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1. Introduction. Throughout,

(1.1) n = m+ 1 > 2.

Given ξ = (ξ1, . . . , ξm) ∈ Rm with

(1.2) 1, ξ1, . . . , ξm linearly independent over Q,
German [1] defines α, resp. αt, as the supremum of the numbers θ such that
for every η < θ the inequalities

(1.3) |x| ≤ eq, |ξix− yi| ≤ e−ηq (i = 1, . . . ,m),

resp.

(1.4) |yi| ≤ eq (i = 1, . . . ,m), |ξ1y1 + · · ·+ ξmym − x| ≤ e−ηq,
have a solution (x, y1, . . . , ym) ∈ Zn \ {0} for every large q. Often α, αt are
denoted ω̂, ω̂∗ respectively, and it is well known that

(1.5) 1/m ≤ α ≤ 1, αt ≥ m.
In the context of (1.3), i.e. simultaneous approximation, German’s num-

bers m,n, which we denote by mG, nG for clarity, become 1,m respectively,
and a case of his Theorem 1 (see [1, Section 1.1]) yields αt ≥ (nG−1)/(1−α)
= (n− 2)/(1− α), i.e.

(1.6) n− 2 ≤ (1− α)αt.

In particular, α = 1 precisely when αt =∞.
In the context of (1.4), i.e. approximation involving a linear form, we

have mG = m, nG = 1, and αt ≥ 1, so that by reversing the roles of α, αt,
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German’s Theorem 1 yields α ≥ (1− (αt)−1)/(n− 2), i.e.

(1.7) n− 2 ≥ 1− (αt)−1

α
.

Let Λ = Λ(ξ) ⊆ Rn be the lattice of points

(x, ξ1x− y1, . . . , ξmx− ym),

where (x, y1, . . . , ym) runs through Zn. Let λ1(q), . . . , λn(q) be the successive
minima of Λ with respect to the box K(q) of points (ζ0, ζ1, . . . , ζm) with

|ζ0| ≤ emq, |ζi| ≤ e−q (i = 1, . . . ,m),

and set Li(q) = log λi(q). As pointed out in [4] and [5], the functions Li(q)
are continuous and piecewise linear with slopes 1 and −m, and

− log n! ≤ L1(q) + · · ·+ Ln(q) ≤ 0.

For 1 ≤ i ≤ n, set ϕi(q) = Li(q)/q and

(1.8) ϕi := lim inf
q→∞

ϕi(q), ϕi := lim sup
q→∞

ϕi(q).

In the present paper, we will show that (1.6), (1.7) are equivalent to the pair
of inequalities

(1.9) (n− 2)ϕn + ϕ1 ≥ −ϕ1ϕn ≥ (n− 2)ϕ1 + ϕn.

We will give a direct proof of these inequalities, and show that they are
best possible, so that (1.6), (1.7) are best possible as well. Observe that the
inequalities (1.9) go into each other by interchanging ϕ1, ϕn and reversing
inequalities. The case n = 3 gives ϕ1 + ϕ3 = −ϕ1ϕ3, which is Jarńık’s
identity in our present formulation.

2. The equivalence of German’s (1.6), (1.7) with (1.9). We have
seen in [4] that Λ(ξ) is proper when (1.2) holds, so that there are arbitrarily
large q with ϕ1(q) = ϕ2(q), yielding

2ϕ1(q) ≥ −(ϕ3(q) + · · ·+ ϕn(q))− log n!

q
≥ −(n− 2)−O(1/q),

hence

(2.1) ϕ1 ≥ −
n− 2

2
> −m.

With α = ω̂, αt = ω̂∗, we obtain (see [5, equations (1.8), (1.9)])

(1 + α)(m+ ϕ1) = (1 + αt)(1− ϕn) = n,

so that

(2.2) α =
1− ϕ1

m+ ϕ1

, αt =
m+ ϕn

1− ϕn
,
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where the second equation means that ϕn = 1 precisely when αt = ∞. In
this case (1.6) is true, and so is the first relation in (1.9) by (2.1).

We will now show that (1.6) is equivalent to the first relation in (1.9)
when ϕn < 1. By (1.6) and (2.2),

n− 2 ≤ n− 2 + 2ϕ1

m+ ϕ1

·
m+ ϕn

1− ϕn
or

(n− 2)(m+ ϕ1 −mϕn − ϕ1ϕn) ≤ (n− 2)m+ 2mϕ1 + (n− 2)ϕn + 2ϕ1ϕn,

which by (1.1) gives

−nϕ1ϕn ≤ n(n− 2)ϕn + nϕ1,

and hence the first inequality in (1.9).
By (2.2), (αt)−1, α−1 are like α, αt, but with the roles of ϕ1 and ϕn

interchanged. Therefore (1.7) yields

n− 2 ≥
n− 2 + 2ϕn

m+ ϕn
· m+ ϕ1

1− ϕ1

,

and eventually the second inequality in (1.9).

