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1. Introduction and statement of results. We use the standard
notation: for any real θ,

e(θ) := e2πiθ, ‖θ‖ := min
n∈Z
|θ − n|.

We denote the largest prime factor of an integer n by P+(n) (with the
convention that P+(1) = 0). For fixed Y > 0, X ≥ 100 we define the set of
Y -smooth integers by

S(X,Y ) := {n ≤ X : P+(n) ≤ Y }.
We start with a few old but important and interesting results in additive

number theory closely connected to the questions of this article. For instance,
Romanoff [18] showed that the positive integers which are representable as
the sum of a prime and a kth power have positive density. Davenport and
Heilbronn [6] proved that almost all positive integers are representable as
p + xk. From their proof it also follows that if k is odd, almost all positive
integers are representable in one of the two forms p + xk, 2p + xk with
p ≡ 1 mod 4. From this it also follows that almost all positive integers
are representable as x2 + y2 + zk. Estermann [9] established that if j(n)
denotes the number of those even positive integers less than n which are not
representable as sums of two primes, then as n→∞,

j(n)� n(log n)−A

for any positive number A.
Additive problems with smooth integers are of great interest and they

have been investigated previously by several authors. For instance, Balog [1]
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showed that every positive integer N can be written as the sum of two
N0.2695-smooth integers. Balog and Sárközy [2] established that every posi-
tive integer N can be represented as the sum of three L(N)3+o(1)-smooth in-
tegers, where L(x) := exp(((log x)(log log x))1/2). In [3], Balog and Sárközy
proved that if N is sufficiently large, then N can be written as N = n1 +n2
where P+(n1n2) ≤ 2N2/5. They also note that by using deep estimates for
exponential sums, they are able to reduce the exponent 2/5 to 0.392 . . .. The
corresponding almost-all result is also obtained.

Blomer, Brüdern and Dietmann [5] considered the representation of in-
tegers as sums of smooth squares. If we define

R(n, θ) := #{n : n = m2
1 +m2

2 +m2
3 +m2

4

with each mi composed of primes ≤ nθ/2},

then they proved that R(n, θ) > 0 for sufficiently large n provided θ > 365
592

and that R(n, θ) satisfies a lower bound of the expected order of magnitude
for sufficiently large n provided θ > e−1/3. In [16], the second author consid-
ered the representation of an arbitrary integer n as the sum of a Y -smooth
number and a number whose g-ary expansion does not contain digits from
a set D. His result implies that if Y = nθ (with θ > 0 fixed) and |D| ≥ 3,
then such a representation is possible for almost all n. For an overview on
the theory of smooth integers, the readers may refer to Granville [11].

In this article, we consider the following two additive problems with
smooth integers.

Problem 1. Find the number Rs(n) of representations of a positive
integer n (≤ X) in the form

(1.1) n = m2 + l, m ∈ N, l ∈ S(X,Y ).

Problem 2. Find the number Rp(n) of representations of n (≤ X) in
the form

(1.2) n = p+ l, p prime, l ∈ S(X,Y ).

Let the exceptional sets be defined by

Es := {1 ≤ n ≤ X : n 6= m2 + l with m ∈ N, l ∈ S(X,Y )},
Ep := {1 ≤ n ≤ X : n 6= p+ l with p prime, l ∈ S(X,Y )}.

Either of these sets Es and Ep may well be empty, although we have been
unable to substantiate this statement.

Definition 1.1. For 1 ≤ Y ≤ X, we write

(1.3) ψ(X,Y ) := |{n ≤ X : P+(n) ≤ Y }|.
Dickmann [8] was the first to notice that the asymptotics of ψ(X,Y ) is ruled
by the Dickmann function ρ, which is defined by
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Definition 1.2. We have

ρ(u) = 1 for 0 ≤ u ≤ 1,(1.4)

ρ′(u) = −1

u
ρ(u− 1) for u > 1,(1.5)

ρ is continuous at u = 1, where

(1.6) u =
logX

log Y
.

He showed that

(1.7) ψ(X,Y ) � Xρ(u).

We extend the definition of ρ by ρ(u) = 0 for u < 0.

Definition 1.3. The function Λ(X,Y ) is defined by

Λ(X,Y ) :=

{
X

	∞
−∞ ρ(u− v) d([Y v]Y −v) if X /∈ N,

Λ(X + 0, Y ) if X ∈ N.

