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1. Introduction. Throughout the present paper, the height H(P ) of a
complex polynomial P (X) is the maximum of the moduli of its coefficients,
and the height H(α) of an algebraic number α is the height of its minimal
polynomial over Z. For an integer n ≥ 1, the exponents of Diophantine
approximation wn, w∗n, ŵn, and ŵ∗n measure the quality of approximation
to real numbers by algebraic numbers of degree at most n. They are defined
as follows.

Let ξ be a real number. We denote by wn(ξ) the supremum of the real
numbers w for which

0 < |P (ξ)| ≤ H(P )−w

has infinitely many solutions in polynomials P in Z[X] of degree at most n,
and by ŵn(ξ) the supremum of the real numbers w for which the system

0 < |P (ξ)| ≤ H−w, H(P ) ≤ H

has a solution P in Z[X] of degree at most n, for all large values of H.

Likewise, we denote by w∗n(ξ) the supremum of the real numbers w for
which

0 < |ξ − α| ≤ H(α)−w−1

has infinitely many solutions in algebraic numbers α of degree at most n,
and by ŵ∗n(ξ) the supremum of the real numbers w for which the system

0 < |ξ − α| ≤ H(α)−1H−w, H(α) ≤ H

is satisfied by an algebraic number α of degree at most n, for all large values
of H.
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It is easy to check that every real number ξ satisfies

w1(ξ) = w∗1(ξ) and ŵ1(ξ) = ŵ∗1(ξ).

Furthermore, if n is a positive integer and ξ a real number which is not
algebraic of degree at most n, then Dirichlet’s Theorem implies that

(1.1) wn(ξ) ≥ ŵn(ξ) ≥ n.

By combining (1.1) with the Schmidt Subspace Theorem, we can deduce
that, for all positive integers d, n, every real algebraic number ξ of degree d
satisfies

wn(ξ) = ŵn(ξ) = w∗n(ξ) = ŵ∗n(ξ) = min{n, d− 1};

see [6, Theorem 2.4]. Thus, we may restrict our attention to transcendental
real numbers and, in what follows, ξ will always denote such a number.
Furthermore, in the sense of Lebesgue measure, almost all real numbers ξ
satisfy

wn(ξ) = ŵn(ξ) = w∗n(ξ) = ŵ∗n(ξ) = n for n ≥ 1.

The survey [5] gathers the known results on the exponents w∗n, ŵ
∗
n, wn, ŵn,

along with some open questions; see also [4, 22].

A central open problem, often referred to as the Wirsing conjecture
[23, 4], asks whether every transcendental real number ξ satisfies w∗n(ξ) ≥ n
for every integer n ≥ 2. It has been solved by Davenport and Schmidt [7]
for n = 2 (see also [13]), but remains wide open for n ≥ 3. In this direction,
Bernik and Tsishchanka [3] established that

(1.2) w∗n(ξ) ≥ n+
√
n2 + 16n− 8

4

for every integer n ≥ 3 and every transcendental real number ξ. The lower
bound (1.2) was subsequently slightly refined by Tsishchanka [21]; see [4]
for additional references.

Among the known relations between the exponents w∗n, ŵ
∗
n, wn, ŵn, let

us mention that Schmidt and Summerer [19, (15.4′)] used their deep, new
theory of parametric geometry of numbers to show that

(1.3) wn(ξ) ≥ (n− 1)
ŵn(ξ)2 − ŵn(ξ)

1 + (n− 2)ŵn(ξ)

for n ≥ 2 and every transcendental real number ξ. This extends an earlier
result of Jarńık [10] which deals with the case n = 2. For n = 3 Schmidt
and Summerer [20] established the better bound

(1.4) w3(ξ) ≥
ŵ3(ξ) · (

√
4ŵ3(ξ)− 3− 1)

2
.
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In 1969, Davenport and Schmidt [8] proved that every transcendental
real number ξ satisfies