3. Applying Roy’s fundamental work. Let ∆ ⊆ Rn consist of the
points (α1, . . . , αn) with α1 ≤ · · · ≤ αn. Observe that Lξ = (L1, . . . , Ln)
with L1, . . . , Ln as in Section 1 is a map (0,∞)→ ∆.

We will now recall the definition of an (n, 0)-system as introduced in [5].
For convenience we will call it an n-system in what follows. It is a map
P : (η0,∞) → ∆ for some η0 ≥ 0, where P = (P1, . . . , Pn) with each
Pi continuous and piecewise linear with slopes among 1,−m, with P1(q) +
· · ·+ Pn(q) = 0 and with a further condition formulated below.

Numbers q where some Pi changes slopes are called division numbers. We
will consider intervals I = [q, q′] or I = [q,∞) whose endpoints are division
numbers, but points in their interior are not. In such an interval I, m of
the functions have slope 1, and one function has slope −m. Put differently,
if an inclining line segment is said to be of multiplicity l if it is part of the
graph of l functions Pj , Pj+1, . . . , Pj+l−1, then the combined graph of P in I
consists of m inclining line segments of slope 1 (counted with multiplicity)
and one declining line segment of slope −m. The inclining (resp. declining)
line segments in adjacent intervals I which lie on a common line combine to
form longer line segments called inclining (resp. declining) strands.

A number q where one declining strand ends and another one starts is
called a switch number. In fact for such q there are two integers u, v such that
at (q, Pu(q)) (resp. (q, Pv(q))) a declining strand begins (resp. a declining
strand ends) and where an inclining strand ends or the multiplicity of its
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line segments decreases (resp. an inclining strand begins or the multiplicity
of its line segments increases). We require that Pu has slope −m to the right
of q, and that Pv has slope −m to the left of q. For an n-system there is the
extra condition that always u > v. A switch number with given (u, v) is said
to be of type

(
u
v

)
. As a consequence, if P1 has a local maximum at q, then

(q, P1(q)) cannot be the endpoint of a strand, and therefore P1(q) = P2(q).

Theorem 3.1.

(a) For each ξ ∈ Rm there is an n-system P : (η0,∞) → ∆ such that
P − Lξ is bounded on (η0,∞).

(b) Given an n-system P : (η0,∞)→ ∆ where q−Pn(q) tends to infinity
with q, there exixts some ξ = (ξ1, . . . , ξm) with 1, ξ1, . . . , ξm linearly
independent over Q such that P − Lξ is bounded on (η0,∞).

This theorem will now be deduced from Roy’s work [3]. We define a
dual n-system P∗ : (η0,∞) → ∆ exactly like an n-system, except that its
components P ∗i will have slopes −1 and m. Suppose

(3.1) P = (P1, . . . , Pn), P∗ = (−Pn, . . . ,−P1).

Then it is clear that P is an n-system precisely when P∗ is a dual n-system.
A switch number of type

(
u
v

)
for P will be a switch number of type

(
n+1−v
n+1−u

)
for P∗.

Let Λ∗(ξ) be the lattice reciprocal to Λ(ξ), consisting of the points

(x− ξ1y1 − · · · − ξmym, y1, . . . , ym) with (x, y1, . . . , ym) ∈ Zn,
and let K∗(q) consist of the points (ζ0, ζ1, . . . , ζm) ∈ Rn with

(3.2) |ζ0| ≤ e−mq, |ζi| ≤ eq (i = 1, . . . ,m).

It is well known that if λ1(q), . . . , λn(q) are the successive minima of Λ(ξ)
with respect to K(q), and λ∗1(q), . . . , λ

∗
n(q) are the successive minima of Λ∗(ξ)

with respect to K∗(q), then the quotients λi(q)/λ
∗
n+1−i(q) are bounded from

above and below by positive constants depending only on n. So if we set
L∗i (q) = log λ∗i (q) (i = 1, . . . , n), the map

(3.3) (L1, . . . , Ln)− (−L∗n, . . . ,−L∗1)
is bounded on (0,∞). If q − Ln(q) tends to infinity with q, then so does
q + L∗1(q).

