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1. Introduction. For a field F, K2(F ) denotes the Milnor K2-group
of F. It follows from Matsumoto’s theorem [10] that K2(F ) is generated by
the symbols {a, b}, a, b ∈ F ∗. In general, an element of K2(F ) is a product
of symbols. Therefore, expressing an element of K2(F ) in a simple and more
explicit form is much desired.

For a global field, Lenstra [7] proved a surprising fact that every element
of K2(F ) is not just a product of symbols, but actually a symbol. More
precisely, if G is a finite subgroup of K2(F ), then G ⊆ {a, F ∗} for some
a ∈ F ∗.

Moreover, for a global field F containing ζn, the nth primitive root of
unity, Tate [19] investigated the n-torsion of K2(F ). For an abelian group A,
we use An to denote the n-torsion of A, i.e., An = {a ∈ A | an = 1}. Tate
proved that

(1.1) (K2(F ))n = {ζn, F ∗},

which implies that every element in (K2(F ))n can be written as {ζn, a},
where a ∈ F ∗. At the same time, Tate conjectured that (1.1) is true for any
field containing ζn. Tate’s conjecture was proved by Merkurjev and Suslin
[9], [18].

Unfortunately, the condition ζn ∈ F is too restrictive. For example, as
is well known, K2(Q) is a torsion group and it contains elements of any
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order by Dirichlet’s theorem. But, according to Tate’s result, only elements
of order 2 in K2(Q) can be expressed explicitly.

For a given n, Browkin [1] considered cyclotomic elements of K2(F ), i.e.,
elements of the form

cn(a) := {a, Φn(a)}, a, Φn(a) ∈ F ∗,
where Φn(x) denotes the nth cyclotomic polynomial. The advantage of cy-
clotomic elements is that one can dispense with the condition ζn ∈ F.

Let

Gn(F ) = {cn(a) ∈ K2(F ) | a, Φn(a) ∈ F ∗}.
Browkin [1] proved that Gn(F ) ⊆ (K2(F ))n, i.e., all the elements of Gn(F )
are n-torsion elements of K2(F ). In particular, he proved that for any field
F 6= F2, if n = 1, 2, 3, 4, 6 and ζn ∈ F, then every element {ζn, x} ∈ K2(F )
can be written in the form cn(a). Moreover, it is also proved in [1] that
Gn(F ) = (K2(F ))n for n = 3 and F = Q (for any field F by Urbano-
wicz [20]). For n = 4, it follows from [1] for F = Q and from Qin [12] for
any field F with ch(F ) 6= 2 that every element of order 4 in K2(F ) can be
written in the form c4(a) · v, where v ∈ K2(F ) with v2 = 1. But, in general,
as conjectured in [1], Gn(F ) is not a group.

Browkin’s Conjecture 1.1 ([1]). For any integer n 6= 1, 2, 3, 4 or 6
and any field F , Gn(F ) is not a subgroup of K2(F ), in particular, G5(Q) is
not a subgroup of K2(Q).

Qin [12], [13] proved that neither G5(Q) nor G7(Q) is a subgroup of
K2(Q) and that G2n(Q) is a group if and only if n ≤ 2. Xu and Qin [25]
proved that G2n3m(Q) is a group if and only if n = 2 and m = 0 (see [27]
for more results). The first author of the present paper proved that for any
number field F, if n 6= 4, 8, 12 has a square factor, then Gn(F ) is not a
subgroup of K2(F ) (see [22], [24]). A similar result can be established for
function fields [24].

However, when n is a prime, Gn(F ) seems difficult to deal with, in par-
ticular when F is a number field or, in general, a global field. Xu, Sun and
Chi [29] investigated the l-torsion of K2(F (x)), where F (x) is the rational
function field over F and l is a prime with l 6= ch(F ), and proved that if
l ≥ 5 and Φl(x) is irreducible in F [x], then Browkin’s conjecture is true for
F (x). But we still do not know whether it is true for every number field.

Browkin’s conjecture implies that corresponding to Tate’s result, we
could only expect results on the “outer structure” of Gn(F ), that is, that
(K2(F ))n is generated by something like Gn(F ). In fact, Lenstra [8] proved
that (K2(Q))5 is generated by G5(Q); alternative proofs are given in [23]
and [2]. Du and Qin [2] also proved that (K2(Q))8 is generated by G8(Q) ∪
G4(Q) ∪G2(Q). In general, Qin proposed the following problem:
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Qin’s Problem 1.2 ([14]). For which n, (K2(F ))n=〈Gm(F ) | all m |n〉?

Xu and Liu [24] even conjectured that if n = pe11 · · · p
et
t , then (K2(F ))n

is generated by all Gpmi
i

(F ), i.e.,

(K2(F ))n = 〈Gpmi
i

(F ) | 1 ≤ mi ≤ ei, 1 ≤ i ≤ t〉.

Moreover, Qin proposed the following more general problem:

Qin’s Problem 1.3 ([2]). For a given field, what is the value of

[(K2(F ))n : 〈Gm(F ) | all m |n〉] ?

In the present paper, we turn to the “inner structure” of Gn(F ), in
particular, we are interested in the “inner” subgroup structure of Gn(F ).
As a result, we modify Browkin’s conjecture into more precise forms.

A subgroup of K2(F ) is called cyclotomic if it is contained in Gn(F ).
Our problems are formulated as follows.

Problem 1.4. How many nontrivial cyclotomic elements are there in a
subgroup of K2(F ) generated by finitely many essentially distinct (see Sec-
tion 4) cyclotomic elements in Gn(F )?

Problem 1.5. When does K2(F ) contain a nontrivial cyclotomic sub-
group?

Problem 1.6. How many cyclotomic subgroups are there in a subgroup
of K2(F ) generated by finitely many essentially distinct cyclotomic elements
in Gn(F )?

It follows from [1] that for F 6= F2 and n = 1, 2, 3, 4 or 6, Gn(F ) itself
is a cyclotomic subgroup of K2(F ). Qin and Xu [26, 28] proved that for a
local field F , Gn(F ) is a cyclotomic subgroup in most cases (see also [4]).
Moreover, we have the following conjecture.

Qin–Xu’s Conjecture 1.7 ([28]). For any local field F, the set Gn(F )
is a cyclotomic subgroup of K2(F ).

For a number field, the picture seems different. From [29], we only know
that a subgroup of K2(F (x)) generated by a cyclotomic element contains at
least two noncyclotomic elements.

In this paper, we give a systematic study of the above three problems.
For the rational function field F (x), we will determine the exact number
of nontrivial cyclotomic elements and of nontrivial cyclotomic subgroups in
a subgroup generated by some kind of cyclotomic elements in Gl(F (x)) ⊆
K2(F (x)), where l is a prime with l 6= ch(F ).

More precisely, let Gl(n;F ) denote a subgroup of K2(F (x)) generated
by n essentially distinct (see Section 4) cyclotomic elements of some kind in
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Gl(F (x)), and let c(Gl(n;F )) and cs(Gl(n;F )) denote respectively the num-
bers of nontrivial cyclotomic elements and nontrivial cyclotomic subgroups
contained in Gl(n;F ). We prove the following result (see Theorem 5.17).

Theorem 1.8. Assume that l ≥ 5 is a prime number and F is a field
such that Φl(x) is irreducible in F [x]. Let n be a positive integer satisfying

n ≤ (l − 3)/2.

(i) If ch(F ) = 0, then c(Gl(n;F )) = 2n, and so cs(Gl(n;F )) = 0.
(ii) If ch(F ) = p 6= 0, then c(Gl(n;F )) = n(2 + |Z(l, p)|), where

Z(l, p) := {t | 2 ≤ t ≤ l−2, t ≡ p2m or −p2m (mod l) for some m ∈ N}.
(iii) If ch(F ) = p 6= 0, then

cs(Gl(n;F )) > 0 ⇔ l ≡ 3 (mod 4) and p is a primitive root of l.

In this case, cs(Gl(n;F )) = n, i.e., Gl(n;F ) contains exactly n nontrivial
cyclotomic subgroups.

(iv) Every nontrivial cyclotomic subgroup of Gl(n;F ) is a cyclic sub-
group of order l, i.e., every nontrivial cyclotomic subgroup has the
form Gl(1;F ).

We do not know how to remove the condition n ≤ (l − 3)/2 in The-
orem 1.8. We present some computations for the cases n > (l − 3)/2, in
particular for n = 2, 3. The results of computations agree with the above
theorem. So it seems that the condition n ≤ (l − 3)/2 is removable.

As for the number field cases, the situation seems quite different. In the
proof of Theorem 1.8, essential use is made of the fact that F (x) has a
nontrivial derivation. Thus the proof does not carry over to number fields.

However, we find that Gn(F ) really has some “inner structure”. In fact,
it seems curious that we can construct number fields F for which the cube
of some cyclotomic element in K2(F ) is also cyclotomic (we can do the same
for squares).

More precisely, let

fn,1(x) = xn + x+ 1 if n ≡ 1 (mod 3),

fn,2(x) = (xn + x+ 1)/(x2 + x+ 1) if n ≡ 2 (mod 3).

Selmer proved that fn,1, fn,2 are both irreducible (see Lemma 9.1). Then we
have (see Theorem 9.5):

Theorem 1.9.

(i) Assume that p > 3 is a prime. Let α be a zero of fp,i(x), where i = 1
or 2, and F = Q(α). Then

1 6= cp(α)3 = cp(α
3) ∈ Gp(F ).



Cyclotomic elements and cyclotomic subgroups in K2 5

(ii) Assume that p ≥ 3 is a prime. Let α be a zero of the irreducible
polynomial xp + xp−1 + 2 and F = Q(α). Then

1 6= cp(α)2 = cp(α
2) ∈ Gp(F ).

As a consequence, we can construct a number field F such that K2(F )
contains a cyclotomic subgroup of order five. Moreover, we have (see Ex-
amples 9.9 and 9.10):

Corollary 1.10.

(i) Letα1, α2, α3 be the roots of f5,2(x)=x3−x2+1 and F̃ = Q(α1, α2, α3).
Then 〈c5(α1)〉, 〈c5(α2)〉, 〈c5(α3)〉 are three cyclotomic subgroups of

order five of K2(F̃ ).

(ii) Let α1, . . . , α5 be the roots of x5 + x4 + 2 and F̃ = Q(α1, . . . , α5).
Then 〈c5(α1)〉, . . . , 〈c5(α5)〉 are five cyclotomic subgroups of order

five of K2(F̃ ).

We can also construct a quadratic field F such that K2(F ) contains a cy-
clotomic subgroup of order five. In fact, let F = Q(

√
5) and β = (3 +

√
5)/2.

Then we can prove that 〈c5(β)〉 is a cyclotomic subgroup of K2(F ) of order
five (see Example 9.11).

A natural problem arises:

Problem 1.11. For a number field F, is there always a cyclotomic sub-
group of order five in K2(F )? How many cyclotomic subgroups of order five
are there in K2(F )?

We do not know how to attack this problem for general number fields.
But based on numerical computations, we make the following conjecture:

Conjecture 1.12. There does not exist a cyclotomic subgroup of order
five in K2(Q).

As for subgroups of other orders, it seems that the answer is negative if
five is replaced by a prime greater than five:

Conjecture 1.13. Let F be a number field. If p > 5 is a prime, then
K2(F ) contains no cyclotomic subgroups of order p.

Corresponding to this conjecture, we have the following theorem which
reflects deeper nonclosedness of the cyclotomic elements in K2(F ) (see The-
orem 10.4).

Theorem 1.14. Assume that F is a number field and n 6= 1, 4, 8, 12
is a positive integer. If there is a prime p such that p2 |n, then there exist
infinitely many nontrivial cyclotomic elements α1, α2, . . . . . . ∈ Gn(F ) such
that

〈αp1〉 ( 〈α
p
1, α

p
2〉 ( · · · and 〈αp1, α

p
2, . . .〉 ∩Gn(F ) = {1}.
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This implies that in K2(F ) there exists a subgroup generated by cyclo-
tomic elements to the power of some prime, which contains no nontrivial
cyclotomic elements. Clearly, this result is more precise than Browkin’s con-
jecture. In particular, it implies that Browkin’s conjecture is true for any
number field if n 6= 1, 4, 8, 12 and n has a prime square factor, which was
proved in [24].

It seems that the above results explain why Browkin’s conjecture is dif-
ficult. The reason is that there exists an “inner structure” in Gn(F ), i.e.,
a partial mutiplication structure or a subgroup structure.

This paper is organized as follows. The first part, Sections 2–8, focuses
on the case of function fields. In Section 2, we discuss some basic prop-
erties related to cyclotomic polynomials; in Section 3, the definition of a
tame homomorphism and its computation are given; in Section 4, to remove
superfluous generators in a finitely generated subgroup of K2(F (x)), we in-
troduce the concept of ‘essentially distinct elements’; and in Section 5, our
aim is to prove Theorem 1.8. In Section 6, some computations are presented
for n > (l − 3)/2, in particular, for n = 2 or 3; in Section 7, as a preparation
for the next section, two diophantine equations are discussed; and in Sec-
tion 8, a further example is given. Then, in the second part of this paper,
we consider the number field cases. More precisely, in Section 9, Theorem
1.9 and Corollary 1.10 are proved. Finally in Section 10, Theorem 1.14 is
proved, for which Faltings’ theorem on the Mordell conjecture is used.

2. Cyclotomic polynomials. Let l ≥ 5 be a prime number and F
a field of characteristic 6= l. Throughout we assume that the cyclotomic
polynomial Φl(x) is irreducible in F [x]. We denote by ζ any root of Φl(x).

Let Φl(x, y) := yl−1Φl(x/y). The irreducibility of Φl(x) in F [x] implies
the irreducibility of Φl(x, y) in F [x, y].

Theorem 2.1. For any nonzero f(x), g(x) ∈ F [x] we have

degΦl(f(x), g(x)) = (l − 1) ·max(deg f(x),deg g(x)).

Proof. We have

(2.1) Φl(f(x), g(x)) = f(x)l−1 + f(x)l−2g(x) + · · ·+ g(x)l−1.

Let a0x
r and b0x

s be the respective leading terms of f(x) and g(x).

If r 6= s, say r > s, then by (2.1) the leading term of Φl(f(x), g(x)) is
(a0x

r)l−1 = al−10 x(l−1)r.

If r = s, then all summands in (2.1) are of the same degree, and the sum
of their leading terms is

(a0x
r)l−1 + (a0x

r)l−2b0x
r + · · ·+ (b0x

r)l−1 = Φl(a0, b0)x
r(l−1).
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Moreover, Φl(a0, b0) = bl−10 Φl(a0/b0) 6= 0, since the irreducibility of Φl(x) in
F [x] implies that it cannot have a zero in F.

Thus in both cases the leading term of Φl(f(x), g(x)) is of degree (l−1)r
= (l − 1) ·max(deg f(x), deg g(x)).

Theorem 2.2. If f(x), g(x) ∈ F [x] are relatively prime, then the degree
of every factor of Φl(f(x), g(x)) is divisible by l − 1.

Proof. It is sufficient to prove that the degree of every irreducible factor
of Φl(f(x), g(x)) is divisible by l − 1.

In F (ζ)[x] we have

(2.2) Φl(f(x), g(x)) =

l−1∏
j=1

(f(x)− ζjg(x)).

Let α be a root of an irreducible factor h(x) of Φl(f(x), g(x)). Then it
is a root of Φl(f(x), g(x)), hence, by (2.2), f(α) − ζjg(α) = 0 for some
1 ≤ j ≤ l − 1.

Therefore f(α) = 0 if and only if g(α) = 0. But f(x) and g(x) are
coprime, so f(x) and g(x) cannot have a common root. Hence f(α)g(α) 6= 0.

Consequently, ζj = f(α)/g(α) ∈ F (α). Hence F (ζ) ⊆ F (α). Therefore

deg h(x) = (F (α) : F ) = (F (α) : F (ζ))(F (ζ) : F ) = (F (α) : F (ζ))(l − 1),

since α and ζ are roots of the polynomials h(x) and Φl(x), respectively,
which are irreducible.

Corollary 2.3. If max(deg f(x),deg g(x)) = 1, then Φl(f(x), g(x)) is
irreducible.

Proof. By Theorem 2.1, degΦl(f(x), g(x)) = l− 1, and by Theorem 2.2,
every factor of Φl(f(x), g(x)) has degree divisible by l − 1. It follows that
Φl(f(x), g(x)) has only one factor, so it is irreducible.