(1.5) 1 ≤ ŵ∗n(ξ) ≤ ŵn(ξ) ≤ 2n− 1,

for every integer n ≥ 1 (the case n = 1 is due to Khintchine [11]). The
stronger inequality

(1.6) ŵ2(ξ) ≤
3 +
√

5

2

was proved by Arbour and Roy [2]; it can also be obtained by a direct
combination of another result of [8] with a transference theorem of Jarńık [9],
which remained forgotten until 2004. The first inequality in (1.5) is sharp
for every n ≥ 1; see [6, Proposition 2.1]. Inequality (1.6) is also sharp: Roy
[14, 15] proved the existence of transcendental real numbers ξ for which
ŵ2(ξ) = (3 +

√
5)/2 and called them extremal numbers. We also point out

the relations

(1.7) w∗n(ξ) ≤ wn(ξ) ≤ w∗n(ξ)+n−1, ŵ∗n(ξ) ≤ ŵn(ξ) ≤ ŵ∗n(ξ)+n−1,

valid for every integer n ≥ 1 and every transcendental real number ξ;
see [4, Lemma A.8] or [5, Theorem 2.3.1].

In view of the lower bound

(1.8) w∗n(ξ) ≥ ŵn(ξ)

ŵn(ξ)− n+ 1
,

established in [6] and valid for every integer n ≥ 2 and every real tran-
scendental number ξ, any counterexample ξ to the Wirsing conjecture must
satisfy ŵn(ξ) > n for some integer n ≥ 3. It is unclear whether transcenden-
tal real numbers with the latter property do exist. The main purpose of the
present paper is to obtain new upper bounds for ŵn(ξ) and, in particular,
to improve the last inequality of (1.5) for every integer n ≥ 3.

2. Main results. Our main result is the following improvement of the
upper bound (1.5) of Davenport and Schmidt [8].

Theorem 2.1. Let n ≥ 2 be an integer and ξ a real transcendental
number. Then

(2.1) ŵn(ξ) ≤ n− 1/2 +
√
n2 − 2n+ 5/4.

For n = 3 we have the stronger estimate

(2.2) ŵ3(ξ) ≤ 3 +
√

2 = 4.4142 . . . .

For n = 2, Theorem 2.1 provides an alternative proof of (1.6). This
inequality is best possible, as already mentioned in the Introduction.

For n ≥ 3, Theorem 2.1 gives the first improvement on (1.5). This is,
admittedly, a small improvement, since for n ≥ 4 the right hand side of (2.1)
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can be written as 2n − 3/2 + εn, where εn is positive and limn→∞ εn = 0.
There is no reason to believe that our bound is best possible for n ≥ 3.

Theorem 2.1 follows from the next two statements combined with the
lower bounds (1.3) and (1.4) of wn(ξ) in terms of ŵn(ξ) obtained by Schmidt
and Summerer [19, 20].

Theorem 2.2. Let m ≥ n ≥ 2 be integers and ξ a transcendental real
number. Then (at least) one of the two assertions

(2.3) wn−1(ξ) = wn(ξ) = wn+1(ξ) = · · · = wm(ξ)

or

(2.4) ŵn(ξ) ≤ m+ (n− 1)
ŵn(ξ)

wm(ξ)

holds. In other words, the inequality wn−1(ξ) < wm(ξ) implies (2.4).

We remark that wm(ξ) may be infinite in Theorem 2.2, and this is also
the case in Theorems 2.3 and 2.4. By (1.5), inequality (2.4) always holds for
m ≥ 2n− 1, thus Theorem 2.2 is of interest only for n ≤ m ≤ 2n− 2.

For the proof of our main result (Theorem 2.1) we only need the case
m = n of Theorem 2.2. We believe that, in this case, inequality (2.4) holds
even when wn−1(ξ) = wn(ξ). Actually, this is true if ŵn(ξ) = ŵ∗n(ξ); see
Theorem 2.4.

