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Relative trace formulas and subconvexity estimates for
L-functions of Hilbert modular forms

by

SHINGO SUGIYAMA (Fukuoka) and Masao Tsuzuki (Tokyo)

1. Introduction. Inthis paper, by the method developed in [21] and [19],
we explicitly compute Jacquet’s relative trace formula for the toral periods
along the diagonal split torus in PGL(2), which encodes the central L-
values for the quadratic base change of holomorphic Hilbert cusp forms on
its spectral side. By introducing new techniques in a broader setting, we
elaborate an explicit relative trace formula partly obtained by Ramakrishnan
and Rogawski [I6] for the elliptic modular case.

Let F be a totally real number field and A its adele ring. Let X', denote
the set of archimedean places of F', and X5, the set of finite places of F'. We
consider a family [ = (I,)yex,, of positive even integers, calling it a weight.
Given a weight [ and an integral ideal n of F', let IT.us(l,n) be the set of all
irreducible cuspidal representations 7 of the adele group PGL(2, A) such that
its vth local component 7, is isomorphic to the discrete series representation
of PGL(2,R) of weight [, if v € X, and has a non-zero vector invariant
under the local Hecke congruence subgroup

Ko(no,) = {[25] € GL(2,0,) | ¢ € no, }

if v € Xg,, where o is the maximal order of F', and o, its completion at v.

The standard L-function L(s, ) of m € II.ys(l,n) is defined to be the Eu-
ler product of the local factors L(s, m,) over all places v if Re(s) is sufficiently
large. Recall that for a finite place v not dividing the ideal n,

L(S,’]Tv) _ (1 o qg(ﬂv)/Q—s)—l(l . qv—u(wv)/Q—s)—l,
where ¢, is the order of the residue field at v and quf Y(m)/2 s the Sa-

take parameter of m at v. We remark that the L-function in our sense is
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completed by the archimedean local factors L(s,m,) = I'c(s + (L, — 1)/2)
for v € Y, and the Euler product with all the gamma factors removed
from L(s,m) is denoted by Lgy,(s, 7). It is well known that L(s,7), orig-
inally defined on a half-plane Re(s) > 0, has a holomorphic continua-
tion to the whole complex plane with the self-dual functional equation
L(s,m) =€(s,m)L(1 — s, ).

The central value Lgy(1/2,7) and its twist Lgy(1/2,7 ® i) by a real
valued idele class character n of F'* have been studied extensively from
several different points of view. For example, when the base field F' is Q,
Iwaniec and Sarnak [7] announced a number of asymptotic formulas for
the first and the second moments of the central L-values Lgn(1/2,7m ® 1)
for m € Il.s(l,n) twisted by the Hecke operators and by suitably designed
mollifiers. Combining such asymptotic formulas, they proved that among
L-functions whose functional equations have even signs, at least 50 — € per-
cent do not vanish at the central point in a quantitative sense for any given
e > 0 if the weight [ (or the square-free level n) is sufficiently large; moreover,
they claimed that the quantitative non-vanishing of more than 50 percent
of them eliminates the possibility of a Landau—Siegel zero of the quadratic
Dirichlet L-function L(s,n).

Among several twisted means of L-values considered in [7], one of the
most basic means is

L(1/2,m)L(1/2
(1.1) > 1/ ’Lﬁji,léé;r@n)a(vs(w)),

mEcus(l,n)
where S is a finite set of finite places coprime to both n and the conductor

f of n, vsg(m) = {v(my) bves is the collection of the exponents in the Satake
parameters of 7 over S, and a({vy}ves) is a polynomial in the functions

Qv w2 g qZ”/ % of the variable v,. When F = Q, Ramakrishnan and Ro-
gawski [16] studied the asymptotic behavior of the twisted second moment
for an odd Dirichlet character 7 as the level n, to be kept prime and
coprime to f, grows to infinity when the weight [ > 4 is fixed. In the same
setting, Michel and Ramakrishnan [I1] obtained an explicit closed formula
for the average , and observed that the formula simplifies significantly
in a certain range of the parameters (n,f,deg(«)) called the stable range.
Later, Feigon and Whitehouse [4] extended the results of [16] and [11] to
Hilbert modular forms in a more general setting of [8], but still keeping the
square-free condition on the level n and the oddness conditions on 7 at all
archimedean places.

In this article, we consider the twisted second moment in our general
Hilbert modular setting without assuming those conditions on n and 7,
and obtain a formula in a computable form (Theorems ; thus, we

generalize some results of [4] and [I1] in several directions.
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As a first application of our formula, we prove an equidistribution
theorem for the Satake parameters weighted by the central L-values
L(1/2,7)L(1/2,7®n) as in [4]; we work with a more general sign condition
on 7 than in [4] at archimedean places, allowing the level n to be a gen-
eral ideal, not necessarily square-free. We remark that a similar asymptotic
result for spectral averages of L-values of non-holomorphic modular forms
was proved first in [2I] for square-free levels, and later in [19] for arbitrary
levels.

In what follows, N(n) denotes the absolute norm of an ideal n C o.

THEOREM 1.1. Let | = (Iy)pex,, be a weight such that 1, > 6 for all
v € Y. Let v be an ideal of o and n = Q,n a quadratic idele class
character of F* with conductor § prime to n, and let S be a finite set of
finite places relatively prime to nf. Assume that 1, is non-trivial for all prime
divisors v of n, and (—=1)¢M7(n) = 1, where e(n) is the number of v € Yo
such that n, is non-trivial, and 7 is the character of the group of ideals
prime to f induced by n. Then, for any even holomorphic function «a(s)
on the complex manifold Xs = ], cq (C/lfg”; Z), we have the asymptotic
formula

(ly —2)!
(2m) (£:Q] H {1/2_1))1}2

VEY 50
1 L(1/2,m)L(1/2, 7 ®n)
"N Wenzu;uw U
= 4D} V() Ln(1,1) | a(s) dul(s) + Ocp.a(N() )
xg

for some § > 0; if n is restricted to square-free ideals, then the asymptotic
formula is true with a smaller error term Oy o(N(n)~Moezo bo/2+14€) for
any € > 0. Here on the right-hand side of the formula,

vimy= J[ a-¢? JI 0-(@-a)™,

vEXGn ISP
ordy (n)>3 ord, (n)=2

XY denotes the purely imaginary locus of Xg and dpk(iy) =Tl,eq dud (iyy)
with

1
(@ EERSYE 2 dpSt () (nu(woy) = 1),
- dp T(xfu) (nv(wv) = _1)7
(@ 172 4 = 1/2) e
where T, = qy /2 4 Qv S/ s dpST(z) = Y 22 dx is the Sato-Tate measure

and w, 1S a prime element of 0,. On the left-hand side of the formula,



4 S. Sugiyama and M. Tsuzuki

I1% . (I,n) denotes the set of m € Ieys(l,n) whose conductor fr is n, and
L3 (s,m;Ad) is the adjoint square L-function of m whose local v-factors
are removed for all v belonging to Sz = {v € Yg, | ord, (f=) > 2}.

