
ACTA ARITHMETICA

175.3 (2016)

Exponential sums involving the Möbius function
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1. Introduction and statement of results. Let µ(n) be the Möbius
function, e(x) = e2πix, k ≥ 1 an integer, and x real. The exponential sum

(1.1) Sk(x, α) =
∑
n≤x

µ(n)e(nkα)

was first estimated by Davenport [2] in 1937 by using Vinogradov’s elemen-
tary method. He proved that

(1.2) max
α∈[0,1]

|S1(x, α)| �A x(log x)−A for any A > 0.

Here and below, �A indicates that the implied constant depends at most
on A. For k ≥ 2, Hua [4] proved that

max
α∈[0,1]

|Sk(x, α)| �A x(log x)−A for any A > 0.

Now we consider estimating exponential sums under the following weak
Generalized Riemann Hypothesis (briefly GRH): for some 0 ≤ δ < 1/2 and
every Dirichlet character χ,

(1.3) L(s, χ) =

∞∑
n=1

χ(n)

ns
has no zeros in the half-plane σ > 1/2 + δ,

where s = σ+ it. For k = 1, the best result in this direction is due to Baker
and Harman [1], who showed in 1991 that for any ε > 0,

(1.4) max
α∈[0,1]

|S1(x, α)| �ε x
b+ε,
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where

b =


δ + 3/4 for 0 ≤ δ < 1/20,

4/5 for 1/20 ≤ δ < 1/10,

δ/2 + 3/4 for 1/10 ≤ δ < 1/2.

For k ≥ 2, Liu and Zhan [7] proved that for any k ≥ 2, ε > 0, under GRH,

max
α∈[0,1]

|Sk(x, α)| �ε x
ϕk+ε, where ϕk = 1− 1

22k−1
.

In this paper we combine the results of Ren [8], Kumchev [6], Wooley
[11] and Zhao [12] to improve the result of Liu and Zhan [7] when k ≥ 3.
Our main result is the following.

Theorem 1.1. For any k ≥ 3 and ε > 0, under weak GRH, we have

max
α∈[0,1]

|Sk(x, α)| �ε x
bk+ε,

where

(1.5) bk =


1− ρk + ε if 0 ≤ δ < 1/2− kρk,

1− 1
2k (1− 2δ) + ε if 1/2− kρk ≤ δ < 1/2− 2ρk,

1− 1−2δ
22k−1 + ε if 1/2− 2ρk ≤ δ < 1/2,

and

(1.6) ρk =

{
1

3·2k−1 if 3 ≤ k ≤ 7,
1

6k(k−2) if k ≥ 8,

Remark 1.2. When 0 ≤ δ < 1/2− kρk, the upper bound of Sk(x, α) is
independent of δ. In particular, when δ = 0, we get, under GRH,

max
α∈[0,1]

|Sk(x, α)| �ε x
φk+ε, where φk =

{
1− 1

3·2k−1 if 3 ≤ k ≤ 7,

1− 1
6k(k−2) if k ≥ 8;

this improves the result of Liu and Zhan [7] when k ≥ 3. For k = 2, we can
get a similar result, but comparing it with Liu and Zhan’s result we find
that we cannot do better in this case.

Notation. Throughout the paper, ε denotes a small positive real num-
ber, which may be different at each occurrence. For example, we may write

xεxε � xε.

Any statement in which ε occurs holds for each positive ε, and any implied
constant in such a statement is allowed to depend on ε. The letter p, with
or without subscripts, is reserved for prime numbers. We write (a, b) =
gcd(a, b), and we use m ∼M as an abbreviation for M < m ≤ 2M .
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2. Outline of the proof. Take

P1 = x1/2−δ, P2 = x1/2+δ, Q = xk+δ−1/2.