Lemma 1.1 (de Bruijn [7]). We have

(i) log ρ(u) � −u log u;

(ii) (−1)jρ(j)(u) > 0 (u ≥ 1);

ρ(j)(u) � (−1)jρ(u)(log u)j (u→∞);
∞�

0

ρ(j)(u− v)Y −v dv �j
ρ(j)(u)

log Y
.

Definition 1.4. For Z > 1, k ≥ 0, let

εk,j(Z) := min

{
1, (k + 1− j) logZ

Z

}
for 0 ≤ j ≤ k,

ρk(Z) :=
( k⋃
j=0

[1 + εk,j(Z), j + 1]
)
∪ [k + 1,∞).

Definition 1.5. Let ζ be the Riemann zeta-function and let aj be the

jth coefficient of the Taylor expansion of s ζ(s+1)
s+1 in the neighbourhood of

s = 0.

Lemma 1.2 (Saias [19]). For all ε>0 and k≥0, uniformly for (logX)1+ε

≤ Y ≤ X and u ∈ ρk(log Y ), we have

Λ(X,Y ) = X
k∑
j=0

aj
ρ(j)(u)

(log Y )j
+O

(
X
ρ(k+1)(u)

(log Y )k+1

)
,

ψ(X,Y ) = Λ(X,Y )
(
1 +O(exp(−(log Y )3/5+ε))

)
.
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As in Fouvry and Tenenbaum [10], we also define

Definition 1.6. For 2 ≤ q ∈ N, let

Sq(t) :=
1

t

∑
n≤t

µ(q/(n, q))

ϕ(q/(n, q))
(t > 0), Hq(s) :=

ζ(s)

ϕ(q)
q1−s

∏
p|q

(1− ps−1)

and
sHq(s+ 1)

s+ 1
=:

∞∑
j=1

bj(q)s
k (|s| < 1).

Lemma 1.3 ([19, Theorem 9]). We have

bk(q)�k
2ω(q)

q
(log q)k.

Definition 1.7. For q ∈ N, define

S(a, q) :=

q−1∑
m=0

e

(
m2a

q

)
, An(q) :=

q∑
a=1

(a,q)=1

S(a, q)

q
e

(
−na
q

)
.

Lemma 1.4. We have

S(a, q)� q1/2 for (a, q) = 1, An(q) = O(1).

Proof. The following well-known result is due to Gauss (see [14], [4]
or [15]):

(1.8) S(a, q) =


0 if q ≡ 2 (mod 4),

εq
√
q
(
a
q

)
if q is odd,

(1 + i)ε−1q
√
q
( q
a

)
if q ≡ 0 (mod 4) and a is odd.

Here

εq :=

{
1 if q ≡ 1 (mod 4),

i if q ≡ 3 (mod 4),

and
(
a
q

)
denotes the Jacobi symbol.

Let (q, r) = 1. Then

An(qr) =

q∑
l=1

(l,q)=1

r∑
m=1

(m,r)=1

S(lr +mq, qr)

qr
e

(
−(lr +mq)

qr

)

=

q∑
l=1

(l,q)=1

r∑
m=1

(m,r)=1

S(l, q)

q

S(m, r)

r
e

(
− ln
q

)
e

(
−mn

q

)
= An(q)An(r).

We determine the values of An(q) for prime powers. We distinguish three
cases.

Case 1: q = 2. By (1.7), we have An(q) = 0.
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Case 2: q ≡ 0 (mod 4). By (1.7), we have
q∑
l=1

(l,q)=1

S(l, q) e

(
− ln
q

)
= (1 + i)ε−1q

√
q

q∑
l=1

(l,q)=1

(
q

l

)
e

(
− ln
q

)
.

By [15, Lemma 3.1] we have∣∣∣∣ q∑
l=1

(l,q)=1

(
q

l

)
e

(
− ln
q

)∣∣∣∣ ≤ √q,
and thus |An(q)| ≤

√
2.

Case 3: q odd. By (1.7), we have
q∑
l=1

(l,q)=1

S(l, q) e

(
− ln
q

)
= εq
√
q

q∑
l=1

(l,q)=1

(
q

l

)
e

(
− ln
q

)
.

By [15, Lemma 3.1] we obtain |An(q)| ≤ 1. This proves the lemma.

