Polynomial estimates on real and complex $L_{p}(\mu)$ spaces

by

Marios K. Papadiamantis and Yannis Sarantopoulos (Athens)

Abstract

In his commentary to Problem 73 of Mazur and Orlicz in the Scottish Book, L. A. Harris raised the following natural generalization: Let X be a Banach space, let k_{1}, \ldots, k_{n} be nonnegative integers whose sum is m and let $c\left(k_{1}, \ldots, k_{n} ; X\right)$ be the smallest number with the property that if L is any symmetric m-linear mapping of one real normed linear space into another, then $\left|L\left(x_{1}^{k_{1}} \ldots x_{n}^{k_{n}}\right)\right| \leq c\left(k_{1}, \ldots, k_{n} ; X\right)\|\widehat{L}\|$, where \widehat{L} is the m-homogeneous polynomial associated to L. In this paper, we give estimates in the case of a real $L_{p}(\mu)$ space using three different techniques and we get optimal results in some special cases.

1. Introduction and notation. If X is a Banach space over $\mathbb{K}, \mathbb{K}=\mathbb{R}$ or \mathbb{C}, we let $\mathcal{L}^{\text {s }}\left({ }^{m} X, \mathbb{K}\right)$ denote the Banach space of all continuous symmetric m-linear forms $L: X^{m} \rightarrow \mathbb{K}$ with the norm

$$
\|L\|=\sup \left\{\left|L\left(x_{1}, \ldots, x_{m}\right)\right|:\left\|x_{1}\right\| \leq 1, \ldots,\left\|x_{m}\right\| \leq 1\right\}
$$

For simplicity, we write $\mathcal{L}^{\mathrm{s}}\left({ }^{m} X\right)$ in place of $\mathcal{L}^{\mathrm{s}}\left({ }^{m} X, \mathbb{K}\right)$. A function $P: X \rightarrow \mathbb{K}$ is a continuous m-homogeneous polynomial if there is a continuous symmetric m-linear form $L: X^{m} \rightarrow \mathbb{K}$ for which $P(x)=L(x, \ldots, x)$ for all $x \in X$. In this case it is convenient to write $P=\widehat{L}$. We let $\mathcal{P}\left({ }^{m} X\right)$ denote the Banach space of all continuous m-homogeneous polynomials $P: X \rightarrow \mathbb{K}$ with the norm

$$
\|P\|=\sup \{|P(x)|:\|x\| \leq 1\} .
$$

We write $L\left(x_{1}^{k_{1}} \ldots x_{n}^{k_{n}}\right)$ as shorthand for $L\left(x_{1}, \ldots, x_{1}, \ldots, x_{n}, \ldots, x_{n}\right)$ where each x_{i} appears k_{i} times for $1 \leq i \leq n$, and $k_{1}+\cdots+k_{n}=m$.

It is known [2, Proposition 1.8] that if $L \in \mathcal{L}^{\mathrm{s}}\left({ }^{m} X\right)$ and \widehat{L} is the associated polynomial, then

$$
\|L\| \leq \frac{m^{m}}{m!}\|\widehat{L}\|
$$

[^0]and the constant m^{m} / m ! is best possible (see [2, Example 1.39]). This is the answer to Problem 73 of Mazur and Orlicz [13].
L. A. Harris in his commentary to Problem 73 raised the following natural generalization:

Let X be a Banach space, let k_{1}, \ldots, k_{n} be nonnegative integers whose sum is m and let $c\left(k_{1}, \ldots, k_{n} ; X\right)$ be the smallest number with the property that if L is any symmetric m-linear mapping of one real normed linear space into another, then

$$
\left|L\left(x_{1}^{k_{1}} \ldots x_{n}^{k_{n}}\right)\right| \leq c\left(k_{1}, \ldots, k_{n} ; X\right)\|\widehat{L}\|
$$

Following the definition of the polarization constant introduced by S . Dineen [2], we define

$$
c(X)=\limsup _{m \rightarrow \infty} c\left(k_{1}, \ldots, k_{n} ; X\right)^{1 / m}
$$

which describes how the constant behaves asymptotically. This notation will be used only in the case where x_{1}, \ldots, x_{n} are norm-one vectors with disjoint supports.

It is shown in [5, Theorem 1] that if only complex normed spaces are considered, then

$$
\begin{equation*}
c\left(k_{1}, \ldots, k_{n} ; X\right)=\frac{k_{1}!\cdots k_{n}!}{k_{1}^{k_{1}} \cdots k_{n}^{k_{n}}} \frac{m^{m}}{m!} \tag{1.1}
\end{equation*}
$$

In the case of real normed linear spaces L. A. Harris has proved in [6, Corollary 7] (see also [10], [12]) that

$$
\begin{equation*}
\left|L\left(x_{1}^{k_{1}} \ldots x_{n}^{k_{n}}\right)\right| \leq \sqrt{\frac{m^{m}}{k_{1}^{k_{1}} \cdots k_{n}^{k_{n}}}}\|\widehat{L}\| \tag{1.2}
\end{equation*}
$$

for all nonnegative integers k_{1}, \ldots, k_{n} with $k_{1}+\cdots+k_{n}=m$.
It was also established by L. A. Harris (see [5, Theorem 6]) that in the case of complex L_{p}-space, $1 \leq p \leq \infty$, one has

$$
\|L\| \leq\left(\frac{m^{m}}{m!}\right)^{|p-2| / p}\|\widehat{L}\|
$$

when m is a power of 2 . An improved estimate was given in [11, Theorem 2] by Y. Sarantopoulos, but it holds for a small range of p 's. In the case of real or complex $L_{p}(\mu)$, for $1 \leq p \leq m^{\prime}, 1 / m+1 / m^{\prime}=1$, he showed that

$$
\begin{equation*}
\|L\| \leq \frac{m^{m / p}}{m!}\|\widehat{L}\| \tag{1.3}
\end{equation*}
$$

L. A. Harris has also proved the following:

Lemma 1.1 ([5, Theorem 1]). Let $1 \leq p \leq \infty$ and $L \in \mathcal{L}^{\mathrm{s}}\left({ }^{m} \ell_{p}, \mathbb{C}\right)$. If x_{1}, \ldots, x_{n} are norm-one vectors in ℓ_{p} with disjoint supports, then

$$
\left|L\left(x_{1}^{k_{1}} \ldots x_{n}^{k_{n}}\right)\right| \leq \frac{k_{1}!\cdots k_{n}!m^{m / p}}{k_{1}^{k_{1} / p} \cdots k_{n}^{k_{n} / p} m!}\|\widehat{L}\|
$$

for all nonnegative integers k_{1}, \ldots, k_{n} with $k_{1}+\cdots+k_{n}=m$.
Notice that (1.1) follows from the above estimate for $p=1$, since every Banach space is isometric to a quotient of ℓ_{1}. The following example shows that the constant in Lemma 1.1 is best possible.