Theorem 2.4. Let f(x), g(x)∈F [x], (f(x), g(x)) = 1 and deg f(x) ≥ 1.
Let p be the ideal of F [x] generated by an irreducible factor of Φl(f(x), g(x)).
Then for r ∈ Z,

(f(x)/g(x))r ≡ 1 (mod p) if and only if l | r.
Proof. Since p is generated by an irreducible polynomial, it is a prime

ideal of F [x]. From Φl(f(x), g(x)) | f(x)l−g(x)l, it follows that f(x)l ≡ g(x)l

(mod p), and g(x) 6≡ 0 (mod p), because f(x) and g(x) are relatively prime.
Hence (f(x)/g(x))l ≡ 1 (mod p).

If l - r and (f(x)/g(x))r ≡ 1 (mod p), then from the last two congruences
it follows that f(x)/g(x) ≡ 1 (mod p), i.e., f(x) ≡ g(x) (mod p). Hence

Φl(f(x), g(x)) =
l−1∑
j=0

f(x)jg(x)(l−1)−j ≡ lg(x)l−1 (mod p),
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so g(x) ≡ 0 (mod p), which is impossible. This contradiction shows that
l | r.

Conversely, if l | r, then from the congruence (f(x)/g(x))l ≡ 1 (mod p),
it follows that (f(x)/g(x))r ≡ 1 (mod p).

Let W (F ) be the group of roots of unity in F.
We say that matrices A,B ∈ GL(2, F ) are essentially distinct if

B 6= α

(
µ 0

0 1

)(
0 1

1 0

)ε
A

for every α ∈ F ∗, µ ∈W (F ), and ε = 0 or 1.
Thus if A =

(
a b
c d

)
∈ GL(2, F ) then all matrices which are not essentially

distinct from A are

α

(
µa µb

c d

)
and α

(
µc µd

a b

)
, for all α ∈ F ∗, µ ∈W (F ).

Theorem 2.5. If(
a1 b1

c1 d1

)
,

(
a2 b2

c2 d2

)
∈ GL(2, F )

are essentially distinct, then the polynomials

Φl(a1x+ b1, c1x+ d1) and Φl(a2x+ b2, c2x+ d2)

are relatively prime.

Proof. If matrices A1 and A2 are essentially distinct, then so are A1B
and A2B for every B ∈ GL(2, F ). Therefore, taking B = A−11 we can assume

that A1 = I is the identity matrix, and A2 =
(
a2 b2
c2 d2

)
.

Assume that the corresponding polynomials Φl(x) and Φl(ax+ b, cx+d)
are not relatively prime. Since they are irreducible and of the same degree,
they differ by a constant factor:

Φl(x) = αΦl(ax+ b, cx+ d) for some α ∈ F ∗.
Hence the corresponding linear factors differ by a constant factor, in partic-
ular

x− ζ = α1

(
(ax+ b)− ζr(cx+ d)

)
for some α1 ∈ F (ζ)∗ and 1 ≤ r ≤ l− 1.

Comparing coefficients we get

1 = α1(a− ζrc), −ζ = α1(b− ζrd).

Eliminating α1 we obtain

−ζ(a− ζrc) = b− ζrd.
If r 6= 1, l − 1, then 1, ζ, ζr, ζr+1 are linearly independent over F, hence

a = b = c = d = 0, which is impossible.
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If r = 1, then −ζa + ζ2c = b − ζd implies that b = c = 0 and a = d.
Consequently, A2 = a

(
1 0
0 1

)
is not essentially distinct from A1 = I.

If r = l − 1, then −ζa + c = b − ζ l−1d implies that a = d = 0, b = c.
Consequently, A2 = b

(
0 1
1 0

)
is not essentially distinct from A1 = I either.

In every case we get a contradiction. Therefore the polynomials Φl(x)
and Φl(ax+ b, cx+ d) are relatively prime.

3. Tame homomorphisms. For a nonzero prime ideal p of F [x], the
tame homomorphism

τp : K2(F (x))→ (F [x]/p)∗

is defined by

(3.1) τp({u, v}) ≡ (−1)vp(u)vp(v)
uvp(v)

vvp(u)
(mod p),

where u, v ∈ F (x)∗.

Lemma 3.1.Let f(x), g(x)∈F [x] satisfy (f(x), g(x))=1 and deg f(x)g(x)
> 0. For a nonzero prime ideal p of F [x] denote rp := vp(Φl(f(x), g(x))).

(i) We have

τp(cl(f/g)) ≡
{

(f/g)rp 6≡ 1 (mod p) if l - rp,

1 (mod p) if l | rp.

(ii) In particular, if max(deg f(x), deg g(x)) = 1, then

τp(cl(f/g)) ≡
{
f/g 6≡ 1 (mod p) if p = (Φl(f(x), g(x))),

1 (mod p) otherwise.

Proof. (i) From (f(x), g(x)) = 1 it follows that (f(x)g(x), Φl(f(x), g(x)))
= 1. Therefore for every prime ideal p of F [x] at most one of the numbers
vp(f(x)), vp(g(x)), vp(Φl(f(x), g(x)) does not vanish.

Clearly,

cl

(
f(x)

g(x)

)
=

{
f(x)

g(x)
, Φl

(
f(x)

g(x)

)}
(3.2)

=

{
f(x)

g(x)
, Φl(f(x), g(x))

}
{f(x), g(x)}−(l−1),

because {g(x), g(x)2} = 1 and l − 1 is even.
If vp(f(x)) > 0 and rp = 0, then Φl(f(x), g(x)) ≡ g(x)l−1 (mod p).

Hence, by (3.1) and (3.2),

τp(cl(f/g)) ≡ Φl(f(x), g(x))−vp(f(x))g(x)(l−1)vp(f(x)) ≡ 1 (mod p).

If vp(g(x)) > 0 and rp = 0, then we prove similarly that τp(cl(f(x)/g(x)))
≡ 1 (mod p).
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If vp(f(x))=vp(g(x))=0 and rp = 0, then (3.2) implies τp(cl(f(x)/g(x)))
≡ 1 (mod p).

If rp > 0, then, by (3.1) and (3.2), we obtain τp(cl(f(x)/g(x))) ≡
(f(x)/g(x))rp (mod p).

Moreover, by Theorem 2.4, (f(x)/g(x))rp 6≡ 1 (mod p) if and only if
l - rp.

(ii) By Corollary 2.3, the polynomial Φl(f(x), g(x)) is irreducible. There-
fore rp = vp(Φl(f(x), g(x))) = 1. It is sufficient to apply the first part of the
theorem with rp = 1.

4. Essentially distinct elements. Recall that

PGL(2, F ) := GL(2, F )/Z,

where Z is the center of GL(2, F ), that is, Z = F ∗ ·
(
1 0
0 1

)
. Similarly,

PSL(2, F ) := SL(2, F )/Z ⊂ PGL(2, F ).

In the following, we will use
(
a b
c d

)
to denote the image of

(
a b
c d

)
in

PGL(2, F ). Clearly, the element cl
(
ax+b
cx+d

)
depends only on the coset

(
a b
c d

)
.

We will focus on the following subsets of Gl(F (x)):

GGl(F (x)) :=

{
cl

(
ax+ b

cx+ d

)
∈ Gl(F (x))

∣∣∣∣ (a b

c d

)
∈ PGL(2, F )

}
,

SGl(F (x)) :=

{
cl

(
ax+ b

cx+ d

)
∈ GGl(F (x))

∣∣∣∣ (a b

c d

)
∈ SL(2, F )

}
,

TGl(F (x)) := {cl(x+ b) ∈ GGl(F (x)) | b ∈ F}.

Definition 4.1. Let

α = cl

(
a1x+ b1
c1x+ d1

)
, β = cl

(
a2x+ b2
c2x+ d2

)
∈ GGl(F (x)).

We say that α, β are essentially distinct if the matrices
(
a1 b1
c1 d1

)
and

(
a2 b2
c2 d2

)
are essentially distinct.

Lemma 4.2. Assume that Φl(x) is irreducible in F [x]. Let

α = cl

(
a1x+ b1
c1x+ d1

)
, β = cl

(
a2x+ b2
c2x+ d2

)
∈ GGl(F (x)).

If α = β, then

a1x+ b1
c1x+ d1

=
a2x+ b2
c2x+ d2

.
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Proof. Since Φl(x) is irreducible in F [x], so are Φl(aix + bi, cix + di))
(i = 1, 2) by Corollary 2.3. From Lemma 3.1 we have

τp(α) ≡
{ a1x+b1

c1x+d1
6≡ 1 (mod p) if p = (Φl(a1x+ b1, c1x+ d1)),

1 (mod p) otherwise;

τp(β) ≡
{ a2x+b2

c2x+d2
6≡ 1 (mod p) if p = (Φl(a2x+ b2, c2x+ d2)),

1 (mod p) otherwise.

If α = β, then τp(α) = τp(β), so we must have (Φl(a1x+ b1, c1x+ d1)) =
(Φl(a2x+ b2, c2x+d2)) as primes. Hence for p = (Φl(a1x+ b1, c1x+d1)) we
have

a1x+ b1
c1x+ d1

≡ a2x+ b2
c2x+ d2

(mod p).

So

(a1x+ b1)(c2x+ d2) = (a2x+ b2)(c1x+ d1).

Lemma 4.3. Assume that Φl(x) is irreducible in F [x]. Let

α = cl

(
a1x+ b1
c1x+ d1

)
, β = cl

(
a2x+ b2
c2x+ d2

)
∈ GGl(F (x)).

Then

α = β ⇔
(
a1 b1

c1 d1

)
=

(
a2 b2

c2 d2

)
∈ PGL(2, F ).

In particular, if α, β ∈ GGl(F (x)) are essentially distinct, then α 6= β.

Proof. ⇐: Clear.

⇒: If α = β, then from Lemma 4.2 we have

a1x+ b1
c1x+ d1

=
a2x+ b2
c2x+ d2

.

So

a1c2 = a2c1, b1d2 = b2d1, a1d2 + b1c2 = a2d1 + b2c1.

Assume that a1c2 = a2c1 = 0. If a1 = 0, then b1c1 6= 0 since a1d1 − b1c1
6= 0, so a2 = 0, therefore b2c2 6= 0 since a2d2 − b2c2 6= 0. So, we can let
d1/d2 = b1/b2 = c1/c2 = u 6= 0. Then(

0 b1

c1 d1

)
= u

(
0 b2

c2 d2

)
, so

(
0 b1

c1 d1

)
=

(
0 b2

c2 d2

)
.

If c2 = 0, the result is the same. Therefore a1c2 = a2c1 6= 0. Similarly,
b1d2 = b2d1 6= 0.

Let a1/a2 = c1/c2 = u 6= 0 and b1/b2 = d1/d2 = v 6= 0. Then from
a1d2 + b1c2 = a2d1 + b2c1, we have (a2d2 − b2c2)(u− v) = 0, which leads to
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u = v since a2d2 − b2c2 6= 0. Hence(
a1 b1

c1 d1

)
= u

(
a2 b2

c2 d2

)
, so

(
a1 b1

c1 d1

)
=

(
a2 b2

c2 d2

)
.

The last statement of the lemma is obvious.

Corollary 4.4. Let α = cl(x + b1) and β = cl(x + b2). Then the fol-
lowing statements are equivalent:

(i) α and β are essentially distinct.
(ii) α 6= β.

(iii) b1 6= b2.

Proof. (i)⇒(ii). This follows from Lemma 4.3.

(ii)⇒(iii). Clear.

(iii)⇒(i). It is easy to check directly that
(
1 b1
0 1

)
is essentially distinct

from
(
1 b2
0 1

)
if and only if b1 6= b2.

In the following, we will use Gl(n;F ),Sl(n;F ) and Tl(n;F ) to denote the
subgroups of K2(F (x)) generated by (any) n essentially distinct nontrivial
elements in GGl(F (x)), SGl(F (x)) and TGl(F (x)), respectively.

From Corollary 4.4, we have

Lemma 4.5. There exist mutually different b1, . . . , bn ∈ F such that

Tl(n;F ) = 〈cl(x+ b1), . . . , cl(x+ bn)〉.

In general, for a field E, a subgroup of K2(E) is called cyclotomic if it is
contained in Gn(E). For a subgroup H of K2(F (x)), we write c(H) (resp.
cs(H)) for the number of cyclotomic elements (resp. cyclotomic subgroups)
of H.

5. The rational function field case. Assume that l ≥ 5 is a prime.
Let

(5.1) β =

n∏
i=1

cl

(
aix+ bi
cix+ di

)li
,

where 1 ≤ li ≤ l − 1 and n ≥ 1. If n ≥ 2, we assume that(
ai bi

ci di

)
∈ GL(2, F ), 1 ≤ i ≤ n,

are essentially distinct.

It is well known that

Gal(F (x)/F ) ∼= PGL(2, F )
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and PGL(2, F ) acts as automorphisms on K2(F (x)) through

σ · {f(x), g(x)} := {f(x), g(x)}σ = {f(σ(x)), g(σ(x))}

=

{
f

(
ax+ b

cx+ d

)
, g

(
ax+ b

cx+ d

)}
,

where σ =
(
a b
c d

)
∈ PGL(2, F ) with σ(x) = ax+b

cx+d .

Applying an automorphism of the field F (x), we may assume that the
first factor on the right hand side of (5.1) is cl(x)l1 .

The polynomials Φl(aix+bi, cix+di) are irreducible and by Theorem 2.5,
pairwise relatively prime, hence the ideals pi := (Φl(aix + bi, cix + di)) in
F [x] for i = 1, . . . , n are prime and distinct.

We will prove some necessary conditions for β to be cyclotomic. First we
investigate the factorization of Φl(f(x), g(x)).

Theorem 5.1. Assume that the element β given by (5.1) is cyclotomic:

(5.2) β = cl(f(x)/g(x)),

where f(x), g(x) ∈ F [x], (f(x), g(x)) = 1, deg(f(x)g(x)) ≥ 1. Then

(i)

(5.3) Φl(f(x), g(x)) = αΨ l
n∏
i=1

Φl(aix+ bi, cix+ di)
ri ,

where α ∈ F ∗, Ψ ∈ F [x], and ri := vpi(Φl(f(x), g(x))) satisfies l - ri.
We have l − 1 | degΨ.

(ii) Moreover,

(5.4)

(
f(x)

g(x)

)ri
≡
(
aix+ bi
cix+ di

)li
6≡ 1 (mod pi) for i = 1, . . . , n.

Proof. By Lemma 3.1(i), for every prime ideal p of F [x] we have

(5.5) τp(cl(f(x)/g(x))) ≡
{

(f(x)/g(x))rp 6≡ 1 (mod p) if l - rp,
1 (mod p) if l | rp,

and by Lemma 3.1(ii),

(5.6) τp

(
cl

(
aix+ bi
cix+ di

))
≡
{ aix+bi

cix+di
6≡ 1 (mod p) if p = pi,

1 (mod p) otherwise.

From (5.1) and (5.2) we get

(5.7) cl

(
f(x)

g(x)

)
=

n∏
i=1

cl

(
aix+ bi
cix+ di

)li
,

where 1 ≤ li ≤ l − 1.
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Applying the tame homomorphism τp, where p is any prime ideal of F [x],
to both sides of (5.7), in view of (5.5) and (5.6) we obtain

τp

(
cl

(
f(x)

g(x)

))
6≡ 1 (mod p) ⇔ l - vp(Φl(f(x), g(x)))(5.8)

⇔ p ∈ {p1, . . . , pn}.
Hence in the representation of Φl(f(x), g(x)) as the product of powers of
relatively prime polynomials, the irreducible factors Φl(aix + bi, cix + di)
appear with exponents ri not divisible by l, and other factors appear with
exponents divisible by l. This proves (5.3).

The divisibility l−1 | degΨ follows from Theorem 2.2, since Ψ is a factor
of Φl(f(x), g(x)). Thus we have proved (i).

By (5.8), τpi(cl(f(x)/g(x))) ≡ (f(x)/g(x))ri 6≡ 1 (mod pi) and, by (5.6),

τpi

(
cl

(
ajx+ bj
cjx+ dj

))
≡
{ aix+bi

cix+di
6≡ 1 (mod pi) if j = i,

1 (mod pi) if j 6= i.

Consequently, (5.7) implies that(
f(x)

g(x)

)ri
≡
(
aix+ bi
cix+ di

)li
6≡ 1 (mod pi),

which proves (ii).

Denote
θ := max(deg f(x), deg g(x)).

Theorem 5.2. Let n ≥ 2. Under the assumption of Theorem 5.1 we
have

l ≤ 2θ + 1.

Proof. By Theorem 2.4, we have(
f(x)

g(x)

)l
≡
(
aix+ bi
cix+ di

)l
≡ 1 (mod pi).