Definition 1.8. We define

R∗0 :=
1

2

∑
s<n,m<n,m+s=n

ρ

(
log s

log Y

)
m−1/2,

R∗1 :=
∑

s<n,m<n,m+s=n

ρ

(
log s

log Y

)
(logm)−1.

We prove:

Theorem 1.1. Let C0 > 0 be fixed and

Y ≥ exp

(
C0

(logX)(log log logX)

log logX

)
.

Let L ∈ N be arbitrarily large and ε > 0. Then there is a constant C1 =
C1(C0, L, ε) such that for all n ≤ X with at most

�C0,L,ε X(logX)−L

exceptions, we have

Rs(n) = R∗0(1 + rs(n)) where |rs(n)| ≤ C1(log Y )−(1−ε).

Theorem 1.2. Let C0 and Y be as in Theorem 1.1. Let L ∈ N be
arbitrarily large and ε > 0. Then there is a constant C2 = C2(C0, L, ε) such
that for all n ≤ X with at most

�C0,L,ε X(logX)−L

exceptions, we have

Rp(n) = R∗1(1 + rp(n)) where |rp(n)| ≤ C2(log Y )−(1−ε).
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Remark. We observe from Theorems 1.1 and 1.2 that the exceptional
sets satisfy

#Es � X(logX)−L, #Ep � X(logX)−L

for an arbitrarily large positive integer L. We prove Theorem 1.1 in detail
and sketch the necessary changes to obtain Theorem 1.2.

Recently, Harper [12] has investigated exponential sums over those num-
bers ≤ x all of whose prime factors are ≤ y (i.e. over y-smooth numbers) and
obtained a fairly good minor arc estimate, valid whenever log3 x ≤ y ≤ x1/3.
As an application, he could obtain an asymptotic result for the number of
solutions of a+ b = c in y-smooth integers less than x whenever (log x)C ≤
y ≤ x. The methods of Harper [12] could possibly be used to improve quan-
titatively our results on the quality of the smoothness parameter to some
extent; we leave it open for further research.

2. The circle method. Here we closely follow [16]. Let θ ∈ R and set

E(θ) :=
∑

s∈S(X,Y )

e(sθ),

U(θ) :=
∑

m≤X1/2

e(m2θ).

Lemma 2.1. For n ≤ X, we have

Rs(n) =

1�

0

E(θ)U(θ) e(−nθ) dθ.

Proof. This follows by orthogonality.

Definition 2.1. Let Z > Q > 1 (to be determined later). We call

Ip :=

[
0,

1

Z

]
∪
[
1− 1

Z
, 1

]
the principal major arc. Let

Ia,q :=

[
a

q
− 1

qZ
,
a

q
+

1

qZ

]
.

Then

M :=
⋃

1<q≤Q

⋃
amod q

Ia,q

is called the non-principal major arcs. The minor arcs m is defined to be

m :=
⋃

Q<q≤Z

⋃
amod q

Ia,q.
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For n ∈ N with n ≤ X, we set

R1(n) :=
�

Ip

E(θ)U(θ) e(−nθ) dθ,

R2(n) :=
�

M

E(θ)U(θ) e(−nθ) dθ,

R3(n) :=
�

m

E(θ)U(θ) e(−nθ) dθ.

Lemma 2.2. For n ∈ N with n ≤ X, we have

Rs(n) = R1(n) +R2(n) +R3(n).

Proof. It is an immediate consequence of Dirichlet’s Theorem that the
interval [0, 1) is the disjoint union of Ip, M and m, and hence the assertion
follows.

3. Approximation of E(θ) and U(θ). We shall now replace the ex-
ponential sum E(θ) inside the principal major arc Ip and the non-principal
major arcs by some approximations. We replace the sum over s ∈ S(X,Y )
by a sum over all s ≤ X with appropriate weights.

Definition 3.1. For k ∈ N (to be specified later) s ≤ X, we set

hk(s) :=

k∑
j=0

aj(log Y )−j
{
ρ(j)
(

log s

log Y

)
+

1

log Y
ρ(j+1)

(
log s

log Y

)}
.

Lemma 3.1. For k ∈ N, we have

E(θ) =
∑
s≤X

hk(s) e(sθ) +Ok
(
|θ|X2(logX)−(k+1)

)
+Ok

(
X(logX)−(k+1)

)
.