Example 1.2. For any real or complex ℓ_{p} space and $x=\left(x_{i}\right) \in \ell_{p}$, let $\widehat{L} \in \mathcal{P}\left({ }^{m} \ell_{p}\right)$ with $\widehat{L}(x)=x_{1} \cdots x_{m}$. Take $e_{j}, j=1, \ldots, m$, to be the j th coordinate vector of ℓ_{p} and define

$$
\begin{aligned}
y_{1} & =k_{1}^{-1 / p}\left(e_{1}+\cdots+e_{k_{1}}\right) \\
y_{i} & =k_{i}^{-1 / p}\left(e_{k_{1}+\cdots+k_{i-1}+1}+\cdots+e_{k_{1}+\cdots+k_{i}}\right), \quad i=2, \ldots, n
\end{aligned}
$$

Notice that y_{1}, \ldots, y_{n} are unit vectors in ℓ_{p} with disjoint supports. Moreover, we can easily check (see [11, Example 1]) that

$$
\left|L\left(y_{1}^{k_{1}} \cdots y_{n}^{k_{n}}\right)\right|=\frac{k_{1}!\cdots k_{n}!m^{m / p}}{k_{1}^{k_{1} / p} \cdots k_{n}^{k_{n} / p} m!}\|\widehat{L}\| .
$$

In the next two sections we provide some estimates of the constant $c\left(k_{1}, \ldots, k_{n} ; L_{p}(\mu)\right)$, first for complex $L_{p}(\mu)$-spaces and then for real ones. In the complex case, we choose $\left(x_{i}\right)$ to be a seminormalized unconditional basic sequence, which gives the case of x_{i} 's, $i=1, \ldots, n$, having disjoint supports as a particular case. In general, the real case is more difficult. Consequently, we shall tackle this problem by using three different techniques, where x_{1}, \ldots, x_{n} are norm-one vectors with disjoint supports. The first technique is standard, using a well known polarization formula, while the second depends on a generalization of Clarkson's inequality (see [14]). The third one uses Hoeffding's inequality, which was particularly useful in [9] in order to get a lower bound on the radius of analyticity of a power series. The values for the constant $c\left(k_{1}, \ldots, k_{n} ; L_{p}(\mu)\right)$ obtained by the third technique are the worst with few exceptions, but asymptotically this technique gives better results.

Each technique will also be used to obtain corresponding estimates for a seminormalized unconditional basic sequence $\left(x_{i}\right)$ with appropriate additional constants. In the last section we thoroughly explain why and when each technique is useful. It seems reasonable to approach the problem using the type and cotype of the space, but the estimates for these constants are far from optimal.
2. The complex case. Recall that the nth Rademacher function r_{n} is defined on $[0,1]$ by $r_{n}(t)=\operatorname{sign} \sin 2^{n} \pi t$. Furthermore, for every natural number $n \geq 2$, the generalized Rademacher functions $\left(s_{j}\right)$ are defined inductively as follows (see [1]): Let a_{1}, \ldots, a_{n} be the complex nth roots of unity. For $j=1, \ldots, n$ let $I_{j}=((j-1) / n, j / n)$ and let $I_{j_{1}, j_{2}}$ denote the j_{2} th open subinterval of length $1 / n^{2}$ of $I_{j_{1}}\left(j_{1}, j_{2}=1, \ldots, n\right)$. Proceeding like this, it is clear how to define the interval $I_{j_{1}, \ldots, j_{k}}$ for any k. Now $s_{1}:[0,1] \rightarrow \mathbb{C}$ is defined by setting $s_{1}(t)=a_{j}$ for $t \in I_{j}$, where $1 \leq j \leq n$. There is no harm in setting $s_{k}(t)=1$ for all endpoints t. We shall need the following polarization formula (see [1]):

$$
L\left(x_{1}, \ldots, x_{m}\right)=\frac{1}{m!} \int_{0}^{1} s_{1}^{m-1}(t) \cdots s_{m}^{m-1}(t) \widehat{L}\left[\sum_{i=1}^{m} s_{i}(t) x_{i}\right] d t
$$

which can be generalized using the multinomial theorem and [1, Lemma 1] to get

Lemma 2.1. Let the scalar field be \mathbb{C}, X vector space and $L \in \mathcal{L}^{\mathrm{s}}\left({ }^{m} X\right)$. If $x_{1}, \ldots, x_{n} \in X$, then

$$
L\left(x_{1}^{k_{1}} \ldots x_{n}^{k_{n}}\right)=\frac{k_{1}!\cdots k_{n}!}{m!} \int_{0}^{1} s_{1}^{m-k_{1}}(t) \cdots s_{n}^{m-k_{n}}(t) \widehat{L}\left(\sum_{i=1}^{n} s_{i}(t) x_{i}\right) d t
$$

for all nonnegative integers k_{1}, \ldots, k_{n} with $k_{1}+\cdots+k_{n}=m$.
Khinchin's inequality states that for every $0<p<\infty$, there are $0<$ $A_{p} \leq B_{p}<\infty$ such that for all $n \in \mathbb{N}$ and all scalars a_{1}, \ldots, a_{n},

$$
A_{p}\left(\sum_{i=1}^{n}\left|a_{i}\right|^{2}\right)^{1 / 2} \leq\left\|\sum_{i=1}^{n} a_{i} r_{i}\right\|_{L_{p}} \leq B_{p}\left(\sum_{i=1}^{n}\left|a_{i}\right|^{2}\right)^{1 / 2}
$$

where B_{p} depends not only on p but also on n, and from [8, Theorem \& Corollary 3] is given by

$$
B_{p}(n)= \begin{cases}\frac{\left(\int_{0}^{1}\left|\sum_{i=1}^{n} r_{i}\right|^{p} d t\right)^{1 / p}}{n^{1 / 2}} & \text { if } p \geq 3 \\ \frac{\left(\int_{0}^{1}\left|\sum_{i=1}^{n} r_{i}\right|^{p} d t\right)^{1 / p}}{n^{1 / p}} & \text { if } 2 \leq p<3\end{cases}
$$

Notice that this estimate for B_{p} also holds for the generalized Rademacher functions.

Definition 2.2. Let $0<K<\infty$. A sequence $\left(x_{i}\right)$ in a Banach space X is a K-unconditional basic sequence if for all n, all scalars a_{1}, \ldots, a_{n} and all choices of $\epsilon_{i}= \pm 1$,

$$
\left\|\sum_{i=1}^{n} \epsilon_{i} a_{i} x_{i}\right\| \leq K\left\|\sum_{i=1}^{n} a_{i} x_{i}\right\|
$$

Definition 2.3. A sequence $\left(x_{i}\right)$ in a Banach space X is called seminormalized if $\inf _{i}\left\|x_{i}\right\|>0$ and $\sup _{i}\left\|x_{i}\right\|<\infty$.