We remark that our relative trace formula yields an exact formula for the
L-value average , which reduces to a finite expression for some (n, 7, a)
(see Corollary [9.4]). In our forthcoming paper [20], we show that the error
term in Theore can be improved to O(N(n)~17¢). As a corollary to this
theorem, we have the following result (cf. [L6, Corollary B], [19, Theorem 3]).

COROLLARY 1.2. Let | = (Iy)yex,, be a weight such that 1, > 6 for all
v € Y. Let m be a quadratic idele class character of F* with conductor f.
Let S be a finite set of finite places relatively prime to f, and {J,}ves a
collection of subintervals of [—2,2]. Given a sequence {ny}ren of o-ideals
relatively prime to f and S such that (—1)*Mf(ng) = 1, ny(w,) = —1 for
all prime divisors v of ny and limy_, o N(ng) = oo, there exists ko with the
following property: For any k > ko, there exists m € 11} (l,ng) such that

cus

Lan(1/2,m)Len(1/2,m @ 1) # 0 and qg(ﬂ“)/z + qv_y(m’)/2 € Jy forallvesS.

The so-called convezity bound on Lg,(1/2,7) is

1/4+e€
|Ln(1/2,7)| <o {N(n) I1 zg} . m e Hos(lym),
VEX 5o

for any € > 0. When F' = Q (so the weight [ is a number) and n = Z,
the bound |Lgy,(1/2,7)| <. 1'/3+¢, which breaks the convexity bound in the
weight aspect, has long been known [15], [9]. Thanks to a recent result by
Michel and Venkatesh [12], existence of a subconvexity bound for Lg, (1/2, )
in any aspect in the general setting is now known; however, beyond its
existence, an explicit form of the subconvex exponent is not obvious from
their work. As a second application of our formula, we deduce a bound
with an explicit subconvex exponent in the weight aspect for the L-function
Lan(1/2,7) Len(1/2, 7®n) with n an idele class character of F* which is odd
at all archimedean places, where F' is a general totally real number field.

THEOREM 1.3. Let | = (Iy)vex,, be a weight such that 1, > 6 for all
v € Y. Let n be an arbitrary ideal of o, and n a real valued idele class
character of F* such that n,(—1) = —1 for all v € Y. Suppose that the
conductor f of n is relatively prime to n. Then, for any € > 0,

7/8+€
[Lin(1/2,7) Lan(1/2,7 @ )| < NP N@) <L TT 0}
ISP IISY
with the implied constant independent of | = (ly)vex.,, N, N and ™ €

Heys(lm).
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Theorems [[.1] and [[.3] are deduced from the relative trace formula stated
in §9together with the explicit formulas for local terms given in §10/and
Technically speaking, there are substantial differences between [16], [4] and
our paper, explained below. In [4], by using the Jacquet-Langlands transfer
and some refinements of Waldspurger’s period formula, when the character
7 is odd at all archimedean places, the equidistribution theorem is deduced
from the relative trace formula developed in [8], and specified by the authors
of [4] for an anisotropic inner form of GL(2) which is certainly an easier place
to do analysis than GL(2). By contrast, as in [16], we perform an explicit
computation of the relative trace formula on GL(2) for the period along the
split torus, which is slightly harder analytically due to the non-compactness
of the spaces but much easier algebraically because we only have to con-
sider the Hecke zeta integral on the spectral side. The analytical difficulty
can be resolved by the technique developed in [21] (see and for a
different approach, we refer to [16]). For the algebraic aspect, we have an
advantage thanks to [I8] which completed the computation of local Hecke
zeta integrals for local old forms. Due to the direct nature of the method,
we can rather easily drop several local and global constraints on automor-
phic representations and the character n, which is essential to moving to
an anisotropic group by the Jacquet-Langlands transfer. For example, the
character n is allowed to be trivial in our work. Moreover, the use of “Shin-
tani functions” (see in place of the matrix coefficients of discrete series
at archimedean places simplifies some computation of archimedean orbital
integrals compared with [I6]. Similarly, the use of “Green functions” (see
at finite places makes it possible for us to compute non-archimedean orbital
integrals directly; our result is exhaustive in the sense that it covers not only
the unit element of the spherical Hecke algebra but also all of its elements.

This article is organized as follows. After a preliminary section, in we
recall the definition of Shintani functions studied in [6] for the symmetric
pair (GL(2,R),T') with T" being the diagonal maximal torus, and prove sev-
eral of their properties that are necessary later. In §4] we briefly review the
Green function on GL(2) over a non-archimedean local field, which was in-
troduced in [21} §5]. Combining these, in §5| we define a left Hy-equivariant
smooth function on the adele group GL(2,A) with the “reproducing prop-
erty” (Lemma, calling it the adelic Green function. Here H denotes the
diagonal maximal split torus of GL(2).

In after reviewing the explicit formulas for the toral period integrals
of GL(2) cusp forms with arbitrary level given in [I8], we compute the
spectral expansion of the automorphic renormalized kernel , which is
constructed by forming the sum of the adelic Green function translated by
Hp\ GL(2, F) after a regularization to compensate for vol(Zy Hp\Hy) = o0,
where Z is the center of GL(2). Although such a regularization is not needed
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on the spectral side since is cuspidal, the regularization plays a role on
the geometric side in

In §7| and closely following [21), §12], we compute the geometric ex-
pression of the period integral of the automorphic renormalized kernel. Up
to most of the estimates and computations are obtained from the cor-
responding ones in [21] and [19] by modification at archimedean places; we
make the proofs as brief as possible, referring for detailed arguments to our
previous works.