Proof. Let

w(s) :=

{
1− hk(s) if s ∈ S(X,Y ),

−hk(s) otherwise.

Then

(3.1) E(θ) =
∑

s∈S(X,Y )

e(sθ) =
∑
s≤X

hk(s) e(sθ) +
∑
s≤X

w(s) e(sθ).

Let W (t) =
∑

s≤tw(s). By partial summation, we find that

(3.2)
∑
s≤X

w(s) e(sθ) = W (X) e(θX)− 2πiθ

X�

1/2

W (t) e(θt)dt.

Since

d

dt

(
tρ(j)

(
log t

log Y

))
= ρ(j)

(
log t

log Y

)
+

1

log Y
ρ(j+1)

(
log t

log Y

)
,
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from Euler’s summation formula and Lemma 1.2 we obtain

(3.3) W (t)�k t(logX)−(k+1) if t ≥ X1/2.

Now the lemma follows from (3.1)–(3.3).

Definition 3.2. Let

Vq(X,Y ) :=

{
X

	∞
−∞ ρ(u− v) dSq(Y

v) if X /∈ N,

Vq(X + 0, Y ) if X ∈ N.

Lemma 3.2 ([19, Theorem 9]). We have uniformly

E(θ) = Vq(X,Y ) +O
(
ψ(X,Y ) exp(−C2(log Y )1/2)

)
,

Vq(X,Y ) = X

k∑
j=1

bj(q)
ρ(j)(u)

(log Y )j
+Ok

(
X

2ω(q)

ϕ(q)
ρ(k+1)(u)

(
log q

log Y

)k+1)
.

Definition 3.3. For k ∈ N, s ∈ N ∪ {0} and 1 ≤ q ≤ Q, we set

lk(s; q) :=

k∑
j=1

{
bj(q)

(log Y )j

(
ρ(j)
(

log s

log Y

)
+

1

log Y
ρ(j+1)

(
log s

log Y

))}
.

Lemma 3.3. For |θ| ≥ X−1, we have

E

(
a

q
+ θ

)
=
∑
s≤X

lk(s; q) e(sθ) +Ok

(
|θ|X2 2ω(q)

ϕ(q)

(
log q

log Y

)k+1)

+Ok

(
X

2ω(q)

ϕ(q)

(
log q

log Y

)k+1)
.

Proof. Let

z(s, q) :=

{
e
(
a
q s
)
− lk(s; q) if s ∈ S(X,Y ),

−lk(s; q) otherwise.

Let Z(t) =
∑

1≤s≤t z(s, q). Then

E

(
a

q
+ θ

)
=
∑
s≤X

lk(s; q) e(sθ) +
∑
s≤X

z(s, q) e(sθ).

Partial summation leads to

(3.4)
∑
s≤X

z(s, q) e(sθ) = Z(X) e(θX)− 2πiθ

X�

1/2

Z(t) e(θt) dt.

From Euler’s summation formula and Lemma 3.2, we obtain

Z(t)�k t(logX)−(k+1) 2ω(q)

ϕ(q)

(
log q

log Y

)k+1

.

Now, the result follows from (3.4).
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Definition 3.4. For θ ∈ R, let

W (θ) :=
1

2

∑
m≤X

e(mθ)m−1/2.

Lemma 3.4. Let (a, q) = 1 and |β| ≤ 1/q2. Then

U

(
a

q
+ β

)
=
S(a, q)

q
W (β) +O(qX|β|) +O(q).

Proof. We observe that

(3.5) U

(
a

q
+ β

)
=

q−1∑
l=0

e

(
l2
a

q

) ∑
m≤X1/2

m≡lmod q

e(m2β).

By Euler’s summation formula, we have

∑
m≤X1/2

m≡lmod q

e(m2β) =

(X1/2−l)/q�

0

e((qu+ l)2β) du+O(X|β|) +O(1)(3.6)

= q−1
X1/2�

0

e(w2β) dw +O(X|β|) +O(1)

=
q−1

2

X�

0

e(yβ)y−1/2 dy +O(X|β|) +O(1).

On the other hand, by Euler’s summation formula again,

(3.7)
1

2

∑
m≤X

e(mβ)m−1/2 =
1

2

X�

0

e(yβ)y−1/2 dy +O(1).

The claim now follows from (3.5)–(3.7).