If $\phi \in L_{p}(\mu), 2<p<\infty$ and $\phi>0$ almost everywhere, we set $d \mu_{\phi}=$ $\phi^{p} d \mu$ and define $U_{\phi} f=f / \phi$ for $f \in L_{p}(\mu)$. By the Radon-Nikodým theorem, U_{ϕ} is an isometry of $L_{p}(\mu)$ onto $L_{p}\left(\mu_{\phi}\right)$. From [3, Proposition 3.4] we have

Proposition 2.4. Let $\left(f_{i}\right)$ be a seminormalized K-unconditional basic sequence in $L_{p}(\mu), 2<p<\infty$. If for every $\phi>0$ with $\int_{0}^{1} \phi(t)^{p} d t=1$,

$$
C_{\phi}=\left(\sum_{i=1}^{\infty}\left\|U_{\phi} f_{i}\right\|_{L_{2}\left(\mu_{\phi}\right)}^{2 p(p-2)}\right)^{(p-2) / 2 p}<\infty
$$

then $\left(f_{i}\right)$ is equivalent to the usual basis of ℓ_{p} and for all n and all a_{1}, \ldots, a_{n} we have

$$
\begin{equation*}
\left\|\sum_{i=1}^{n} a_{i} f_{i}\right\| \leq K B_{p} C\left(\sum_{i=1}^{n}\left|a_{i}\right|^{p}\right)^{1 / p} \tag{2.1}
\end{equation*}
$$

where B_{p} is the Khinchin constant and $C=\sup C_{\phi}<\infty$.
Proposition 2.5. Let $2<p<\infty$ and let $L \in \mathcal{L}^{\mathrm{s}}\left({ }^{m} L_{p}(\mu), \mathbb{C}\right)$. Suppose $\left(x_{i}\right)$ is a seminormalized K-unconditional basic sequence in $L_{p}(\mu)$ and for every $\phi>0$ with $\int_{0}^{1} \phi(t)^{p} d t=1$,

$$
C_{\phi}=\left(\sum_{i=1}^{\infty}\left\|U_{\phi} x_{i}\right\|_{L_{2}\left(\mu_{\phi}\right)}^{2 p(p-2)}\right)^{(p-2) / 2 p}<\infty
$$

Then $\left(x_{i}\right)$ is equivalent to the usual basis of ℓ_{p} and for all nonnegative integers k_{1}, \ldots, k_{n} with $k_{1}+\cdots+k_{n}=m$ we have

$$
\left|L\left(x_{1}^{k_{1}} \ldots x_{n}^{k_{n}}\right)\right| \leq\left(K B_{p} C\right)^{m} \frac{k_{1}!\cdots k_{n}!m^{m / p}}{k_{1}^{k_{1} / p} \cdots k_{n}^{k_{n} / p} m!}\|\widehat{L}\|
$$

where B_{p} is the Khinchin constant and $C=\sup C_{\phi}<\infty$.
Proof. Using Lemma 2.1 and Proposition 2.4, we have

$$
\begin{aligned}
& \left|\frac{k_{1}^{k_{1} / p} \cdots k_{n}^{k_{n} / p}}{m^{m / p}} L\left(x_{1}^{k_{1}} \ldots x_{n}^{k_{n}}\right)\right| \\
& \quad=\left|L\left(\left(\frac{k_{1}}{m}\right)^{k_{1} / p} x_{1}^{k_{1}} \ldots\left(\frac{k_{n}}{m}\right)^{k_{n} / p} x_{n}^{k_{n}}\right)\right| \\
& \quad=\left|\frac{k_{1}!\cdots k_{n}!}{m!} \int_{0}^{1} s_{1}^{m-k_{1}}(t) \cdots s_{n}^{m-k_{n}}(t) \widehat{L}\left(\sum_{i=1}^{n}\left(\frac{k_{i}}{m}\right)^{1 / p} s_{i}(t) x_{i}\right) d t\right|
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{k_{1}!\cdots k_{n}!}{m!}\|\widehat{L}\| \int_{0}^{1}\left\|\sum_{i=1}^{n}\left(\frac{k_{i}}{m}\right)^{1 / p} s_{i}(t) x_{i}\right\|_{p}^{m} d t \\
& \leq\left(K B_{p} C\right)^{m} \frac{k_{1}!\cdots k_{n}!}{m!}\|\widehat{L}\| \int_{0}^{1}\left(\sum_{i=1}^{n} \frac{k_{i}}{m}\right)^{m / p} d t \\
& =\left(K B_{p} C\right)^{m} \frac{k_{1}!\cdots k_{n}!}{m!}\|\widehat{L}\| .
\end{aligned}
$$

Remark 2.6. If in Proposition 2.5 we choose x_{1}, \ldots, x_{n} to have disjoint supports, then we get Harris' result of Lemma 1.1.

3. The real case

3.1. Using weights. If $r_{i}(t)=\operatorname{sign} \sin 2^{i} \pi t$ is the i th Rademacher function on $[0,1]$, we shall need the following well known polarization formula ([2, Corollary 1.6], see also [11, Lemma 2]):

$$
L\left(x_{1}, \ldots, x_{m}\right)=\frac{1}{m!} \int_{0}^{1} r_{1}(t) \cdots r_{m}(t) \widehat{L}\left[\sum_{i=1}^{m} r_{i}(t) x_{i}\right] d t
$$

which is generalized by the next result.
Lemma 3.1. If X is a vector space over $\mathbb{K}, L \in \mathcal{L}^{\mathfrak{s}}\left({ }^{m} X\right)$ and x_{1}, \ldots, x_{n} $\in X$, then

$$
\begin{aligned}
& L\left(x_{1}^{k_{1}} \ldots x_{n}^{k_{n}}\right) \\
& \quad=\frac{1}{m!} \int_{0}^{1} r_{1}(t) \cdots r_{m}(t) \widehat{L}\left(\sum_{i=1}^{k_{1}} r_{i}(t) x_{1}+\cdots+\sum_{i=m-k_{n}+1}^{m} r_{i}(t) x_{n}\right) d t
\end{aligned}
$$

for all nonnegative integers k_{1}, \ldots, k_{n} with $k_{1}+\cdots+k_{n}=m$.
Theorem 3.2. Let $1 \leq p \leq \infty$ and let $L \in \mathcal{L}^{\mathrm{s}}\left({ }^{m} L_{p}(\mu), \mathbb{R}\right)$. If x_{1}, \ldots, x_{n} are norm-one vectors in $L_{p}(\mu)$ with disjoint supports, then

$$
\begin{equation*}
\left|L\left(x_{1}^{k_{1}} \ldots x_{n}^{k_{n}}\right)\right| \leq \frac{k_{1}^{k_{1}} \cdots k_{n}^{k_{n}}}{m!} n^{m / p}\|\widehat{L}\| \tag{3.1}
\end{equation*}
$$

for all nonnegative integers k_{1}, \ldots, k_{n} with $k_{1}+\cdots+k_{n}=m$.
Proof. From Lemma 3.1 we have

$$
\begin{aligned}
& \left|L\left(x_{1}^{k_{1}} \ldots x_{n}^{k_{n}}\right)\right| \\
& \quad \leq \frac{k_{1}^{k_{1}} \cdots k_{n}^{k_{n}}}{m!}\|\widehat{L}\| \int_{0}^{1}\left\|\sum_{i=1}^{k_{1}} r_{i}(t) \frac{x_{1}}{k_{1}}+\cdots+\sum_{i=m-k_{n}+1}^{m} r_{i}(t) \frac{x_{n}}{k_{n}}\right\|_{p}^{m} d t .
\end{aligned}
$$