We define a Roy n-system to be a map PR : (q0,∞) → ∆ like an n-
system, but with components PRi having slopes 0 and 1, and with PR1 (q) +
· · ·+ PRn (q) = q. If

(3.4) PRi (q) = q/n+ P ∗i (q/n) (i = 1, . . . , n),

then PR = (PR1 , . . . , P
R
n ) is a Roy n-system on (nη0,∞) precisely when

P∗ = (P ∗1 , . . . , P
∗
n) is a dual n-system on (η0,∞). Let KR(q) be the box of
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points ζ = (ζ0, ζ1, . . . , ζm) with

(3.5) |ζ0| ≤ e−q, |ζi| ≤ 1 for i = 1, . . . ,m.

Then K∗(q) = eqKR(nq). Therefore the minima λRi (q) of Λ∗(ξ) with respect
to KR(q) have λ∗i (q) = e−qλRi (nq), hence λRi (q) = eq/nλ∗i (q/n), and LRi (q) =
log λRi (q) is given by

(3.6) LRi (q) = q/n+ L∗i (q/n), i = 1, . . . , n.

The proof of Theorem 3.1 can now easily be finished.
(a) Given u = (u0, u1, . . . , um) 6= 0, we define a lattice Λ∗(u) to consist of

points (u0x− u1y1 − · · · − umym, y1, . . . , ym) with x = (x, y1, . . . , ym) ∈ Zn.
Thus Λ∗(ξ) = Λ∗(u) with u = (1, ξ1, . . . , ξm). Let û := ‖u‖−1u be the
corresponding normalized vector, where ‖ · ‖ denotes the Euclidean norm.
Clearly, the minima defined in terms of û rather than u are the same except
for a bounded factor, and hence their logarithms LRi are only changed by
bounded amounts. Therefore applying Roy’s Theorem 1.3 from [3] to û, we
obtain a Roy n-system PR with LR − PR bounded on some range (η0,∞).
(Note that Roy has |ζ0| ≤ e−q, ‖(ζ1, . . . , ζm)‖ ≤ 1 in place of (3.5), but this
does not matter).

Given PR, we now define P∗ by (3.4) and note that L∗−P∗ is bounded.
Finally, given P∗, we obtain P by (3.1) where L − P is bounded since the
expression in (3.3) is bounded.

(b) Let P be an n-system and define P∗, PR by (3.1), (3.4), so that
PR is a Roy n-system. By Roy’s Theorem 8.1 in [3] there is some u of
norm 1 such that LRu −PR is bounded, where LRu is defined in terms of the
lattice Λ∗(u). By (3.1) and (3.4), L∗u − P∗ is bounded. If the components
u0, u1, . . . , um were linearly dependent, say c0u0 + c1u1 + · · · + cmum = 0
with c = (c0, c1, . . . , cm) ∈ Zn \ {0}, then

(u0c0 − u1c1 − · · · − cmum, c1, . . . , cm) = (0, c1, . . . , cm)

is in Λ∗(u) and lies in ce−qK∗(q) with c = max{|c1|, . . . , |cm|), so that
λ∗1(q)� e−q, and hence L∗1(q) + q is bounded, which was ruled out.

Therefore u0, u1, . . . , um are linearly independent, and L∗u − P∗, hence
L∗ξ − P∗, is bounded, with ξ = (u1/u0, . . . , um/u0). In turn, by (3.1) and
the boundedness of (3.3), Lξ −P is bounded. Here 1, ξ1, . . . , ξm are linearly
independent over Q.

4. Proof of (1.9). Given ξ, let P : (η0,∞) → ∆ be the n-system of
Theorem 3.1 with Lξ − P bounded. We set ϕi(q) := Pi(q)/q, i = 1, . . . , n,
and note that the quantities ϕi, ϕi defined by (1.8) in terms of P are the
same as the quantities defined in terms of Lξ. Therefore it will be enough
for us to deal with n-systems. If ϕ1 = −m for such a system, then it is easily
seen that ϕi = ϕi = 1 for i = 2, . . . , n. On the other hand, we have
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Theorem 4.1. Let P be an (n, 0)-system with ϕ1 > −m. Then we have

(4.1) ϕ1 ≥ −
n− 2

2

and (1.9).

We will first establish (4.1) and the first relation in (1.9), which can be
rewritten as

(4.2) ϕ1 ≥ F (ϕn) and also ϕn ≥ G(ϕ1),

with F : (0, 1)→
(
−n−2

2 , 0
)

and its inverse G :
(
−n−2

2 , 0
)
→ (0, 1) given by

(4.3) F (x) = −(n− 2)x

1 + x
, G(x) = − x

n− 2 + x
.