4. The basic integral

Definition 4.1. For j ∈ N and θ ∈ R, we set

G(θ, j) :=
∑
s≤X

ρ(j)
(

log s

log Y

)
e(sθ).

Let C3 > 0 be a fixed constant and Z0 be a positive quantity satisfying

(4.1) X(logX)−2C3 < Z0 ≤ X(logX)−C3 .

For n ∈ N, the basic integral
	

:=
	

(j, n, Z0) is defined as

�
:=

�
(j, n, Z0) =

1/Z0�

−1/Z0

G(θ, j)W (θ) e(−nθ) dθ.
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Definition 4.2. Let Z0 be as in Definition 4.1. Let H = Z0(logX)2

and ‖θ‖ := minz∈Z |z − θ|. We define a periodic function χ0(θ) of period 1
as

χ0(θ) :=

{
1 if ‖θ‖ ≤ 1

Z0 logX
,

0 otherwise.

Let

χ(θ) :=
H√
π

∞�

−∞
χ0(θ + v) exp(−H2v2) dv.

Definition 4.3. For j ∈ N ∪ {0}, we write

rj :=
1

4

∑′

(s1,s2,m1,m2)

ρ(j)
(

log s1
log Y

)
ρ(j)
(

log s2
log Y

)
m
−1/2
1 m

−1/2
2 ,

where the prime means that the sum is extended over all (s1, s2,m1,m2)
with s1, s2,m1,m2 ≤ X and s1 +m1 = s2 +m2.

Lemma 4.1. The Fourier expansion

χ(θ) =
∞∑

h=−∞
χ̂(h) e(hθ)

converges absolutely and uniformly. Furthermore, there are absolute con-
stants C4, C5, C6, C7 (> 0) such that

(4.2) |χ̂(h)| ≤ C4 exp(−C5h
2H−2).

Moreover, we have 0 ≤ χ(θ) ≤ 1, χ(θ) � exp(−C6(logX)2) for θ ∈
(−1/2, 1/2) \ (−1/Z0, 1/Z0), and

χ(0) = 1 +O
(
exp(−C7(logX)2)

)
.

Proof. We follow certain arguments of [17]. We start with the represen-
tation

χ0(θ) =
∞∑

m=−∞
um e(mθ)

with

um :=

(Z0 logX)−1�

−(Z0 logX)−1

e(−mθ) dθ � min
(
(Z0 logX)−1, |m|−1

)
.
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This series converges uniformly on all compact sets not containing integers.
We obtain

χ̂(h) =
H√
π

1/2�

−1/2

e(−hθ)
∞�

−∞
um e(m(θ + v)) exp(−H2v2) dv dθ

= uh
H√
π

∞�

−∞
e(hv) exp(−H2v2) dv = uh exp(−π2h2H−2),

which gives (4.2) on using the previous estimate uh � |h|−1.
We also have

χ(0) =
H√
π

(Z0 logX)−1�

−(Z0 logX)−1

exp(−H2v2) dv

= 1 +O
(
H

�

|v|≥H−1 logX

exp(−H2v2) dv
)

= 1 +O
(
exp(−C7(logX)2)

)
.

Let θ ∈ (−1/2, 1/2)\(−1/Z0, 1/Z0). Then χ0(θ+v) = 0 unless |v| ≥ 1/(2Z0).
Therefore,

χ(θ)� H

∞�

(2Z0)−1

exp(−H2v2)dv � exp(−C0(logX)2).

Lemma 4.2. Let C0 be as in Theorem 1.1, and j ≤ k, k ∈ N. Let
C3 ≥ C8(C0) where C8(C0) is fixed and sufficiently large. Then, for Z0

satisfying (4.1), and χ given by Definition 4.2, we have

1/2�

−1/2

|G(θ, j)|2|W (θ)|2χ(θ) dθ = rj
(
1 +Ok((logX)−C3/3)

)
.

Proof. By Lemma 4.1 and orthogonality, we have

1/2�

−1/2

|G(θ, j)|2|W (θ)|2χ(θ) dθ =
1

4

∞∑
l=−∞

χ̂(l)
∑

(l)

where

(4.3)
∑

(l)
:=

∑′′

(s1,s2,m1,m2)

τ(s1, s2, j, Y )m
−1/2
1 m

−1/2
2

with

τ(s1, s2, j, Y ) := ρ(j)
(

log s1
log Y

)
ρ(j)
(

log s2
log Y

)
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and the sum
∑′′ being extended over all (s1, s2,m1,m2) with sj ≤ X,

mj ≤ X, and s1 +m1 + l = s2 +m2. We partition
∑

(l) into

(4.4)
∑

(l)
=

∑
(m1,m2)

∑
(l,m1,m2)

where ∑
(l,m1,m2) = m

−1/2
1 m

−1/2
2

∑?

