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On Waring’s problem for intermediate powers

by

Trevor D. Wooley (Bristol)

1. Introduction. Conforming to tradition, we denote by G(k) the least
number s such that every sufficiently large natural number is the sum of at
most s positive integral kth powers. In this note we obtain new bounds
for G(k) by exploiting recent progress concerning Vinogradov’s mean value
theorem (see [8] and [1]).

Theorem 1.1. When 7 ≤ k ≤ 16, one has G(k) ≤ H(k), where H(k) is
defined by means of Table 1.

Table 1. Upper bounds for G(k) when 7 ≤ k ≤ 16

k 7 8 9 10 11 12 13 14 15 16

H(k) 31 39 47 55 63 72 81 90 99 108

For comparison, Vaughan and Wooley [4, 5, 6] have obtained the bounds
G(7) ≤ 33, G(8) ≤ 42, G(9) ≤ 50, G(10) ≤ 59, G(11) ≤ 67, G(12) ≤ 76,
G(13) ≤ 84, G(14) ≤ 92, G(15) ≤ 100, G(16) ≤ 109, in work spanning
the 1990s. We note in particular that our new bound G(8) ≤ 39 makes
appreciable progress towards the conjectured conclusion G(8) = 32 that
now seems only just beyond our grasp.

Our proof of Theorem 1.1 utilises a combination of the powerful esti-
mates for mean values restricted to minor arcs recently made available in our
work [8] concerning the asymptotic formula in Waring’s problem, together
with the progress on Vinogradov’s mean value theorem due to Bourgain,
Demeter and Guth [1]. In applications, this mean value estimate has the
potential to deliver bounds considerably sharper than corresponding point-
wise bounds. For intermediate values of k, these estimates combine with

2010 Mathematics Subject Classification: 11P05, 11P55.
Key words and phrases: Waring’s problem, Hardy–Littlewood method.
Received 10 February 2016.
Published online 29 September 2016.

DOI: 10.4064/aa8439-8-2016 [241] c© Instytut Matematyczny PAN, 2016



242 T. D. Wooley

earlier mean value estimates for smooth Weyl sums due to Vaughan and
the author [6] to deliver satisfactory estimates for mixed mean values in-
volving both classical and smooth Weyl sums. This we describe in §3. The
corresponding major arc estimates, which we handle in §4, are familiar ter-
ritory for experts in the subject, and pose no new challenges. For larger
values of k, the relative strength of minor arc estimates available for smooth
Weyl sums proves superior to our use here of classical Weyl sums, and so
no improvements are made available for k ≥ 17.

Throughout, the letter ε will denote a positive number. We adopt the
convention that whenever ε appears in a statement, either implicitly or ex-
plicitly, we assert that the statement holds for each ε > 0. In addition, we
use � and � to denote Vinogradov’s well-known notation, implicit con-
stants depending at most on k and ε, as well as other ambient parameters
apparent from the context. Finally, we write e(z) for e2πiz, and [θ] for the
greatest integer not exceeding θ.

2. Preliminaries. Our proof of Theorem 1.1 proceeds by means of
the circle method. We take the opportunity in this section of outlining our
basic approach, introducing notation en route that underpins the discussion
of subsequent sections. Throughout, we let k denote a fixed integer with
7 ≤ k ≤ 16. We consider a positive number η sufficiently small in terms
of k, and let n be a positive integer sufficiently large in terms of both k
and η. Next, write P = n1/k, and consider positive integers t and u to be
fixed in due course. Define the set of smooth numbers Aη(P ) by

Aη(P ) = {n ∈ [1, P ] ∩ Z : p |n and p prime ⇒ p ≤ P η}.
We consider the number R(n) of representations of n in the shape

(2.1) n = xk1 + · · ·+ xkt + yk1 + · · ·+ yku,

with 1 ≤ xi ≤ P (1 ≤ i ≤ t) and yj ∈ Aη(P ) (1 ≤ j ≤ u). We seek to show
that for appropriate choices of t and u, one has R(n)� n(t+u)/k−1, whence
in particular R(n) ≥ 1. Hence, whenever n is a sufficiently large positive
integer, it follows that n possesses a representation as the sum of at most
t+ u positive integral kth powers, whence G(k) ≤ t+ u.

We define

f(α) =
∑

1≤x≤P
e(αxk) and g(α) =

∑
x∈Aη(P )

e(αxk).

When B ⊆ [0, 1), we set

(2.2) R(n;B) =
�

B

f(α)tg(α)ue(−nα) dα.