But

$$
\begin{aligned}
& \int_{0}^{1}\left\|\sum_{i=1}^{k_{1}} r_{i}(t) \frac{x_{1}}{k_{1}}+\cdots+\sum_{i=m-k_{n}+1}^{m} r_{i}(t) \frac{x_{n}}{k_{n}}\right\|_{p}^{m} d t \\
& \quad \leq \int_{0}^{1}\left[\left(\frac{1}{k_{1}}\left|\sum_{i=1}^{k_{1}} r_{i}(t)\right|\right)^{p}+\cdots+\left(\frac{1}{k_{n}}\left|\sum_{i=m-k_{n}+1}^{m} r_{i}(t)\right|\right)^{p}\right]^{m / p} d t \leq n^{m / p}
\end{aligned}
$$

and (3.1) follows.
REMARK 3.3. For $k_{1}=\cdots=k_{n}=1$, the upper bound of $c\left(k_{1}, \ldots, k_{n} ; \ell_{p}\right)$ from Lemma 1.1 and the lower bound from Theorem 3.2 give the same estimate $m^{m / p} / m$!.

Since by Stirling's formula $m!\sim \sqrt{2 \pi} m^{m+1 / 2} e^{-m}$, the constant of Theorem 3.2 gives asymptotically $c\left(L_{p}(\mu)\right)=n^{1 / p} e$.

Using (2.1) in the proof of Theorem 3.2, we get the following estimate for a seminormalized unconditional basic sequence $\left(x_{i}\right)$ with appropriate additional constants.

Proposition 3.4. Let $2<p<\infty$ and let $L \in \mathcal{L}^{\mathrm{s}}\left({ }^{m} L_{p}(\mu), \mathbb{R}\right)$. Suppose $\left(x_{i}\right)$ is a seminormalized K-unconditional basic sequence in $L_{p}(\mu)$ and for every $\phi>0$ with $\int_{0}^{1} \phi(t)^{p} d t=1$,

$$
C_{\phi}=\left(\sum_{i=1}^{\infty}\left\|U_{\phi} x_{i}\right\|_{L_{2}\left(\mu_{\phi}\right)}^{2 p(p-2)}\right)^{(p-2) / 2 p}<\infty .
$$

Then $\left(x_{i}\right)$ is equivalent to the usual basis of ℓ_{p} and for all nonnegative integers k_{1}, \ldots, k_{n} with $k_{1}+\cdots+k_{n}=m$ we have

$$
\left|L\left(x_{1}^{k_{1}} \ldots x_{n}^{k_{n}}\right)\right| \leq\left(K B_{p} C\right)^{m} \frac{k_{1}^{k_{1}} \cdots k_{n}^{k_{n}}}{m!} n^{m / p}\|\widehat{L}\|
$$

where B_{p} is the Khinchin constant and $C=\sup C_{\phi}<\infty$.
Now, we compare some values of $c\left(k_{1}, \ldots, k_{n} ; L_{p}(\mu)\right)$ obtained from Theorem 3.2 with the corresponding ones already known from 1.2 .

Examples 3.5. (a) For $m=8, c\left(1, \ldots, 1,2 ; L_{8}(\mu)\right) \simeq 0.0007$, while 1.2 gives 2048.
(b) $c\left(1,1,2 ; L_{8}(\mu)\right) \simeq 0.29$, while 1.2 gives 8 .
(c) $c\left(1,1,6 ; L_{4}(\mu)\right) \simeq 10.4$, while 1.2 gives 19 .
(d) For $m=8, c\left(1, \ldots, 1,2 ; L_{2}(\mu)\right) \simeq 0.24$, while 1.2 gives 2048 .
3.2. Using Clarkson's inequalities. If $a_{1}, \ldots, a_{n} \in \mathbb{C}$, from [14, Theorem 5] we have Clarkson type inequalities

$$
\begin{aligned}
& \left(\int_{0}^{1}\left|\sum_{i=1}^{n} r_{i}(t) a_{i}\right|^{\lambda} d t\right)^{1 / \lambda} \leq\left(\sum_{i=1}^{n}\left|a_{i}\right|^{\lambda}\right)^{1 / \lambda} \quad \text { if } 0<\lambda \leq 2 \\
& \left(\int_{0}^{1}\left|\sum_{i=1}^{n} r_{i}(t) a_{i}\right|^{\lambda} d t\right)^{1 / \lambda} \leq\left(\sum_{i=1}^{n}\left|a_{i}\right|^{\lambda^{\prime}}\right)^{1 / \lambda^{\prime}} \quad \text { if } 2 \leq \lambda<\infty
\end{aligned}
$$

where $\lambda^{\prime}=\lambda /(\lambda-1)$ is the conjugate exponent of λ.
Theorem 3.6. Let $1 \leq p \leq \infty$ and let $L \in \mathcal{L}^{\mathbf{s}}\left({ }^{m} L_{p}(\mu)\right.$, $\left.\mathbb{R}\right)$. If x_{1}, \ldots, x_{n} are norm-one vectors in $L_{p}(\mu)$ with disjoint supports, then

$$
\left|L\left(x_{1}^{k_{1}} \ldots x_{n}^{k_{n}}\right)\right| \leq c\left(k_{1}, \ldots, k_{n} ; L_{p}(\mu)\right)\|\widehat{L}\|
$$

for all nonnegative integers k_{1}, \ldots, k_{n} with $k_{1}+\cdots+k_{n}=m$, where

$$
c\left(k_{1}, \ldots, k_{n} ; L_{p}(\mu)\right)= \begin{cases}\frac{\left(k_{1}^{p-1}+\cdots+k_{n}^{p-1}\right)^{m / p}}{m!} & \text { if } p \geq m, \\ \frac{n^{(m-p) / p}\left(k_{1}^{m-1}+\cdots+k_{n}^{m-1}\right)}{m!} & \text { if } p \leq m .\end{cases}
$$