Therefore raising both sides of (5.4) to the power r′i such that rir
′
i ≡ 1

(mod l), we get
f(x)

g(x)
≡
(
aix+ bi
cix+ di

)mi

(mod pi),

where 1 ≤ mi ≤ l − 1, mi ≡ lir′i (mod l). Hence

f(x)

g(x)
≡
(
cix+ di
aix+ bi

)l−mi

(mod pi).

From pi = (Φl(aix+ bi, cix+ di)) we deduce that

(5.9)
Φl(aix+ bi, cix+ di) | f(x)(cix+ di)

mi − g(x)(aix+ bi)
mi ,

Φl(aix+ bi, cix+ di) | f(x)(aix+ bi)
l−mi − g(x)(cix+ di)

l−mi .
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Assume that for some i0 both polynomials on the r.h.s. of (5.9) are nonzero.
Since degΦl(ai0x+ bi0 , ci0x+ di0) = l− 1, the divisibilities (5.9) imply that

l − 1 ≤ θ +mi0 , l − 1 ≤ θ + l −mi0 .

Adding these inequalities we get 2(l − 1) ≤ 2θ + l, hence l ≤ 2θ + 2, and
l ≤ 2θ + 1, since l is an odd prime.

To finish the proof we have to exclude the possibility that for every
i = 1, . . . , n at least one of the polynomials on the r.h.s. of (5.9) vanishes.
Since n ≥ 2, there is j 6= i, 1 ≤ j ≤ n. Thus it is sufficient to prove that at
most one of the polynomials

F1 = f(x)(cix+ di)
mi − g(x)(aix+ bi)

mi ,

F2 = f(x)(aix+ bi)
l−mi − g(x)(cix+ di)

l−mi ,

F3 = f(x)(cjx+ dj)
mj − g(x)(ajx+ bj)

mj ,

F4 = f(x)(ajx+ bj)
l−mj − g(x)(cjx+ dj)

l−mj

vanishes. Assume that at least two of them vanish. We consider several cases.

1) F1 = F2 = 0. (For F3 = F4 = 0 we proceed similarly, replacing i by j.)
From f(x)(cix+di)

mi = g(x)(aix+bi)
mi and (f(x), g(x)) = (aix+bi, cix+di)

= 1 it follows that

(5.10) f(x) = α(aix+ bi)
mi , g(x) = α(cix+ di)

mi for some α ∈ F ∗.

Analogously f(x)(aix+ bi)
l−mi = g(x)(cix+ di)

l−mi implies that

(5.11) f(x) = α′(cix+di)
l−mi , g(x) = α′(aix+ bi)

l−mi for some α′ ∈ F ∗.

From (5.10) we get max(deg f(x),deg g(x)) = mi, and (5.11) implies that
max(deg f(x), deg g(x)) = l − mi. Hence mi = l − mi, so l = 2mi; this is
impossible, since l is an odd prime.

2) F1 = F3 = 0. (For F2 = F4 = 0 we proceed analogously.) As above we
get

f(x) = α(aix+ bi)
mi , g(x) = α(cix+ di)

mi ,

f(x) = α′(ajx+ bj)
mj , g(x) = α′(cjx+ dj)

mj ,

where α, α′ ∈ F ∗. Hence max(deg f(x), deg g(x)) = mi = mj =: m. There-
fore

f(x)

g(x)
=

(
aix+ bi
cix+ di

)m
=

(
ajx+ bj
cjx+ dj

)m
,

hence
aix+ bi
cix+ di

= η · ajx+ bj
cjx+ dj

,

where ηm = 1, η ∈ F, thus η ∈W (F ).
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It follows that (
ai bi

ci di

)
= η

(
ηaj ηbj

cj dj

)
,

where η ∈ F ∗. This means that the matrices
(
ai bi
ci di

)
and

( aj bj
cj dj

)
are not

essentially distinct. We get a contradiction, since i 6= j.

3) F1 = F4 = 0. (The case F2 = F4 = 0 is quite analogous.) As above we
get

f(x) = α(aix+ bi)
mi , g(x) = α(cix+ di)

mi ,

f(x) = α′(cjx+ dj)
l−mj , g(x) = α′(ajx+ bj)

l−mj ,

where α, α′ ∈ F ∗. Hence max(deg f(x),deg g(x)) = mi = l − mj =: m.
Therefore

f(x)

g(x)
=

(
aix+ bi
cix+ di

)m
=

(
cjx+ dj
ajx+ bj

)m
,

hence
aix+ bi
cix+ di

= η · cjx+ dj
ajx+ bj

,

where ηm = 1, η ∈ F, thus η ∈W (F ).
It follows that(

ai bi

ci di

)
= λ

(
ηcj ηdj

aj bj

)
= λ

(
η 0

0 1

)(
0 1

1 0

)(
aj bj

cj dj

)
,

where λ ∈ F ∗. This means that
(
ai bi
ci di

)
and

( aj bj
cj dj

)
are not essentially dis-

tinct. We get a contradiction, since i 6= j.

Lemma 5.3. Let ch(F ) = p > 0 and f, g ∈ F [x]. Then:

(i) If f /∈ F [xp] and f r ∈ F [xp], then p | r.
(ii) If (f, g) = 1 and fg ∈ F [xp], then f, g ∈ F [xp].

(iii) F (xp) ∩ F [x] = F [xp].

Proof. (i) By assumption, (f r)′ = 0 and f ′ 6= 0. On the other hand,
(f r)′ = rf ′f r−1. Hence r = 0 in F, so p | r.

(ii) We have (fg)′ = 0, hence fg′ + f ′g = 0. From (f, g) = 1 it follows
that f | f ′ and g | g′; then f ′ = g′ = 0, that is, f, g ∈ F [xp].

(iii) This is obvious.

Lemma 5.4. Assume that ch(F ) = p > 0. If the polynomials f, g in (5.3)
belong to F [xp], then Ψ ∈ F [xp] and p | ri for every i. Therefore (5.3) implies
an analogous formula with xp replaced by x.

Proof. Let f(x) = f0(x
p) and g(x) = g0(x

p), where f0, g0 ∈ F [x]. Then

Φl(f(x), g(x)) = Φl(f0(x
p), g0(x

p)) ∈ F [xp].
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By Lemma 5.3(ii) and (5.3), the polynomials Ψ(x) and Φl(aix+bi, cix+di)
ri

belong to F [xp]. Thus Ψ(x) = Ψ0(x
p), where Ψ0 ∈ F [x].

Since Φl(aix+bi, cix+di) /∈ F [xp], Lemma 5.3(i) yields p | ri. So ri = pri0.
We have Φl(aix+ bi, cix+di)

p = Φl((aix+ bi)
p, (cix+di)

p), because Φl(x, y)
has coefficients in Z/p.

Obviously, (aix+ bi)
p = ai0x

p + bi0, and (cix+ di)
p = ci0x

p + di0, where
ai0, bi0, ci0, di0 ∈ F. Therefore Φl(aix + bi, cix + di)

p = Φl((aix + bi)
p =

Φl(ai0x
p + bi0, ci0x

p + di0). Thus (5.3) can be written in the form

Φl(f0(x
p), g0(x

p)) = αΨ0(x
p)l

n∏
i=1

Φl(ai0x
p + bi0, ci0x

p + di0)
ri0 .

Replacing xp by x we get the formula analogous to (5.3).

Theorem 5.5. Assume that ch(F ) = p and f(x), g(x) ∈ F [xp]. Then
(5.3) can be written in the form

Φl(f̃(xp
r
), g̃(xp

r
)) = α̃Ψ̃(xp

r
)l

n∏
i=1

Φl(ãix
pr + b̃i, c̃ix

pr + d̃i)
r̃i ,

where f(x) = f̃(xp
r
), g(x) = g̃(xp

r
) and Ψ(x) = Ψ̃(xp

r
) with f̃ ′(x) 6= 0 or

g̃′(x) 6= 0, and r̃i = ri/p
r ∈ N, α̃, ãi, b̃i, c̃i, d̃i ∈ F.

Proof. If f(x), g(x) ∈ F [xp
r
], but at least one of them does not belong

to F [xp
r+1

], then Lemma 5.4 applied r times yields a formula analogous to

(5.3) with the r.h.s. of the form Φl(f̃(x), g̃(x)), where f(x) = f̃(xp
r
) and

g(x) = g̃(xp
r
). Moreover, f̃(x) or g̃(x) does not belong to F [xp], so f̃ ′(x) 6= 0

or g̃′(x) 6= 0.

Let f̃(x), g̃(x), Ψ̃(x) be as in Theorem 5.5, and let θ̃ := max(deg f̃(x),

deg g̃(x)) and λ̃ := deg Ψ̃(x). Then θ = pr · θ̃ and λ = pr · λ̃. Note that
ri = r̃i · pr.

Theorem 5.6. Let n ≥ 1. In the above notation, we have:

(i) If f ′(x) 6= 0 or g′(x) 6= 0, then

n ≤ θ ≤ (l − 1)2n− 2l

(l − 1)2 − 2l
.

(ii) If f ′(x) = g′(x) = 0, then

n ≤ θ̃ ≤ (l − 1)2n− 2l

(l − 1)2 − 2l
.

(iii) If n ≤ 1
2(l2 − 4l + 1), then degΨ(x) = 0, i.e., Ψ(x) ∈ F ∗.
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Proof. (i) Assume that f ′(x) 6= 0 or g′(x) 6= 0. Denote λ := degΨ(x)
and θ := deg f(x) ≥ deg g(x). Then (5.3) implies

(5.12) (l − 1)θ = lλ+ (l − 1)
n∑
i=1

ri.

Multiplying (5.3) by f(x)− g(x) we get

(5.13) f(x)l − g(x)l = α(f(x)− g(x))Ψ(x)l
n∏
i=1

Φl(aix+ bi, cix+ di)
ri .

By the well known property of differentiation, we have:

If a, b ∈ F [x] satisfy ar | b, r ≥ 1, then ar−1 | b′.

Consequently, setting Θ(x) := Ψ(x)l−1
∏n
i=1 Φl(aix + bi, cix + di)

ri−1, from
(5.13) we get

(5.14) Θ(x) | (f(x)l − g(x)l)′ = l(f ′(x)f(x)l−1 − g′(x)g(x)l−1).

By (5.13),

(5.15) Θ(x) | f(x)l − g(x)l.

Hence (Θ(x), f(x)) = (Θ(x), g(x)) = 1, because (f(x), g(x)) = 1.

From

g′(x)(f(x)l − g(x)l)− g(x) · (f ′(x)f(x)l−1 − g′(x)g(x)l−1)

= f(x)l−1(f(x)g′(x)− g(x)f ′(x))

and (Θ(x), f(x)) = 1, by (5.14) and (5.15), we conclude that

(5.16) Θ(x) | f(x)g′(x)− g(x)f ′(x).

Since f ′(x) 6= 0 or g′(x) 6= 0, we get f(x)g′(x)−g(x)f ′(x) 6= 0. Therefore
from (5.14) and (5.16) it follows that

degΘ(x) = (l − 1)λ+ (l − 1)

n∑
i=1

(ri − 1)(5.17)

≤ deg(f(x)g′(x)− g(x)f ′(x)) ≤ 2θ − 2.

Indeed, it is an easy exercise to prove that for any f(x), g(x) ∈ F [x] sat-
isfying θ = deg f(x) ≥ deg g(x) and f(x)g′(x) − g(x)f ′(x) 6= 0 we have
deg(f(x)g′(x) − g(x)f ′(x)) ≤ 2θ − 2. It is sufficient to consider the leading
terms of f(x) and g(x).

Thus we have proved the two formulas (5.12) and (5.17) relating l, λ
and θ. From (5.12) it follows that l − 1 |λ, so λ = (l − 1)λ1, where λ1 ≥ 0.
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Dividing (5.12) and (5.17) by l − 1 we get

θ = lλ1 +

n∑
i=1

ri,(5.18)

(l − 1)λ1 +
n∑
i=1

ri − n ≤
2

l − 1
(θ − 1).(5.19)

Since ri ≥ 1 and 1 ≤ i ≤ n, we get
∑n

i=1 ri ≥ n. Consequently, (5.18) and
(5.19) imply

θ ≥ lλ1 + n,(5.20)

(l − 1)λ1 ≤
2

l − 1
(θ − 1).(5.21)

From (5.20) we get θ ≥ n, which gives the first inequality in (i).
By (5.18), (5.19) and (5.21), we have

θ =
n∑
i=1

ri + (l − 1)λ1 + λ1

≤ n+
2

l − 1
(θ − 1) +

2

(l − 1)2
(θ − 1) = n+

2l

(l − 1)2
(θ − 1).

Hence

θ ≤ (l − 1)2n− 2l

(l − 1)2 − 2l
.

This gives the second inequality in (i).
(ii) Assume that f ′(x) = 0 and g′(x) = 0. Clearly we must have ch(F ) =

p > 0 and f(x), g(x) ∈ F [xp]. By Theorem 5.5,

Φl(f̃(X), g̃(X)) = α̃Ψ̃ l
n∏
i=1

Φl(ãiX + b̃i, c̃iX + d̃i)
r̃i ,

where f(x) = f̃(X), g(x) = g̃(X), X = xp
r

with f̃ ′(X) 6= 0 or g̃′(X) 6= 0.

Let λ̃ = (l − 1)λ̃1. Then similarly we have

θ̃ = lλ̃1 +
n∑
i=1

r̃i,(5.22)

(l − 1)λ̃1 +
n∑
i=1

r̃i − n ≤
2

l − 1
(θ̃ − 1).(5.23)

Since
∑n

i=1 r̃i ≥ n, (5.22) and (5.23) imply

θ̃ ≥ lλ̃1 + n,(5.24)

(l − 1)λ̃1 ≤
2

l − 1
(θ̃ − 1).(5.25)

From (5.24) we get θ̃ ≥ n, which gives the first inequality in (ii).
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By (5.22), (5.23) and (5.25), we have

θ̃ ≤ (l − 1)2n− 2l

(l − 1)2 − 2l
.

This gives the second inequality in (ii).

(iii) If f ′(x) 6= 0 or g′(x) 6= 0, from (5.21) and (i) we obtain

λ1 ≤
2

(l − 1)2
(θ − 1) ≤ 2(n− 1)

l2 − 4l + 1
.

It follows that λ1 < 1 if n − 1 < 1
2(l2 − 4l + 1). Since 1

2(l2 − 4l + 1) is an

integer, the last inequality is equivalent to n ≤ 1
2(l2 − 4l + 1). This proves

λ1 = 0, so degΨ(x) = λ = (l − 1)λ1 = 0.

If f ′(x) = g′(x) = 0, from (5.25) and (ii) we obtain

λ̃1 ≤
2

(l − 1)2
(θ̃ − 1) ≤ 2(n− 1)

l2 − 4l + 1
.

Similarly n ≤ 1
2(l2 − 4l + 1) implies that λ̃1 = 0, that is, degΨ(x) =

(l − 1)λ̃1p
r = 0.

Remarks 5.7. (i) The argument above is analogous to the proof of the
abc-conjecture for polynomials.

Theorem abc (W. W. Stothers). Let a, b, c ∈ F [x], where ch(F ) = 0 and
not all polynomials a, b, c are constant. For a nonzero polynomial h ∈ F [x]
denote by rad(h) the number of distinct roots of h in the algebraic closure
of F. Assume that a, b, c are relatively prime and a+ b = c. Then

max(deg a,deg b,deg c) ≤ rad(abc)− 1.

We can apply Theorem abc as follows. In the notation of (5.13) set
a := f l, b := −gl, and c := the r.h.s. of (5.13). Then max(deg a,deg b,deg c)
= deg(f l) = lθ, rad(a) ≤ deg f = θ, rad(b) ≤ deg g ≤ θ, and

rad(c) ≤ deg(f − g) + degΨ +
n∑
i=1

degΦl(fi, gi) ≤ θ + λ+ n(l − 1).

Consequently, Theorem abc gives

lθ ≤ 3θ + (l − 1)λ1 + (l − 1)n− 1.

Considering all terms of this inequality modulo 2, we see that the last term
−1 can be replaced by −2.

Hence

θ

(
1− 2

l − 1

)
≤ λ1 + n− 2

l − 1
.
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Now, applying the estimate λ1 ≤ 2
(l−1)2 (θ− 1) following from (5.21), we get

θ ≤ (l − 1)2n− 2l

(l − 1)2 − 2l
.

Thus we obtain the second inequality in Theorem 5.6(i).

(ii) When n = 1, (5.3) is trivial. In fact, we can prove the following
statement:

Assume that f ′ 6= 0 or g′ 6= 0. For n = 1 formula (5.3) takes the form
Φl(x) = Φl(x).