In the final formula (Theorem , two linear functionals J7 (1, n|a) and
J]Zyp(l , ) in the test function « arise. We can deduce Theorem easily
from Theorem as explained in §9} the point is to show that the term
J]]Zyp(l, nja) amounts to at most N(n)~°, giving an error term.

The new and essential contribution of this paper to the relative trace
formula is probably and devoted to computing the functionals
Ji(l,n]a) and Jzyp(l,n|a) explicitly for particular but sufficiently general
test functions «. For the results, we refer to Theorems and In the
final section we prove Theorem by applying the relative trace for-
mula (Theorem to a specially chosen test function (see originally
due to Iwaniec. In the proof, our explicit formula for orbital integrals for
arbitrary Hecke functions plays an essential role.

Finally, we mention our work [20] where we obtain an analogue of the
results of [I7] for the central (derivative of) L-values of Hilbert modular
forms; in [20], the explicit relative trace formula to be developed in this
article is also indispensable.

Basic notation and convention. Let N be the set of all positive in-
tegers, and we write No for NU{0}. For any condition P, we set §(P) = 1 if
P is true, and 6(P) = 0 if P is false. For any z € C* and « € C, we define

logz =logr+1i0, 2% =exp(alogz)

for z = re? (r > 0,6 € (—m,7]). For a complex function f(z) of z € C

and for ¢ € R, the contour integral ngzz f(2)dz along the vertical line
Re(z) = o is sometimes denoted by SLU f(2)dz. We set ITg(s) = n%/2I"(s/2)
and Ic(s) = 2(2m)~*I'(s). Set 1o = [} 7], the identity matrix. All the

fractional ideals appearing in this paper are supposed to be non-zero.

2. Preliminaries. We now introduce basic objects and notation, which
are used throughout this article.

2.1. Let F, A, 0, Y, X5, and o0y, ¢, for v € X5, be as in the intro-
duction. Set Xp = Yoo U X5, and dp = [F : Q]. The finite adele ring of F
is denoted by Ag,. For v € Yg,, F, denotes the completion of F' at v, and
we fix a prime element w, of F, and set p, = w,0,; the modulus of F* is
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denoted by ||, and the associated order function is ord, = —log,, ||, Let
d, be the local differential exponent of F;, over QQ,, where p is the charac-
teristic of 0, /p,. The discriminant D of F//Q is defined to be the absolute
norm N(0g/q), where 9/ is the global different of F//Q. The completed
Dedekind zeta function of F' is denoted by (r(s). For any ideal a of o, let
S(a) denote the set of all v € X, such that ord,(a) > 1.

2.2. Let G be the F-algebraic group GL(2). For any F-subgroup M
of G, we set My = M(A), MF:M(F), Mﬁn:M(Aﬁn), M :M(F Q@ R)
and M, = M(F,) for any v € Y. The set Gg, of points of finite adeles
of GG is realized as a restricted direct product of the local groups G, with
respect to the maximal compact subgroups K, = GL(2, 0,) over all v € Xg,,.
For an ideal n of o, let Kg(no,) be as in the introduction and set Ko(n) =
[l,ex,, Ko(noy), which is an open compact subgroup of Kgiy = [[,c 5. K.
The Lie group G is isomorphic to Huezw Gy. For each v € Y, let K,
be the image of O(2,R) by the isomorphism GL(2,R) = G,. Note that K9
is isomorphic to the rotation group SO(2,R). Set Ko = [[,cx. Kv and
K = K, K. Let Z be the center of G, H the F-split torus of G consisting
of all the diagonal matrices, and N the F-subgroup of G consisting of all
the upper triangular unipotent matrices. Set B = HN.

2.3. Haar measures. Forv € X, let dx, be the additive Haar measure
on F, such that vol(o,) = @ ™ if v € Ty, and vol{z € Fy | |z]y < 1}) =2
it v € Y. Fix a multiplicative Haar measure d*z, on F) by d*x, =
cy dzy /| 2o|w, where ¢, = 1if v € Yo, and ¢, = (1 — ;1)L if v € X, We
fix a Haar measure on the idele group A* by d*z =[], d*xy. For y > 0,
let y € A* be the idele such that y = YV for all . € Yo, and y, =1
for all v € Yg,. Then y — y is a section of the idele norm | |4 : A* — R,
which allows us to identify A* with the direct product of {y | y > 0} and
the norm one subgroup Al = {x € AX | |x[5 = 1}. We fix a Haar measure
d'u on A! so that d*z = d'ud*y when = uy with z € AX, v € Al and
y > 0. B

We fix Haar measures dh,,, dn, and dk, on the groups H,, N, and K,
respectively by setting dh, = d*t1,d*ta, if h, = [tldv tva dn, = dx,
if n, = [(1) o ], and by requiring vol(K,, dk,) = 1. Then we normalize the
Haar measure dg, = dh,, dn,, dk, on G, by using the Iwasawa decomposition
G, = H,N,K,. We note that vol(K,, dg,) = qv_de/2. By taking the tensor
product of the measures dg, on G,, we fix a Haar measure dg on G.