The combined graph of an n-system has inclining line segments of slope 1
and declining line segments of slope −m whose multiplicities sum up to m.
A number f will be called a lower critical number if P1 has a local maximum
at f , and a number c will be called an upper critical number if Pn has a
local minimum at c. If f is a lower critical number, then P1(f) = P2(f) and
from the point (f, P1(f)) will emanate a declining line segment to the left
and right, and also an inclining line segment of some multiplicity l ≥ 2 to
the left and right. If c is an upper critical number, then Pn−1(c) = Pn(c),
with the same kind of line segments emanating from (c, Pn(c)).

Can there be a number which is both a lower and upper critical number?
If c = f is such a number, then declining line segments will emanate from
both sides of (c, Pn(c)) as well as of (c, P1(c)). But there cannot be declining
line segments whose projections on the q-axis contain a common interval of
positive length. Therefore the line segments emanating from (c, Pn(c)) and
(c, P1(c)) are the same, so that P1(c) = Pn(c) = 0. If there are arbitrarily
large numbers c with that property, then ϕ1 = 0 = ϕn and (4.1), (1.9) are
trivially true. We may therefore suppose

−(n− 1) ≤ P1(q)

q
< 0 <

Pn(q)

q
≤ 1

for large q, with no ambivalent critical numbers in this range.

If only finitely many lower critical numbers exist, then P1 will decrease
with slope −m from some point on, so that ϕ1 = −m = −(n−1), against our
hypothesis. Therefore there will be infinitely many lower critical numbers f .
Such a number has 2P1(f) + P3(f) + · · ·+ Pn(f) = 0, hence

(4.4)
P1(f)

f
≥ −(n− 2)

2
,

and (4.1) follows. If only finitely many upper critical numbers exist, then
ϕ1 = 1, and the first relation in (1.9) holds. We may therefore assume that
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there are infinitely many upper as well as lower critical numbers. Then for
large q, say q > q0, we have

(4.5) −mq < P1(q) < 0 < Pn(q) < q.

Lemma 4.2. Suppose c < f with c an upper and f a lower critical num-
ber. Suppose there is no critical number between c and f . Then

(4.6) (n− 2)
Pn(c)

c
+
P1(f)

f
≥ −Pn(c)

c

P1(f)

f
.

Observe that (4.6) may be written as

(4.7)
P1(f)

f
≥ F

(
Pn(c)

c

)
and also as

Pn(c)

c
≥ G

(
P1(f)

f

)
.

Proof of Lemma 4.2. Rising as well as declining line segments will em-
anate from the right of (c, Pn(c)). Therefore no declining line segment can
emanate from the right of (c, P1(c)), and a rising segment will. Also there
will be a rising line segment to the left of (f, P1(f)). Since there is no critical
number between c and f , it easily follows that there is a rising line segment
connecting (c, P1(c)) and (f, P1(f)). Thus P1 has slope 1 in [c, f ]. An ana-
loguous argument shows that Pn has slope 1 in this interval. If some Pi rises
(resp. declines) in this range, then so does ϕi, by virtue of (4.5).

Set u1 = P1(c), un = Pn(c) and u = (P2(c) + · · · + Pn−2(c))/(n − 3)
when n > 3, but u = 0 when n = 3. Since P1(c) + · · · + Pn(c) = 0 and
Pn−1(c) = Pn(c), we have

(4.8) u1 + (n− 3)u+ 2un = 0.

Points (q, w), (q′, w′) with q ≤ q′ which lie on (possibly distinct) declining
line segments have w′+mq′ ≥ w+mq, and therefore P1(f) +mf ≥ Pn(c) +
mc, which yields

m(f − c) ≥ Pn(c)− P1(f) = Pn(c)− P1(c)− (f − c) = un − u1 − (f − c),
hence

(4.9) n(f − c) ≥ un − u1.
Let (g, v1) be the point of intersection of the line of slope 1 through

(c, u1), and the line of slope −m through (c, un), as depicted in Figure 1.
Setting D = g − c, we have

(4.10) v1 = u1 +D and also v1 = un −mD,
hence

(4.11) un − u1 = nD.

Now (4.8) yields (n − 3)u + 3un = nD, so un ≥ D, and (n − 2)un + v1 =
(n− 1)un −mD ≥ 0 by (4.10), i.e.