Proof. By Theorem 5.6(i), n = 1 implies θ = 1, that is, deg f = 1 ≥
deg g. Hence f(x) = ax + b, g(x) = cx + d, where a = 1, since we always
assume that f is monic.

Therefore (5.3) takes the form

(5.26) Φl(f, g) = αΦl(x)r1 for some α ∈ F ∗,

since degΨ = 0, by Theorem 5.6(iii).

Comparing the degrees of both sides of (5.26) we get r1 = 1. From (5.26)
it follows that the polynomials Φl(f, g) = Φl(ax+ b, cx+ d) and αΦl(x) are
not relatively prime.

Then, by Theorem 2.5, the corresponding matrices(
1 b

c d

)
and

(
1 0

0 1

)
are not essentially distinct. Therefore a = 1 implies that b = c = 0 and
d = µ is a root of unity. Hence

Φl(f, g) = Φl(x, µ) = αΦl(x).

Comparing the leading terms we get α = 1, so the coefficients of xl−2 in
both polynomials are 1 and µ. Hence µ = 1, so f(x) = x, g(x) = 1, and
(5.26) takes the form Φl(x) = Φl(x).

Theorem 5.8. In the above notation, assume that 2 ≤ n ≤ 1
2(l2−4l+1).

Then

l ≤ 2n+ 1.

Proof. Assume that f ′(x) 6= 0 or g′(x) 6= 0. Then if θ = n, Theorem 5.2
shows that l ≤ 2θ + 1 = 2n+ 1.

If θ > n, from Theorem 5.6(iii) we get λ1 = 0, and then (5.18) and (5.19)
give 1 ≤ θ − n ≤ 2

l−1(θ − 1). Hence

l ≤ 1 + 2 · θ − 1

θ − n
= 3 + 2 · n− 1

θ − n
≤ 3 + 2(n− 1) = 2n+ 1.
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Assume that f ′(x) = g′(x) = 0. Then f̃ ′(x) 6= 0 or g̃′(x) 6= 0. If θ̃ = n,

Theorem 5.2 yields l ≤ 2θ̃ + 1 = 2n+ 1.

If θ̃ > n, from Theorem 5.6(iii) we get λ̃1 = 0; then (5.22) and (5.23)

give 1 ≤ θ̃ − n ≤ 2
l−1(θ̃ − 1). So

l − 1 ≤ 2(θ̃ − 1)

θ̃ − n
≤ 2n.

Hence l ≤ 2n+ 1.

Corollary 5.9. Assume that l ≥ 5 is a prime number and F is a field
such that Φl(x) is irreducible in F [x]. Let n be an integer satisfying

2 ≤ n ≤ (l − 3)/2,

and let γ1, . . . , γn ∈ GGl(F (x)) be essentially distinct. Then

n∏
i=1

γlii /∈ Gl(F (x)),

where 1 ≤ li ≤ l − 1, i = 1, . . . , n.

Proof. This follows from Theorems 5.5 and 5.8.

Corollary 5.10. Assume that l ≥ 5 is a prime number and F is a
field such that Φl(x) is irreducible in F [x]. Let n be an integer satisfying
2 ≤ n ≤ (l − 3)/2. Then every cyclotomic subgroup of Gl(n;F ) is cyclic of
order l.

The following result gives relations between n and θ (or θ̃).

Theorem 5.11. Assume that n ≤ 1
2(l2 − 4l + 1). Then:

(i) If f ′(x) 6= 0 or g′(x) 6= 0, then θ ≤ 2n− 1.

(ii) If f ′(x) = g′(x) = 0, then θ̃ ≤ 2n− 1.

Proof. If θ > 2n− 1, then from Theorem 5.6(iii), (5.18) and (5.19),

l ≤ 3 + 2 · n− 1

θ − n
< 3 + 2 · n− 1

(2n− 1)− n
= 5,

which contradicts the assumption that l ≥ 5. Hence θ ≤ 2n − 1. The proof
of θ̃ ≤ 2n− 1 is similar.

Remarks 5.12. (a) More precisely, in the case f ′(x) 6= 0 or g′(x) 6= 0,
from the proof of Theorem 5.11 it follows that

(i) if θ = n, then l ≤ 2n+ 1;
(ii) if n < θ ≤ 2n− 1, then l ≤ 3 + 2 · n−1θ−n .
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In particular,

if θ = n+ 1, then l ≤ 2n+ 1;

if θ = n+ 2, then l ≤ n+ 2;

if θ = 2n− 1, then l ≤ 5.

(b) From Theorem 5.2, we get a relation between l and θ, namely l ≤
2θ + 1. Furthermore, if ch(F ) = 0 and θ > n, then from (5.18) and (5.19)
we have l ≤ 2θ − 1. As suggested to the first author by Browkin, the last
inequality is actually a necessary condition for Φl(f, g) to have a multiple
root. In fact, the following statement is true:

Theorem (Browkin). Assume that l ≥ 5 is a prime and Φl(x) is ir-
reducible in F [x]. If ch(F ) = 0 and Φl(f, g) has a multiple root, where
gcd(f, g) = 1, then l ≤ 2θ − 1.

In particular, in the cases l = 5, θ = 2 and l = 7, θ = 2 or 3, the
polynomials Φ5(f, g) and Φ7(f, g) have no multiple root, respectively.

Proof. Assume that α is a multiple root of Φl(f, g); then it must be a
multiple root of f(x)− ζg(x), where ζ = ζl. Then

f(α)− ζg(α) = 0, f ′(α)− ζg′(α) = 0,

so
f(α)g′(α)− f ′(α)g(α) = 0.

It follows that α is a root of t(x) := f(x)g′(x)− f ′(x)g(x). From (f, g) = 1
and ch(F ) = 0 it follows that t(x) is a nonzero polynomial of degree at most
2θ − 1.

From f(α)−ζg(α) = 0 we conclude that F ⊆ F (ζ) ⊆ F (α). As [F (α) : F ]
is the degree of the minimal polynomial of α over F, and [F (α) : F ] is
divisible by [F (ζ) : F ] = l − 1, we conclude that l − 1 ≤ 2θ − 1, i.e., l ≤ 2θ,
so l ≤ 2θ − 1 since l is odd, as claimed.

Now, we turn to the case of n = 1. Let l, p be different prime numbers.
Define

Z(l, p) := {t | 2 ≤ t ≤ l − 2, t ≡ p2m or −p2m (mod l) for some m ∈ N}.
Lemma 5.13. Assume that l ≥ 5 is a prime number and F is a field such

that Φl(x) is irreducible in F [x]. Let γ ∈ GGl(F (x)).

(i) If ch(F ) = 0, then none of the elements γt, 2 ≤ t ≤ l − 2, is cyclo-
tomic. So, the only cyclotomic elements contained in 〈γ〉 are γ, γ−1.
Hence, 〈γ〉 is not a cyclotomic subgroup.

(ii) If ch(F ) = p 6= 0, then

1 6= γt ∈ Gl(F (x)) ⇔ t ∈ {1, l − 1} ∪ Z(l, p).

So 〈γ〉 contains exactly 2 + |Z(l, p)| nontrivial cyclotomic elements.



24 K. J. Xu and C. C. Sun

Proof. Clearly, it suffices to consider γ = cl(x). Fix an integer t with
2 ≤ t ≤ l − 2. If γt is cyclotomic, then there exist nontrivial ft, gt ∈ F [x]
such that

γt = cl(ft/gt).

By Theorem 5.1(i),

(5.27) Φl(ft, gt) = αtΨ
l
tΦl(x)rt .

Let θt := max(deg ft, deg gt) and λt := degΨt.

(i) Assume that ch(F ) = 0. Then f ′t(x) 6= 0 or g′t(x) 6= 0. From Theorem
5.6(i) we have θt = 1, hence λt = 0 and rt = 1.

Now, let

ft(x) = atx+ bt, gt(x) = ctx+ dt.

Then (5.27) becomes

Φl(atx+ bt, ctx+ dt) = αtΦl(x).

Let x = ζ. Then there exists an i satisfying 1 ≤ i ≤ l − 1 such that

atζ + bt
ctζ + dt

= ζi, so ctζ
i+1 + dtζ

i − atζ − bt = 0.

Easy computations show that the possible cases are only either at = dt 6= 0,
bt = ct = 0 or bt = ct 6= 0, at = dt = 0. So either

ft(x) = atx, gt(x) = at, or

ft(x) = ct, gt(x) = ctx.

If ft(x) = atx, gt(x) = at we get

cl(x)t = β = cl(ft/gt) = cl(x),

which implies cl(x) = 1, a contradiction; if ft(x) = ct, gt(x) = ctx, we get

cl(x)t = cl(x
−1) = cl(x)−1,

so cl(x)t+1 = 1, therefore cl(x) = 1 since 2 ≤ t ≤ l− 2, also a contradiction.

In summary, the equality (5.27) does not hold. So none of γt, 2 ≤ t ≤ l−2,
is cyclotomic.

(ii) Assume that ch(F ) = p > 0. If there exists some t satisfying 2 ≤
t ≤ l − 2 such that f ′t 6= 0 or g′t 6= 0, then a discussion similar to that in (i)
shows that cl(x)t is not cyclotomic. Hence, if {x, Φl(x)}t is cyclotomic for
some 2 ≤ t ≤ l − 2, we must have f ′t = 0 and g′t = 0.

Similarly to (i), we have

Φl(atx
pmt

+ bt, ctx
pmt

+ dt) = αtΦl(x
pmt

).

Let xp
mt = ζ. Then atζ+bt

ctζ+dt
= ζi for some i satisfying 1 ≤ i ≤ l − 1. A com-

putation leads to either at = dt, bt = ct = 0 or at = dt = 0, bt = ct. So we
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have either

ft(x) = atx
pmt

, gt(x) = at, or ft(x) = at, gt(x) = atx
pmt

.

If ft(x) = atx
pmt , gt(x) = at, we have

cl(x)t = β = cl(x
pmt

) = cl(x)p
2mt

.

Hence l | p2mt − t, that is, t ∈ Z(l, p). If ft(x) = at, gt(x) = atx
pmt , then

l | p2mt + t, so also t ∈ Z(l, p). Hence, for 2 ≤ t ≤ l−2, if cl(x)t is cyclotomic,
then t ∈ Z(l, p).

On the other hand, if t ∈ Z(l, p), then either

t = p2mt + lm′ for some integer m′, or

t = −p2mt + lm′′ for some integer m′′.

So either

cl(x)t = cl(x)p
2mt+lm′ = cl(x

pmt
), or

−2ptcl(t)
t = cl(x)−p

2mt+lm′′ = cl(x)−p
2mt

= cl(x
−pmt

).

This implies that if t ∈ Z(l, p), then cl(x)t ∈ Gl(F (x)).
Note that cl(x), cl(x)−1 ∈ Gl(F (x)). This proves the lemma.

Lemma 5.13(i) can also be proved by using Remark 5.7(ii).

Lemma 5.14. The following statements are equivalent:

(i) |Z(l, p)| = l − 3.
(ii) l ≡ 3 (mod 4) and p is a primitive root of l.

Proof. Clearly, if p is not a primitive root of l, then the order of p2

(mod l) is less than (l − 3)/2. So |Z(l, p)| < l − 3.
When p is a primitive root of l, the set of all quadratic residues modulo l is

1, p2, p4, . . . , p2(
l−3
2

).

Consider the map p2m 7→ −p2m. It is a bijection. If l ≡ 3 (mod 4), then(
−p2m

l

)
=

(
−1

l

)
= (−1)(l−1)/2 = −1,

where
( ·
l

)
is the Legendre symbol. Hence, if t ≡ −p2m (mod l), then t is a

quadratic nonresidue (mod l). So |Z(l, p)| = l − 3.
Conversely, if l ≡ 1 (mod 4), then(

−p2m

l

)
=

(
−1

l

)
= 1.

This implies that the integers in Z(l, p) are all quadratic residues modulo l.
But the number of quadratic residues is (l − 1)/2. So

|Z(l, p)| ≤ (l − 1)/2 < l − 3,

a contradiction. Hence l ≡ 3 (mod 4).
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Corollary 5.15. Assume that l ≥ 5 is a prime number and F is a
field with ch(F ) = p such that Φl(x) is irreducible in F [x]. For any γ ∈
GGl(F (x)), the subgroup of K2(F (x)) generated by γ is cyclotomic if and
only if l ≡ 3 (mod 4) and p is a primitive root of l, i.e.,

〈γ〉 ⊂ Gl(F (x)), ∀γ ∈ GGl(F (x))

⇔ l ≡ 3 (mod 4) and p is a primitive root of l.

Proof. Clearly,

{γ, γ−1} ∪ {γt | t ∈ Z(l, p)} ⊆ 〈γ〉,
which implies that

2 + |Z(l, p)| = |{γ, γ−1} ∪ {γt | t ∈ Z(l, p)}| < |〈γ〉| = l.

If l ≡ 3 (mod 4), then from Lemma 5.14 we have 2 + |Z(l, p)| = l− 1, so
from Lemma 5.13(ii) we get

〈γ〉 = {1, γ, γ−1} ∪ {γt | t ∈ Z(l, p)} ⊆ Gl(F (x)).

Conversely, from Lemma 5.13(ii) we have

〈γ〉 ⊆ {1, γ, γ−1} ∪ {γt | t ∈ Z(l, p)} ⊆ 〈γ〉.
So l = 3 + |Z(l, p)|, that is, |Z(l, p)| = l − 3. From Lemma 5.14 we deduce
that l ≡ 3 (mod 4).

Example 5.16. It is easy to show that Φ7(x) is irreducible in F3[x] and
3 is a primitive root of 7.

Now we arrive at the main result of this section.

Theorem 5.17. Assume that l ≥ 5 is a prime number and F is a field
such that Φl(x) is irreducible in F [x]. Let n be an integer satisfying

n ≤ (l − 3)/2.

(i) If ch(F ) = 0, then c(Gl(n;F )) = 2n, and so cs(Gl(n;F )) = 0.
(ii) If ch(F ) = p 6= 0, then c(Gl(n;F )) = n(2 + |Z(l, p)|).

(iii) If ch(F ) = p 6= 0, then

cs(Gl(n;F )) > 0 ⇔ l ≡ 3 (mod 4) and p is a primitive root of l.

In this case, cs(Gl(n;F )) = n, i.e., Gl(n;F ) contains exactly n
nontrivial cyclotomic subgroups.

(iv) Every nontrivial cyclotomic subgroup of Gl(n;F ) is cyclic of order l,
i.e., every nontrivial cyclotomic subgroup has the form Gl(1;F ).

Proof. (i) follows from Corollary 5.9 and Lemma 5.13(i); (ii) follows from
Corollary 5.9 and Lemma 5.13 (ii); (iii) follows from Corollary 5.15; and (iv)
follows from (iii) and Corollary 5.10.
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Corollary 5.18. Assume that l ≥ 5 is a prime number with l ≡ 3
(mod 4) and F is a field with ch(F ) = p such that Φl(x) is irreducible in F [x].
If p is a primitive root of l, then Gl(1;F ) is a cyclotomic subgroup.

Remark 5.19. From Theorem 5.17, we conclude immediately that
Gl(F (x)) is not a group, as conjectured by Browkin [1].

Corollary 5.20. Assume that l ≥ 5 is a prime number. If n is a posi-
tive integer satisfying n ≤ (l − 3)/2, then c(Gl(n;Q)) = 2n, so cs(Gl(n;Q))
= 0.

Corollary 5.21. Assume that l is a prime number, F is a field with
ch(F ) 6= l and Φl(x) is irreducible in F [x].

(i) If ch(F ) = 0 and l ≥ 5 (resp. l ≥ 7 or l ≥ 11), then c(Gl(1;F )) = 2
(resp. c(Gl(2;F )) = 4 or c(Gl(3;F )) = 6 and c(Gl(4;F )) = 8).

(ii) If ch(F ) = p 6= 0 and l ≥ 5 (resp. l ≥ 7 or l ≥ 11), then
c(Gl(1;F )) = 2 + |Z(l, p)| (resp. c(Gl(2;F )) = 2(2 + |Z(l, p)|) or
c(Gl(3;F )) = 3(2 + |Z(l, p)|) and c(Gl(4;F )) = 4(2 + |Z(l, p)|)).

Corollary 5.22. Assume that l ≥ 5 is a prime number, F is a field
with ch(F ) 6= l, and Φl(x) is irreducible in F [x]. Let n be a positive integer
satisfying n ≤ (l − 3)/2.

(i) If ch(F ) = 0, then c(S(n;F )) = c(Tl(n;F ) = 2n.
(ii) If ch(F ) = p 6= 0, then

c(Sl(n;F )) = c(Tl(n;F )) = n(2 + |Z(l, p)|).

