition 7.7. If X is not isometrically universal for all separable
Banach spaces, then neither is (F, ‖ · ‖I).

Proof. Assume that (F, ‖ · ‖I) is isometrically universal for all separable
Banach spaces. Again, set

∆ = {0, 1}N, ∆(i) = {γ ∈ ∆ : γ(1) = i}, i = 0, 1,

Z = C(∆), Z(i) = {h ∈ Z : γ /∈ ∆(i)⇒ h(γ) = 0}, i = 0, 1.

Considering an isometry I : Z → F , we denote

f = I(1∆(0)).

We claim that UX (and thus X by Lemma 7.5) is universal, showing that I
maps Z(1) into UX.

Given an h ∈ Z(1) with ‖h‖ ≤ 1, we observe that ‖1∆(0)‖ = ‖1∆(0) ± h‖
= 1, and so ‖f‖I = ‖f ± Ih‖I = 1. By Lemma 7.6, we have Ih ∈ UX.

Lemma 7.8. We have

‖f‖I ≥ ‖Pdf‖I +
1

22d+7
‖f − Pdf‖I , f ∈ F, d ∈ N.

Proof. By Lemma 6.8,

‖f‖2 − ‖Pdf‖2 = (‖f‖+ ‖Pdf‖)(‖f‖ − ‖Pdf‖)

≥ (‖f‖+ ‖Pdf‖) ·
1

22d+4
‖f − Pdf‖.

At the same time, by Lemma 7.3,

β(Pdf)
2 − β(f)2 =

(
β(Pdf) + β(f)

)(
β(Pdf)− β(f)

)
≤
(
β(Pdf) + β(f)

)
· β(f − Pdf)

≤ 2(‖Pdf‖+ ‖f‖) ·
2

22d
‖f − Pdf‖.

Thus, using (28), we can compute

‖f‖2I − ‖Pdf‖2I = ‖f‖2 − ‖Pdf‖2 +
1

27
(
β(f)2 − β(Pdf)2

)
≥
(

1

22d+4
− 1

27
· 4

22d

)
(‖f‖+ ‖Pdf‖) · ‖f − Pdf‖

=
1

22d+5
(‖f‖+ ‖Pdf‖) · ‖f − Pdf‖

≥ 1

22d+5
· 1
2
(‖f‖I + ‖Pdf‖I) ·

1

2
‖f − Pdf‖I .

Now, it is sufficient to divide both sides by ‖f‖I + ‖Pdf‖I .
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8. Renorming II

Definition 8.1. We define a seminorm by

(29) α(f)2 =
∞∑
n=1

∞∑
k=1

1

24π−1(n,k)
|e∗(n,k)(f)|

2, f ∈ F,

where e∗(n,k) is the system biorthogonal to the basic system e(n,k).

Lemma 8.2. We have

α(f) < ‖f‖, 0 6= f ∈ F.
Proof. Using (25), we can compute

α(f)2 ≤
∞∑
n=1

∞∑
k=1

1

24π−1(n,k)

(
2 · 8

7
‖f‖

)2

=
1

15

(
2 · 8

7
‖f‖

)2

< ‖f‖2.

Fact 8.3. There is a norm % on R3 such that

• 1
2(|r| + |s|) ≤ %(r, s, t) ≤ max{|r|, |s|, |t|} and, in particular, the unit
sphere contains the line segment [(1, 1,−1), (1, 1, 1)],
• %(r′, s′, t′) ≥ %(r, s, t) for 0 ≤ r ≤ r′, 0 ≤ s ≤ s′, 0 ≤ t ≤ t′,
• %(r, s, t′) > %(r, s, t) for 0 < r < s, 0 < t < t′,
• %(r′, s, t) ≥ %(r, s, t) + 1

4(r
′ − r) for r, r′, s, t > 0, 0 < r < r′.

Proof (sketch). Let a norm %0 be given by

B(R3,%0) = co
(
{(±1,±1,±1)} ∪

√
2B
)
,

where B stands for the Euclidean unit ball of R3. This norm satisfies the
first three properties, and the norm

%(r, s, t) = 1
4(|r|+ |s|) +

1
2%0(r, s, t)

also satisfies the fourth one.

Definition 8.4. We define

(30) ‖f‖II = %
(
‖f‖, ‖f‖I , α(f)

)
, f ∈ F.