(s1,s2)

τ(s1, s2, j, Y ),

where in
∑?

(s1,s2)
, the sum is extended over all (s1, s2) with s1 + m1 + l =

s2 + m2. In the following, we only discuss the case m1 ≥ m2 (the case
m1 ≤ m2 is similar).

By Lemma 4.1, inequality (4.2) and Definition 4.2, we have

(4.5)
∑

|l|>Z0 logX

∣∣∣∑
(l)

∣∣∣ = O

(
X exp

(
−C5

2
(logX)2

))
= O(X−1).

In what follows, we assume that

(4.6) |l| ≤ Z0 logX.

By Lemma 1.1,

(4.7) (logX)−C0
−1(1−ε) �k,ε ρ

(j)

(
log si
log Y

)
�k,ε (logX)−C0

−1(1+ε),

C0 > 0 being the constant of Theorem 1.1 and ε > 0 being arbitrarily small.
We set

(4.8) s(0) = X(logX)−C3/2

and write ∑
(l,m1,m2) =

∑(1)
(l,m1,m2) +

∑(2)
(l,m1,m2)

with ∑(i)
(l,m1,m2) = m

−1/2
1 m

−1/2
2

∑(i)

(s1,s2)

τ(s1, s2, j, Y ),

where in
∑(i)

(s1,s2)
, the summation is extended over all (s1, s2) with s1+m1+l

= s2 + m2, and s(0) ≤ s1 ≤ X for i = 1, and s1 < s(0) for i = 2. By the
substitution s′1 = s1 + l, we obtain∑(1)

(l,m1,m2) = m
−1/2
1 m

−1/2
2

∑′′′

(s′1,s2)

τ(s′1 − l, s2, j, Y ),

where the summation is over all (s′1, s2) with s′1 +m1 = s2 +m2, s
(0) + l ≤
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s′1 ≤ X + l and s2 ≤ X. From the estimate |ρ(j)(u)| ≤ 1, we get (for l ≥ 0)∑
s(0)≤s1≤s(0)+l

(s′1,s2)

τ(s′1 − l, s2, j, Y )� l and
∑

X<s′1≤X+l

τ(s′1 − l, s2, j, Y )� l.

These estimates together with analogous ones for l < 0 and with (4.7) yield∑
(l)

=
∑′′

(s′1,s2,m1,m2)

τ(s′1 − l, s2, j, Y )m
−1/2
1 m

−1/2
2

+O
(
|l|

∑
(m1,m2)

m
−1/2
1 m

−1/2
2

)
.

A trivial estimate gives∑(2)
(l,m1,m2)� m

−1/2
1 m

−1/2
2 (logX)−C3/2.

By the mean-value theorem, we have∣∣∣∣ρ(j)( log s1
log Y

)
− ρ(j)

(
log(s1 + l)

log Y

)∣∣∣∣ ≤ |l|( sup
t∈Jl(s1)

∣∣∣∣ρ(j+1)

(
log t

log Y

)∣∣∣∣) 1

t log Y

≤ |l|
s(0) log Y

,

where

Jl(s1) =

{
(s1 + l, s1) for l ≤ 0,

(s1, s1 + l) for l > 0.

From |l| ≤ X(logX)−C3+1 and (4.7), we obtain

(4.9)
∑

(l)
=
∑

(0)

(
1 +Oj((logX)−C3/3)

)
.

From (4.5) and (4.9), we have

1/2�

−1/2

|G(θ, j)|2|W (θ)|2χ(θ) dθ =
1

4

∞∑
l=−∞

χ̂(l)
∑

(0)

(
1 +Oj((logX)−C3/3)

)
.

The claim of Lemma 4.2 follows because by Lemma 4.1 we have

∞∑
l=−∞

χ̂(l) = χ(0) = 1 +O
(
exp(−C7(logX)2)

)
.