Theorem 2.3. Let m,n be positive integers and ξ be a transcendental
real number. Then

min{wm(ξ), ŵn(ξ)} ≤ m+ n− 1.

Taking m = n in Theorem 2.3 gives (1.5), but our proof differs from
that of Davenport and Schmidt. The choice m = 1 in Theorem 2.3 yields
the main claim of [17, Theorem 5.1], which asserts that every real number
ξ with w1(ξ) ≥ n satisfies ŵj(ξ) = j for 1 ≤ j ≤ n. Theorem 2.3 provides
new information for 2 ≤ m ≤ n− 1.

A slight modification of the proof of Theorem 2.2 gives the next result.

Theorem 2.4. Let m,n be positive integers and ξ a transcendental real
number. Assume that either m ≥ n or

(2.5) wm(ξ) > min{n+m− 1, w∗n(ξ)}.
Then

(2.6) ŵ∗n(ξ) ≤ min

{
m+ (n− 1)

ŵ∗n(ξ)

wm(ξ)
, wm(ξ)

}
.

In particular, for any integer n ≥ 1 and any transcendental real number ξ,

ŵ∗n(ξ) ≤ n+ (n− 1)
ŵ∗n(ξ)

wn(ξ)
.
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By (1.5), inequality (2.6) always holds for m ≥ 2n − 1, thus Theorem
2.4 is of interest only for 1 ≤ m ≤ 2n− 2.

Let m ≥ 2 be an integer. According to LeVeque [12], a real number ξ
is a Um-number if wm(ξ) is infinite and wm−1(ξ) is finite. Furthermore, the
U1-numbers are precisely the Liouville numbers, that is, the real numbers
for which the inequalities 0 < |ξ − p/q| < q−w have infinitely many ratio-
nal solutions p/q for every real number w. A T -number is a real number ξ
such that wn(ξ) is finite for every integer n and lim supn→∞wn(ξ)/n =∞.
LeVeque [12] proved the existence of Um-numbers for every positive inte-
ger m. Schmidt [18] was the first to confirm that T -numbers do exist. Addi-
tional results on Um- and T -numbers and on Mahler’s classification of real
numbers are given in [4]. The next statement is an easy consequence of our
theorems.

Corollary 2.5. Let m be a positive integer. Every Um-number ξ satis-
fies ŵm(ξ) = m and the inequalities ŵ∗n(ξ) ≤ m and ŵn(ξ) ≤ m+n−1 for ev-
ery integer n ≥ 1. Moreover, every T -number ξ satisfies lim infn→∞ ŵn(ξ)/n
= 1.

Proof. Let m be a positive integer and ξ a Um-number. We have already
mentioned that ŵ1(ξ) = 1. For m ≥ 2, we have wm−1(ξ) < wm(ξ) and we
derive from Theorem 2.2 that ŵm(ξ) = m. The bound for ŵ∗n(ξ) follows
from (2.6) as we check the conditions are satisfied in both cases m ≥ n and
n < m from the inequalities ŵ∗n(ξ) ≤ ŵ∗m(ξ) ≤ ŵm(ξ). The upper bound
ŵn(ξ) ≤ m+ n− 1 is then a consequence of (1.7).

Let ξ be a T -number. Then, for any positive real number C, there are
arbitrarily large integers n such that wn(ξ) > wn−1(ξ) and wn(ξ) ≥ Cn. For
such an n, inserting these relations in (2.4) with m = n and using (1.5), we
obtain

ŵn(ξ) ≤ n+
(n− 1)(2n− 1)

Cn
< n

(
1 +

2

C

)
.

It is then sufficient to let C tend to infinity.