In particular, when p is a primitive root of l and l ≡ 3 (mod 4),
then

cs(Sl(n;F )) = cs(Tl(n;F )) = n.

Remark 5.23. The equality (5.3) is actually a diophantine equation for
X,Y, Z over the polynomial ring F [x], i.e., it can be rewritten as

X l − Y l

X − Y
= α

n∏
i=1

Φl(aix+ bi, cix+ di)
ei · Z l,

where 1 ≤ ei ≤ l − 1, α ∈ F ∗ and aidi − bici 6= 0 with 1 ≤ i ≤ n. If l ≥ 5
is a prime number and Φl(x) is irreducible in F [x], then from the proof of
Theorem 5.17 we know that the above diophantine equation has no solution
in F [x] if n ≤ (l − 3)/2.

Let Fq be a finite field of q elements, where q is a power of the prime
p > 2, and for an integer m > 0, denote

GGl(Fq(x))m := {cm : c ∈ GGl(Fq(x))}.
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Corollary 5.24. Assume that l ≥ 5 is a prime with l ≡ 3 (mod 4) and
l 6= p, Φl(x) is irreducible in Fp[x], and

n := p(p+ 1) ≤ l − 3.

If p is a primitive root of l, then the set
⋃l−1
m=0GGl(Fp(x))m of cyclotomic

elements contains at least n distinct nontrivial cyclotomic subgroups, i.e.,
there are n essentially distinct elements cl

(
aix+bi
cix+di

)
, 1 ≤ i ≤ n, such that

Gl(Fp(x)) ⊇
l−1⋃
m=1

GGl(Fp(x))m ⊇
n⋃
i=1

〈
cl

(
aix+ bi
cix+ di

)〉
.

Proof. First, since l ≡ 3 (mod 4) and p is a primitive root of l, we have

l−1⋃
m=1

GGl(Fp(x))m =
⋃

t∈{1, l−1}∪Z(l,p)

GGl(Fp(x))t ⊆ Gl(Fp(x)).

It is well known that |PGL(2,Fp)| = p(p2 − 1). Hence from Lemma 4.3,

|GGl(Fp(x))| = |PGL(2,Fp)| = p(p2 − 1).

According to the definition, if A =
(
a b
c d

)
∈ GL(2,Fp) then all matrices

which are not essentially distinct from A are

(5.28) α

(
µa µb

c d

)
and α

(
µc µd

a b

)
, for all α, µ ∈ F∗p.

Since p > 2, it is easy to show that the matrices of (5.28) are different
from each other, so the number of elements in each class of non-essentially
distinct elements is 2(p− 1)2. Therefore the number of classes of essentially
distinct elements is

|GL(2,Fp)|
2(p− 1)2

=
(p2 − 1)(p2 − p)

2(p− 1)2
=
p(p+ 1)

2
.

Let n := p(p+ 1)/2. From the assumption, we have n ≤ (l − 3)/2. So by
Theorem 5.17(iii), we can choose n essentially distinct elements cl

(
aix+bi
cix+di

)
,

1 ≤ i ≤ n, such that the cyclic subgroups
〈
cl
(
aix+bi
cix+di

)〉
are different, and⋃

t∈{1, l−1}∪Z(l,p)

GGl(Fp(x))t ⊇
n⋃
i=1

〈
cl

(
aix+ bi
cix+ di

)〉
.

Hence

l−1⋃
m=1

GGl(Fp(x))m =
⋃

t∈{1, l−1}∪Z(l,p)

GGl(Fp(x))t ⊇
n⋃
i=1

〈
cl

(
aix+ bi
cix+ di

)〉
.
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6. The cases 5≤ l≤2n+ 1. Now, we consider the cases of n > (l − 3)/2,
i.e., l ≤ 2n+ 1, which seem difficult. For n = 2 and l = 5, we have:

Theorem 6.1. Assume that F is a field and Φ5(x) is irreducible in F [x].

(i) If ch(F ) = 0, then c(T5(2;F )) = 4, so cs(T5(2;F )) = 0.
(ii) If ch(F ) = p 6= 0, 2, then c(T5(2;F )) = 2(2 + |Z(5, p)|).
Proof. It suffices to prove

β = c5(x)l1 · c5(x+ b)l2 /∈ G5(F (x)),

where b 6= 0 and 1 ≤ l1, l2 ≤ 4.
Indeed, if β ∈ G5(F (x)), then in the proof of Theorem 5.17, letting

n = 2, we find that there exist coprime polynomials f(x), g(x) ∈ F [x], with
f(x) monic, such that

(6.1) Φ5(f, g) = αΦ5(x)e1Φ5(x+ b)e2 for some α ∈ F,
and either deg f = 2 or deg f = 3.

We consider the case deg f = 2 (the case deg f = 3 is completely similar).
In this case, e1 = e2 = 1, so (6.1) becomes

(6.2) Φ5(f, g) = αΦ5(x)Φ5(x+ b).

Let x = ζ := ζ5. Then f(ζ)/g(ζ) = ζi, 1 ≤ i ≤ 4, so f(ζ) − ζig(ζ) = 0 and
ζ5−if(ζ)− g(ζ) = 0. Hence

Φ5(x) |x2f(x)− g(x) or Φ5(x) | f(x)− x2g(x).

Similarly, letting x = ζ − b, we get

Φ5(x) | x2f(x− b)− g(x− b) or Φ5(x) | f(x− b)− x2g(x− b).
Since f(x) is monic, comparing the degrees we obtain
(6.3)
Φ5(x) = x2f(x)− g(x) or −k2Φ5(x) = f(x)− x2g(x),

Φ5(x) = x2f(x− b)− g(x− b) or −k2Φ5(x) = f(x− b)− x2g(x− b),
where k2 is the leading coefficient of g(x).

We claim that k2 6= 0. Indeed, if k2 = 0, then we have either

f(x) = x2g(x) or f(x− b) = x2g(x− b).
Let

f(x) = x2 + l1x+ l0, g(x) = k2x
2 + k1x+ k0.

If f(x) = x2g(x), then f(x) = x2, g(x) = 1, so Φ5(x
2) = Φ5(x)Φ5(x+ b).

From Φ5(x
2) = Φ5(x)Φ5(−x) we get Φ5(−x) = Φ5(x + b). Substituting

x = −ζ we get Φ5(b−ζ) = 0. Consequently, b−ζ = ζk for some k = 1, 2, 3, 4.
This is impossible, since 1, ζ and 1, ζ, ζk (k > 1) are linearly independent
over F, because the minimal polynomial of ζ is of degree 4.
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If f(x − b) = x2g(x − b), then f(x) = (x + b)2g(x), so f(x) = (x + b)2,
g(x) = 1, therefore Φ5((x+ b)2) = Φ5(x)Φ5(x+ b). Similarly, a contradiction
arises.

Now, formulas (6.3) lead to the following four cases:

(i) Φ5(x) = x2f(x)− g(x) = x2f(x− b)− g(x− b). Hence 0 6= x2(f(x)−
f(x− b)) = g(x)− g(x− b). This is impossible, since deg(g(x)− g(x− b)) <
deg g(x) ≤ 2.

(ii) −k2Φ5(x) = f(x) − x2g(x) = f(x − b) − x2g(x − b). Then 0 6=
f(x) − f(x − b) = x2(g(x) − g(x − b)). This leads to a contradiction, since
deg f(x) = deg g(x) = 2 implies that we have f(x) 6= f(x−b), g(x) 6= g(x−b)
and deg(f(x)− f(x− b)) < 2.

(iii) Φ5(x) = x2f(x)− g(x) and −k2Φ5(x) = f(x− b)−x2g(x− b). From
the first equality it follows that f(x) = x2+x+l0 and g(x) = (l0−1)x2−x−1.
Hence the second equality gives −k2 = 1 − l0 = 1 − 2b = 2b(l0 − 1) + 1, so
1 − 2b = −k2 = 2b(l0 − 1) + 1 = 2b(2b − 1) + 1. Since ch(F ) 6= 2, we get
b = 0, a contradiction.

(iv) Φ5(x) = x2f(x− b)− g(x− b) and −k2Φ5(x) = f(x)−x2g(x). From
the second equality it follows that f(x) = x2 − k2x − k2, g(x) = k2x

2 +
k2x+ k2 + 1. Then the first equality implies 2b+ k2 = −1, 2bk2− k2 = 1. So
2b+ 2bk2 = 0, therefore k2 = −1. But this implies b = 0, a contradiction.

Thus, in all the four cases we get a contradiction, so (6.2) does not hold.

Remark 6.2. The main result in [29] is a special case of Theorem 6.1.
The assumption ch(k) 6= 2 is needed in the proof of Theorem 6.1 because
for ch(F ) = 2 we have

Φ5(x
2 + x, x2 + x+ 1) = Φ5(x)Φ5(x+ 1).

For n = 3 and l = 5 or 7, we have:

Theorem 6.3. Assume that F is a field with ch(F ) 6= 2, Φl(x) is irre-
ducible in F [x], and l = 5 or 7.

(i) If ch(F ) = 0, then c(Tl(3;F )) = 6, so cs(Tl(3;F )) = 0.
(ii) If ch(F ) = p 6= 0, then c(Tl(3;F )) = 3(2 + |Z(l, p)|).
Proof. Similar to the proof of Theorem 6.1, through a rather long com-

putation.

7. Diophantine equations. To give a further example, we need the
following two lemmas.

Lemma 7.1. The integer solutions of the diophantine equation

x4 + x3y + x2(y2 − 1) + xy(y2 − 1) + (y2 − 1)2 = 0
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are only
(0, 1), (−1, 1), (0,−1), (1,−1).

In particular, if y2 − 1 6= 0, then the equation has no integer solutions.

Proof. Let (x, y) = (a, b) be an integer solution.
If b2 = 1, then b = ±1 and a4 + a3b = 0. It is easy to see that in these

cases the solutions are only

(0, 1), (−1, 1), (0,−1), (1,−1).

If b2 6= 1, then rewrite the equation as

a4 = [(−ab)− (b2 − 1)][a2 + b2 − 1].

If a = 0, then b2 − 1 = 0, a contradiction; if b = 0, then a4 − a2 + 1 = 0,
impossible. Hence ab 6= 0. Thus we should have −ab > b2 − 1 > 0, so
−ab ≥ b2. If b > 0, then b ≤ −a; if b < 0, then −b ≤ a. So, in either case,

a4 = [(−ab)−(b2−1)][a2+b2−1] ≤ [a2−(b2−1)][a2+b2−1] = a4−(b2−1)2.

This is impossible since b2 − 1 6= 0.

Lemma 7.2. The equation

x4 + x3y + x2(y2 + 1) + xy(y2 + 1) + (y2 + 1)2 = 0

has no real solutions.

Proof. The polynomial can be written in the form

(x4 + x3y + x2y2 + xy3 + y4) + (x2 + xy + y2) + (y2 + 1).

The first two summands in brackets are nonnegative and the third is ≥ 1.
Hence the value of the polynomial for x, y ∈ R is ≥ 1.

8. A further example. We continue to consider the cases of l ≤ 2n+1.
We use S∗l (2;Z) to denote the subgroup of K2(Q(x)) generated by two

essentially distinct nontrivial elements of the form

cl

(
a1x+ b1
c1x+ d1

)
, cl

(
a2x+ b2
c2x+ d2

)
,

where (
a1 b1

c1 d1

)
,

(
a2 b2

c2 d2

)
∈ SL(2,Z)

satisfying the extra condition(
a1 b1

c1 d1

)−1(a2 b2

c2 d2

)
6= ±

(
0 −1

1 1

)
, ±
(

1 0

−1 1

)
.

Theorem 8.1. We have c(S∗5(2;Z)) = 4, hence cs(S∗5(2;Z)) = 0, i.e.,
S∗5(2;Z) contains no nontrivial cyclotomic subgroups.
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Proof. Let

β = c5

(
a1x+ b1
c1x+ d1

)l1
· c5
(
a2x+ b2
c2x+ d2

)l2
,

where (
a1 b1

c1 d1

)
,

(
a2 b2

c2 d2

)
∈ SL(2,Z).

We can assume 1 ≤ l1, l2 ≤ 4.
We claim that β /∈ G5(Q(x)). Indeed, if β ∈ G5(Q(x)), then as in the

discussions of Section 5, there exist coprime f(x), g(x) ∈ Q[x] such that

(8.1) Φ5(f, g) = αΦ5(a1x+ b1, c1x+ d1)
e1Φ5(a2x+ b2, c2x+ d2)

e2 ,

where α ∈ Q, and either deg f = 2 or deg f = 3.

Case 1: deg f = 2. In this case, e1 = e2 = 1, so (8.1) becomes

Φ5(f, g) = αΦ5(a1x+ b1, c1x+ d1)Φ5(a2x+ b2, c2x+ d2).

Let X = a1x+b1
c1x+d1

. Then

Φ5

(
(a1 − c1X)2f

(
d1X − b1
a1 − c1X

)
, (a1 − c1X)2g

(
d1X − b1
a1 − c1X

))
= αΦ5(X)Φ5(a2(d1X − b1) + b2(a1 − c1X), c2(d1X − b1) + d2(a1 − c1X)).

So, it suffices to consider

(8.2) Φ5(f, g) = αΦ5(x)Φ5(ax+ b, cx+ d),

where ad− bc = 1 and(
a b

c d

)
6= ±

(
0 −1

1 1

)
,±
(

1 0

−1 1

)
.

Noting that ζ /∈ Q, by the action of Gal(Q(ζ)/Q) we have

(8.3) f(x)− ζg(x) = α1(x− ζi)(ax+ b− ζj(cx+ d)) with α1 ∈ Q(ζ).

Let
f(x) = x2 + l1x+ l0, g(x) = k2x

2 + k1x+ k0,

with l0, l1, k0, k1, k2 ∈ Q.
Inserting these expressions into (8.3) and comparing the coefficients, we

get

(8.4) ck2ζ
i+j+1 − cζi+j + (ck1 − dk2)ζj+1 − ak2ζi+1

+ (d− cl1)ζj + aζi + (bk2 − ak1)ζ + al1 − b = 0,

(8.5) dk2ζ
i+j+1 − dζi+j + ck0ζ

j+1 − bk2ζi+1 − cl0ζj + bζi − ak0ζ + al0 = 0.

We only consider the following cases; the other cases are similar and
easy.
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1) If i = 1, j = 2, from (8.4) and (8.5) we have

d− cl1 − ak2 = ck2, al1 − b = ck2,(8.6)

ck1 − dk2 − c = ck2, a− ak1 + bk2 = ck2,(8.7)

ck0 − d = dk2, b− ak0 = dk2,(8.8)

cl0 + bk2 = −dk2, al0 = dk2.(8.9)

From (8.6), we obtain (a2 + c2 + ac)k2 = 1, so k2 6= 0; from (8.7), we get
ac + c2 = −1; so from this equality and (8.8), we have (a + c)d = 1 − a2;
therefore (8.9) yields

1− a2 + ab = 0.

Hence c8 + 2c6 + 4c4 + 3c2 + 1 = 0, impossible.

2) If i = 1, j = 3, then

ck1 − dk2 − c = −ak2, a− ak1 + bk2 = −ak2,
d− cl1 = −ak2, ck2 + al1 − b = −ak2,
d− ck0 = bk2, ak0 − b = bk2,

cl0 = bk2, dk2 + al0 = −bk2.

From these equalities, we have k2 6= 0 and

−1 = (a2 + ac+ c2)k2, a2 + ac− 1 = 0,

(ab+ bc)k2 = 1, c(b+ d) = −ab.

Cancelling k2, b, c, we obtain a8 − 2a6 + 4a4 − 3a2 + 1 = 0, impossible.

3) If i = 1, j = 4, then

d− cl1 = ak2 = ck2 + a− ak1 + bk2 = al1 − b− c+ ck1 − dk2 = 0,

cl0 = bk2 = dk2 + b− ak0 = ck0 + al0 − d = 0.

Hence

a2 = a2k1, c2k1 − cdk2 = c2 − 1, c2k0 − cd = 0, b2 − abk0 = 0.

Clearly c 6= 0, and a 6= 0 since b2 − abk0 = 0. So k1 = 1, therefore from
c2k1− cdk2 = c2−1, we obtain cdk2 = 1; so from ck2 +a−ak1 + bk2 = 0, we
have b = −c. Hence from b2−abk0 = 0, c2k0−cd = 0, we get b/a = k0 = d/c,
that is, ad− bc = 0, a contradiction.

4) If i = 2, j = 3, then

(8.10) ck1 − dk2 = a, ck2 − ak1 + bk2 = a, d− ak2 − cl1 = a,

(8.11) al1−b−c = a, ck2 = b, bk2+cl0 = −b, dk2−ak0 = b, al0 = b.