A simple application of (28) and Lemma 8.2 gives

(31) ‖f‖ ≤ ‖f‖II ≤ 2‖f‖,
since

‖f‖ ≤ 1
2(‖f‖+ ‖f‖I) ≤ %

(
‖f‖, ‖f‖I , α(f)

)
≤ max

{
‖f‖, ‖f‖I , α(f)

}
= ‖f‖I ≤ 2‖f‖.

Lemma 8.5. We have ‖Ux‖II = ‖x‖X for x ∈ X and the range of U is
1-complemented in (F, ‖ · ‖II).

Proof. Let x ∈ X with ‖x‖X = 1. By Lemmas 8.2, 6.7 and 7.5, we have
α(Ux) < ‖Ux‖ = 1 = ‖Ux‖I . Since the unit sphere S(R3,%) contains the line
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segment [(1, 1,−1), (1, 1, 1)], we obtain ‖Ux‖II = 1 = ‖x‖X . The projection
UT still works, because ‖UTf‖II = ‖Tf‖X = ‖UTf‖ ≤ ‖f‖ ≤ ‖f‖II for
f ∈ F .

Lemma 8.6. Let [u, v] be a non-degenerate line segment in F such that
‖ · ‖II is constant on [u, v]. Then u and v belong to UX.

Proof. It is enough to show that w = 1
2(u+ v) ∈ UX (the argument can

be repeated for any subsegment of [u, v]). Assume the opposite, i.e., w /∈ UX.
We have β(w) > 0 by Fact 7.2, and so ‖w‖ < ‖w‖I . Using the inequality

α(w) < 1
2

(
α(u) + α(v)

)
,

a property of % provides

%
(
‖w‖, ‖w‖I , 12(α(u) + α(v))

)
> %
(
‖w‖, ‖w‖I , α(w)

)
= ‖w‖II .

The computation
1
2(‖u‖II + ‖v‖II) =

1
2

(
%(‖u‖, ‖u‖I , α(u)) + %(‖v‖, ‖v‖I , α(v))

)
≥ %
(
1
2(‖u‖+ ‖v‖),

1
2(‖u‖I + ‖v‖I),

1
2(α(u) + α(v))

)
≥ %
(
‖w‖, ‖w‖I , 12(α(u) + α(v))

)
> ‖w‖II

concludes the proof.

Proposition 8.7. If X is strictly convex, then so is (F, ‖ · ‖II).
Proof. This follows from Lemmas 8.5 and 8.6.

Lemma 8.8. We have

‖f‖II ≥ ‖Pdf‖II +
1

22d+7
‖f − Pdf‖II , f ∈ F, d ∈ N.

Proof. Using Lemmas 6.8 and 7.8, we can compute

‖f‖II = %
(
‖f‖, ‖f‖I , α(f)

)
≥ %
(
‖Pdf‖+

1

22d+4
‖f − Pdf‖, ‖Pdf‖I +

1

22d+7
‖f − Pdf‖I , α(f)

)
≥ %
(
‖Pdf‖+

1

22d+4
‖f − Pdf‖, ‖Pdf‖I , α(Pdf)

)
≥ %
(
‖Pdf‖, ‖Pdf‖I , α(Pdf)

)
+

1

4
· 1

22d+4
‖f − Pdf‖

≥ ‖Pdf‖II +
1

4
· 1

22d+4
· 1
2
‖f − Pdf‖II .

9. Amalgamations of Asplund and reflexive spaces. In the final
stage of the proof of Theorem 1.2, we need some further notation. We intro-
duce a coding of all rational Banach spaces whose basis is monotone. This
enables us to provide a version of the Pełczyński universal space.
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Definition 9.1. We fix a system {(Zη, ‖ · ‖η)}η∈N<N of rational Banach
spaces which satisfies the following requirements.

(a) For every η, the basis of Zη, denoted by zη1 , . . . , z
η
|η|, is monotone,

consists of |η| members, and whenever η ⊂ ν, the space Zν is an extension
of Zη in the sense that the basis zη1 , . . . , z

η
|η| is 1-equivalent to z

ν
1 , . . . , z

ν
|η|.

(b) Every monotone rational extension of Zη is Zν for some ν ⊃ η. More
precisely, if Z is a rational space whose basis z1, . . . , zd is monotone and
such that zη1 , . . . , z

η
|η| is 1-equivalent to z1, . . . , z|η|, then there is a ν ⊃ η with

|ν| = d such that zν1 , . . . , zν|ν| is 1-equivalent to z1, . . . , zd.