(4.12) (n− 2)Pn(c) + P1(g) ≥ 0.
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F

(c, un)

(c, u)

(c, u1)

(g, vn)

(g, v)

(g, v1)

(f, P1(f))

D

Fig. 1

As a consequence, v1 = −αun with 0 < α ≤ n− 2, so that

(4.13) n− 2 ≥ mα

1 + α
≥ α.

Moreover,

(4.14) mD = un − v1 = −v1(1 + 1/α) = −v1(1 + α)/α.

We obtain

(n− 2)
Pn(c)

c
+
P1(g)

g
= (n− 2)

un
c

+
v1
g

=
(n− 2)ung + v1c

cg

=
(n− 2)ung − αunc

cg
=
Aun
cg

with

A := (n− 2)g − αc ≥ mα

1 + α
(g − c) =

mα

1 + α
D = −v1

by (4.13) and (4.14), so that

(4.15) (n− 2)
Pn(c)

c
+
P1(g)

g
≥ −v1un

cg
= −P1(g)

g

Pn(c)

c
.

But g ∈ [c, f ], and P1, hence P1(q)/q, increases in this interval, so that

P1(f)

f
≥ P1(g)

g
≥ F

(
Pn(c)

c

)
,

giving the first relation in (4.7), and Lemma 4.2 is proved.
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In the proof of the lemma we dealt only with the part of the combined
graph in the interval [c, f ]. But to make sense of c, f being critical numbers,
it is better to think of an open interval containing [c, f ]. In what follows we
will deal with a combined graph in an open interval satisfying all the usual
properties including (4.5).

We will now generalize Lemma 4.2. We will no longer require that there
are no upper critical numbers between c and f .

Lemma 4.3. Suppose c < f with c an upper and f a lower critical num-
ber. Suppose there is no lower critical number between c and f . Then (4.6)
holds.

Proof. We will proceed by induction on the number l of upper critical
numbers between c and f . The case l = 0 is true by Lemma 4.2. Assuming
the truth for l, where l ≥ 0, we will now establish the case of l + 1 upper
critical numbers

c < cl < cl−1 < · · · < c1

with c1 < f . By the induction hypothesis,

(4.16)
Pn(cl)

cl
≥ G

(
P1(f)

f

)
.

When Pn(c)/c ≥ Pn(cl)/cl, then Pn(c)/c ≥ G(P1(f)/f), hence (4.7). But
sometimes Pn(c)/c < Pn(cl)/cl, so that we need a more intricate argument.
By the same reasoning as for Lemma 4.2, P1 increases with slope 1 in [c, f ].
Set

(4.17) R(q) = (P2(q) + · · ·+ Pn−1(q))/(n− 2),

so that R will have slopes 1 and −2/(n−2). Also set ti = Pi(cl) (1 ≤ i ≤ n),
t = R(cl), so that t1 + (n− 2)t+ tn = 0.

The unique maximum of Pn in [c, cl] will be assumed at a number b,
c < b < cl. Write sn = Pn(b), s = R(b). Since Pn decreases with slope −m
in [b, cl], and R increases with slope 1 in this interval, we have sn > tn, s < t.

Let (a, r) be the point of intersection of the line L of slope 1 through
(b, sn), and the line of slope −2/(n − 2) through (b, s). This point (a, r) is
not necessarily on the graph G. Figure 2 may be helpful.

The point (c, Pn(c)) certainly lies on L. We claim that, as indicated in
the figure, a ≤ c ≤ b. The upper bound is clear. We also know that P1 has
slope 1 on [c, f ], and that by construction Pn has slope 1 on [c, b]. So P1 and
Pn have both slope 1 on [c, b], and therefore R has constant slope −2/(n−2)
on [c, b]. Since by (4.17) it is clear that R ≤ Pn, this implies that a ≤ c,
which gives the lower bound. Moreover,

(n− 1)r = Pn(b)− (b− a) + (n− 2)
(
R(b) + (2/(n− 2))(b− a)

)
= (P2(b) + · · ·+ Pn(b)) + (b− a) > 0,
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(cl, t)

(cl, tn)

cl

(a, r)
(a0, r0)

(b, sn)

(c, Pn(c))

a c b

(b, s)

Fig. 2

hence r > 0, and r ≤ a since (a, r) lies on the line L through (b, Pn(b)).
Thus a ≥ r > 0.

Let y = S(q) be the equation of L, so that S(q) = Pn(c) + q − c =
q + Pn(c)− c. Here Pn(c) < c. Therefore S(q)/q will increase, yielding

(4.18)
Pn(c)

c
=
S(c)

c
≥ S(a)

a
=
r

a
.