Since Sk(x, α) is of period 1 with respect to α, we only need to consider
α ∈ [1/Q, 1 + 1/Q]. By Dirichlet’s lemma on rational approximations, for
each α ∈ [1/Q, 1 + 1/Q], we can write

(2.1) α =
a

q
+ λ with (a, q) = 1, 1 ≤ a ≤ q, 1 ≤ q ≤ Q, |λ| ≤ 1

qQ
.

So [1/Q, 1 + 1/Q] can be divided into three disjoint sets

E1 =

{
α; α =

a

q
+ λ, (a, q) = 1, 1 ≤ q ≤ P1, |λ| ≤

1

qQ

}
,

E2 =

{
α; α =

a

q
+ λ, (a, q) = 1, P1 < q ≤ P2, |λ| ≤

1

qQ

}
,

E3 =

{
α; α =

a

q
+ λ, (a, q) = 1, P2 < q ≤ Q, |λ| ≤ 1

qQ

}
.

We have the following three propositions, which easily imply Theorem 1.1.

Proposition 2.1. Assume weak GRH and k ≥ 3. Then

(2.2) max
α∈E1

|Sk(x, α)| � x1−
1
2k

(1−2δ)+ε.

Proposition 2.2. Assume weak GRH and k ≥ 3. Then

(2.3) max
α∈E2

|Sk(x, α)| � xc+ε,

where

c =

{
4/5 if 0 ≤ δ < 1/10,

3/4 + δ/2 if 1/10 ≤ δ < 1/2.

Remark 2.3. When α ∈ E2, the upper bound of Sk(x, α) is independent
of k.

Proposition 2.4. Assume weak GRH and k ≥ 3. Then

(2.4) max
α∈E3

|Sk(x, α)| � xdk+ε,

where

dk =

{
1− ρk if 0 ≤ δ < 1/2− 2ρk,

1− 1−2δ
22k−1 if 1/2− 2ρk ≤ δ < 1/2,

and ρk is defined in (1.6).

3. Proof of Proposition 2.1. To prove Proposition 2.1, we use analytic
methods. We need the following lemmas.
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Lemma 3.1 (see [7, Lemma 2]). Let k ≥ 3 and α = a/q+λ with (a, q) = 1.
Then for any ε > 0,

Sk(x, α)� qηk+ε
∑
d|q

max
χq/d

∣∣∣ ∑
m≤x/d
(m,q)=1

µ(m)χ(m)e(mkdkλ)
∣∣∣,

where ηk = 1− 1/k.

Lemma 3.2 (see [10, Theorem 14.2]). Under weak GRH, we have

L−1(σ + it, χ)� qε(|t|+ 1)ε

for σ ≥ 1/2 + δ + ε and every Dirichlet character χ (mod q).

Lemma 3.3. Assume weak GRH and k ≥ 3. Then

(3.1) Sk(x, α)� qηkx1/2+δ+ε(1 + |λ|1/2xk/2),
where ηk is defined in Lemma 3.1.

Proof. By Lemma 3.1 we know that the conclusion will follow if we can
prove that for any ε > 0 and d | q, 1 < H ≤ x/d,

(3.2)
∑
m∼H

(m,q)=1

µ(m)χ(m)e(mkdkλ)� d−1/2−δx1/2+δ+ε(1 + |λ|1/2xk/2),

uniformly for all χ = χq/d.
Let I1 denote the left-hand side of (3.2), and

F (s, χ) = Fq(s, χ) =

∞∑
m=1

(m,q)=1

µ(m)χ(m)m−s, σ > 1,

H(s, χ) = Hq(s, χ) =
∏
p|q

(
1− χ(p)

ps

)−1
.

Then

(3.3) F (s, χ) = L−1(s, χ)H(s, χ).

By (3.3) we know that under weak GRH the function F (s, χ) is analytic in
the region Re(s) ≥ 1/2 + δ + ε for any ε > 0. Furthermore,

(3.4) H(s, χ)�
∏
p|q

(
1− 1
√
p

)−1
� qε, Re(s) ≥ 1/2 + δ + ε.