Definition 9.2. For every ϕ ∈ NN, let (Zϕ, ‖ · ‖ϕ) be a Banach space
with a monotone basis zϕ1 , z

ϕ
2 , . . . such that, for every η ⊂ ϕ, the basis

zη1 , . . . , z
η
|η| of Zη is 1-equivalent to zϕ1 , . . . , z

ϕ
|η|.

Definition 9.3. Let U be a completion of c00(N<N \{∅}) with the norm
defined by one of the equivalent formulae

‖x‖ = sup
ν∈N<N

∥∥∥∥∑
η⊂ν

x(η)zν|η|

∥∥∥∥
ν

,(32)

‖x‖ = sup
ϕ∈NN

∥∥∥∥∑
η⊂ϕ

x(η)zϕ|η|

∥∥∥∥
ϕ

.(33)

Further, let $ : N→ N<N \ {∅} be a fixed non-decreasing bijection and let

(34) ui = 1{$(i)}, i ∈ N.

As U is defined according to Definition 3.1, several remarkable properties
follow. First of all, u1, u2, . . . is a monotone basis of U . If we denote

(35) ∆ : ϕ ∈ NN 7→ {$−1((ϕ1)) < $−1((ϕ1, ϕ2)) < . . . } ⊂ N,
then, by Fact 3.2, the sequences {zϕn : n ∈ N} and {ui : i ∈ ∆(ϕ)} are
1-equivalent for every ϕ ∈ NN. The copy span{ui : i ∈ ∆(ϕ)} of Zϕ is 1-
complemented in U . Moreover, due to Proposition 6.2, every Banach space
X with a monotone basis has a 1-complemented isometric copy in Zϕ for
some ϕ ∈ NN. It follows that X also has a 1-complemented isometric copy
in U .

We note that the space U , including its construction and properties, is
fairly similar to the space constructed and studied in [15].

Lemma 9.4. Let C be an analytic set of Banach spaces with separable
dual. Then there is a β < ω1 such that Sz(`2(X)) ≤ β for every X ∈ C.

Proof. It follows from [3, Theorem 4.11 and Proposition 0.1(ii)] that
sup{Sz(X) : X ∈ C′} < ω1 for any analytic set C′ of Banach spaces with
separable dual. So, it is sufficient to find an analytic set C′ which contains an
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isomorphic copy of `2(X) for every X ∈ C, and every Y ∈ C′ is isomorphic
to `2(X) for some X ∈ C.

Let us consider an isometry I : `2(C([0, 1])) → C([0, 1]) and let κ :
SE(C([0, 1]))→ SE(C([0, 1])) be defined by κ(X) = I(`2(X)) where `2(X) is
considered as a subspace of `2(C([0, 1])). As κ is a Borel mapping, C′ = κ(C)
works.

Lemma 9.5. For every β < ω1, the set

(36) A = {ϕ ∈ NN : Sz(Zϕ) ≤ β and zϕ1 , z
ϕ
2 , . . . is shrinking}

is Borel in NN.

Proof. By [3, Theorem 5.4(i) and Proposition 0.1(i)], the set

B =
{
{i1 < i2 < · · · } ⊂ N : Sz(span{ui1 , ui2 , . . . }) ≤ β

and ui1 , ui2 , . . . is shrinking
}

is Borel in the space of all subsets of N. As ∆ is a continuous mapping, it
remains to observe that A = ∆−1(B).

Proof of Theorem 1.2, part 1 (shrinking basis case). Let C be an analytic
set of Banach spaces such that every member admits a monotone shrink-
ing basis. Let β < ω1 be as in Lemma 9.4 and let A be given by (36). By
Lemma 9.5, A is Borel, and thus analytic. Notice that Proposition 6.2 guar-
antees that every X ∈ C has a 1-complemented isometric copy in Zϕ for
some ϕ ∈ A.

By Lemma 2.1, there is an unrooted pruned tree T on N × N such that
A = p[T ] where p denotes the projection on the first coordinate. Let us
consider the collection

(Fσ, ‖ · ‖σ) = (Zp(σ), ‖ · ‖p(σ)), fσn = zp(σ)n , σ ∈ [T ], n ∈ N.

In this way, the collection Fσ, σ ∈ [T ], consists of the same spaces as the
collection Zϕ, ϕ ∈ A.

Finally, let E be the space constructed in Definition 3.1 for this collection.
This space has the required properties, due to Fact 3.2 and Proposition 3.5.

Lemma 9.6. For an analytic set C of Banach spaces, the set

(37) A = {ϕ ∈ NN : Zϕ is isomorphic to `2(X) for some X ∈ C}

is analytic in NN.