Roy [15] proved that every extremal number ξ satisfies

(2.7) w2(ξ) =
√

5 + 2 = 4.2361 . . . = (ŵ2(ξ)− 1)ŵ2(ξ),

thus providing a non-trivial example that equality can hold in (1.3). Approx-
imation to extremal numbers by algebraic numbers of bounded degree was
studied in [1, 16]. We deduce from Theorems 2.4 and 2.3 some additional
information.

Corollary 2.6. Every extremal number ξ satisfies

ŵ∗3(ξ) ≤ 3
2 +
√

5

1 +
√

5
= 3.9270 . . . and ŵ3(ξ) ≤ 4.
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Proof. Let m = 2, n = 3 and ξ be an extremal number. By (2.7) we
have w2(ξ) = 2 +

√
5 > 4 = m+n− 1 and the first claim follows from (2.6).

Theorem 2.3 implies the second assertion.

We conclude this section with a new relation between the exponents ŵn
and w∗n.

Theorem 2.7. For every positive integer n and every transcendental
real number ξ, we have

ŵn(ξ) ≤ 2(w∗n(ξ) + n)− 1

3
and, if wn(ξ) ≤ 2n− 1,

(2.8) ŵ∗n(ξ) ≥ 2w∗n(ξ)2 − w∗n(ξ)− 2n+ 1

2w∗n(ξ)2 − nw∗n(ξ)− n
.

It follows from the first assertion of Theorem 2.7 that any counterexam-
ple ξ to the Wirsing conjecture, that is, any transcendental real number ξ
with w∗n(ξ) < n for some integer n ≥ 3, must satisfy ŵn(ξ) < (4n− 1)/3.

It follows from the second assertion of Theorem 2.7 that if w∗n(ξ) is close
to n/2 for some integer n and some real transcendental number ξ, then
ŵ∗n(ξ) is also close to n/2. Note that (1.7) implies that (2.8) holds for any
couterexample ξ to the Wirsing conjecture.

Theorem 2.7 can be combined with (1.8) to get a lower bound for w∗n(ξ)
which is slightly smaller than the one obtained by Bernik and Tsishchanka [3].
However, if we insert (1.3) in the proof of Theorem 2.7, then we get

w∗n(ξ)

≥ max

{
ŵn(ξ),

ŵn(ξ)

ŵn(ξ)− n+ 1
,
n− 1

2
· ŵn(ξ)2 − ŵn(ξ)

1 + (n− 2)ŵn(ξ)
+ ŵn(ξ)− n+

1

2

}
.

From this we derive a very slight improvement of (1.2), which, like (1.2),
has the form w∗n(ξ) ≥ n/2+2−εn, where εn is positive and tends to 0 when
n tends to infinity. Note that the best known lower bound, established by
Tsishchanka [21], has the form w∗n(ξ) ≥ n/2 + 3 − ε′n, where ε′n is positive
and tends to 0 as n→∞.

3. Proofs. We first show how Theorem 2.1 follows from Theorems 2.2
and 2.3.

Proof of Theorem 2.1. We distinguish two cases.
If wn−1(ξ) = wn(ξ), then Theorem 2.3 with m = n−1 implies that either

ŵn(ξ) ≤ wn(ξ) = wn−1(ξ) ≤ n− 1 + n− 1 = 2n− 2

or
ŵn(ξ) ≤ 2n− 2.
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It then suffices to observe that 2n − 2 is smaller than the bounds in (2.1)
and (2.2).

If wn−1(ξ) < wn(ξ), then we apply Theorem 2.2 with m = n and we get

ŵn(ξ) ≤ n+ (n− 1)
ŵn(ξ)

wn(ξ)
,

thus,

(3.1) ŵn(ξ) ≤ nwn(ξ)

wn(ξ)− n+ 1
.