From (8.10) and (8.11), we get respectively

(c2 − 1)k2 = a2 + ac, a2k2 = 1− a2 − ac− c2.
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So

a4 + ca3 + (c2 − 1)a2 + (c3 − c)a+ (c2 − 1)2 = 0.

From Lemma 7.1, we have c2 = 1. So a(a+ c) = 0.
If a = 0, then b = 0 from (8.11), a contradiction. So a = −c, hence

a2 = 1. From (8.10) and (8.11), we get(
a b

c d

)
=

(
a 0

−a a

)
= ±

(
1 0

−1 1

)
.

This contradicts the assumption.

5) If i = j = 2, we have

ck1 − dk2 − ak2 = −c, ak1 − bk2 = c,(8.12)

a− cl1 + d = −c, al1 − b+ ck2 = −c,(8.13)

From (8.12) and (8.13), we get respectively

(a2 + 1)k2 = c2 + ac, c2k2 = −1− ac− a2 − c2.
So c4 + ac3 = −(a2 + 1)(1 + ac+ a2 + c2), i.e.,

c4 + ac3 + c2(a2 + 1) + ac(a2 + 1) + (a2 + 1)2 = 0.

This contradicts Lemma 7.2.

6) If i = j = 3, then

ck1 − dk2 − ak2 = ck2, bk2 − ak1 − c = ck2,(8.14)

a− cl1 + d = ck2, al1 − b = ck2,(8.15)

ck0 − bk2 = dk2, ak0 + d = −dk2,(8.16)

We claim that k2 6= 0. In fact, if k2 = 0, then clearly c = 0 (otherwise from
(8.14)–(8.16) we will have k0 = k1 = k2 = 0), but from (8.15) this will imply
a = −d, impossible.

From (8.14) and (8.15), we have respectively

(c2 + ac)k2 = a2 + 1, (1 + a2)k2 = −(a2 + c2 + 1).

So

c4 + ac3 + c2(a2 + 1) + ac(a2 + 1) + (a2 + 1)2 = 0.

A contradiction now arises from Lemma 7.2.

7) If i = 3, j = 2, we have

ck1 − dk2 + a = −ak2, d− cl1 = −ak2,
ck2 − ak1 + bk2 = −ak2, al1 − b− c = −ak2,
b+ ck0 = −bk2, cl0 = bk2,

dk2 − ak0 = −bk2, al0 − d = −bk2.
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From cl0 = bk2, al0−d = −bk2, we have cd = b(a+c)k2; from d−cl1 = −ak2,
al1− b− c = −ak2, we get c2− 1 = a(a+ c)k2. Hence b = −c. Clearly c 6= 0,
since if c = b = 0, then ad = 1, hence a2 = 1, so from ck1− dk2 + a = −ak2,
we get −k2 + a2 = −a2k2, that is, 1 = 0, a contradiction.

On the other hand, from ck1 − dk2 + a = −ak2, ck2 − ak1 + bk2 = −ak2,
we have

a2 = (1− a2 − ac− c2)k2.

In view of c2 − 1 = a(a+ c)k2, we get

a3(a+ c) = (c2 − 1)(1− a2 − ac− c2).

So we obtain

a4 + a3c+ a2(c2 − 1) + ac(c2 − 1) + (c2 − 1)2 = 0.

From Lemma 7.1, we get c2 − 1 = 0. Hence ad = 1− c2 = 0.

If a 6= 0, then d = 0. So we have

k0 = 1 + k2, l0 = −k2, −ak0 = ck2, al0 = ck2.

Hence k0 = −l0 = k2 = k0 − 1, a contradiction.

Therefore a = 0. If d = 0, then clearly c(x) and c
(−c
cx

)
are not essentially

distinct, which contradicts the assumption.

Hence we get a = 0, d 6= 0. So

ck1 = dk2, d = cl1, k0 = 1 + k2, −l0 = k2, dk2 = ck2, −d = ck2.

Therefore k1 = k2 6= 0 since d 6= 0, so d = c. Hence(
a b

c d

)
=

(
0 −c
c c

)
= ±

(
0 −1

1 1

)
.

This contradicts the assumption.

Case 2: deg f = 3. In this case, e1 + e2 = 3, so by symmetry, it suffices
to consider the case e1 = 2, e2 = 1, hence (8.1) becomes

Φ5(f, g) = αΦ5(a1x+ b1, c1x+ d1)
2Φ5(a2x+ b2, c2x+ d2).

Similarly to (8.2), it suffices to consider

Φ5(f, g) = αΦ5(x)2Φ5(ax+ b, cx+ d),

where
(
a b
c d

)
6=
(
0 −1
1 1

)
∈ SL(2,Z). Similarly, we have

(8.17) f(x)− ζg(x) = α2(x− ζi)2(ax+ b− ζj(cx+ d)) with α2 ∈ Q(ζ).

Let

f(x) = x3 + l2x
2 + l1x+ l0, g(x) = k3x

3 + k2x
2 + k1x+ k0.
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Putting these expression into (8.17) and comparing the coefficients, we get

2ck3ζ
i+j+1 − 2cζi+j − 2ak3ζ

i+1 + (ck2 − dk3)ζj+1 + 2aζi + (d− cl2)ζj

+ (bk3 − ak2)ζ + (al2 − b) = 0,

ck3ζ
2i+j+1 − 2dk3ζ

i+j+1 − cζ2i+j − ak3ζ2i+1 + 2dζi+j + 2bk3ζ
i+1 − ck1ζj+1

+ aζ2i − 2bζi + cl1ζ
j + ak1ζ − al1 = 0,

dk3ζ
2i+j+1 − dζ2i+j − bk3ζ2i+1 + bζ2i − ck0ζj+1 + cl0ζ

j + ak0ζ − al0 = 0.

Similarly to the proof of the case deg f = 2, we can prove that these
equalities do not hold. We omit the details.

In summary, the equality (8.1) does not hold. So β /∈ G5(Q(x)), as
claimed.

This example implies that the cases of l ≤ 2n+ 1 are more complicated
than one might expect.

Question 8.2. How to remove the condition n ≤ (l − 3)/2 in Theorem
5.17?

9. Cubes and squares. From this section on, we turn to the number
field cases. In this section we focus on the problem: When is the cube or
square of a cyclotomic element still cyclotomic? As a result, we will construct
some cyclotomic subgroups of order 5.

First, we need some lemmas on irreducibility of polynomials.

Let

fn,1(x) = xn + x+ 1 if n ≡ 1 (mod 3),

fn,2(x) = xn + x+ 1/x2 + x+ 1 if n ≡ 2 (mod 3).

Lemma 9.1 (Selmer [16]).

(i) If n 6≡ 2 (mod 3), then the polynomial fn,1(x) is irreducible in Q[x].
(ii) If n ≡ 2 (mod 3), then the polynomial xn + x + 1 has a factor

x2 + x+ 1, but fn,2(x) is still irreducible in Q[x].

Lemma 9.2. For any integer n ≥ 1 and any prime p, the polynomial
f(x) = xn + xn−1 + p is irreducible over Q.

Proof. Clearly we can assume that n ≥ 2. The Newton polygon of f(x)
for the prime p has vertices (0, 1), (n−1, 0), (n, 0). Therefore it has two sides
with slopes 1/(n− 1) and 0, respectively.

It follows that in Qp[x], f(x) = f1(x)f2(x), where deg f1 = n − 1,
deg f2 = 1. Any root of f1(x) generates an extension of Qp of degree n− 1,
from the value of the corresponding slope. Consequently, f1(x) is irreducible
in Qp[x].
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Thus, if f(x) were reducible in Q[x], it would have factors of degrees 1
and n − 1. This is impossible since f(x) does not vanish at ±1,±2, so it
does not have a root in Q.

Thus f(x) is irreducible in Q[x].

Remark 9.3. (i) We can also give a more computational proof of Lemma
9.2 as follows (see [11]). Assume that we have a decomposition

xn + xn−1 + p = f(x)g(x) with deg f(x), deg g(x) ≥ 1.

Since p is a prime, we can assume that the constant term of, say, f(x) is ±1.

If f(x) has a root α of modulus 1, that is, αn+αn−1+p = 0 with |α| = 1,
then

p = |αn + αn−1| = |αn−1| |α+ 1| = |α+ 1|.
Clearly |α+ 1| < 2 if α 6= 1. So α = 1. But 1 is not a root of xn + xn−1 + p,
a contradiction.

Hence f(x) has no roots of unit modulus. This implies deg f(x) ≥ 2 and
f(x) must have a root α with |α| < 1. So

p = |αn + αn−1| ≤ |αn|+ |αn−1| < 2,

a contradiction again. These contradictions prove the irreducibility of the
polynomial xn + xn−1 + p.

(ii) Similarly, we can prove that xn+xn−1−p is also irreducible if n ≥ 1
and p ≥ 3 is a prime.

The following lemma is crucial in our discussions.

Lemma 9.4 (Zsigmondy [30]). If a > b > 0, gcd(a, b) = 1 and n > 1 are
positive integers, then an + bn has a prime factor that divides ak + bk for no
positive integers k < n, with exception 23 + 13.

We can construct the cube or square of a cyclotomic element which is
also cyclotomic as follows.

Theorem 9.5.

(i) Assume that p > 3 is a prime. Let α be a zero of fp,i(x), where i = 1
or 2, and F = Q(α). Then

1 6= cp(α)3 = cp(α
3) ∈ Gp(F ).

(ii) Assume that p ≥ 3 be a prime. Let α be a zero of xp + xp−1 + 2 and
F = Q(α). Then

1 6= cp(α)2 = cp(α
2) ∈ Gp(F ).

Proof. (i) Clearly αp−1 6= 0, 1. From αp + α+ 1 = 0, we have

αp−1(αp + α+ 1) = 0,
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therefore α2p−1 + αp−1 = α+ 1, so α2p + αp + 1 = α2 + α+ 1, that is,

α3p − 1

αp − 1
=
α3 − 1

α− 1
, so

αp − 1

α− 1
=
α3p − 1

α3 − 1
.

Hence Φp(α) = Φp(α
3), and therefore

cp(α)3 = {α3, Φp(α)} = {α3, Φp(α
3)} = cp(α

3) ∈ Gp(F ).

Now, we prove that cp(α)3 6= 1. Since p > 3 is a prime, it suffices to
prove cp(α) 6= 1.

First, we simplify the formula for cp(α). Namely,

Φp(α) =
1− αp

1− α
=

1 + (α+ 1)

1− α
=
α+ 2

1− α
.

Hence

cp(α) = {α,Φp(α)} =

{
α,
α+ 2

1− α

}
= {α, α+ 2},

since {α, 1− α} = 1. But

{α, α+ 2} =

{
−2

(
−α
2

)
, 2

(
1 +

α

2

)}
=

{
−2, 1 +

α

2

}{
−α
2
, 2

}
= {−2, 2 + α}{α, 2}.

So

cp(α) = {−2, 2 + α}{α, 2}.

Clearly, α is a unit. Hence vp(α) = 0 for every prime ideal p. Therefore,
for every prime ideal p - 2, we get

(9.1) τp(cp(α)) = τp({−2, α+ 2}{α, 2}) ≡ (−2)vp(α+2) (mod p).

When p ≡ 1 (mod 3), from Lemma 9.1, fp,1(x) is irreducible in Q[x]. So
the minimal polynomial of α+ 2 is

fp,1(x−2) = (x−2)p+(x−2)+1 = xp−2pxp−1+ · · ·+2p−1px+x−(2p+1).

Hence NF/Q(α+ 2) = 2p + 1.

When p ≡ 2 (mod 3), from Lemma 9.1, fp,2(x) is also irreducible in Q[x].
So the minimal polynomial of α+ 2 is fp,2(x− 2). From

(x− 2)p + (x− 2) + 1 = [(x− 2)2 + (x− 2) + 1]fp,2(x− 2),

we find that NF/Q(α+ 2) = 1
3(2p + 1).

Now we assume that p ≡ 1 (mod 3); the case of p ≡ 2 (mod 3) can be
treated in a similar way.

Suppose that we have a decomposition into prime ideals

(α+ 2)OF = pe11 · · · p
em
m .
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In view of NF/Q(α+ 2) = 2p + 1, we can assume that ei ≥ 1 and m ≥ 1. Let
pi be primes (not necessarily different) such that (pi) = pi ∩ Z. Then

NF/Q((α+ 2)OF ) = NF/Q(p1)
e1 · · ·NF/Q(pm)em = pe1f11 · · · pemfmm Z,

where fi = f(pi|pi) are the residue class degrees.
From Lemma 9.4, the number 2p+1 has a primitive prime divisor, say q,

i.e., q | 2p + 1 but q - 2d + 1 for any integer 1 ≤ d < p.
Assume that vq(2

p + 1) = l. Then

NF/Q((α+ 2)OF ) = NF/Q(α+ 2)Z = (2p + 1)Z = qlaZ
for some q - a. Therefore

qlaZ = pe1f11 · · · pemfmm Z.
This implies that q must be one of the primes p1, . . . , pm, say q = p1. Note
that the primes pi may not be distinct. So we have

l = e1f1 + · · · ≥ e1.
On the other hand, clearly q 6= 3, i.e., q ≥ 5, so

5l ≤ ql < 2p + 1,

therefore l < p, hence e1 ≤ l < p, that is, vp1(α+ 2) = e1 < p. This implies

p1 = q - 2vp1 (α+2) + 1.

Note that also

p1 - 2vp1 (α+2) − 1.

In fact, if p1 | 2vp1 (α+2) − 1, then from p1 | 2p + 1 we get

p1 | (2p + 1) + (2vp1 (α+2) − 1) = 2p + 2vp1 (α+2) = 2vp1 (α+2)(2p−vp1 (α+2) + 1).

Since p1 = q 6= 2, we obtain p1 | 2p−vp1 (α+2) + 1. This contradicts the choice
of q = p1 since vp1(α+ 2) 6= 0.

Hence from (9.1), we get

τp1(cp(α)) ≡ (−2)vp1 (α+2) 6≡ 1 (mod p1).

Therefore cp(α) 6= 1.
(ii) From αp + αp−1 + 2 = 0, we have

(1 + α)2Φp(−α) = (1 + α)(αp + 1) = α(αp + αp−1) + 1 + α = 1− α.
Then {α, (1 + α)2} = {−1, 1 + α}2{−α, 1 + α}2 = {1, 1 + α} = 1 yields

cp(α) = {α,Φp(α)} = {α, (1− α)Φp(α)} = {α, (1 + α)2Φp(−α)Φp(α)}
= {α,Φp(α2)}.

So

cp(α)2 = {α2, Φp(α
2)} = cp(α

2) ∈ Gp(F ).
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Now, we prove cp(α) 6= 1. From αp+αp−1 +2 = 0 and (1+α)2Φp(−α) =
1− α, we have

Φp(α) =
αp − 1

α− 1
=
αp + 1

α+ 1
· α+ 1

α− 1
+

2

1− α

=
1− α

(1 + α)2
· 1 + α

α− 1
+

2

1− α
=

1 + 3α

1− α2
.

So

cp(α) = {α,Φp(α)} =

{
α,

1 + 3α

1− α2

}
= {−3, 1 + 3α}−1{−1, 1 + α}.

Clearly, α is a unit. Hence vp(α) = 0 for every prime ideal p. Therefore, for
every prime ideal p - 2, we get

τp(cp(α)) = τp({−3, 1 + 3α}−1{−1, 1 + α})(9.2)

≡ (−3)−vp(1+3α)(−1)vp(1+α) (mod p).

From Lemma 9.2, xp + xp−1 + 2 is irreducible over Q. So

NF/Q(1 + 3α) = 2(3p + 1).

Suppose that we have a decomposition into prime ideals

(1 + 3α)OF = pe11 · · · p
em
m .

In view of NF/Q(1 + 3α) = 2(3p + 1), we can assume that ei ≥ 1 and m ≥ 1.
Let pi be primes (not necessarily different) such that (pi) = pi ∩ Z. Then

NF/Q((1 + 3α)OF ) = NF/Q(p1)
e1 · · ·NF/Q(pm)em = pe1f11 · · · pemfmm Z,

where fi = f(pi|pi) are the residue class degrees.
From Lemma 9.4, the number 3p+1 has a primitive prime divisor, say q,

i.e., q | 3p + 1 but q - 3d + 1 for any integer 1 ≤ d < p. Clearly q 6= 2, 3.
Assume that vq(3

p + 1) = l. Then

NF/Q((1 + 3α)OF ) = NF/Q(1 + 3α)Z = 2(3p + 1)Z = qlaZ
for some q - a. Therefore

qlaZ = pe1f11 · · · pemfmm Z.
This implies that q must be one of the primes p1, . . . , pm, say q = p1. Note
that the primes pi may not be distinct. Thus

l = e1f1 + · · · ≥ e1.
Let p1 be a prime lying above q. Then

1 ≤ vp1(1 + 3α) ≤ vq(3p + 1) < p.