Then it follows from (2.1) via orthogonality that R(n) = R(n; [0, 1)).
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In order to make further progress, we must define a Hardy–Littlewood
dissection of the unit interval. Let m denote the set of real numbers α ∈ [0, 1)
satisfying the property that, whenever a ∈ Z, q ∈ N, (a, q) = 1 and

|qα− a| ≤ (2k)−1P 1−k

then one has q > P . The set of major arcs M corresponding to this set of
minor arcs m is then defined by setting M = [0, 1) \ m. It is apparent that
M is the union of the intervals

M(q, a) = {α ∈ [0, 1) : |qα− a| ≤ (2k)−1P 1−k},
with 0 ≤ a ≤ q ≤ P and (a, q) = 1.

In the next section, we establish under appropriate conditions on t and u
that one has R(n;m) = o(P t+u−k), whilst in §4 we confirm under the same
conditions that R(n;M)� P t+u−k. Since [0, 1) = M∪m, these conclusions
combine to deliver the anticipated lower bound R(n; [0, 1)) � n(t+u)/k−1,
achieving the goal advertised in the opening paragraph of this section.

3. The minor arc contribution. We now set about establishing that
R(n;m) = o(P t+u−k). This we achieve by combining two mean value esti-
mates, the first of which concerns classical Weyl sums.

Lemma 3.1. Whenever w ≥ k(k + 1), one has
�

m

|f(α)|w dα� Pw−k−1+ε.

Proof. Denote by Js,k(X) the number of integral solutions of the system
of equations

s∑
i=1

(xji − y
j
i ) = 0 (1 ≤ j ≤ k),

with 1 ≤ xi, yi ≤ X (1 ≤ i ≤ s). Then it follows from [8, Theorem 2.1] that

(3.1)
�

m

|f(α)|2u dα� P
1
2
k(k−1)−1(logP )2u+1Ju,k(P ).

However, by reference to [1, Theorem 1.1], we find that whenever 2u ≥
k(k+ 1), then Ju,k(P )� P 2u−k(k+1)/2+ε. The desired conclusion follows by
substituting this estimate into (3.1).

We also employ mean value estimates for smooth Weyl sums. We say that
the positive real number λw,k is permissible when, for each ε > 0, whenever
η is a sufficiently small positive number, then

(3.2)

1�

0

|g(α)|2w dα� P λw,k+ε.
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By reference to the tables of exponents in [6, §§9–18], we find that the
exponents λw,k and λw+1,k recorded in Table 2 are permissible. We are at
liberty in what follows to assume that η has been chosen small enough that
the estimate (3.2) holds for all pairs (k,w) and (k,w+1) occurring in Table 2.

Table 2. Choice of exponents for 7 ≤ k ≤ 16

k w λw,k λw+1,k t u δ−1 r [U ]

7 14 21.1139297 23.0528848 5 26 1267 17 47

8 18 28.0833353 30.0473193 5 34 1111 21 58

9 21 33.1033373 35.0727119 7 40 534 25 86

10 25 40.0895832 42.0677228 9 46 1792 30 128

11 27 43.1274069 45.1020502 13 50 2959 34 375

12 32 52.0919461 54.0752481 13 59 546 38 314

13 36 59.0849135 61.0698015 13 68 823 42 289

14 40 66.0795485 68.0657585 14 76 620 46 342

15 44 73.0747403 75.0620643 16 83 417 50 525

16 47 78.0829008 80.0711728 19 89 519 55 1780

We combine these mean value estimates via Hölder’s inequality to obtain
the bounds contained in the following lemma.

Lemma 3.2. Let k, t, u and δ be given as in Table 2. Then�

m

|f(α)tg(α)u| dα� P t+u−k−δ.

Proof. Let w be as in Table 2. Then by Hölder’s inequality, the integral
in question is bounded above by

(3.3)
( �
m

|f(α)|k(k+1) dα
)ω(1�

0

|g(α)|2w dα
)φ1(1�

0

|g(α)|2w+2 dα
)φ2

,

where

ω =
t

k(k + 1)
, φ1 = (1− ω)(w + 1)− u/2, φ2 = u/2− (1− ω)w.

Here, in order to verify that this is indeed a valid application of Hölder’s
inequality, it may be useful to note that for each value of k in question, one
has w =

[
1
2u/(1− ω)

]
.

By applying Lemma 3.1 together with (3.2) within (3.3), we infer that�

m

|f(α)tg(α)u| dα� P ε(P k(k+1)−k−1)ω(P λw,k)φ1(P λw+1,k)φ2(3.4)

� P t+u−k+∆+ε,
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where
∆ = φ1∆w + φ2∆w+1 − ω,

in which
∆v = λv,k − 2v + k (v = w,w + 1).

By reference to Table 2, one verifies that whenever ε > 0 is sufficiently
small, one has ∆ + ε < −δ. The upper bound claimed in the statement of
the lemma therefore follows for each k in question from (3.4).