Rewriting inequality (1.3) as

(3.2) ŵn(ξ) ≤ 1

2

(
1 +

n− 2

n− 1
wn(ξ)

)
+

√
1

4

(
n− 2

n− 1
wn(ξ) + 1

)2

+
wn(ξ)

n− 1
,

we now have two upper bounds for ŵn(ξ), one given by a decreasing function
and the other by an increasing function of wn(ξ). An easy calculation shows
that the right hand sides of (3.1) and (3.2) are equal for

wn(ξ) =
1

2

(
1 + 2n

√
n2 − 2n+ 5/4

n− 1
+ 2n− 1

)
.

Inserting this value in (3.1) gives precisely the upper bound (2.1). For (2.2)
we proceed similarly using (1.4) instead of (1.3).

For the proofs of Theorems 2.2 and 2.3 we need the following slight
variation of [8, Lemma 8].

The notation a�d b means that a exceeds b times a constant depending
only on d. When � is written without any subscript, it means that the
constant is absolute.

Lemma 3.1. Let P,Q be coprime polynomials with integral coefficients
and of degrees at most m and n, respectively. Let ξ be a real number such
that ξP (ξ)Q(ξ) 6= 0. Then at least one of the two estimates

|P (ξ)| �m,n,ξ H(P )−n+1H(Q)−m, |Q(ξ)| �m,n,ξ H(P )−nH(Q)−m+1

holds. In particular,

max{|P (ξ)|, |Q(ξ)|} �m,n,ξ H(P )−n+1H(Q)−m+1 min{H(P )−1, H(Q)−1}.
Proof. We proceed as in the proof of [8, Lemma 8] and we consider the

resultant Res(P,Q) of the polynomials P and Q, written as

P (T ) = a0T
s + a1T

s−1 + · · ·+ as, a0 6= 0, s ≤ m,
Q(T ) = b0T

t + b1T
t−1 + · · ·+ bt, b0 6= 0, t ≤ n.

Clearly, |Res(P,Q)| is at least 1 since P and Q are coprime. Transform the
corresponding (s+ t)× (s+ t)-matrix by adding to the last column the sum,
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for i = 1, . . . , s+ t− 1, of the (s+ t− i)th column multiplied by ξi, so that
the last column reads

(ξt−1P (ξ), ξt−2P (ξ), . . . , P (ξ), ξs−1Q(ξ), ξs−2Q(ξ), . . . , Q(ξ)).

This transformation does not affect the value of Res(P,Q). Observe that
by expanding the determinant of the new matrix, we can see that every
product in the sum is in absolute value either �s,t,ξ |P (ξ)|H(P )t−1H(Q)s

or�s,t,ξ |Q(ξ)|H(P )tH(Q)s−1. Since there are only (s+ t)! ≤ (m+n)! such
terms in the sum, we infer that

1≤|Res(P,Q)|�m,n,ξmax{|P (ξ)|H(P )n−1H(Q)m, |Q(ξ)|H(P )nH(Q)m−1}.
The lemma follows.

Proof of Theorem 2.2. It is inspired by the proof of [6, Proposition 2.1].
Let m ≥ n ≥ 2 be integers. Let ξ be a transcendental real number. Assume
first that wm(ξ) < ∞. We will show that if (2.3) is not satisfied, that is, if
we assume

(3.3) wn−1(ξ) < wm(ξ),

then (2.4) must hold. Let ε > 0 be a fixed small real number. By the defi-
nition of wm(ξ) there exist integer polynomials P of degree at most m and
arbitrarily large height H(P ) such that

(3.4) H(P )−wm(ξ)−ε ≤ |P (ξ)| ≤ H(P )−wm(ξ)+ε.

By an argument of Wirsing [23, Hilfssatz 4] (see also [4, p. 54]), we may
assume that P is irreducible. We deduce from our assumption (3.3) that, if
ε is small enough, then P has degree at least n. Moreover, by the definition
of ŵn(ξ), if the height H(P ) is sufficiently large, then for all X ≥ H(P ) the
inequalities

(3.5) 0 < |Q(ξ)| ≤ X−ŵn(ξ)+ε

are satisfied by an integer polynomial Q of degree at most n and height
H(Q) ≤ X. Set τ(ξ, ε) = (wm(ξ) + 2ε)/(ŵn(ξ) − ε) and note that this
quantity exceeds 1. Keep in mind that

(3.6) lim
ε→0

τ(ξ, ε) =
wm(ξ)

ŵn(ξ)
.