Proof. From Lemma 3.1 we have

$$
\begin{aligned}
\left|L\left(x_{1}^{k_{1}} \ldots x_{n}^{k_{n}}\right)\right| & \leq \frac{\|\widehat{L}\|}{m!} \int_{0}^{1}\left\|\sum_{i=1}^{k_{1}} r_{i}(t) x_{1}+\cdots+\sum_{i=m-k_{n}+1}^{m} r_{i}(t) x_{n}\right\|_{p}^{m} d t \\
& \leq \frac{\|\widehat{L}\|}{m!} \int_{0}^{1}\left(\left|\sum_{i=1}^{k_{1}} r_{i}(t)\right|^{p}+\cdots+\left|\sum_{i=m-k_{n}+1}^{m} r_{i}(t)\right|^{p}\right)^{m / p} d t .
\end{aligned}
$$

Let $p \geq m$. Then $m / p \leq 1$ and by Hölder's inequality

$$
\begin{aligned}
\left|L\left(x_{1}^{k_{1}} \ldots x_{n}^{k_{n}}\right)\right| & \leq \frac{\|\widehat{L}\|}{m!}\left(\int_{0}^{1}\left|\sum_{i=1}^{k_{1}} r_{i}(t)\right|^{p} d t+\cdots+\left.\left.\int_{0}^{1}\right|_{i=m-k_{n}+1} ^{m} r_{i}(t)\right|^{p} d t\right)^{m / p} \\
& \leq \frac{\left(k_{1}^{p / p^{\prime}}+\cdots+k_{n}^{p / p^{\prime}}\right)^{m / p}\|\widehat{L}\| \quad(\text { since } p \geq 2)}{m!} \\
& =\frac{\left(k_{1}^{p-1}+\cdots+k_{n}^{p-1}\right)^{m / p}}{m!}\|\widehat{L}\| .
\end{aligned}
$$

Let $p \leq m$. Then $m / p \geq 1$ and by Hölder's inequality

$$
\begin{aligned}
& \left|L\left(x_{1}^{k_{1}} \ldots x_{n}^{k_{n}}\right)\right| \\
& \quad \leq \frac{n^{m / p}\|\widehat{L}\|}{m!} \int_{0}^{1}\left(\frac{1}{n}\left|\sum_{i=1}^{k_{1}} r_{i}(t)\right|^{p}+\cdots+\frac{1}{n}\left|\sum_{i=m-k_{n}+1}^{m} r_{i}(t)\right|^{p}\right)^{m / p} d t
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{n^{m / p}\|\widehat{L}\|}{m!} \int_{0}^{1} \frac{1}{n}\left(\left|\sum_{i=1}^{k_{1}} r_{i}(t)\right|^{m}+\cdots+\left|\sum_{i=m-k_{n}+1}^{m} r_{i}(t)\right|^{m}\right) d t \\
& =\frac{n^{(m-p) / p}\|\widehat{L}\|}{m!}\left(\int_{0}^{1}\left|\sum_{i=1}^{k_{1}} r_{i}(t)\right|^{m} d t+\cdots+\int_{0}^{1}\left|\sum_{i=m-k_{n}+1}^{m} r_{i}(t)\right|^{m} d t\right) \\
& \leq \frac{n^{(m-p) / p}\left(k_{1}^{m / m^{\prime}}+\cdots+k_{n}^{m / m^{\prime}}\right)}{m!}\|\widehat{L}\| \quad(\text { since } m \geq 2) \\
& =\frac{n^{(m-p) / p}\left(k_{1}^{m-1}+\cdots+k_{n}^{m-1}\right)}{m!}\|\widehat{L}\| .
\end{aligned}
$$

REMARK 3.7. For $k_{1}=\cdots=k_{n}=1$, the upper bound of $c\left(k_{1}, \ldots, k_{n} ; \ell_{p}\right)$ from Lemma 1.1 and the lower bound from Theorem 3.6, in the case $p \geq m$, give the same estimate $m^{m / p} / m$!.

Notice that the constant of Theorem 3.6 gives asymptotically $c\left(L_{\infty}(\mu)\right)$ $=e$ and $c\left(L_{p}(\mu)\right)=n^{1 / p} e$ for $1 \leq p<\infty$.

Using (2.1) in the proof of Theorem 3.6, we get the following estimate for a seminormalized unconditional basic sequence $\left(x_{i}\right)$ with appropriate additional constants.

Proposition 3.8. Let $2<p<\infty$ and let $L \in \mathcal{L}^{\mathrm{s}}\left({ }^{m} L_{p}(\mu), \mathbb{R}\right)$. Suppose $\left(x_{i}\right)$ is a seminormalized K-unconditional basic sequence in $L_{p}(\mu)$ and for every $\phi>0$ with $\int_{0}^{1} \phi(t)^{p} d t=1$,

$$
C_{\phi}=\left(\sum_{i=1}^{\infty}\left\|U_{\phi} x_{i}\right\|_{L_{2}\left(\mu_{\phi}\right)}^{2 p(p-2)}\right)^{(p-2) / 2 p}<\infty
$$

Then $\left(x_{i}\right)$ is equivalent to the usual basis of ℓ_{p} and for all nonnegative integers k_{1}, \ldots, k_{n} with $k_{1}+\cdots+k_{n}=m$ we have

$$
\left|L\left(x_{1}^{k_{1}} \ldots x_{n}^{k_{n}}\right)\right| \leq c\left(k_{1}, \ldots, k_{n} ; L_{p}(\mu)\right)\|\widehat{L}\|
$$

Here
$c\left(k_{1}, \ldots, k_{n} ; L_{p}(\mu)\right)= \begin{cases}\left(K B_{p} C\right)^{m} \frac{\left(k_{1}^{p-1}+\cdots+k_{n}^{p-1}\right)^{m / p}}{m!} & \text { if } p \geq m, \\ \left(K B_{p} C\right)^{m} \frac{n^{(m-p) / p}\left(k_{1}^{m-1}+\cdots+k_{n}^{m-1}\right)}{m!} & \text { if } p \leq m,\end{cases}$
where B_{p} is the Khinchin constant and $C=\sup C_{\phi}<\infty$.
Now, we compare some values of $c\left(k_{1}, \ldots, k_{n} ; L_{p}(\mu)\right)$ obtained from Theorem 3.6 with the corresponding ones already known from 1.2 .

Examples 3.9. (a) $c\left(4,4 ; L_{8}(\mu)\right) \simeq 0.81$, while 1.2 gives 16 .
(b) $c\left(1,3 ; L_{4}(\mu)\right)=1.1 \overline{6}$, while 1.2 gives 3.08 .
(c) $c\left(1,1,2 ; L_{4}(\mu)\right)=0.41 \overline{6}$, while (1.2) gives 8 .
(d) $c\left(4,4 ; L_{2}(\mu)\right) \simeq 6.5$, while 1.2 gives 16 .
(e) $c\left(1,3 ; L_{2}(\mu)\right)=2 . \overline{3}$, while 1.2 gives 3.08 .
(f) $c\left(1,1,2 ; L_{2}(\mu)\right)=1.25$, while (1.2) gives 8 .
3.3. Using Hoeffding's inequality. Let $(\mathbb{R}, \mathcal{M}, \lambda)$ be the Lebesgue measure space and let $E \in \mathcal{M}$. If f is a measurable function on E, we define its distribution function $\lambda_{f}:(0, \infty) \rightarrow[0, \infty]$ by

$$
\lambda_{f}(a)=\lambda(\{x \in E:|f(x)|>a\}),
$$

where λ denotes Lebesgue measure. From 4], we have:
Proposition 3.10. If $\lambda_{f}(a)<\infty$ for every $a>0$ and ϕ is a nonnegative Borel function on $(0, \infty)$, then

$$
\int_{E} \phi \circ|f| d \lambda=-\int_{0}^{\infty} \phi(a) d \lambda_{f}(a) .
$$

That is, the integrals of functions of $|f|$ on E can be reduced to LebesgueStieltjes integrals.