An application of the triangle inequality leads from (2.2) via Lemma 3.2
to the bound

(3.5) R(n;m) = o(P t+u−k),

heralded at the opening of this section.

4. The major arc contribution and the proof of Theorem 1.1.
Our goal in this section is the proof of the lower bound R(n;M)� P t+u−k.
Experts will recognise the argument here to be routine, though not directly
accessible from the literature. We consequently provide a reasonably com-
plete proof. Our task is made easier by the presence of a relatively large
number of classical Weyl sums in the integral (2.2). We require an auxiliary
set of major arcs. Let W = log logP , and define N to be the union of the
intervals

N(q, a) = {α ∈ [0, 1) : |α− a/q| ≤WP−k},
with 0 ≤ a ≤ q ≤W and (a, q) = 1.

We recall from [2, Lemma 5.1] that whenever k ≥ 3 and s ≥ k + 2, one
has

(4.1)
�

M\N

|f(α)|s dα�W ε−1/kP s−k.

Moreover, by reference to the tables of [6, §§9–18], in combination with the
discussion concluding [6, §8] associated with the process Ds therein, one
finds that, with r defined as in Table 2, one has

(4.2)

1�

0

|g(α)|2r dα� P 2r−k.

An application of Hölder’s inequality therefore leads from (2.2) to the bound

(4.3) R(n;M \N) ≤
( �

M\N

|f(α)|k+4 dα
)t/(k+4)(1�

0

|g(α)|U dα
)1−t/(k+4)

,

where U = u/(1 − t/(k + 4)). Observe here that for 7 ≤ k ≤ 16, it follows
from Table 2 that t < k + 4. Also, a modicum of computation reveals that
in each case, one has U > 2r. Indeed, there is ample room to spare in the
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latter inequality, as is evident from Table 2. By importing (4.1) and (4.2)
into (4.3), we thus discern that

R(n;M \N)�W−t/(k+4)2(P 4)t/(k+4)(PU−k)1−t/(k+4) � P t+u−k(logW )−1.

By combining this estimate with (3.5), we may conclude thus far that

(4.4) R(n) = R(n;N) +O(P t+u−k(logW )−1).

The analysis of the contribution arising from the major arcs N is routine.
Define

S(q, a) =

q∑
r=1

e(ark/q) and v(β) =

P�

0

e(βγk) dγ.

Standard arguments (see [2, Lemma 5.4] and [7, Lemma 8.5]) show that there
is a positive number ρ having the property that whenever α ∈ N(q, a) ⊆ N,
one has

g(α)− ρq−1S(q, a)v(α− a/q)� P (logP )−1/2.

Under the same conditions, the relation

f(α)− q−1S(q, a)v(α− a/q)� logP

is immediate from [3, Theorem 4.1]. Thus we find that when α∈N(q, a)⊆N,
one has

f(α)tg(α)u − ρu(q−1S(q, a)v(α− a/q))t+u � P t+u(logP )−1/2.

Integrating over N, we infer that

(4.5) �

N

f(α)tg(α)ue(−nα) dα = ρuS(n;W )J(n;W ) +O(P t+u−k(logP )−1/3),

where

S(n;W ) =
∑

1≤q≤W

q∑
a=1

(a,q)=1

(q−1S(q, a))t+ue(−na/q),

J(n;W ) =

WP−k�

−WP−k

v(β)t+ue(−βn) dβ.

A comparison with classical singular series and integrals conveys us from
here, via [3, Chapter 4], for example, to the relations

S(n;W ) = S(n) + o(1),

J(n;W ) =
Γ (1 + 1/k)t+u

Γ ((t+ u)/k)
n(t+u)/k−1 + o(n(t+u)/k−1),
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in which

S(n) =

∞∑
q=1

q∑
a=1

(a,q)=1

(q−1S(q, a))t+ue(−na/q)

is the conventional singular series associated with Waring’s problem for sums
of t+ u integral kth powers.

Substituting these expressions into (4.5), and from there into (4.4), we
conclude that

R(n) = ρuS(n)
Γ (1 + 1/k)t+u

Γ ((t+ u)/k)
n(t+u)/k−1 + o(n(t+u)/k−1).

Here, we have made use of the fact that since t + u ≥ 4k in each case
under consideration, the standard theory of the singular series (see [3, The-
orems 4.3 and 4.5]) suffices to confirm that 1 � S(n) � 1. In particu-
lar, one has R(n) � n(t+u)/k−1. As discussed earlier, this establishes that
G(k) ≤ t + u, with t and u determined via Table 2, and thus the proof of
Theorem 1.1 is complete.
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