For any integer polynomial P satisfying (3.4), set X = H(P )τ(ξ,ε). Then
(3.4) implies

(3.7) |P (ξ)| ≥ H(P )−wm(ξ)−ε > H(P )−wm(ξ)−2ε = X−ŵn(ξ)+ε,

thus any polynomial Q satisfying (3.5) also satisfies |Q(ξ)| < |P (ξ)|. Since
P is irreducible of degree at least n and Q has degree at most n, this implies
that P and Q are coprime.
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On the other hand, by (3.4), we have the estimate

|P (ξ)| ≤ H(P )−wm(ξ)+ε = X(−wm(ξ)+ε)/τ(ξ,ε).

Thus, by (3.6), we get

(3.8) |P (ξ)| ≤ X−ŵn(ξ)+ε′ ,

for some ε′ which depends on ε and tends to 0 as ε→ 0. Since |Q(ξ)| < |P (ξ)|
we obviously obtain

(3.9) max{|P (ξ)|, |Q(ξ)|} ≤ X−ŵn(ξ)+ε′ .

We have constructed pairs (P,Q) of coprime integer polynomials of arbi-
trarily large height and satisfying (3.9).

We show that, provided H(P ) was chosen large enough, we have

(3.10) H(Q) ≥ H(P )1−ε
′′
,

where ε′′ depends on ε and tends to 0 as ε tends to 0. Observe that since
|Q(ξ)| < |P (ξ)| and by (3.4) we have

wm(ξ)− ε ≤ − log |P (ξ)|
logH(P )

≤ − log |Q(ξ)|
logH(P )

.

On the other hand,

− log |Q(ξ)|
logH(Q)

≤ wn(ξ) + ε,

since Q has degree at most n and can be assumed of sufficiently large
height H(Q). Moreover the assumption m ≥ n implies wm(ξ) ≥ wn(ξ).
Combination of these facts yields

logH(Q)

logH(P )
=

(
− log |Q(ξ)|

logH(P )

)
·
(
− log |Q(ξ)|

logH(Q)

)−1
≥ wm(ξ)− ε
wn(ξ) + ε

≥ wn(ξ)− ε
wn(ξ) + ε

,

and we indeed infer (3.10) as ε→ 0.
Now observe that we can apply Lemma 3.1 to the coprime polynomials

P and Q. It follows from (3.10) and H(Q) ≤ X that

min{H(P )−1, H(Q)−1} ≥ X−1/(1−ε′′).
We then deduce from Lemma 3.1 that

(3.11) max{|P (ξ)|, |Q(ξ)|} �m,n,ξ X
−(n−1)/τ(ξ,ε)X−m+1X−1/(1−ε

′′).

Combining (3.9) and (3.11) we deduce (2.4) as ε can be taken arbitrarily
small. This completes the proof of the case wm(ξ) <∞.

If wm(ξ) =∞, we take a sequence (Pj)j≥1 of integer polynomials of de-
gree at most m with increasing heights and such that the quantity
− log |Pj(ξ)|/logH(Pj) tends to infinity as j →∞. We then proceed exactly
as above, by using this sequence of polynomials instead of the polynomials
satisfying (3.4). We omit the details.
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Proof of Theorem 2.3. We assume n ≥ 2 and wm(ξ) < ∞, for similar
reasons to those in the previous proof. Let ε > 0 be a fixed small number.
By the definition of wm(ξ), there exist integer polynomials P of degree at
most m and arbitrarily large height H(P ) such that

|P (ξ)| ≤ H(P )−wm(ξ)+ε/2.