This implies that

p1 = q - 3vp1 (1+3α) + 1,
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Note that also
p1 - 3vp1 (1+3α) − 1.

In fact, if p1 | 3vp1 (1+3α) − 1, then from p1 | 3p + 1 we get

p1 | (3p+1)+(3vp1 (1+3α)−1) = 3p+3vp1 (1+3α) = 3vp1 (1+3α)(3p−vp1 (1+3α)+1).

Since p1 = q 6= 3, we get p1 | 3p−vp1 (1+3α) + 1. This contradicts the choice of
q = p1 since vp1(1 + 3α) 6= 0.

From p1 | 1 + 3α = (1 + α) + 2α and p1 | q 6= 2, we know that p1 - 1 + α,
i.e., vp1(1 + α) = 0. So

τp1(cp(α)) = (−3)vp1 (1+3α)(−1)vp1 (1+α) ≡ (−3)−vp1 (1+3α) 6≡ 1 (mod p1).

Therefore cp(α) 6= 1.

Let Sn denote the symmetric group of degree n.

Lemma 9.6.

(i) The Galois group of xp + x+ 1 is isomorphic to Sp.
(ii) The Galois group of x3 − x2 + 1 is isomorphic to S3.
(iii) The Galois group of x5 + x4 + 2 is isomorphic to S5.

Proof. (i) follows from Lemma 9.1 and [11, Theorem 1]; (ii) follows from
Lemma 9.1 and [11, Theorem 2]; (iii) can be proved using GP-Pari.

Lemma 9.7 ([19]). Let L/F be a Galois extension of finite degree n with
G := Gal(L/F ). Then the kernel of the canonical homomorphism K2(F )→
K2(L)G is killed by n.

Corollary 9.8.

(i) Let α be a zero of fp,1(x) = xp + x + 1 or f5,2(x) = x3 − x2 + 1,

let F = Q(α) and let F̃ be the normal closure of F . Then for any

σ ∈ Gal(F̃ /Q),
cp(σ(α))±3 6= 1.

Moreover, in K2(F̃ ) we have∏
σ∈G

cp(σ(α)) = cp(−2),

i.e., the element
∏
σ∈G cp(σ(α)) is also cyclotomic.

(ii) Let α be a zero of xp + xp−1 + 2, let F = Q(α) and let F̃ be the

normal closure of F . Then for any σ ∈ Gal(F̃ /Q),

cp(σ(α))±3 6= 1.

Moreover, in K2(F̃ ) we have∏
σ∈G

cp(σ(α)) = cp(−1/3).
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Proof. (i) From Lemma 9.6(i), we have [F̃ : F ] = [F̃ : Q]/[F : Q] =

|Sp|/p = (p − 1)!, and from Lemma 9.7, the kernel of K2(F ) → K2(F̃ )G ⊆
K2(F̃ ) is killed by [F̃ : F ]. As ([F̃ : F ], p) = 1, we get the injection

Gp(F ) ↪→ Gp(F̃ ),

since Gp(F ) is contained in the p-torsion of K2(F ) (see [1]).

A similar discussion works for f5,2(x), since from Lemma 9.6(ii), we have

Gal(F̃ /Q) ∼= S3, and so [F̃ : F ] = |S3|/[F : Q] = 2.

Thus the first statement follows from Theorem 9.5(i) and the facts that
σ(cp(α)) = cp(σ(α)) and cp(α)−1 = cp(α

−1).

From the proof of Theorem 9.5(i), in K2(F̃ ) we have∏
σ∈G

cp(σ(α)) =
∏
σ∈G
{−2, 2 + σ(α)}{σ(α), 2}

= {−2,−fp,1(−2)}{NF/Q(α), 2}

= {−2, 2p + 1} =

{
− 2,

2p + 1

3

}
= {−2, Φp(−2)} = cp(−2).

A similar reasoning works for f5,2(x).

(ii) The proof of the first statement is similar to that of (i); one uses
Lemmas 9.5(ii), 9.6(iii) and 9.7.

As for the second statement, from the proof of Theorem 9.5(i) we have∏
σ∈G

cp(σ(α)) =
∏
σ∈G
{−3, 1 + 3σ(α)}{−1, 1 + σ(α)}

= {−3, NF/Q(1 + 3α)}−1 · {−1, NF/Q(1 + α)}
= {−3, 2(3p + 1)}−1{−1,−1}
= {−3, Φp(−3)}−1 · {−3,−8}−1{−1,−1}
= cp(−3)−1 = cp(−1/3).

In the case of fp,2(x), Browkin informed the first author that 〈cp(α)〉 is
a cyclotomic subgroup when p = 5. Moreover, in the following examples, we
can construct more nontrivial cyclotomic subgroups.

Example 9.9. Let p = 5. Then it is easy to show that

f5,2(x) = x3 − x2 + 1.

Let α be a zero of f5,2(x) and F = Q(α). Then from Theorem 9.5(i), we get

1 6= c5(α)3 = c5(α
3) ∈ G5(F ).
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On the other hand,

c5(α)2 = c5(α)−3 = c5(α
−3), c5(α)4 = c5(α)−1 = c5(α

−1).

Hence 〈c5(α)〉 ⊂ G5(F ), i.e., 〈c5(α)〉 is a cyclotomic subgroup.

Now, let F̃ be the normal closure of F = Q(α). Then from Lemma 9.8(i),

for any σ ∈ G := Gal(F̃ /Q), we have 1 6= c5(σ(α))±3 ∈ G5(F̃ ), and therefore

(9.3)
⋃
σ∈G
〈c5(σ(α))〉 ⊆ G5(F̃ ).

Let α := α1, α2 and α3 be the three roots of f5,2(x) = x3− x2 + 1. Then
(9.3) becomes

〈c5(α1)〉 ∪ 〈c5(α2)〉 ∪ 〈c5(α3)〉 ⊆ G5(F̃ ).

Claim. The cyclotomic subgroups 〈c5(α1)〉, 〈c5(α2)〉, 〈c5(α3)〉 are differ-

ent from each other. Hence G5(F̃ ) contains at least three nontrivial cyclo-
tomic subgroups.

In fact, from the proof of Theorem 9.5(i), we have

c5(α1) = {−2, 2 + α1}{α1, 2},
and NF/Q(2 + α1) = 11.

To compute the tame symbol of c5(α1), we need to know the prime
decomposition of the integer 11 in O

F̃
.

First, we determine the prime decomposition of 11 in OF . It is easy to
show that the discriminant of f5,2(x) is −23, i.e.,

dF (1, α1, α
2
1) = d(f5,2) = −23,

which is square-free. So 1, α1, α
2
1 is an integral base of OF , that is, OF =

Z[α1]. By the well known Kummer criterion, we have

(9.4) 11OF = p1p2,

where p1 := (2 + α1), p2 := (α2
1 − 3α1 + 6) are different prime ideals in OF .

Moreover f(p2|11) = 2. Hence f(p1|11) = 1.
Now, suppose that in O

F̃
we have prime decompositions

p1OF̃ = Pe1
1 (P′1)

e′1 , p2OF̃ = Be2
2 Be3

3 .

From [F̃ : F ] = 2, we have

2 = e1f(P1|p1) + e′1f(P′1|p1), 2 = e2f(P2|p2) + e3f(P3|p2).
Since F̃ /F is a Galois extension, from f(p1|11) = 1, f(p2|11) = 2 we know
that

f(P1|p1) = f(P′1|p1) = 2, f(P2|p2) = f(P3|p2) = 1.

So e1 = 1, e′1 = 0 and e2 = e3 = 1, which implies that

p1OF̃ = P1, p2OF̃ = B2B3.
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As in O
F̃

we have the decomposition α2
1 − 3α1 + 6 = (2 +α2)(2 +α3), from

(9.4) we get

(9.5) 11O
F̃

= P1B2B3,

where Pi = (2+αi)OF̃ , i = 1, 2, 3, are different prime ideals. Therefore (9.5)
is just the prime decomposition of 11 in O

F̃
, as required.

Note that αi, i = 1, 2, 3, are units. Then

(9.6) τPi(c5(αj)) ≡
{−2 (mod Pi) if 1 ≤ i = j ≤ 3,

1 (mod Pi) if 1 ≤ i 6= j ≤ 3.

Hence, if 〈c5(αi)〉 = 〈c5(αj)〉, then

c5(α1) = c5(α2)
t for some 1 ≤ t ≤ 4.

From (9.6) we have −2 ≡ 1 (mod Pi). But Pi is over 11, so we get −2 ≡ 1
(mod 11). This is impossible. Hence we must have 〈c5(αi)〉 6= 〈c5(αj)〉 for
1 ≤ i 6= j ≤ 3. The claim is proved.

Question. How many cyclotomic subgroups are there in G5(F̃ )?

Furthermore, from Corollary 9.8(i), we have

c5(α1)c5(α2)c5(α3) = {−2, 11} = {−2, Φ5(−2)}.

By Lemma 9.7, we have the injection (K2(Q))5 ↪→ (K2(F̃ ))5. As in K2(Q)
the tame symbol of {−2, 11} is

τ11({−2, 11}) ≡ −2 6≡ 1 (mod 11),

we get

c5(α1)c5(α2)c5(α3) = c5(−2) 6= 1.

Moreover, let Fn = F ( 5n−1√
α ). As Φ5n(x) = Φ5(x

5n−1
), we get

c5n( 5n−1√
α )5

n−1
= { 5n−1√

α,Φ5n( 5n−1√
α )}5n−1

= {α,Φ5(α)} = c5(α).

So G5n(Fn) also contains the cyclotomic subgroup 〈c5n( 5n−1√
α )5

n−1〉 =
〈c5(α)〉.

Example 9.10. When p = 5, let α be a zero of x5 + x4 + 2, F = Q(α)

and F̃ the normal closure of F.
As in Example 9.9, we conclude that 〈c5(α)〉 is a cyclotomic subgroup of

order 5.
Let α := α1, α2, . . . , α5 be the five roots of f(x) = x5 + x4 + 2. From

Lemma 9.4(iii), much as in Example 9.9, we have

〈c5(α1)〉 ∪ · · · ∪ 〈c5(α5)〉 ⊆ G5(F̃ ).

Claim. The cyclotomic subgroups 〈c5(α1)〉, . . . , 〈c5(α5)〉 are different

from each other. Hence G5(F̃ ) contains at least five nontrivial cyclotomic
subgroups.
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From the proof of Theorem 9.5(ii), we have

(1 + 3αi)OF = pi · ai, 1 ≤ i ≤ 5,

where pi is over 61 and ai is over 2.
Now it is easy to see that the discriminant of f(x) = x5 + x4 + 2 is

d(f) = N
F̃ /Q(5α4

1 + 4α3
1) = 24 · 3253.

The integer 3253 is a prime. Hence 61 - d(f).
We claim that piOF̃ , pjOF̃ are relatively prime for i 6= j. In fact, oth-

erwise there will exist a prime P such that P | (1 + 3αi),P | (1 + 3αj). So
P | (αi − αj) since P - 3. Hence P | d(f). Therefore 61 | d(f) = 24 · 3253,
impossible.

Hence we conclude that for different i the primes in O
F̃

over (1 + 3αi)
but not over 2 are relatively prime.

Note that for any Pi | (1 + 3αi) such that Pi - 2, i.e., Pi | pi, we have
Pi - (1 + αi). Thus from (9.2) we have

(9.7) τPi(c5(αj)) ≡

{
(−3)−vPi

(1+3αj) (mod Pi) if 1 ≤ i = j ≤ 5,

1 (mod Pi) if 1 ≤ i 6= j ≤ 5.

Hence, if 〈c5(αi)〉 = 〈c5(αj)〉 for some i, j, where 1 ≤ i 6= j ≤ 5, then

c5(αi) = c5(αj)
t for some 1 ≤ t ≤ 4.

Therefore from (9.7) we get (−3)−vPi
(1+3αi) ≡ 1 (mod Pi), which implies

(−3)vPi
(1+3αi) ≡ 1 (mod 61).

It is easy to see that the order of −3 (mod 61) is 5, so 5 | vPi(1 + 3αj).

On the other hand, F̃ /F is a Galois extension with [F̃ : F ] = 24, so 5 does
not divide e(Pi|pi), the ramification number of Pi over pi. Hence for any
Pi | (1 + 3αi) with Pi - 2, we have

5 - vPi(1 + 3αi), 1 ≤ i ≤ 5.

This is a contradiction.
Thus, 〈c5(α1)〉, . . . , 〈c5(α5)〉 are different nontrivial cyclotomic subgroups

of order five in K2(F̃ ).
A similar reasoning also works for Example 9.9.
Moreover, as in Example 9.9, from Corollary 9.8 we have

c5(α1) · · · c5(α5) = {−1/3, Φ5(−1/3)}.

It is easy to see that {−1/3, Φ5(−1/3)} = {−1, 61}{3, 61}−1 6= 1 ∈ K2(F̃ ).

We can also construct a quadratic field F such that K2(F ) contains a
cyclotomic subgroup of order 5. This was suggested to the first author by
Browkin.
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Example 9.11. The roots of the polynomial x2−3x+1=0 are (3±
√

5)/2.
Let β = (3 +

√
5)/2, and F = Q(β) = Q(

√
5). Then

Φ5(−β) = (1− β2)2.
In view of {β, (1− β2)2} = {β2, 1− β2} = 1, we get

c5(β) = {β, (1− β2)2Φ5(β)} = {β, Φ5(−β)Φ5(β)} = {β, Φ5(β
2)}.

So

c5(β)2 = {β2, Φ5(β
2)} = c5(β

2) ∈ G5(F ).

As in Example 9.9, we find that 〈c5(β)〉 is a nontrivial cyclotomic sub-
group. But we need to prove that c5(β) 6= 1.

In fact, note that β2 + 1 = 3β. Thus

Φ5(β) = (1 + β2)2 − β2 + β(1 + β2) = 9β2 − β2 + 3β2 = 11β2.

Consequently, c5(β) = {β, 11β2} = {β, 11}.
In OF = Z[(1 +

√
5)/2], we have 11 = (4 +

√
5)(4 −

√
5). Therefore

4 +
√

5 generates a prime p. From β2− 3β+ 1 = 0, we get β(3− β) = 1 and
(β − 1)2 = β, so (3 − β)(β − 1)2 = 1. These imply that β, β − 1 are both
units. So vp(11) = 1 and vp(β) = 0, and therefore

τp(c5(β)) = τp({β, 11}) ≡ β 6≡ 1 (mod p).

Now, let β = (3−
√

5)/2. Then similarly c5(β) = {β, 11}, and it is easy
to see that c5(β)c5(β) = 1. So we get 〈c5(β)〉 = 〈c5(β)〉.

Question. Are there any nontrivial cyclotomic subgroups of order five
other than 〈c5(β)〉 in K2(Q(

√
5))?

We do not know how to construct other cyclotomic subgroups. In par-
ticular, we do not know how to construct a cyclotomic subgroup of order
seven.

10. Nonclosedness. In this section, for any number field F, we will
construct a subgroup generated by an infinite number of cyclotomic ele-
ments to the power of some prime, which contains no nontrivial cyclotomic
elements. This is more clear than what Browkin’s conjecture implies.

We need the following celebrated result.

Theorem 10.1 (Faltings [3]). Any smooth, projective curve over a num-
ber field F that has genus greater than 1 can have only finitely many F -
rational points.

In the following, we will use g(C) and g(F (C)) to denote respectively
the genus of a curve C and of its function field F (C). We also need a genus
formula for Kummer extensions of function fields.
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Let K/k be an algebraic function field where k is the field of constants
which contains a primitive mth root of unity (with m > 1 and m relatively
prime to the characteristic of k). Suppose that u ∈ K satisfies

u 6= wd for all w ∈ K and d |m, d > 1.

Let

K ′ = K(y) with ym = u.

Such an extension K ′/K is said to be a Kummer extension of K. We have
the following genus formula.

Lemma 10.2 ([17]). Let K ′/K be the Kummer extension of a function
field K with ym = u as above. If k′ denotes the constant field of K ′, then

g(K ′) = 1 +
m

[k′ : k]

(
g(K)− 1 +

1

2

∑
P∈SK

(
1− rP

m

)
degP

)
where rP := gcd(m, vP (u)) and SK is the set of places of K/k.