Let ¢ be a smooth function on G 5. The right translation of ¢ by g € Gy
is denoted by R(g)g, ie., [R(g9)¢](h) = ¢(hg). The derived action of
the universal enveloping algebra of the complexified Lie algebra go, =
Lie(Gs)c on smooth functions on Gy is also denoted by R. Let W and
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W be the element %[_11 :” of slp(C) and its complex conjugate, respec-
tively. For any v € Y, the elements of Lie(G,)c corresponding to W and
W are denoted by W, and W, respectively. For any compactly supported
smooth function f on the direct product Gg of {Gy }yes with a finite subset
S C Xp, the right translation of ¢ by f is defined by the convolution
R(f)p(x) = SGS v(xgs)f(gs)dgs for x € G with respect to the product

measure dgs = @ ,cg dgo-

2.4. Given a real valued idele class character n of F’* with conductor f,
we set f(n,) = ord,(f) for v € Ygy,. For any v € X, there exists €, € {0, 1}
such that n,(x) = (z/|z|y); we call €, the sign of n at v, and set €(n) =
> vex.. €. Let I(f) be the group of fractional ideals relatively prime to f;
then we define a character 77 : I(f) — {£1} by setting 7(p, N o) = n,(w,) for

any v € Xg, —S(f). The Gauss sum G(n) for 7 is defined to be the product of

G(ny) = 805 nv(uwv_d”_f("”))wp,v(uwv_d”_f("”)) d*u over all v € Yq,,, where

YF = g o trp/g with 1g being the character of Q\A such that yg(z) =
exp(2miz) for = € R.

2.5. Fix a relatively compact subset wp of Bé = {[8 2] | a,d € A,

b € A} such that B}% = Brwpg. Let 6! = wB{[éig] ‘ t>0,t > c}K

with some ¢ > 0 be a Siegel domain such that G, = Z,Gr&'. Define
y : Ga — R} by setting y([g g]k) = |a/d|s for any [8 g] € By and k € K.
Set G} = {g € Ga | detg € A'}.

3. Holomorphic Shintani functions on GL(2,R). Consider the fol-
lowing one-parameter subgroups in GL(2,R):

__ [cos@ —sinf — [coshr sinhr
k‘g - [sin@ cos 6 ]7 Qr = [sinhr COSh?"]’

where 6,7 € R. We have SO(2,R) = {kg | 0 € R}.

3.1. Discrete series of PGL(2,R). For n € Z, let 7,, be the character
of SO(2,R) defined by

(ko) = €™, HeR.

Let | > 2 be an even integer. There are discrete series representations Dl+
and D;” of SL(2, R) such that D;*|SO(2, R) is the direct sum of the characters
T, for all n € £(I 4 2Np). We have a unitary representation D; of GL(2,R)
such that (a) D; has the trivial central character and (b) D;|SL(2,R) =
DlJr @ D, . We call D; the discrete series representation of PGL(2,R) of
minimal SO(2,R)-type .

3.2. Shintani functions. Let f(7) be a cusp form on the upper half-
plane satisfying the modularity condition f((ar+4b)/(cT+d)) = (er+d)' f(7)
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for any matrix [CC” Z] in a fixed congruence subgroup I" of PSL(2,7Z). It is

lifted to a left I'-invariant function f on the group GL(2,R) by setting

@ +2> x8(detg >0), g=[2t] € GL(2,R).

f(g) = <detg>l/2<cz'+d>—lf(

cl
Let fc be the complex conjugate of f . Then fc satisfies the conditions
Jelgke) = mi(ko) fel9)  (Vkg € SO(2,R)),  [R(W)[c](g) = 0.
Since Ad(kg)W = e 29 W in any (gly(R), O(2,R))-module (7, V), we have
7(W)Vn] C V]n_2], where
Vin] = {v e V| (kv =ev (Vkg € SO(2,R))}.

Let V be the (gla(R),0(2,R))-submodule of the regular representation
L*(I'\ GL(2,R)) generated by f.. Then the condition above, or equiva-
lently f. € V[r] and R(W)f. = 0, tells us that inside the module V'
(which is a finite sum of discrete series D;) the vector f, is extremal. For

z € C, let x. be the quasi-character of the diagonal split torus 1" defined by
x= ([ 2]) = |t1/t2]?. The integral

o(9)= | folhg)x—=(h)dh, g€ GL(2R),
IAT\T
often called the (T, x,)-period integral of f., satisfies the following two con-

ditions:

o ¢(Lt01 tg]gkg) = [t1/t2]*11(ke)p(g) for all [} tOQ] €T and 0 € R,

o R(W)p =0.

A function having these properties is called a holomorphic Shintani function
of weight [. The next proposition tells us that these conditions determine
the function ¢(g) uniquely up to a constant multiple.

PRrROPOSITION 3.1 ([6, Proposition 5.3]). Let z € C. For each even inte-
gerl > 2, there exists a unique C-valued C™®-function W) (I; —) on GL(2,R)
with the properties:

(S-1) It satisfies the equivariance condition
VO [ 5 )ake) = 10/t n(ke) 02 1; 9)
for all [tol g] €T and 0 € R.
(S-ii) It satisfies the differential equation
RW)w)(1;—) = 0.
(S-ii) W) (1519) = 1.
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We have the explicit formula
PO (1; a,) = 27U2(y) @D _ )2 g (i 2
sap) = Y) (1—y)"" with y—(e%“) :
We remark that the function W(z)(l; —) is characterized by its restriction

to the group A = {a, | 7 € R} due to property (S-i) and the decomposition
GL(2,R) =TASO(2,R) (cf. [0, Lemma 3.1]).

LEMMA 3.2. Let W3)(I; =) be as in Proposition . Then
W(z)(l; [5%]) = (1+ix)* 2 zeR
Proof. By a direct computation, [(1) ﬂf] = [6 t(_]l]arkg with
t=(1+z)Y4  cosh2r = (1+2%)Y2,  sinh2r =z,
i (V1+ 22+ 1)Y2 (1_ iz )

VZ (1 + 22)1/4 VIta?+1
and y = i—jrj;, 1—y= f—lz Using these, we obtain the formula by a direct

computation. m
LEMMA 3.3. We have the estimate
}LD(Z) (L% g}ark)‘ < 2712y [ty R emIm(2)1/2 (cogh 27) ~H/2
for any t1,ta € R*, r € R and k € SO(2,R).

27

Proof. Set y = (227;2)2 Then
i\ 2 2i tanh 27
N (cosh 2r)2 cosh2r

By a direct computation, we obtain |1—y| = (cosh 2r)~!. Furthermore, since
ly| = 1, we have |(—y)@*=0/4] < e™M™(2)I/2 This completes the proof.