The case we are interested in is $\phi(a)=a^{p}$, which gives

$$
\int_{E}|f|^{p} d \lambda=-\int_{0}^{\infty} a^{p} d \lambda_{f}(a) .
$$

Integrating the right hand side by parts, we obtain

$$
\begin{equation*}
\int_{E}|f|^{p} d \lambda=p \int_{0}^{\infty} a^{p-1} \lambda_{f}(a) d a . \tag{3.2}
\end{equation*}
$$

The validity of this calculation becomes clear if we note that $a^{p} \lambda_{f}(a) \rightarrow 0$ as $a \rightarrow 0$ and $a \rightarrow \infty$ (since λ_{f} is strictly decreasing). In the following proposition the function f will be of the form $f(t)=r_{1}(t)+\cdots+r_{k}(t)$, $k \in \mathbb{N}$. Therefore, we need to find an upper bound for

$$
\lambda_{f}(x):=\lambda_{k}(x)=P\left(\left|r_{1}(t)+\cdots+r_{k}(t)\right| \geq x\right) .
$$

This will be accomplished by using Hoeffding's inequality (see [7, Theorem 2]): If X_{1}, \ldots, X_{k} are independent random variables with $a_{i} \leq X_{i} \leq b_{i}$ for every $i=1, \ldots, k$ and with mean μ, then for all $x>0$,

$$
P\left(\overline{X_{k}}-\mu \geq x\right) \leq e^{-2 k^{2} x^{2} / \sum_{i=1}^{k}\left(b_{i}-a_{i}\right)^{2}} .
$$

Since in our case $a_{i}=-1, b_{i}=1$ and $\mu=0$ for every i, it follows that

$$
\begin{aligned}
P\left(r_{1}(t)+\cdots+r_{k}(t) \geq x\right) & =P\left(\frac{r_{1}(t)+\cdots+r_{k}(t)}{k} \geq \frac{x}{k}\right) \\
& \leq e^{-2 k^{2}(x / k)^{2} / 4 k}=e^{-x^{2} / 2 k} .
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\lambda_{k}(x)=P\left(\left|r_{1}(t)+\cdots+r_{k}(t)\right| \geq x\right) \leq 2 e^{-x^{2} / 2 k} \tag{3.3}
\end{equation*}
$$

Recall that the double factorial of a positive integer n is defined by

$$
n!!= \begin{cases}n \cdot(n-2) \cdots 5 \cdot 3 \cdot 1 & \text { if } n \text { is odd } \\ n \cdot(n-2) \cdots 6 \cdot 4 \cdot 2 & \text { if } n \text { is even. }\end{cases}
$$

Lemma 3.11. If $n \in \mathbb{N}$, then

$$
\Gamma\left(\frac{n}{2}\right)= \begin{cases}\frac{2}{n} 2^{-n / 2} n!! & \text { if } n \text { is even } \\ \frac{\sqrt{2 \pi}}{n} 2^{-n / 2} n!! & \text { if } n \text { is odd }\end{cases}
$$

Proof. If n is even, then

$$
n!!=2^{n / 2} \Gamma\left(\frac{n}{2}+1\right) \Leftrightarrow n!!=2^{n / 2} \frac{n}{2} \Gamma\left(\frac{n}{2}\right) \Leftrightarrow \Gamma\left(\frac{n}{2}\right)=\frac{2}{n} 2^{-n / 2} n!!.
$$

If n is odd, then

$$
\begin{aligned}
n!!=\pi^{-1 / 2} 2^{n / 2+1 / 2} \Gamma\left(\frac{n}{2}+1\right) & \Leftrightarrow n!!=\sqrt{\frac{2}{\pi}} 2^{n / 2} \frac{n}{2} \Gamma\left(\frac{n}{2}\right) \\
& \Leftrightarrow \Gamma\left(\frac{n}{2}\right)=\frac{\sqrt{2 \pi}}{n} 2^{-n / 2} n!!
\end{aligned}
$$

If $p>0,[p]$ denotes the integer part of p.
Theorem 3.12. Let $1 \leq p \leq \infty$ and let $L \in \mathcal{L}^{\mathrm{s}}\left({ }^{m} L_{p}(\mu), \mathbb{R}\right)$. If x_{1}, \ldots, x_{n} are norm-one vectors in $L_{p}(\mu)$ with disjoint supports, then

$$
\left|L\left(x_{1}^{k_{1}} \ldots x_{n}^{k_{n}}\right)\right| \leq c\left(k_{1}, \ldots, k_{n} ; L_{p}(\mu)\right)\|\widehat{L}\|
$$

for all nonnegative integers k_{1}, \ldots, k_{n} with $k_{1}+\cdots+k_{n}=m$, where

$$
c\left(k_{1}, \ldots, k_{n} ; L_{p}(\mu)\right)= \begin{cases}\frac{\left(\sqrt{2 \pi}[p]!!\sum_{i=1}^{n} k_{i}^{[p] / 2}\right)^{m /[p]}}{m!} & \text { if } p \geq m, \tag{3.4}\\ \frac{n^{(m-p) / p} \sqrt{2 \pi} m!!\sum_{i=1}^{n} k_{i}^{m / 2}}{m!} & \text { if } p \leq m\end{cases}
$$

Proof. From Lemma 3.1 we have

$$
\begin{aligned}
\left|L\left(x_{1}^{k_{1}} \ldots x_{n}^{k_{n}}\right)\right| & \leq \frac{\|\widehat{L}\|}{m!} \int_{0}^{1}\left\|\sum_{i=1}^{k_{1}} r_{i}(t) x_{1}+\cdots+\sum_{i=m-k_{n}+1}^{m} r_{i}(t) x_{n}\right\|_{p}^{m} d t \\
& \leq \frac{\|\widehat{L}\|}{m!} \int_{0}^{1}\left(\left|\sum_{i=1}^{k_{1}} r_{i}(t)\right|^{p}+\cdots+\left|\sum_{i=m-k_{n}+1}^{m} r_{i}(t)\right|^{p}\right)^{m / p} d t
\end{aligned}
$$