Let (a0, r0) be the point of intersection of the line of slope 1 through
(cl, tn) and the line of slope −2/(n− 2) through (cl, t) (see Fig. 2 again).

If y = S(q) is the equation of the combined two line segments at the
top of Figure 2 connecting (a, r) and (cl, tn), and y = T (q) the equation of
the combined line segments at the bottom connecting (a, r) and (cl, t), then
S + (n− 2)T has slope −1 in [a, cl]. Therefore

mr = S(a) + (n− 2)T (a) = S(cl) + (n− 2)T (cl) + cl − a
= tn + (n− 2)t+ cl − a.

Similarly, mr0 = tn + (n− 2)t+ cl − a0. Since a < a0, we obtain r > r0 and
r/a > r0/a0. Therefore, in view of (4.18), it will suffice to show that

(4.19)
r0
a0
≥ G

(
P1(f)

f

)
.

When t = tn (which is always true if n = 3), the points (cl, t), (cl, tn), (a0, r0)
are the same, so that r0/a0 = tn/cl = Pn(cl)/cl, and (4.7), (4.6) is a con-
sequence of (4.16). When t < tn, we will construct a graph G′ in an open
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interval containing [a0, f ]. This graph will coincide with G for q ≥ cl. The
fun part will be for q ≤ cl.

When t < tn, there will be some k, 2 ≤ k ≤ n − 2, with tn = tn−1 =
· · · = tk+1 and tk+1 > tk. We set (αk+1, sk+1) = (cl, tn).

(cl, tk−1)

(cl, t2)

(cl, tk)

(αk, sk)

(αk+1, sk+1) = (cl, tn)

(α3, s3)

(αk−1, sk−1)

(α2, s2) = (a0, r0)

P ′
2

P ′
3

P ′
k

P ′
k−1

L

Fig. 3

As shown in Figure 3, let (αk, sk) be the intersection of the line L of
slope 1 through (cl, tn) and the line Lk of slope −m through (cl, tk). In
[αk, cl] = [αk, αk+1] the graph of P ′k will be the line segment on Lk between
(αk, sk) and (cl, tk), so that P ′k has slope −m. The P ′i with i 6= k will have
slope 1. Observe that P ′k+1(q) = · · · = P ′n(q) for q ∈ [αk, cl], and their graph
is a rising line segment of multiplicity n − k. Also note that cl is a switch
number for G′ of type

(
k+1
k

)
.

(αk−1, sk−1) will be the point of intersection of L and the line Lk−1 of
slope −m through (αk, P

′
k−1(αk)). On [αk−1, αk], P

′
k−1 will have slope −m,

and the P ′i with i 6= k − 1 will have slope 1. Continuing in this way we
construct αk−2, sk−2, P

′
k−2, . . . , α2, s2, P

′
2. We will have

P ′2(α2) = · · · = P ′n(α2) = s2.

Now P ′1, P
′
n have slope 1 in [α2, cl], and R′ = (P ′2 + · · ·+ P ′n−1)/(n− 2) has

slope −2/(n− 2). Therefore (α2, s2) = (a0, r0).
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We have tn = Pn(cl) < cl, and since L has slope 1, also r0 < a0. We now
extend G′ a little to the left of a0, with P ′n of slope −m, each P ′i with i 6= n
of slope 1, but little enough to guarantee that still Pn(q) < q throughout G′.

The graph G′ satisfies all the usual conditions, including (4.5). The num-
ber a0 = s2 is an upper extreme number for G′, but cl is not. Therefore we
may apply our induction hypothesis for l − 1 to P ′n(a0)/a0 and obtain

r0
a0

=
P ′n(a0)

a0
≥ G

(
P1(f)

f

)
,

i.e. (4.19), hence (4.7), (4.6). Lemma 4.3 is proved.

The proof of the first inequality in (1.9) will now be easily finished. There
are infinitely many upper as well as lower critical numbers, hence infinitely
many pairs c < f as in Lemma 4.2. Let c0 < f0 be such a pair with c0 > q0,
and c0 < f0, c1 < f1, . . . with c0 < f0 < c1 < f1 < · · · the sequence of such
pairs with c > q0. There may be critical numbers between fi−1 and ci, but
there will be a number hi, fi−1 < hi < ci, with no upper critical numbers in
[fi−1, hi], and no lower critical numbers in [hi, ci].