= ( tanh2r —
Y <an "7 cosh2r

3.3. An inner-product formula for Shintani functions. For an
even integer [ > 2 and z € C, let us consider the integral

0TG5 (2 oo

LEMMA 3.4. The integral Cy(z) converges absolutely. It has the following
properties:

(i) The function z — Ci(z) is entire and satisfies the functional equa-
tion
Cl(—z) = Cl(z)
(ii) The value at z = 0 is given by

Ci(0) =271((1—1)/2)%r (1 — 1) ' = 252201 —1)(1/2) 2.
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(iii) We have
|C1(2)] < Cy(0) exp(m|Im(z)|), =ze€C.

Proof. By the change of variable v™! = 1 + u?, we have

00 1
CI(O) -9 S (1 + u2)17lul72 du — 271 S (1 . ,U)(l73)/2v(l73)/2 dv
1 0

=271 ((1 - 1)/2)2r (1 — 1)1,

as desired in (ii). Note that the second equality in (ii) is obtained by the
duplication formula. Since w = —((u —i)/(u +1))? satisfies |w| = 1, by defi-
nition, we have w* = exp(ifz) with 6 € (—=, 7]. Thus, |w?*| = exp(—Im(2)0)
< exp(m|Imz|), from which (iii) is immediate. By definition, we have
w™? = (w™1)?, which yields the functional equation in (i). =

The inner product of the Shintani functions &) (I; =) and w(=2)(I; -) is
as follows.

PROPOSITION 3.5. We have

| oB9)wA(1g) dg = 2710 (2).
T\ GL(2,R)

Proof. Set f(g) =¥ (l; g) w()(; g). We have
| fl9)dg =2\ f(a,) cosh2rdr
T\ GL(Q,]R) R

by [21, (3.3)], which is checked by computing the Jacobian of the coor-
dinate transform from the Iwasawa decomposition to the decomposition
GL(2,R)=TA SO(2). From Proposition flay) =27 (—y) V22 (1 —y)!
with y = (627 _i) . Using this, we compute

e2r+i

2 S f(a,) cosh 2r dr = 217! S )7V242(1 — ) cosh 2r dr
0 0
T u—i\*)*
u+1

by setting u = €?". In the same way, we obtain

0 00 wi 2N z
2 S f(ay) cosh 2r dr = 2!71 S{—( ) } (1+u) "2 du. w

Uu—1

_ 1
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3.4. Orbital integrals of Shintani functions. Set wo =k, = [[1) _01 ] .
LEMMA 3.6. If 0 < Re(z) <1/2, then, for e, e € {0,1},

S w(©) (L[} ﬂwf)/) |x|* sgn(z) d*x
® = 2 T (2)['(1)2 — 2)T(1/2) " i cos (Z (2 + €)),

S TO (15 [L9]w§) 2| sgn’(z) d* =
© = 2 T(2)I(1/2 — 2)['(1/2)" (i)  cos(Z(z + €)).
Proof. Let J(z) denote the first integral with ¢ = 0. From Lemma

we have J; (z) = J;F(2) + (—1)¢J; (2) with Jli(z) = {1+ ix) V2% d* .
By [5, 3.194.3],

JiE(2) = (£i) *B(z,1/2 - 2)
= (£)"*0 ()12 = 2)T(1/2)7"  (1/2 > Re(z) > 0).
Hence, using the relation i=% + (—1)¢(—i) ™% = 2i cos(m(z + €)/2), we get
Jie(z) = D(2)0(1/2 = 2)L(1/2) 7@ + (=1)°(=i) 77}
= 2i¢cos(m(z 4 €)/2)(2)[(1)2 — z)['(1/2) " .
. VIF? 0 :
We have Fhe Iwasawa decomposition [19] = [ / 0+ \/HT] [§%]ke with
el = \}% Hence, by Lemma

1 ? 1+iz \'
w(z) .[10 — 1 . Z—l/2: 1—34 —Z—l/2.
G0 (1) < (FE5) 0+ = -

Using this formula, in the same way as above, we can prove the second
formula with ¢ = 0. The remaining two formulas follow immediately from
the proved ones and the relation W0 (I; gwg) = '@ (l; g). =

4. Green’s functions on GL(2) over non-archimedean local fields.
This section is a review of results in [21], §5]. We fix a place v € Xg,. For

z € C, there exists a unique function @gfg : G, — C such that

(4.1) dst(fg([tol t(;] [§%]k) = [t1/t2]30(z € 0y),
(4 2] € Hyy [43] € Noy k €K,

Given z € C and s € C/4wi(log q,)~'Z, we consider the inhomogeneous
equation

(4.2) R(’]I‘v _ (ql()lfs)/Z 4 Q£1+S)/2)1Kv)w _ @(()z)

U
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with the unknown function ¥ : G, — C possessing the (H,, K,)-equivari-
ance

(4.3) (5 2]gk) = Iti/t23%(9),  [%] € He, k € K.

Here T, and 1k, are elements of the spherical Hecke algebra H(G,,Ky,)
defined by

T, = vol(K,, dg,) ' ch 1k, = vol(K,,dg,) ! chy, .

K, [0 ?]KU

We note that vol(K,, dg,) = ¢» 3do /2 (see &i

LeMMA 4.1 ([2I, Lemma 5.2]). Suppose Re(s) > |2Re(z) — 1|. Then
there exists a unique bounded function ll/qu)(s; —) : Gy, — C satisfying (4.2)
and (4.3)), whose values on N,, are given by

W(z) (S; [(1) ;f]) — _q7(8+1)/2( - q7(5722+1)/2)71(1 . q;(s+2z+1)/2)71

v

x max(1,|z|,)"¢"EY2 g e R,

Proof. We review the proof of [21, Lemmas 5.1 and 5.2]. By the de-
composition Gy = [],,~q Honm K, with n,, = [(1) @, " }, the condition
implies that a function ¥ satisfying and is determined by the
system of numbers a(m) = ¥(n,,), m > 0. The equation yields a re-
currence relation among a(m —1), a(m) and a(m + 1). By solving it, we are
done. m

The following lemma is necessary in the proof of Proposition [5.3]

LEMMA 4.2 (|21, Lemma 5.4]). Let f : G, — C be a smooth function
such that f(['} tg] k) = |t1/t2;7f(g) for any ti,ta € FY and k € K,.
Then
(4.4) V7 (s509) [R(Ty — (¢ + ¢ 791k, £ (9) dg

HAGy — vol(H,\H,K,) f(12)
as long as the integral on the left-hand side converges absolutely.