Proof. It is easy to show (see the proof of Lemma 9.4) that there is an
analytic set C′ which contains an isomorphic copy of `2(X) for every X ∈ C,
and every Y ∈ C′ is isomorphic to `2(X) for some X ∈ C. By [3, Theorem
2.3(i)], the saturation
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C′′ = {Z ∈ SE(C([0, 1])) : Z is isomorphic to some Y ∈ C′}
= {Z ∈ SE(C([0, 1])) : Z is isomorphic to `2(X) for an X ∈ C}

is analytic.
Let I : U → C([0, 1]) be an isometry. It is easy to show that the mapping

ζ : NN → SE(C([0, 1])), ϕ 7→ span{I(1{(ϕ1)}), I(1{(ϕ1,ϕ2)}), . . . },

is Borel. Due to Fact 3.2, the spaces Zϕ and ζ(ϕ) are isometric. It follows
that A = ζ−1(C′′), and so A is analytic.

Proof of Theorem 1.2, part 2 (reflexive case). Let C be an analytic set of
reflexive Banach spaces such that every member has a monotone basis. Let A
be given by (37). By Lemma 9.6, A is analytic. Proposition 6.2 guarantees
that every X ∈ C has a 1-complemented isometric copy in Zϕ for some
ϕ ∈ A. At the same time, Zϕ is reflexive for every ϕ ∈ A.

By Lemma 2.1, there is an unrooted pruned tree T on N × N such that
A = p[T ] where p denotes the projection on the first coordinate. Let us
consider the collection

(Fσ, ‖ · ‖σ) = (Zp(σ), ‖ · ‖p(σ)), fσn = zp(σ)n , σ ∈ [T ], n ∈ N.

In this way, the collection Fσ, σ ∈ [T ], consists of the same spaces as the
collection Zϕ, ϕ ∈ A.

Finally, let A be the space established in Definition 4.3 for this collection.
This space admits the required properties, due to Facts 4.4 and 4.5 and
Proposition 4.6.

10. Amalgamations of non-universal and rotund spaces

Definition 10.1. Let ϕ ∈ NN and let z∗1 , z∗2 , . . . denote the dual basic
sequence of zϕ1 , z

ϕ
2 , . . . . Let us define seminorms

α(z)2 =
∞∑
i=1

1

24i
|z∗i (z)|2

(
=

∞∑
n=1

∞∑
k=1

1

24π−1(n,k)
|z∗π−1(n,k)(z)|

2

)
,(38)

β(z)2 =

∞∑
n=1

∞∑
k=1

1

24π−1(n+1,k)
|z∗π−1(n,k)(z)− 2z∗π−1(n+1,k)(z)|

2,(39)

where π is introduced in Definition 6.3. Let us further define

(40) ZIϕ = {z ∈ Zϕ : β(z) <∞}, ZIIϕ = {z ∈ ZIϕ : α(z) <∞},

‖z‖2ϕ,I = ‖z‖2ϕ +
1

27
β(z)2, z ∈ ZIϕ,(41)

‖z‖ϕ,II = %
(
‖z‖ϕ, ‖z‖ϕ,I , α(z)

)
, z ∈ ZIIϕ ,(42)

where % is the norm given by Fact 8.3.
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Definition 10.2. The subspace of (SC([0,1]))
N consisting of all normal-

ized monotone basic sequences will be denoted byM.

The following proposition summarizes most of the results of Sections 6–8.

Proposition 10.3. There exists a Borel mapping Θ : M → NN such
that, for every (e1, e2, . . . ) ∈ M, if we denote ϕ = Θ(e1, e2, . . . ) and X =
span{e1, e2, . . . }, then:

(1) ZIϕ = ZIIϕ = Zϕ and the norms fulfill

‖z‖ϕ ≤ ‖z‖ϕ,I ≤ 2‖z‖ϕ, ‖z‖ϕ ≤ ‖z‖ϕ,II ≤ 2‖z‖ϕ, z ∈ Zϕ.
(2) ZIϕ and ZIIϕ each contain a 1-complemented isometric copy of X.
(3) If X is not isometrically universal for all separable Banach spaces,

then neither is ZIϕ.
(4) If X is strictly convex, then so is ZIIϕ .
(5) We have

‖Pnz‖2ϕ,I ≥ ‖Pn−1z‖2ϕ,I +
(

7

22n+8

)2

|z∗n(z)|2, z ∈ ZIϕ, n ∈ N,

‖Pnz‖2ϕ,II ≥ ‖Pn−1z‖2ϕ,II +
(

7

22n+8

)2

|z∗n(z)|2, z ∈ ZIIϕ , n ∈ N,

where z∗1 , z
∗
2 , . . . is the dual basic sequence and P0, P1, . . . is the se-

quence of partial sum operators associated with zϕ1 , z
ϕ
2 , . . . .