Lemma 4.3. Let C3 and Z0 be as in Lemma 4.2. Then
�

(−1/2,1/2)\(−Z−1
0 ,Z−1

0 )

|G(θ, j)|2|W (θ)|2 dθ � X2(logX)−C3/3.
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Proof. We apply Lemma 4.2. From the properties 0 ≤ χ(θ) ≤ 1 and
χ(0) = 1 +O(exp(−C7(logX)2)) we conclude that

�

(−1/2,1/2)\(−1/Z0,1/Z0)

|G(θ, j)|2|W (θ)|2 dθ

≤
�

(−1/2,1/2)

(1− χ(θ))|G(θ, j)|2|W (θ)|2 dθ

+O
(

exp(−C7(logX)2)
�

(−1/2,1/2)\(−1/Z0,1/Z0)

|G(θ, j)|2|W (θ)|2 dθ
)
.

Now the result follows from Lemmas 4.1 and 4.2.

Lemma 4.4. Let C3 and Z0 be as in Lemma 4.2. Then for all n ≤ X
with at most X(logX)−C3/4 exceptions, we have

�
(j, n, Z0) =

1

2

∑
s<n,m<n
m+s=n

ρ(j)
(

log s

log Y

)
m−1/2(1 + r(j, n))

where |r(j, n)| ≤ (logX)−2.

Proof. By orthogonality,
�

(−1/2,1/2)

G(θ, j)W (θ) e(−nθ) dθ =
1

2

∑
s<n,m<n
m+s=n

ρ(j)
(

log s

log Y

)
m−1/2.

By Parseval’s equation and Lemma 4.3 we have∑
n≤X

∣∣∣ �

(−1/2,1/2)\(−1/Z0,1/Z0)

G(θ, j)W (θ) e(−nθ) dθ
∣∣∣2

=
�

(−1/2,1/2)\(−1/Z0,1/Z0)

|G(θ, j)|2|W (θ)|2 dθ � X2(logX)−C3/3.

5. The principal major arc

Definition 5.1. With C3 as in Definition 4.1, we set

Z := X(logX)−C3 , Q := (logX)C3/10.

Lemma 5.1. Let k ∈ N. For all n ≤ X with at most Ok(X(logX)−C3/4)
exceptions we then have

R1(n) = R∗0(1 + r(n))

with r(n) = O(1/ log Y ).

Proof. By Lemmas 3.1 and 3.4 (applied with q = 1) and Definition 4.1
for Z0 = Z, for all n ≤ X with at most Ok(X(logX)−C3/4) exceptions we
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have

R1(n) =
�

Ip

E(θ)U(θ) e(−nθ) dθ

=
�

Ip

{∑
s≤X

hk(s) e(−sθ) +O(|θ|X2(logX)−k+1)

+O(X(logX)−(k+1))
}
W (θ) e(−nθ) dθ

+O
( �
Ip

|E(θ)|(X|θ|+O(1)) dθ
)

=
k∑
j=0

aj(log Y )−j
(�

(j, n, Z) +
1

log Y

�
(j + 1, n, Z)

)
+O

(
X(logX)−k

�

Ip

|W (θ)| dθ
)

+O
(
X2(logX)−k

�

Ip

|θ| |W (θ)| dθ
)

=
k∑
j=0

aj(log Y )−j
(�

(j, n, Z) +
1

log Y

�
(j + 1, n, Z)

)
+O(X1/2(logX)2C3−k) = R∗0(1 + r(n)),

by choosing k sufficiently large.

6. The non-principal major arcs

Lemma 6.1. For all n ≤ X with at most X(logX)−C3/6 exceptions, we
have

R2(n) ≤ C2R
∗
0(log Y )−(1−ε)

where C2 > 0 is a fixed constant.

Proof. By Lemmas 3.3 and 3.4,

R2(n) =
∑

1<q≤Q

∑
amod q
(a,q)=1

�

Ia,q

E(θ)U(θ) e(−nθ) dθ

where�

Ia,q

E(θ)U(θ) e(−nθ) dθ

=

1/(qZ)�

−1/(qZ)

{∑
s≤X

lk(s; q) e(sβ) +Ok

(
|β|X2 2ω(q)

ϕ(q)

(
log q

log Y

)k+1)

+Ok

(
X

2ω(q)

ϕ(q)

(
log q

log Y

)k+1)}
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×
{
S(a, q)

q
W (β) +O(qX|β|) +O(q)