Proof. We review the proof of [21, Lemma 5.4]. On the left-hand side
of {i we move the operator R(T, — (qq(,lJrs)/2 + qqgl_s)/Q)lKv) applied to f
in front of LZSZ) by a simple change of variable; then due to (4.2)), we have

| [R(T, — (¢824 {91k, ) ()] (9) £ (9) dg

HAGe (2)
= | o) 9)f(9)dg,
H,\Gy

where the right-hand side equals vol(H,\H,K,)f(12) by (4.1). =
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5. Automorphic Green functions. Let S C Y5, be a finite subset.

Set
xs = [[(C/amiClog a,) "' 2),
veS

which we regard as a complex manifold in the obvious way. Note that for
any ¢ € R, the slice Lg(c) = {s € X5 | Re(s) = ¢} is a compact set
homeomorphic to the torus (S!)%.

Given s € Xg, z € C, an ideal n C o0 such that S(n)N.S = (), and a family
I = (ly)ves., € (2Z>2)>>, the adelic Green function Wl(z) (n]s, —) is defined
by

7" (nfs; g)
H Wéz) (lv§ g,U) H qu Sva gv H @n v gv H (péi); (gv)
vEX o veS veS(n vEX,—(SUS(n))

for any g = (gv)vex, € Ga, where LZS )(lv; —) for v € X4 is the holomorphic
Shintani function on G, = GL(2,R) defined in Proposition @Sz)(sv; -)
for v € S is the Green function recalled in §4] and for any v € Xg),, we set

B[4 0] [12]k) = |ta/ta]26(x € 0,)5(k € Ko(noy)),
t1,t2 € ), x € F,, k € K,,.

We remark that (15,(121), = @gfg if v € Yg, — S(n). It is easy to check that the

adelic Green function LPZ(Z) (n|s; —) is a smooth function on G having the
equivariance

® (nls; hgkookan) = { I =k } (W (nls;g), g€ G,
VEY 5o
for any h € Hy, koo = (ky)ves., € K% and kg, € Ko(n), where x, :
Hp\Hp — C* is the quasi-character defined by
X=([5 u]) =lt/tali,  t1,t2 € A

To state the most important property of the adelic Green functions, we
introduce the (H, x)-period integral of a cusp form ¢ € C*(ZyGr\Ga) by
setting

"D (g)= | @lhg)x:(h)dh, geGa, z€C,
ZyHp\Hy

Let ||g||a denote the height of g € Ga (see [2I), §3.2]).

LEMMA 5.1. The integral @) (g) converges absolutely and satisfies

P (hg) = x-(1) '™ P(g),  h e Ha.

For any € > 0, |p3)(g)] <, HgH2|Re At o G}
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Proof. From [2, Theorem 2.14|, there exists f € C°(Gy) such that
© = R(f)¢. Hence

plg)= | e@Ki(g)dr with K.(g)= > | flzg7'y2)dz.
ZyGF\Ga Y€Zr\GF Zy

Let € > 0. We shall prove the estimate

| [Ka(hg)x(h)] dh < [l M|z 3RE g2 € G
ZyHp\Hy

Take a compact set w C G} such that supp(f) C Zaw. Suppose Km([é ?]g)

# 0 for t > 0 and g,z € G}. Since supp(K,) C GrzZy(supp f)~ !, there

exist v € Gp, z € Zp and u € w such that [5152 t_(l]/2]g = zyzu. Let ||€]|a

denote the height of a primitive element & € A? introduced in 21 p. 27].
By noting z € G}, we have

—1/2 -1

g™ 811, = lu™ ey G = I 8],
> HxHAley 1[0]”& > Hnglv

and hence t'/2 < lg~t[§]]]sllzlla < llgllallz]la. Thus we are done by
replacing ||g||a with ||g||4||x| s in the proof of [21) Lemma 6.2]. Consequently,

| letgpemldns § le@l( § IKa(hg)xa(h)] dh) do

ZyHp\Hy ZNGF\Ga ZyHp\Hy
2R + QR, +
<pe gl § fp(@)] [l da.
ZyGr\Ga

The last integral is convergent by the cuspidality of . =

Let Acus(G; 1) be the space of cusp forms ¢ € C*°(Z,Gr\Gy) such that
for all v € X0, R(W,)p = 0 and R(k,)p = 71, (ky)ep for all k, € KY.

LEMMA 5.2. Suppose ¢ € Acus(G; Tl) Then

77 (gngoo) ={ IT # .9 } 7" (ghn)

VEY o
fO’I“ Joo = (gv)veﬂoo € Goo and Jfin € Gﬁn-

Proof. We first note that @H(Z) = o). Let gan € Ggyn. For any
v € Yo, we easily see (%) (gﬁn[ 3 ]goo ) = |t1/ta|7 77, (K)o (gangoo)
for all ti,ts € FX, k € K% and goo € Goo. Moreover, R(W,)(p™"3) =
(R(W,)p)H(?) = 0. Thus the uniqueness of Shintani functions (Proposi-
tion D yields a constant C' such that ¢™3) (gg,g00) = C [loes.. %S—z) (ly; gv)
for all goo € Goo. By setting g, = 12 and using property (S-iii) of Proposi-
tion we get C' = ") (gg,). =
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For s € Xg, we consider the element

Ts(s) = Q{To — (gf' 12 + ¢ +0)?)1, }
vES

of the Hecke algebra ), H(Gy, K,). We also set
q(s) = inf{(Re(sy) +1)/4 | v € S}.