Let $p \geq m$. Since $p \geq[p] \geq m$ and $m /[p] \leq 1$, using Hölder's inequality we
have

$$
\begin{aligned}
\left|L\left(x_{1}^{k_{1}} \ldots x_{n}^{k_{n}}\right)\right| & \leq \frac{\|\widehat{L}\|}{m!} \int_{0}^{1}\left(\left|\sum_{i=1}^{k_{1}} r_{i}(t)\right|^{[p]}+\cdots+\left|\sum_{i=m-k_{n}+1}^{m} r_{i}(t)\right|^{[p]}\right)^{m /[p]} d t \\
& \leq \frac{\|\widehat{L}\|}{m!}\left(\int_{0}^{1}\left|\sum_{i=1}^{k_{1}} r_{i}(t)\right|^{[p]} d t+\cdots+\int_{0}^{1}\left|\sum_{i=m-k_{n}+1}^{m} r_{i}(t)\right|^{[p]} d t\right)^{m /[p]}
\end{aligned}
$$

Therefore, from (3.2) and (3.3) we get

$$
\begin{aligned}
& \left|L\left(x_{1}^{k_{1}} \ldots x_{n}^{k_{n}}\right)\right| \\
& \quad \leq \frac{\|\widehat{L}\|}{m!}\left([p] \int_{0}^{\infty} x^{[p]-1} \lambda_{k_{1}}(x) d x+\cdots+[p] \int_{0}^{\infty} x^{[p]-1} \lambda_{k_{n}}(x) d x\right)^{m /[p]} \\
& \quad \leq \frac{\|\widehat{L}\|}{m!}\left([p] \int_{0}^{\infty} x^{[p]-1} 2 e^{-x^{2} / 2 k_{1}} d x+\cdots+[p] \int_{0}^{\infty} x^{[p]-1} 2 e^{-x^{2} / 2 k_{n}} d x\right)^{m /[p]} \\
& \quad=\frac{\|\widehat{L}\|}{m!}\left([p]\left(2 k_{1}\right)^{[p] / 2} \Gamma\left(\frac{[p]}{2}\right)+\cdots+[p]\left(2 k_{n}\right)^{[p] / 2} \Gamma\left(\frac{[p]}{2}\right)\right)^{m /[p]} \\
& \quad=\frac{\left([p] 2^{[p] / 2} \Gamma([p] / 2) \sum_{i=1}^{n} k_{i}^{[p] / 2}\right)^{m /[p]}\|\widehat{L}\| .}{m!}
\end{aligned}
$$

Now, an application of Lemma 3.11 yields

$$
\left|L\left(x_{1}^{k_{1}} \ldots x_{n}^{k_{n}}\right)\right| \leq \begin{cases}\frac{\left(2[p]!!\sum_{i=1}^{n} k_{i}^{[p] / 2}\right)^{m /[p]}\|\widehat{L}\|}{m!} \quad \text { if }[p] \text { is even } \tag{3.5}\\ \frac{\left(\sqrt{2 \pi}[p]!!\sum_{i=1}^{n} k_{i}^{[p] / 2}\right)^{m /[p]}}{m!}\|\widehat{L}\| & \text { if }[p] \text { is odd }\end{cases}
$$

Let $p \leq m$. Using Hölder's inequality and (3.2), (3.3), we get

$$
\begin{aligned}
& \left|L\left(x_{1}^{k_{1}} \ldots x_{n}^{k_{n}}\right)\right| \\
& \quad \leq \frac{n^{m / p}\|\widehat{L}\|}{m!} \int_{0}^{1}\left(\frac{1}{n}\left|\sum_{i=1}^{k_{1}} r_{i}(t)\right|^{p}+\cdots+\frac{1}{n}\left|\sum_{i=m-k_{n}+1}^{m} r_{i}(t)\right|^{p}\right)^{m / p} d t \\
& \quad \leq \frac{n^{m / p}\|\widehat{L}\|}{m!} \int_{0}^{1} \frac{1}{n}\left(\left|\sum_{i=1}^{k_{1}} r_{i}(t)\right|^{m}+\cdots+\left|\sum_{i=m-k_{n}+1}^{m} r_{i}(t)\right|^{m}\right) d t \\
& \quad \leq \frac{n^{(m-p) / p}\|\widehat{L}\|}{m!}\left(m \int_{0}^{\infty} x^{m-1} \lambda_{k_{1}}(x) d x+\cdots+m \int_{0}^{\infty} x^{m-1} \lambda_{k_{n}}(x) d x\right) \\
& \quad \leq \frac{n^{(m-p) / p}\|\widehat{L}\|}{m!}\left(m \int_{0}^{\infty} x^{m-1} 2 e^{-x^{2} / 2 k_{1}} d x+\cdots+m \int_{0}^{\infty} x^{m-1} 2 e^{-x^{2} / 2 k_{n}} d x\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{n^{(m-p) / p}\|\widehat{L}\|}{m!}\left(m\left(2 k_{1}\right)^{m / 2} \Gamma\left(\frac{m}{2}\right)+\cdots+m\left(2 k_{n}\right)^{m / 2} \Gamma\left(\frac{m}{2}\right)\right) \\
& =\frac{n^{(m-p) / p} m 2^{m / 2} \Gamma(m / 2) \sum_{i=1}^{n} k_{i}^{m / 2}}{m!}\|\widehat{L}\|
\end{aligned}
$$

An application of Lemma 3.11 yields

$$
\left|L\left(x_{1}^{k_{1}} \ldots x_{n}^{k_{n}}\right)\right| \leq \begin{cases}\frac{n^{(m-p) / p} 2 m!!\sum_{i=1}^{n} k_{i}^{m / 2}}{m!}\|\widehat{L}\| & \text { if } m \text { is even } \tag{3.6}\\ \frac{n^{(m-p) / p} \sqrt{2 \pi} m!!\sum_{i=1}^{n} k_{i}^{m / 2}}{m!}\|\widehat{L}\| & \text { if } m \text { is odd. }\end{cases}
$$

Finally, the estimate (3.4) follows from (3.5) and (3.6).
Observe that in the real case the constant of Theorem 3.12 leads to $c\left(L_{\infty}(\mu)\right)=\sqrt{e}$, which is the best known asymptotic estimate and independent of n. Additionally, $c\left(L_{p}(\mu)\right)=n^{1 / p} \sqrt{e}$ for $1 \leq p<\infty$. By Lemma 1.1. the best asymptotic estimate for complex $L_{\infty}(\mu)$ spaces is 1 .

Using (2.1) in the proof of Theorem 3.12, we get the following estimate for a seminormalized unconditional basic sequence $\left(x_{i}\right)$ with appropriate additional constants.