Again, by using an argument of Wirsing [23, Hilfssatz 4], we can assume
that P is irreducible. Then, by [4, Lemma A.3], there exists a real number
K(n) in (0, 1) such that no integer polynomial Q of degree at most n and
whose height satisfies H(Q) ≤ K(n)H(P ) is a multiple of P . Set X :=
H(P )K(n)/2. If X is large enough, then P satisfies

(3.12) |P (ξ)| ≤ X−wm(ξ)+ε.

On the other hand, by the definition of ŵn(ξ), we may consider only the
polynomials P for which H(P ) is sufficiently large, so that the estimate

(3.13) 0 < |Q(ξ)| ≤ X−ŵn(ξ)+ε

holds for an integer polynomial Q of degree at most n and height H(Q) ≤ X.
Our choice of X ensures that Q is not a multiple of P . Since P is irreducible,
P and Q are coprime. Thus we may apply Lemma 3.1, which yields

(3.14) max{|P (ξ)|, |Q(ξ)|} �m,n,ξ X
−m−n+1.

Combining (3.12)–(3.14), we deduce that min{wm(ξ), ŵn(ξ)} ≤ m + n − 1,
as ε can be taken arbitrarily small.

Proof of Theorem 2.4. Most estimates arise by a modification of the
proof of Theorem 2.2. Define the irreducible polynomial P as in the proof of
Theorem 2.2. In that proof a difficulty occurs since the polynomial Q which
satisfies (3.5) is not a priori coprime with P . The assumption (3.3) was used
to guarantee that Q is not a multiple of P .

Here, instead of (3.5), we use the fact that, for all X ≥ H(P ), the
inequalities

(3.15) 0 < |ξ − β| < H(β)−1X−ŵ
∗
n(ξ)+ε

are satisfied by an algebraic number β of degree at most n and height at
most X. Let Q be the minimal defining polynomial over Z of such a β. Then
a standard argument yields

(3.16) |Q(ξ)| �n,ξ X
−ŵ∗n(ξ)+ε

(see [4, Proposition 3.2]; actually, this proves the left inequalities of (1.7)).
Next we define τ∗(ξ, ε) := (wm(ξ)+2ε)/(ŵ∗n(ξ)−ε) and set X = H(P )τ

∗(ξ,ε).
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Similarly to the proof of Theorem 2.2 we obtain the variant

|P (ξ)| ≥ H(P )−wm(ξ)−ε = H(P )εH(P )−wm(ξ)−2ε(3.17)

= H(P )εX−ŵ
∗
n(ξ)+ε

of (3.7). Observe that the combination of (3.16) and (3.17) implies that
|Q(ξ)| < |P (ξ)| and consequently P 6= Q, provided that H(P ) was chosen
large enough. On the other hand, with essentially the argument used to get
(3.8), we obtain

(3.18) |P (ξ)| ≤ X−ŵ∗n(ξ)+ε̃

for some ε̃ which depends on ε and tends to 0 as ε → 0. By (3.16) and
|Q(ξ)| < |P (ξ)| we infer

(3.19) max{|P (ξ)|, |Q(ξ)|} ≤ X−ŵ∗n(ξ)+ε̃,

an inequality similar to (3.9).

Now if m ≥ n, we proceed as in the proof of Theorem 2.2 observing
that we may apply Lemma 3.1 here since P 6= Q and both P and Q are
irreducible. Indeed, (3.10) holds for exactly the same reason and we get
(3.11) with τ replaced by τ∗. This yields the first inequality of (2.6), whereas
the inequality ŵ∗n(ξ) ≤ wm(ξ) is trivially implied by the assumption m ≥ n.