PROPOSITION 5. 3 Suppose q(s) > 2|Re(2)|+1. For ¢ € Acus(G;m)Ko™),
the function g — El'/ (n]s 9)8™ 3 (g) is integrable on Hy\Ga. Moreover,

| 7% (ls; 9)[R(Ts())2™ ) (g) dg

Hp\Gy
:{ 11 zlrlclv(z)}vol(Hﬁn\HﬁnKo(n))aH’@)(12).
'UGEOO

Proof. We follow the argument in [21] proof of Lemma 6.3]; to show the
absolute convergence of the integral, we use Lemmal[5.1} By Lemmal[5.2] the
integral on the left-hand side is the product of

H S ![,éz) (Lv; gv)m dgy,
V€Yo H\Gh

which is evaluated by Proposition and

| {TT G0 H@Mgv I 2w

Hﬁn\Gﬁn veS ’UGS veﬂﬁnf(SuS(n))
x [R(Ts(5)7" ] (g5n) dgsn;
which yields the factor vol(Hg,\ HanKo(n))@™?(*)(13) by Lemma .

5.1. Regularization of periods and automorphic smoothed ker-
nels. For a weight | = (Iy)pex,. € (2N)¥>, set | = inf,ex. l,. In this
subsection, we introduce the automorphic renormalized smoothed kernel
f}mction \illﬁ y(n|a; g) depending on a complex parameter A\. We show that
\II/ZBA(n|a; g), originally defined by the Poincaré series convergent for
Re(A) > 0, becomes square-integrable (even cuspidal) when [ > 4 and
1/2 < Re(N) < /2 - 1.

5.1.1. Let B denote the space of all entire functions $(z) on C such that
B(z) = B(—=z) satisfying the following condition: For any interval [a,b] C R,
there exist A > 0 and B € R such that

|B(o +it)| < e~ Al+B? 5 e [a,b], t € R.

We impose a stronger condition than [21], (6.1)] to have the inclusion C;B C B,
which is seen from Lemma [3.4iii). For 8 € B and (s, \) € Xg x C such that
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q(s) > 1 and Re(\) > 1 — ¢(s), we define the renormalized Green function

by
1 B(2)
l . _
Zoa(nlsig) =52 S PR

(07 (n]s; g) + 0 (n]s; g)} d=

for the contour L, defined at the end of the introduction, where o is taken
so that —min(g(s) — 1,Re(\)) < o < ¢(s) — 1. The defining integral is
absolutely convergent and is independent of the choice of the contour; the
function \ QIA/\(n\s;g) is holomorphic in the region Re(A) > 1 — ¢(s)
which contains A = 0.

5.1.2. Our main interest is the central L-value L(1/2,7) which is es-
sentially the (H,1)-period of cusp forms belonging to m by Hecke’s zeta
integral. Proposition strongly suggests that the automorphic object

(5.1) S v nls;vg),
YEHp\GF

if well defined, might have the spectral resolution describable by the (H, 1)-
period integral of cusp forms ¢ through the following formal computation:

52§ { X #OmIsi9) HETs6)el(9) dg

ZyGrp\Gy ~€Hp\GF

= | ¢l 9)[R(Ts(s))¢l(9) dg
ZyHp\Gy

= | 72[s:9)[R(Ts(5)e™ ) (g)dg = const - o0 (1,).
Ha\Ga
Unfortunately, this is not attained for free due to the divergence of the series
> |Wl(0)(n|s;*yg)] for almost all g caused by the fact that HpZy\Hy =
F*\A* is of infinite volume. Since CT—¢ L!'/é,A(n|s;g) = !PZ(O) (n]s; 9)5(0) by
[21, Lemma 6.5 or 6.9], and since Q/Ié’)\(n|s;g) with large Re(\) behaves on
G well enough to ensure the absolute convergence of the Poincaré series

(5.3) Wha(nlsig) = D Ph(nlsivg), g€ Ga,
YEHR\GF

we expect that some substitute for ([5.1) could be gained as the constant
term at A = 0 of the analytic continuation in A\ of the series (5.3]). This
circle of ideas motivates our study of the series (5.3]).

LEMMA 5.4. Suppose | > 4.

(1) The series \Ill \(n[s; g) converges absolutely and locally uniformly in
(A\,s,9) € {Re( ) >0} x {q(s) > 1} x Gp. For a fized (\,s) in this
region, \Ilﬁy)\(n|s g) is a continuous function of g € G, which is left
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ZzGp-invariant and right Ko(n)-invariant, and satisfies
W\ (nls; gky) = 7, (ko)W 5 (n]s; g)

for all v e Xy, and k, € KB.
(2) Let (A, 8) € CxXg be such that 2Re(X) > 1, ¢(s) > 2Re(A)+1 and
1/2 > Re(N) + 1. Then, for any o € (1/2,Re(N)),

1L\ (n]s; 9)| < y(9)™7, ge &

Proof. The same proof of [21, Proposition 8.1] goes through with a minor
modification. The outline is as follows. For p > 0 and ¢ > 1, set

Zlpg,s ( [% tOQ ] (ary )veso ( [(l) T ] )vezﬁnk)

= min{|t1/t2f?, |t1/t2];"} J] (cosh2r,) /2

1)6200
x [[max(1,|zolo)™ [ 6z € 00)
vES vEX G —S

for ti,ta € AX, (ry)ves. € R¥> and (2y)pex,. € Agn, and set
[SPIFS fin

Eipas(@) = D, Eipas(r9), 9€GCa
’YGHF\GF
By Lemma Zlo,q(s),s With 0 < o < min(Re(A), ¢(s)—1) gives a majorant
of 'Pé)\(n|s) in the same way as in [2I, Lemma 6.7]. Thus to prove the

convergence and the estimation for Spé y(n]s), it is enough to establish that
Eip,q,s is locally uniformly convergent in G, and that

Eipas(9) <y(9)'™, ge&h

if 1+2p < qgand 1+ p < [/2. To achieve these, we modify the proof of
[21, Lemma 3.5] by replacing ¢ in the archimedean factors of =, s used
there with [/2 > 1. We also note that the condition 1+ p < [/2 is necessary
to guarantee {p (cosh 2r,)P~Y/2+ dr, < cc. =

For a fixed (\,s) such that 2Re(A\) > 1, ¢(s) > 2Re(\) + 1 and /2 >
Re()A) + 1, the function \II%J\(MS) defines a distribution on ZyGp\Ga by

(Whimls), o) = | W (nlsig)elg)dg, ¢ € CX(ZuGF\Ga).
ZyGF\Ga

We remark that the integral is absolutely convergent for any ¢ € Acus(G;77)
by Lemma [5.4](2).