Lemma 10.3. Let F be a number field. Assume that n ≥ 3 and p is a
prime. If either p ≥ 5, or p = 2 but n 6= 3, 4, 5, 6, 8, 10, 12, or p = 3 but
n 6= 3, 4, 6, then there are only finitely many F -rational points on the curve
C : Φn(x) = cyp, where c ∈ F ∗.

Proof. Let C be the projective closure of C over F , i.e.,

C : Φn(x, z)− cypzϕ(n)−p = 0.

Note that C is a singular curve with singular point (0 : 1 : 0). So we need
to consider the normalization of C, i.e.,

π : C
′ → C.

As we know [5], C
′
is a projective smooth curve over F. It is also well known

that the genus of a projective smooth curve is equal to the genus of its
function field [6]. So

g(C
′
) = g(F (C

′
)).

Since π is a birational morphism, we have F (C
′
) ' F (C) ' F (C), so

g(F (C
′
)) = g(F (C)), therefore

g(C
′
) = g(F (C)).

Now, we calculate the genus g(F (C)).
First, since F is a perfect field, the genus is unchanged under the al-

gebraic extension of F. So g(F (C)) = g(F (C)), where F is the algebraic
closure of F.

Clearly,

F (C) = F (x, y) = F (x)(y) with yp = Φn(x).
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It is easy to see that F (x)(y)/F (x) is a Kummer extension. As is well known,
g(F (x)) = 0.

For the Kummer extension F (x)(y)/F (x) with

yp = u := Φn(x) =
∏

1≤i≤n, (n,i)=1

(x− ζi),

where ζ is the nth primitive root of unity, it is easy to show that for any
P ∈ SF (x), we have:

(i) if P = (x − ζi), 1 ≤ i ≤ n, gcd(n, i) = 1, then vP (u) = 1, so
rP = gcd(p, vP (u)) = 1;

(ii) if P = (x− a), a 6= ζi, gcd(n, i) = 1, then vP (u) = 0, so rP = p;
(iii) if P =∞ = ( 1x), then v∞(u) = −ϕ(n), so r∞ = gcd(p, ϕ(n)).

We apply Lemma 10.2 to the extension F (x)(y)/F (x). Note that F is
an algebraically closed field, so the constant field of F (x)(y) is also F and
so degP = 1 for any place P ∈ SF (x). Therefore

g(F (C)) = 1 + p

[
− 1 +

1

2
ϕ(n)

(
1− 1

p

)
+

1

2

(
1− gcd(p, ϕ(n))

p

)]
.

Thus, to prove g(F (C)) ≥ 2, it suffices to prove

(10.1) ϕ(n)(p− 1) > p+ gcd(p, ϕ(n)).

Note that ϕ(n) ≥ 2 since n ≥ 3.

For p ≥ 5, if ϕ(n) ≥ 3, then ϕ(n)(p − 1) ≥ 3(p − 1) > 2p ≥ p +
gcd(p, ϕ(n)); if ϕ(n) = 2, then ϕ(n)(p − 1) = 2(p − 1) > p + 1 = p +
gcd(p, ϕ(n)).

For p = 2, the inequality (10.1) becomes

ϕ(n) > 2 + gcd(2, ϕ(n)).

It is easy to see that this holds if and only if ϕ(n)>4. So n 6=3, 4, 5, 6, 8, 10, 12.

For p = 3, the inequality (10.1) becomes

2ϕ(n) > 3 + gcd(3, ϕ(n)).

Obviously, this holds if and only if ϕ(n) > 3. So n 6= 3, 4, 6.

Summarizing, we have g(F (C)) ≥ 2 under the given assumptions on

n and p. So g(C
′
) ≥ 2. Hence, C

′
is a projective smooth curve of genus

≥ 2. Therefore, from Theorem 10.1, there are only finitely many F -rational
points on C

′
; as π is an F -birational morphism, there are also finitely many

F -rational points on C and therefore on C, as required.

Theorem 10.4. Assume that F is a number field and n 6= 1, 4, 8, 12. If
there is a prime p such that p2 |n, then there exist infinitely many nontrivial
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cyclotomic elements α1, α2, . . . ∈ Gn(F ) such that

〈αp1〉 ( 〈α
p
1, α

p
2〉 ( · · · and 〈αp1, α

p
2, . . . , 〉 ∩Gn(F ) = {1}.

Proof. Let S be a finite set of places of F containing all archimedean
ones, and all places above p and above the primes ramified in F. Moreover,
assume that S is sufficiently large, so that the ring OF,S of S-integers is a
unique factorization domain. Let PS denote the set of all the rational primes
which the finite primes in S lie above.

Let J = {1, . . . , n/p−1}, and let N be a positive integer which is greater
than p, the rational primes ramified in F and all the rational primes in PS .

Note that the polynomials Φn(x) and Φ′n(x) are coprime, so there exist
g(x), h(x) ∈ Z[x] and an integer m0 such that

(10.2) g(x)Φn(x) + h(x)Φ′n(x) = m0.

Let M1 = m0
∏

1<q≤N q with q running over the rational primes. We
can choose a sufficiently large integer k1 and a rational prime p1 such that
p1 |Φn(k1M1) (so p1 - k1M1).

Let

A1 :=

{
k1M1 if vp1(Φn(k1M1)) = 1,

k1M1 + p1 if vp1(Φn(k1M1)) > 1.

Then it is easy to show that vp1(Φn(A1)) = 1, i.e., p1 ‖Φn(A1). In fact, if
vp1(Φn(k1M1)) > 1, then from the Taylor formula,

Φn(k1M1 + p1) = Φn(k1M1) + Φ′n(k1M1)p1 + 1
2Φ
′′
n(k1M1)p

2
1 + · · · .

We must have p1 - Φ′n(k1M1). Indeed, if p1 |Φ′n(k1M1), then from (10.2),
we have p1 |m0. But according to the choice of M1, we have m0 |M1, so
p1 | k1M1, a contradiction. Therefore vp1(Φn(A1)) = vp1(Φn(k1M1 + p1) = 1,
as claimed.

Let

M2 =
∏

q1|k1M1

q1
∏

q′1|k1M1+p1

q′1
∏

q2|Φn(k1M1)

q2
∏

q′2|Φn(k1M1+p1)

q′2,

where q1, q2 run over rational primes. Then we can choose a sufficiently large
integer k2 and a rational prime p2 such that p2 |Φn(k2M2), and similarly we
get A2 with p2 ‖Φn(A2).

Repeating this procedure, we get the following sequences of elements of
K2(F ):

(10.3) {cn(Ai)
pj | i = 1, 2, . . .}, j ∈ J,

where

Ai =

{
kiMi if vpi(Φn(kiMi)) = 1,

kiMi + pi if vpi(Φn(kiMi)) > 1,
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in which pi is a rational prime satisfying pi |Φn(kiMi) (therefore pi - kiMi)
and

Mi =
∏

q1|kiMi−1

q1
∏

q1|kiMi−1+pi−1

q′1
∏

q2|Φn(kiMi−1)

q2
∏

q2|Φn(kiMi−1+pi−1)

q′2.

Hence pi ‖Φn(Ai). Note that pi /∈ PS for any i.

Claim 1. For each j ∈ J, the elements of (10.3) are all nontrivial and
different from each other.

In fact, for each pi, we can choose a prime pi ⊂ OF,S with pi | pi since
pi /∈ PS . According to the above construction, pi is unramified in F, so from
pi ‖Φn(Ai) and pi | pi, we have pi ‖Φn(Ai), i.e., vpi(Φn(Ai)) = 1. So

τpi(cn(Ai)
pj) ≡ Apji (mod pi).

It suffices to prove Apji 6≡ 1 (mod pi). In fact, assume Apji ≡ 1 (mod pi).
Let

j = pmj1, where 0 ≤ m ≤ vp(n)− 2 and (j1, p) = 1.

Then

gcd(n, pj) = pm+1 · gcd(n/pm+1, j1) = pm+1 · gcd(n/pvp(n), j1)

since p - j1.
So from Ani ≡ 1 (mod pi) and Apji ≡ 1 (mod pi), we have

A
pm+1·gcd(np−vp(n),j1)
i ≡ 1 (mod pi).

Therefore A
n/p
i ≡ 1 (mod pi).

It is easy to prove that there exists Ψn,p(x) ∈ Z[x] such that

Φn(x)Ψn,p(x) = Φp(x
n/p).

Hence
0 ≡ Φn(Ai)Ψn,p(Ai) = Φp(A

n/p
i ) ≡ p (mod pi),

that is, pi | p. This is impossible since pi 6= p (note that p ∈ PS).
So we get

τpi(cn(Ai)
pj) ≡ Apji 6≡ 1 (mod pi),

which implies that cn(Ai)
pj is nontrivial.

Next, we have pi+1 - Mi+1, so pi+1 - Mi+1. Therefore, according to the
construction, pi+1 - Al, pi+1 - Φn(Al), l ≤ i, hence

τpi+1(cn(Al)
pj) ≡ 1 (mod pi+1), ∀l ≤ i.

But from the above discussion, we know that

τpi+1(cn(Ai+1)
pj) 6≡ 1 (mod pi+1).

Hence
cn(Al)

pj 6= cn(Ai+1)
pj , ∀l ≤ i.

The claim is proved.
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Claim 2. There exists i1 such that cn(Ai1)pj /∈ Gn(F ) for each j ∈ J.
First, if there are only finitely many i such that cn(Ai)

p ∈ Gn(F ), choose
a large integer N1 such that when i > N1, cn(Ai)

p /∈ Gn(F ); otherwise,
choose an infinite subset I1 ⊆ N such that for any i ∈ I1, we have cn(Ai)

p ∈
Gn(F ).

Next, if there are only finitely many i ∈ I1 such that cn(Ai)
2p ∈ Gn(F ),

choose a large integer N2 > N1 (if N1 exists) such that when i ∈ I1 and
i > N2, we have cn(Ai)

2p /∈ Gn(F ); otherwise, choose an infinite subset
I2 ⊆ I1 such that for any i ∈ I2, we have cn(Ai)

2p ∈ Gn(F ).
Repeating this procedure, we will finally get an infinite set I ⊆ N and a

set of integers

J := {j1, . . . , js} with 1 ≤ j1 < · · · < js ≤ n/p− 1,

which satisfy

cn(Ai)
pj ∈ Gn(F ), i ∈ I, j ∈ J,

cn(Ai)
pj /∈ Gn(F ), i ∈ I, j ∈ J− J.

In the above construction, if J = ∅, i.e., if for each j ∈ J, the first case
holds, in other words, there are only finitely many i such that cn(Ai)

pj ∈
Gn(F ), then the claim is proved. Otherwise, J 6= ∅. We will prove that this
is impossible.

In fact, since cn(Ai)
pj ∈ Gn(F ) for i ∈ I, j ∈ J, we can assume that

cn(Ai)
pj = cn(Bij), where i ∈ I, j ∈ J, Bij ∈ F ∗.

By the Dirichlet–Hasse–Chevalley theorem (see [21]), the group of S-
units in OF,S is finitely generated: there are fundamental S-units ε1, . . . , εt
such that every S-unit can be written in the form

ζrεk11 · · · ε
kt
t , where r, k1, . . . , kt ∈ Z.

Here ζ is a generator of the group of roots of unity in F and 0 ≤ r < ord ζ.
By Lemma 10.3, the equation Φn(x) = cyp has only finitely many solu-

tions with x, y ∈ F. Hence, there are only finitely many x ∈ F such that
Φn(x) can be written in the form cyp with c of the form

(10.4) ζrεk11 · · · ε
kt
t , 0 ≤ r < p, 0 ≤ kj < p, 1 ≤ j < t.

Hence, we can find an integer Ñ ∈ I such that when i ∈ I and i > Ñ,
Φn(Bij) cannot be written in the form cyp with c of the form (10.4). This
implies that we must have

Φn(Bij) = cijaijy
p
ij ,

where cij has the form (10.4), and aij ∈ F ∗\O∗F,S · (F ∗)p and yij ∈ F ∗.
Assume that

aijOF,S = q
eij1
ij1 · · · q

eijs
ijs .
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Claim 3. There exists k0 with 1 ≤ k0 ≤ s such that p - eijk0 , that is,
p - vqijk0 (aij).

In fact, if p | eijk for 1 ≤ k ≤ s, letting eijk = pe′ijk, 1 ≤ k ≤ s, we have

aijOF,S = (q
e′ij1
ij1 · · · q

e′ijs
ijs )p = (a′ijOF,S)p for some a′ij ∈ F ∗,

since, according to the choice of S, OF,S is a PID, so a UFD. Therefore

aij = uij(a
′′
ij)

p for some uij ∈ O∗F,S and a′′ij ∈ F ∗,

that is, aij ∈ O∗F,S · (F ∗)p, a contradiction. So Claim 3 is true.

For convenience, we denote qij := qijk0 .

From Claim 3, we conclude that if i > Ñ, then for each j ∈ J there
exists a prime qij such that

p - vqij (Φn(Bij)).

Since p ∈ PS , we have qij - p.
Now, we prove that this leads to a contradiction.

On the one hand, we have

cn(Bij)
n/p = cn(Ai)

nj = 1.

On the other hand, if vqij (Bij) > 0, then vqij (Φn(Bij)) = 0, a contradic-
tion; if vqij (Bij) < 0, then from vqij (Φn(Bij)) = vqij (Bij) · degΦn(x) and
p | degΦn(x), we have

p | vqij (Φn(Bij)),

a contradiction again. Hence, vqij (Bij) = 0.

Note that vqij (Φn(Bij)) > 0, i.e., qij |Φn(Bij). Computing the tame sym-
bol, we get

τqij (cn(Bij)
n/p) ≡ B

vqij (Φn(Bij))n/p

ij (mod qij).

Since cn(Bij)
n/p = 1, we have

B
vqij (Φn(Bij))n/p

ij ≡ 1 (mod qij).

From qij |Φn(Bij) | (Bn
ij − 1), we obtain Bn

ij ≡ 1 (mod qij). Hence

B
n/p
ij ≡ 1 (mod qij),

since gcd(n, vqij (Φn(Bij))n/p) = n/p. Therefore

0 ≡ Φn(Bij)Ψn,p(Bij) = Φp(B
n/p
ij ) ≡ Φp(1) ≡ p (mod qij),

i.e., qij | p, a contradiction. Thus, Claim 2 is proved.
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Now, let α1 = cn(Ai1). Then Claim 2 implies

〈αp1〉 ∩Gn(F ) = {1},
as required.

Next, we construct α2.
First, from Claim 1, we can choose a sufficiently large integer N1 such

that when i > N1 + i1, we have cn(Ai)
pj 6∈ 〈α1〉 for any j ∈ J.

Let

M ′i := MN1+i1+i, A′i := AN1+i1+i, p′i := pN1+i1+i.

The notation is as above.
As in (10.3), we construct sequences of elements:

(10.5) {cn(Ai1)pj · cn(A′i)
pj′ | i = 1, 2, . . .}, j, j′ ∈ J,

with p′i ‖Φn(A′i).
As in Claim 1, we can prove that for each fixed pair (j, j′) ∈ J × J, the

elements of (10.5) are all nontrivial and different from each other.
Assume that for each i, there exists a couple (j, j′) ∈ J× J such that

cn(Ai1)pj · cn(A′i)
pj′ ∈ Gn(F ).

Similar to the above discussion, there exists an infinite subset I ′ ⊆ N
and J ′ ⊆ J× J such that

cn(Ai1)pj · cn(A′i)
pj′ ∈ Gn(F ), i ∈ I ′, (j, j′) ∈ J ′,

cn(Ai1)pj · cn(A′i)
pj′ /∈ Gn(F ), i ∈ I ′, (j, j′) ∈ J× J− J ′.

Now, assume that

cn(Ai1)pj · cn(A′i)
pj′ = cn(B′ij), i ∈ I ′, (j, j′) ∈ J ′,

with B′ij ∈ F ∗. As above, we can prove that J ′ = ∅.
Hence, there exists i2 such that

cn(Ai1)pj · cn(Ai2)pj
′
/∈ Gn(F ) for any (j, j′) ∈ J× J.

Let α2 = cn(Ai2). Since i2 > N1 + i1, we have α2 /∈ 〈α1〉. So we get

〈αp1〉 ( 〈α
p
1, α

p
2〉, 〈αp1, α

p
2〉 ∩Gn(F ) = {1}.

Repeating the procedure, we can find α1, α2, . . . ∈ Gn(F ) such that

〈αp1〉 ( 〈α
p
1, α

p
2〉 ( . . . and 〈αp1, α

p
2, . . .〉 ∩Gn(F ) = {1}.

The proof is complete.
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