Proposition 3.13. Let $2<p<\infty$ and let $L \in \mathcal{L}^{\text {s }}\left({ }^{m} L_{p}(\mu), \mathbb{R}\right)$. Suppose $\left(x_{i}\right)$ is a seminormalized K-unconditional basic sequence in $L_{p}(\mu)$ and for every $\phi>0$ with $\int_{0}^{1} \phi(t)^{p} d t=1$,

$$
C_{\phi}=\left(\sum_{i=1}^{\infty}\left\|U_{\phi} x_{i}\right\|_{L_{2}\left(\mu_{\phi}\right)}^{2 p(p-2)}\right)^{(p-2) / 2 p}<\infty
$$

Then $\left(x_{i}\right)$ is equivalent to the usual basis of ℓ_{p} and for all nonnegative integers k_{1}, \ldots, k_{n} with $k_{1}+\cdots+k_{n}=m$ we have

$$
\left|L\left(x_{1}^{k_{1}} \ldots x_{n}^{k_{n}}\right)\right| \leq c\left(k_{1}, \ldots, k_{n} ; L_{p}(\mu)\right)\|\widehat{L}\|
$$

where
$c\left(k_{1}, \ldots, k_{n} ; L_{p}(\mu)\right)= \begin{cases}\left(K B_{p} C\right)^{m} \frac{\left(\sqrt{2 \pi}[p]!!\sum_{i=1}^{n} k_{i}^{[p] / 2}\right)^{m /[p]}}{m!} & \text { if } p \geq m, \\ \left(K B_{p} C\right)^{m} \frac{n^{(m-p) / p} \sqrt{2 \pi} m!!\sum_{i=1}^{n} k_{i}^{m / 2}}{m!} & \text { if } p \leq m .\end{cases}$
Once again B_{p} is the Khinchin constant and $C=\sup C_{\phi}<\infty$.
Now, we compare some values of $c\left(k_{1}, \ldots, k_{n} ; L_{p}(\mu)\right)$ obtained from Theorem 3.12 with the corresponding ones already known from (1.2).

EXAMPLES 3.14. (a) $c\left(2,58,140 ; L_{180}(\mu)\right) \simeq 17.42 \times 10^{27}$, while 1.2 gives 27.14×10^{27}.
(b) $c\left(2,58,140 ; L_{200}(\mu)\right) \simeq 15.42 \times 10^{27}$, while 1.2 gives 27.14×10^{27}.
4. Conclusion. In this section we shall explain when each of the above techniques is useful, but the "rules" we are about to give are not strict, since for any fixed values of m and p there is a large variation for the values of $n, k_{i}, i=1, \ldots, n$.

First of all, note that when $1 \leq p \leq m^{\prime}$ and $1 / m+1 / m^{\prime}=1$, inequality (1.3) gives better estimates than any of these techniques.

CASE $p=m$. If n is very small and the k_{i} 's are (approximately) equal, we get the best estimates from Theorem 3.6 (Example 3.9a).

If n is very small and the k_{i} 's have a large variation, Theorem 3.6 is best suited for very small values of m (Example 3.9b), but inequality (1.2) remains the best for larger m 's.

If n is relatively large (not necessarily close to m), the best estimates are obtained from Theorem 3.6 for very small m 's (Example 3.9.) and from Theorem 3.2 for larger m 's (Example 3.5a).

CASE $p>m$. For fixed m, as p increases, only the estimates of Theorem 3.2 decrease, therefore for large p 's we get the best estimates from Theorem 3.2 (Example 3.5b). If p is not very large (i.e. close to m), the "rules" of the case $p=m$ hold.

CASE $p<m$. If n is very small and the k_{i} 's are (approximately) equal, we prefer Theorem 3.6 (Example 3.9d). For large m 's and very small p 's, we get the best estimates from inequality (1.2).

If n is very small and the k_{i} 's have a large variation, the best estimates are derived from 1.2 in most cases and sometimes Theorems 3.2 (Example 3.5 c) and 3.6 (Example 3.9 e) will do the job.

If n is relatively large (not necessarily close to m), Theorem 3.2 is the one we need (Example 3.5 d), with few exceptions for very small values of m where the results from Theorem 3.6 are better (Example 3.9).

Finally, observe that Theorem 3.12 gives the best known asymptotic estimate, which is independent of n and is obtained in the case of $L_{\infty}(\mu)$. Additionally, it is useful in both cases $p \geq m$ and $p<m$ for very large values of m and p, when $n \geq 3$ (but not close to m) and the k_{i} 's are neither equal nor have a very large variation (Examples 3.14a, 3.14b).

References

[1] R. M. Aron, M. Lacruz, R. A. Ryan and A. M. Tonge, The generalized Rademacher functions, Note Mat. 12 (1992), 15-25.
[2] S. Dineen, Complex Analysis on Infinite-Dimensional Spaces, Springer Monogr. Math., Springer, 1999.
[3] L. E. Dor and T. Starbird, Projections of L^{p} onto subspaces spanned by independent random variables, Compos. Math. 39 (1979), 141-175.
[4] G. Folland, Real Analysis, Wiley, 1999.
[5] L. A. Harris, Bounds on the derivatives of holomorphic functions of vectors, in: Analyse fonctionnelle et applications (Rio de Janeiro, 1972), Act. Sci. Ind. 1367, Hermann, Paris, 1975, 145-163.
[6] L. A. Harris, A Bernstein-Markov theorem for normed spaces, J. Math. Anal. Appl. 208 (1997), 476-486.
[7] W. Hoeffding, Probability inequalities for sums of bounded random variables, J. Amer. Statist. Assoc. 58 (1963), 13-30.
[8] R. Komorowski, On the best possible constants in the Khintchine inequality for $p \geq 3$, Bull. London Math. Soc. 20 (1988), 73-75.
[9] M. K. Papadiamantis and Y. Sarantopoulos, Radius of analyticity of a power series on real Banach spaces, J. Math. Anal. Appl. 434 (2016), 1281-1289.
[10] S. G. Révész and Y. Sarantopoulos, On Markov constants of homogeneous polynomials over real normed spaces, East J. Approx. 9 (2003), 277-304.
[11] I. Sarantopoulos, Estimates for polynomial norms on $L^{p}(\mu)$ spaces, Math. Proc. Cambridge Philos. Soc. 99 (1986), 263-271.
[12] Y. Sarantopoulos, Bounds on the derivatives of polynomials on Banach spaces, Math. Proc. Cambridge Philos. Soc. 110 (1991), 307-312.
[13] The Scottish Book: Mathematics from the Scottish Cafe, ed. by R. D. Mauldin, Birkhäuser, 1981.
[14] L. R. Williams and J. H. Wells, L^{p} inequalities, J. Math. Anal. Appl. 64 (1978), 518-529.

Marios K. Papadiamantis, Yannis Sarantopoulos
Department of Mathematics
National Technical University
Zografou Campus 157 80, Athens, Greece
E-mail: mpapadiamantis@yahoo.gr
ysarant@math.ntua.gr

[^0]: 2010 Mathematics Subject Classification: Primary 46G25; Secondary 47H60, 46E15.
 Key words and phrases: polynomial estimates, polarization constants.
 This work formed part of the first author's Ph.D. thesis.
 Received 16 December 2015; revised 15 July 2016.
 Published online 4 October 2016.