Proof. First, the functions ld :M→ N from Definition 6.4 are Borel. If
l ∈ N, then the set of basic sequences e1, e2, . . . for which (18) holds with
| · |d = | · |d,l is closed. Therefore, the set of sequences with ld = l is the
difference of two closed sets.

Now, if a monotone basic sequence e1, e2, . . . is given, the properties of
the system {(Zϕ, ‖ · ‖ϕ)}ϕ∈NN together with Lemma 6.5 guarantee that there
is a ϕ = (ϕ1, ϕ2, . . . ) such that (Zϕ, ‖ · ‖ϕ) and (F, ‖ · ‖) coincide, together
with their bases. To show that the choice of ϕ can be Borel, it is sufficient
to note that ϕ can be constructed recursively in such a way that ϕd depends
only on l1, . . . , ld. This is allowed by formula (23) which implies that the
norm on span{f1, . . . , fd} is determined by the values l1, . . . , ld.

Let us check the required properties. Notice that the spaces ZIϕ and ZIIϕ
coincide with (F, ‖ · ‖I) and (F, ‖ · ‖II). So, the properties easily follow from
lemmata and propositions proven above.

Property (1) follows from (28) and (31), and property (2) follows from
Lemmas 7.5 and 8.5. Property (3) follows from Proposition 7.7, and prop-
erty (4) follows from Proposition 8.7. Finally, property (5) needs a little
calculation. By Lemma 6.5, we have

7
8 |z
∗
n(z)| ≤ |z∗n(z)| ‖zϕn‖ϕ = ‖Pnz − Pn−1z‖ϕ ≤ ‖Pnz − Pn−1z‖ϕ,I .
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Using Lemma 7.8, we obtain

‖Pnz‖2ϕ,I ≥
(
‖Pn−1z‖ϕ,I +

1

22(n−1)+7
‖Pnz − Pn−1z‖ϕ,I

)2

≥
(
‖Pn−1z‖ϕ,I +

7

22n+8
|z∗n(z)|

)2

≥ ‖Pn−1z‖2ϕ,I +
(

7

22n+8

)2

|z∗n(z)|2.

The proof of the analogous inequality for ZIIϕ is the same: we just use
Lemma 8.8 instead of Lemma 7.8.

Proof of Theorem 1.2, part 3. Suppose that C is an analytic set of Banach
spaces such that every member has a monotone basis. LetMC be the subset
of M consisting of all normalized monotone bases of members of C. Since
the mapping

(e1, e2, . . . ) 7→ span{e1, e2, . . . }
is Borel, the pre-image MC of C is analytic. Let Θ be the mapping from
Proposition 10.3. Then Θ(MC) is an analytic subset of NN. By Lemma 2.1,
there is an unrooted pruned tree T on N × N such that Θ(MC) = p[T ]
where p denotes the projection on the first coordinate. Let us consider the
collections

(F Iσ , ‖ · ‖σ,I) = (ZIp(σ), ‖ · ‖p(σ),I), (F IIσ , ‖ · ‖σ,II) = (ZIIp(σ), ‖ · ‖p(σ),II),

fσn = zp(σ)n , σ ∈ [T ], n ∈ N.

Finally, let BI and BII be the spaces constructed in Definition 5.1 for these
collections. Note that Proposition 10.3(5) guarantees that the requirement
(8) is fulfilled.

BI and BII each contain a 1-complemented isometric copy of every
X ∈ C. Indeed, a monotone basis of X is contained inMC , and so property
(2) from Proposition 10.3 is satisfied for some ϕ ∈ Θ(MC) = p[T ]. If we
choose a σ ∈ [T ] with p(σ) = ϕ, then X has a 1-complemented isometric
copy in F Iσ and in F IIσ , and it is sufficient to apply Fact 5.2.

If every X ∈ C is non-universal [strictly convex], then BI is non-universal
[BII is strictly convex]. Indeed, in that case, property (3) [property (4)] from
Proposition 10.3 implies that the spaces ZIϕ, ϕ ∈ Θ(MC), [ZIIϕ , ϕ ∈ Θ(MC)],
and so F Iσ , σ ∈ [T ], [F IIσ , σ ∈ [T ]] are non-universal [strictly convex], and it
remains to apply Proposition 5.5.
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