By Perron’s summation formula, for u ≤ x we have∑
m≤u

(m,q)=1

µ(m)χ(m) =
1

2πi

1+ε+iT�

1+ε−iT
F (s, χ)

us

s
ds+O

(
x1+ε

T
+ log x

)
.
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Take T = xk and shift the path of integration above to Re(s) = 1/2 + δ+ ε:∑
m≤u

(m,q)=1

µ(m)χ(m) =
1

2π

xk�

−xk
F (1/2+δ+ε+ it, χ)

u1/2+δ+ε+it

1/2 + δ + ε+ it
dt+O(xε).

Then

I1 =

H�

H/2

e(dkukλ)d
( ∑

m≤u
(m,q)=1

µ(m)χ(m)
)

=
1

2π

(dH)k�

−(dH)k

F (1/2 + δ + ε+ it, χ)

×
H�

H/2

u−1/2+δ+ε/2e

(
dkukλ+

t

2π
log u

)
du dt+O(|λ|(dH)k+ε + xε)

� d−1/2−δ
(dH)k�

−(dH)k

|F (1/2 + δ + ε+ it, χ)|

×
∣∣∣∣ (dH)k�

(dH)k/2k

v−1+1/(2k)+δ/k+ε/(2k)e

(
vλ+

t

2kπ
log v

)
dv

∣∣∣∣ dt
+O(|λ|(dH)k+ε + xε).

Since(
vλ+

t

2kπ
log v

)′
=
t+ 2kπλv

2kπv
�

min(dH)k/2k≤v≤(dH)k |t+ 2kπλv|
(dH)k

,

−
(
vλ+

t

2kπ
log v

)′′
=

t

2kπv2
� |t|

(dH)2k
,

by Lemma 3.2 and (3.4), we get

I1 � H1/2+δ+ε

(dH)k�

−(dH)k

|F (1/2 + δ + ε+ it, χ)|

×min

(
1√
|t|+ 1

,
1

min(dH)k/2k≤v≤(dH)k |t+ 2kπλv|

)
dt+O(|λ|(dH)k+ε+xε)

� H1/2+δ+ε

(dH)k�

−(dH)k

min

(
1√
|t|+ 1

,
1

min(dH)k/2k≤v≤(dH)k |t+ 2kπλv|

)
dt

+O(|λ|(dH)k+ε + xε).
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On noting that

|λ|(dH)k ≤ d−1/2|λ|1/2(dH)(k+1)/2,

it suffices now to show that

(3.5)

(dH)k�

−(dH)k

min

(
1√
|t|+ 1

,
1

min(dH)k/2k≤v≤(dH)k |t+ 2kπλv|

)
dt

� (1 + |λ|1/2(dH)k/2) log x.

Denote by I2 the left-hand side of (3.5). If |λ| > (dH)−k, then

I2 �
�

|t|≤2−kπ|λ|(dH)k

dt

|λ|(dH)k
+

�

4kπ|λ|(dH)k<|t|≤(dH)k

dt

|t|

+
�

2−kπ|λ|(dH)k<|t|≤4kπ|λ|(dH)k

dt√
|t|+ 1

� log x+ |λ|1/2(dH)k/2.

If |λ| ≤ (dH)−k, we have

I2 �
�

|t|≤4kπ

1dt+
�

4kπ<|t|≤(dH)k

dt

|t|
� log x.

This proves (3.5), and the result follows.

Proof of Proposition 2.1. Apply Lemma 3.3 on E1.

4. Proof of Proposition 2.2. Using an analytic method, Ren [8] ob-
tained a new type upper bound for exponential sums over primes which is
also true for exponential sums involving the Möbius function.

Lemma 4.1 (Ren (see [8, Theorem 1.1])). Fix k ≥ 1, and let βk =
1/2 + log k/log 2. Then

Sk(x, α)� (d(q))βk(log x)c
(
x1/2

√
q(1 + |λ|xk) + x4/5 +

x√
q(1 + |λ|xk)

)
.