Pn

Pn

P1

P1

ci fici1 fi1ci2 fi2ci3 fi3

Fig. 4

Let ϕn,i be the minimum of ϕn(q) over the numbers in [hi, hi+1], i.e. the
minimum of ϕn(q) over the critical numbers in [hi, ci]:

min{ϕn(cil), . . . , ϕn(ci1), ϕn(ci)},
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where cil, . . . , ci1 are the numbers formerly denoted by cl, . . . , c1. Let ϕ1,i be
the maximum of ϕ1(q) over q ∈ [hi, hi+1], so that

ϕ1,i = max{ϕ1(fi), ϕ1(fi1), . . . , ϕ1(cfil′)}
in obvious notation. Then

ϕn = lim inf
i→∞

ϕn,i ≤ lim inf
i→∞

ϕn(ci),(4.20)

ϕ1 = lim sup
i→∞

ϕ1,i ≥ lim sup
i→∞

ϕ1(fi).(4.21)

Since ϕn,i ≥ G(ϕ1(fi)) by Lemma 4.3, and G is decreasing, we have

ϕn ≥ lim inf G(ϕ1(fi)) = G(lim supϕ1(fi)) ≥ G(ϕ1),

hence the first inequality in (1.9).
It remains for us to prove the dual inequality, i.e. the second inequality

in (1.9), which may also be written as

ϕ1 ≤ G(ϕn).

It will follow from (4.20), (4.21) once we establish

(4.22) ϕ1,i ≤ G(ϕn(ci)) (i = 1, 2, . . .).

Let c < f be as in Lemma 4.2, and set w1 = P1(f), wn = Pn(f) and

w = (P3(f) + · · ·+ Pn−1(f))/(n− 3) when n > 3,

but w = 0 when n = 3. Reflection on a point (a, 0) with c < a < f will
reverse the roles of (c, P1(c)), . . . , (c, Pn(c)) and (f, Pn(f)), . . . , (f, P1(f)),
and we obtain 2w1 + (n− 3)w + wn = 0 in place of (4.8). We define (g, vn)
to be the point of intersection of the line of slope 1 through (f, wn) and the
line of slope −m through (f, w1). To stress the duality we set D := g − f ,
and note that D < 0. Proceeding in a dual way to the one in the proof
of Lemma 4.2, we obtain c ≤ g < f , vn = Pn(g), as well as w1 ≤ D and
(n− 2)w1 + vn ≤ 0, i.e.

(n− 2)P1(f) + Pn(g) ≤ 0,

in analogy to (4.12).
Next, vn = −αw1 with 0 < α ≤ n− 2, hence again (4.13). On the other

hand, mD = −vn(1 + α)/α in place of (4.14). We obtain

(n− 2)
w1

f
+
vn
g

=
(n− 2)w1g + vnf

fg
=

(n− 2)w1g − αfw1

fg
=
Aw1

fg
,

with

A := (n− 2)g − αf > mα

1 + α
(g − f) =

mα

1 + α
D = −vn.

Therefore

(n− 2)
P1(f)

f
+
Pn(g)

g
≤ −P1(f)

f

Pn(g)

g
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in analogy to (4.15). As a consequence,

P1(f)

f
≤ G

(
Pn(g)

g

)
≤ G

(
Pn(c)

c

)
since Pn(c)/c ≤ Pn(g)/g and G is decreasing. By the method of proof
of Lemma 4.3, but reversing left and right, we also obtain P1(fij)/fij ≤
G(Pn(ci)/ci) for the numbers fij occurring in Figure 4, and (4.22) follows.

5. The inequalities in (1.9) are best possible. An n-system P will
be said to be invariant if it is invariant under dilation by some factor ρ > 1.

We now begin with the first inequality in (1.9). By Theorem 3.1 it will
suffice to construct for every X with 0 < X < 1 an invariant n-system P
such that

(5.1) ϕn = X, ϕ1 = F (X) = −(n− 2)X

1 +X
,

for then ϕ1 = F (ϕn) so that the first part of (4.2) holds with equality. The
graph G will be as follows. The number q = 1 will be an upper critical
number with P2(1) = · · · = Pn(1) = X, so that a declining as well as an
inclining line segment of multiplicity n − 2 pass through (1, X). Moreover,
P1(1) = −mX = −(n − 1)X. In the interval [1, 1 + X], P2 declines with
slope −m, the Pi with i 6= 2 incline.

We now pick a number δ > 0 to be specified later. In [1 +X, 1 +X + δ],
P1 will decline, each Pi with i 6= 1 will incline. Setting s2 = 1 + X + δ, we
have

P2(s2) = −mX +X + δ = −(n− 2)X + δ,

P3(s2) = · · · = Pn(s2) = P2(s2) + nX = 2X + δ.