If m < n we treat the cases H(P ) ≤ H(Q) and H(P ) > H(Q) separately.
First consider the case H(P ) ≤ H(Q) for infinitely many pairs (P,Q) as
above. In this case we again prove (2.6). The first inequality of (2.6) is
derived as for m ≥ n, using H(P ) ≤ H(Q) ≤ X instead of (3.10). The other
inequality ŵ∗n(ξ) ≤ wm(ξ) remains to be shown. Assume on the contrary
that wm(ξ)/ŵ∗n(ξ) < 1. Then for sufficiently small ε we have τ∗(ξ, ε) < 1
and hence H(Q) = H(β) ≤ X < X1/τ∗(ξ,ε) = H(P ), a contradiction. This
finishes the proof of the case H(P ) ≤ H(Q).

Now assume H(P ) > H(Q) for infinitely many pairs (P,Q) as above.
Note that (3.10) does not necessarily hold now as we needed m ≥ n for its
deduction. It is sufficient to show that (2.5) is false, that is,

(3.20) wm(ξ) ≤ min{m+ n− 1, w∗n(ξ)}.

Observe that (3.19) implies

(3.21) max{|P (ξ)|, |Q(ξ)|} ≤ H(P )−wm(ξ)+ε̂

for ε̂ = ε̃ ·wm(ξ)/ŵ∗n(ξ), which again tends to 0 as ε→ 0. On the other hand,
Lemma 3.1 yields

(3.22) max{|P (ξ)|, |Q(ξ)|} �m,n,ξ H(P )−nH(Q)−m+1 ≥ H(P )−m−n+1.

The combination of (3.21) and (3.22) gives wm(ξ) ≤ m+ n− 1. It remains
to show that wm(ξ) ≤ w∗n(ξ). Assume that wm(ξ) − w∗n(ξ) = ρ > 0. Then
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(3.15) would imply, if ε were chosen small enough, that

|ξ − β| ≤ H(β)−1X−ŵ
∗
n(ξ)+ε = H(Q)−1H(P )−wm(ξ)+ε/τ(ξ,ε)

< H(Q)−wm(ξ)−1+ε/τ(ξ,ε) ≤ H(Q)−w
∗
n(ξ)−1−ρ/2,

contrary to the definition of w∗n(ξ) as H(Q)→∞. Hence (3.20) is established
in this case and the proof is finished.

Proof of Theorem 2.7. Let n ≥ 2 be an integer and ξ be a real transcen-
dental number.

We establish the first assertion. We follow the proof of Wirsing’s theorem
as given in [4] and keep the notation used therein. By the definition of ŵn,
observe that the inequality |Qk(ξ)| � H(Pk)

−n in [4, (3.16)] can be replaced
by

|Qk(ξ)| � H(Pk)
−ŵn(ξ)+ε.

The lower bound for w∗n(ξ) on line −8 of [4, p. 57] then becomes

(3.23)

w∗n(ξ) ≥ min

{
ŵn(ξ), wn(ξ)− n− 1

2
+
ŵn(ξ)− n

2
,
wn(ξ) + 1

2
+ ŵn(ξ)− n

}
.

Since wn(ξ) ≥ ŵn(ξ), this gives

w∗n(ξ) ≥ min

{
ŵn(ξ),

3ŵn(ξ)

2
− n+

1

2

}
=

3ŵn(ξ)

2
− n+

1

2
,

by (1.5). Thus, we have established

ŵn(ξ) ≤ 2(w∗n(ξ) + n)− 1

3
,

as asserted.

Now, we prove (2.8). Inequality (1.8) can be rewritten as

ŵn(ξ) ≥ (n− 1)w∗n(ξ)

w∗n(ξ)− 1
.

Assuming wn(ξ) ≤ 2n − 1, the smallest of the three terms in the curly
brackets in (3.23) is the third one and we eventually get

wn(ξ) ≤ 2w∗n(ξ)2 − 2n− w∗n(ξ) + 1

w∗n(ξ)− 1
.

Combining this with the lower bound

ŵ∗n(ξ) ≥ wn(ξ)

wn(ξ)− n+ 1
,

established in [6], we obtain (2.8).
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