Remark 4.2. As pointed out in [9], one can replace the middle term
x4/5 by x3/4+ε under GRH.

Proof of Proposition 2.2. Apply Lemma 4.1 on E2.

5. Proof of Proposition 2.4. Combining [6, Theorem 3] and [11, The-
orem 11.1] we get the following result.
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Lemma 5.1. Let k ≥ 4, let ρ = ρk be defined in (1.6) and suppose that

α satisfies (2.1) with Q = x
k2−2kρ
2k−1 . Then

(5.1) Sk(x, α)� x1−ρ+ε +
qεxLc√

q(1 + |λ|xk)
,

where the implied constant depends at most on k and ε.

The next result is due to Zhao [12]. When k = 3, he gives a better upper
bound for a larger range of Q. We can prove a similar result when k ≥ 4.

Lemma 5.2 (see [12, Lemma 8.5]). Suppose that α satisfies (2.1) and
x1/2 ≤ Q ≤ x5/2. Then

S3(x, α)� x1−1/12+ε +
q−1/6x1+ε√
(1 + x3|λ|)

.

Remark 5.3. Following the proof of Lemma 5.2, we can show that when
x1/2 ≤ Q ≤ x17/6−ε, Lemma 5.2 is also true. This will be used in our result.

Lemma 5.4. Let k ≥ 4, let ρ = ρk be as defined in (1.6) and suppose
that α satisfies (2.1) with x2ρ+ε ≤ Q ≤ xk−2ρ−ε. Then

(5.2) Sk(x, α)� x1−ρ+ε +
qεxLc√

q(1 + |λ|xk)
,

where the implied constant depends at most on k and ε.

Proof. For any α ∈ R, there exist b ∈ Z and r ∈ N with

(b, r) = 1, 1 ≤ r ≤ x
k2−2kρ
2k−1 and |rα− b| ≤ x−

k2−2kρ
2k−1 .

Hence

(5.3) Sk(x, α)� x1−ρ+ε +
rεxLc√

r(1 + |α− b/r|xk)
.

We assume that

(5.4) r ≤ x2ρ−ε and |α− b/r| ≤ r−1x2ρ−k−ε;
otherwise Sk(x, α)� x1−ρ+ε by (5.3). Combining (2.1) and (5.4), we have

|bq − ar| = |q(b− rα) + r(qα− a)| ≤ qr
∣∣∣∣ br − α

∣∣∣∣+ qr

∣∣∣∣aq − α
∣∣∣∣

≤ Qx2ρ−k−ε +
x2ρ−ε

Q
< 1,

provided that x2ρ+ε ≤ Q ≤ xk−2ρ−ε, hence a = b, q = r.

When δ is large, we cannot use Lemmas 5.2 and 5.4 for α ∈ E3, but we
can use the next lemma unconditionally.
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Lemma 5.5 (see [3, Theorem 1]). For k ≥ 3 and α satisfy (2.1) we have
unconditionally

|Sk(x, α)| � x1+ε
(

1

q
+

1

x1/2
+

q

xk

)22−2k

.

Remark 5.6. Lemmas 4.1, 5.1, 5.2, 5.4 and 5.5 in the relevant references
are about sums over primes. However, we can get the same bounds for our
Sk(x, α) by a similar argument with Heath-Brown’s identity for µ(n) instead
of one for Λ(n). In [5, Section 6.3] there is a similar argument, but it just
uses Vaughan’s identity and it is for short intervals. We therefore omit the
details.

Proof of Proposition 2.4. When 0 ≤ δ < 1/2− 2ρk, for k = 3, applying
Lemma 5.2 on E3 yields Proposition 2.4; for k ≥ 4, applying Lemma 5.4 on
E3, we get Proposition 2.4.

When 1/2 − 2ρk ≤ δ < 1/2, applying Lemma 5.5 on E3, we obtain
Proposition 2.4.
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