For 2 < j ≤ n we set sj = s2 + (j − 2)X. In the interval [sj , sj+1], where
2 ≤ j < n, Pj+1 will decline, but Pi with i 6= j+1 will incline. For 2 < j < n,

P2(sj) = P3(sj) = · · · = Pj(sj) = P2(s2) + (j − 2)X,

Pj+1(sj) = Pj+2(sj) = · · · = Pn(sj) = P2(sj) + nX,

and moreover,

P2(sn) = · · · = Pn(sn) = P2(s2) + (n− 2)X = δ.

Set ρ = sn = s2 + (n− 2)X = 1 + (n− 1)X + δ, and let G1 be the graph
in [1, ρ] we just constructed. Figure 5 shows this construction in the case
n = 5.

We want to set

G =
⋃
t∈Z

ρtG1,
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X

X δ

1 s2 s3 s4 ρ = s5
P2P2

P3

P4

P5
P3 = P4 = P5

P1

1 +X

Fig. 5

so that G is invariant with factor ρ. For this it is necessary that G at q = ρ
is, up to the factor ρ, as at q = 1. So we need

δ

ρ
=
Pn(ρ)

ρ
=
Pn(1)

1
= X,

i.e. δ = Xρ = X(1 +mX + δ), hence

δ =
X +mX2

1−X
.

We indeed have ϕn = X and

ϕ1 =
P1(1 +X)

1 +X
=
−mX +X

1 +X
= −(n− 2)X

1 +X
,

giving (5.1).
It remains to show that the second inequality in (1.9) is best possible as

well. It will suffice to see that for every Y with 0 < Y < 1, there exists an
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invariant n-system P with

(5.2) ϕn = Y, ϕ1 = G(Y ) = − Y

n− 2 + Y
.

It will be convenient to set X := Y/(n− 2), so that (5.2) becomes

(5.3) ϕn = (n− 2)X, ϕ1 = − X

1 +X
.

As before, we construct an appropriate graph G. The number q = 1 will
be an upper critical number with Pn−1(1) = Pn(1) = (n − 2)X, so that a
declining as well as an inclining line segment of multiplicity 1 pass through
(1, (n − 2)X). Moreover, P1(1) = · · · = Pn−2(1) = −2X. In the interval
[1, 1 +X], Pn−1 declines with slope −m, the Pi with i 6= n− 1 incline.

We again pick a number δ to be specified later. In [1 + X, 1 + X + δ],
P1 will decline, each Pi with i 6= 1 will incline. Setting s2 = 1+X+ δ, we get

P1(s2) = −X − (n− 1)δ.

We set sj = s2 + (j − 2)δ for 2 < j < n, but sn = sn−1 + X. In the
interval [sj , sj+1], where 2 ≤ j < n − 1, Pj will decline, each Pi with i 6= j
will incline. But in [sn−1, sn], Pn will decline and Pi with i < n will incline.
Observe that

Pn−1(sn) = P1(1 +X) + (n− 2)δ +X = (n− 2)δ,

Pn(sn) = Pn(sn−1)−mX = (n− 2)X +X + (n− 2)δ −mX = (n− 2)δ,

so that Pn−1(sn) = Pn(sn) as in Figure 6, which deals with the case n = 5.
We have

P1(sn) = · · · = Pn−2(sn) = P1(s2) + (n− 3)δ +X = −2δ.

Set ρ = sn = s2 + (n− 3)δ +X = 1 + 2X + (n− 2)δ, and let G2 be the
graph in [1, ρ] we just constructed.

In order to obtain an invariant graph with factor ρ by setting

G =
⋃
t∈Z

ρtG2,

it is necessary that G at q = ρ is, up to the factor ρ, like at q = 1. So we
need −2δ

ρ
=
P1(ρ)

ρ
=
P1(1)

1
= −2X,

i.e. (1 + 2X + (n− 2)δ)X = δ, hence

δ =
X + 2X2

1− (n− 2)X
.

Then we have ϕn = (n− 2)X and

ϕ1 =
P1(1 +X)

1 +X
=
−2X +X

1 +X
= − X

1 +X
,

and hence (5.3).
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−2X

X

(n− 2)X

δ

1 s2 s3 s4 ρ = s5

P2

P3

P4

P5

P1 = P2 = P3

P1

P4(s5) = P5(s5)

Fig. 6
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