}
e

(
−n
(
a

q
+ β

))
dβ

=
k∑
j=1

bj(q)

(log Y )j
S(a, q)

q
e

(
−na
q

)(�
(j, n, qZ) +

1

log Y

�
(j + 1, n, qZ)

)

+
k∑
j=1

Ok

(
|bj(q)|

(log Y )j
Z−2q−2X2(logX) max

θ∈(0,1)
|W (θ)|

)

+
k∑
j=1

Ok

(
|bj(q)|

(log Y )j
Z−1q−3/2X(logX)−(k+1) max

θ∈(0,1)
|W (θ)|

)

+
k∑
j=1

Ok

(
|bj(q)|

(log Y )j
Z−2q−5/2 max

θ∈(0,1)
|W (θ)|

)

+
k∑
j=1

Ok

(
|bj(q)|

(log Y )j
Z−1q−3/2X max

θ∈(0,1)
|W (θ)|

)
.

By Lemma 1.3, the contribution of the Ok-terms is

� X(logX)2C3−(k+1)|b1(q)|/q.
Thus,

(6.1)
�

Ia,q

E(θ)U(θ) e(−nθ) dθ

=
k∑
j=1

bj(q)

(log Y )j
S(a, q)

q
e

(
−na
q

)(�
(j, n, qZ) +

1

log Y

�
(j + 1, n, qZ)

)
+Ok(X(logX)2C3−(k+1)|b1(q)|/q).

From (6.1) and from Definition 6.1, we obtain

R2(n) =
∑

1<q≤Q

∑
amod q
(a,q)=1

�

Ia,q

E(θ)U(θ) e(−nθ) dθ

=
∑

1<q≤Q
An(q)

k∑
j=1

bj(q)

(log Y )j

(�
(j, n, qZ) +

1

log Y

�
(j + 1, n, qZ)

)
+Ok(X(logX)2C3−(k+1)).

Now, we apply Lemmas 1.3, 1.4 and 4.4 to deduce that for all n ≤ X with
at most X(logX)−C3/6 exceptions, we have

R2(n) ≤ C2R
∗
0(log Y )−(1−ε)

where C2 > 0 is a fixed constant.
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7. The minor arcs

Lemma 7.1. For all n ≤ X with at most X(logX)−C3/20 exceptions, we
have

R3(n) ≤ C8(log Y )−(1−ε).

Proof. Let θ ∈ m. By Dirichlet’s approximation theorem, there are a, q ∈
N with (a, q) = 1 and Q < q ≤ Z such that∣∣∣∣θ − a

q

∣∣∣∣ ≤ 1

q2
.

By Weyl’s inequality (see for instance [15, p. 200]),

|U(θ)| � X1/2(logX)(X−1/2 + q−1 +X−1q)1/2 � X1/2(logX)−C3/20.

From Parseval’s equation, we thus have∑
n≤X

(R3(n))2 =
�

m

|E(θ)|2|U(θ)|2 dθ ≤
(

max
θ∈m
|U(θ)|2

)( �
m

|E(θ)|2 dθ
)

� X2(logX)−C3/10.

Thus, the lemma follows.

8. Proofs of Theorems 1.1 and 1.2. Theorem 1.1 follows from Sec-
tions 5–7 and Lemma 2.2.

Sketch of proof of Theorem 1.2. For n ≤ X, we have

Rp(n) =

1�

0

E(θ)V (θ) e(−nθ) dθ, where V (θ) :=
∑
p≤X

e(pθ).

Define

T (θ) :=
∑
m≤X

(logm)−1 e(mθ) and T (θ, q) :=
∑

amod q
(a,q)=1

e(aq)

ϕ(q)
T (θ).

As before, we make the same decomposition of the domain of integration into
principal and non-principal major arcs and minor arcs. Inside the principal
(respectively non-principal) major arcs, we use the approximation V (θ) ∼
T (θ) (respectively V (θ) ∼ T (θ, q)). We estimate the error terms by using
the Prime Number Theorem (respectively the Page–Walfisz Prime Number
Theorem) (see [15]). The basic integral becomes

�(p)
(j, n, Z0) =

1/Z0�

−1/Z0

G(θ, j)T (θ) e(−nθ) dθ.

Inside the minor arcs, we use the well-known estimate of Vinogradov [20]
for V (θ). Thus the proof is complete.
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