5.1.3. We need to make the computation (5.2)) rigorous using Lpéy/\ (n]s; g).
For this, the notion of periods should be modified properly. Let us recall the
regularization of period integrals along H, which was introduced in [21 §7].
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For t > 0, set

o

We have |3 (t)] < min{t?,t= RN} ¢ > 0 [21, Lemma 7.1]. Given a real
valued idele class character n of F'*, let x, = (2y,4)vex, be the adele such
that x,, = 0 for v € X, and x,, = w{f(n“) for v € X4, and let a:;’; be the
idele such that the finite component of z; coincides with the projection of
to A7 , and all archimedean components of zy are 1. A continuous function
¢ on ZyGp\Gy is said to have the regularized (H,n)-period Pilgs(p) € C if
for any 8 € B, the integral

54) Pl =V o([§905 7D ntap{Baltla) + Br(tlg")} d*t
FX\AX

converges absolutely when Re(A) > 0 and can be continued meromorphi-

cally in a neighborhood of A = 0 with the constant term CT—g Pg’ \e) =

Pile(¢)B(0) in its Laurent expansion at 0. We note that for ¢ € Acus(G; 1),

the regularized period Prleg(go) coincides with the (H,1)-period [21, Lem-

ma 7.3].

The following lemma is shown along the lines of the formal computa-
tion ((5.2).

LEMMA 5.5. Assume | > 4. Let (\,s) be an element of C x Xg such
that 2Re(A) > 1, q(s) > 2Re(A) + 1 and /2 > Re(\) + 1. Then, for any
NS -Acus(G; Tl)Ko(n)7

(@ (nls). R(Ts(s))7) = { [T 2"} vol(Hi\ Hi Ko () Pl ().
VEY 5o
where Ci(z) = [[,ex.. Ci,(2)-

Proof. The proof is as in [21l, Lemma 8.2] with the aid of Lemma and
Proposition We note that Pﬁlcl, 1(@) is well defined because SC; belongs
toB. =

5.1.4. Assume [ > 4. Given a holomorphic function «a(s) on Xg such
that a(es) = a(s) for all £ € {#1}°, we define the renormalized smoothed
kernel

) 1 \*°
Watlai) = (5) § Ehallsigdas)duss)
Ls(e)
for Re(\) > 0 with ¢ € R® such that g(c) > max(Re()\) + 1,2), where
SLS(C) f(s)dus(s) means the multidimensional contour integral along the
slice Lg(c) = {s € Xg | Re(s) = c} oriented naturally with respect to the
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form dus(s) = [[,cq dpi(s,) with
d:“’v(sv) =27 (1qu )( (1+s0)/2 ql()l—sv)/2) ds,.
For Re(\) > 0, let us consider the Poincaré series
(5.5) W (njasg) = Y ha(nla;vg), g€ Ga,
’yEHF\GF

which is a central object in this paper. We introduce (j5.5) because it has a
much nicer spectral expansion than \I!% y(n[s) (see Lemma . In the same
way as in [2I], we analyze this series and obtain the following.

LEMMA 5.6.
(1) The series \Ilﬁ/\(n]a g) converges absolutely and locally uniformly
in (A,g) € {Re(\) > 0} x Gu. The function g — \Ilﬁ)\(n]a g) is

continuous on Gy, left ZyGp-invariant, and right Ko(n)-invariant;
moreover, for all v € Yo,

(5.6) \11%7)\(11\04;5]/6,,) =, (kv )‘i’lﬁ \(nlesg)  for all k, € K.

(2) For 0 < Re(N\) < /2 — 1, the function \Il \(nfas g) belongs to
L™(ZyGp\Gy) for any m > 0 such that m(l — Re()\)) < 1.

Proof. The argument in [2], proof of Proposition 9.1] works with a minor
modification: we use 5y,.5 and £y s given in the proof of Lemmal[5.4] =

PROPOSITION 5.7. For1/2 < Re(\) <1/2—1, the function \il/lg \(nfas g)
s cuspidal.

. Proof. From Proposition and Lemma (1), the function g —
\I'ﬁ y(nfe; g) on Gy is smooth and satisfies

(57) R(Wv)q,ﬂ,k(nlahg) = 07 g€ GAJ

for all v € Y. From this equation together with the K'-equivariance
(5.6) of \I'lﬂ,/\(n]a;g), the Casimir operator for G, for each v € X acts on
lillB,A(n|a;g)A as multiplicationAby a scalar. Hence there exists f € C°(Ga)
such that ?%7A(n]a) x f = \I'l@/\(n\a) by [2, Theorem 2.14]. From Lem-
ma (2), \Il%’/\(n|oz) belongs to L?(Z4Gr\G)¥o™ . Thus, for any X € g,
the derivative R(X)\il/lg,)\(nm) = ‘il/lg’)\(lﬂoz) x R(—X)f also belongs to the
same L2—spaceA. Let V' be the (goo,Koo)—submodule of L2(ZyGp\Gy)¥o®™
generated by \Illﬁ (n]a; g); from and (5.7), V is decomposed into a fi-
nite sum Myex Dy, of discrete series representations of PGL(2, F ®g R) of
weight (I,)vex.,. By Wallach’s criterion [22, Theorem 4.3], the space V is
contained in the cuspidal part of L2(ZyGr\Gy). =
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By Proposition for 1/2 < Re(\) < [/2 —1, the function \ilf&/\(n\a; 9)
has the spectral expansion

(5.8) Vi mlesg) = > D (T, 0le))e)eg)
w€cus(I,n) peB(m;l,n)

for almost all g € G. Here (-|-) ;2 is the L2-inner product on L?(Z,Gr\Gy),
and B(m;l,n) is an orthonormal basis of {p € L?*(ZyGp\Ga)[n]¥o®™ |
R(W,)¢ = 0 (Vv € ¥y)} which coincides with Aeus(G;7)%0™ | as seen
from the proof of Proposition [5.7} From the finite dimensionality of
Acus (G 7)™ the sum in is finite and the equality holds pointwise
for all g € Gy.

6. Spectral side. From this section until we fix an even weight [ =
(I)ves.., an ideal n C o, an idele class character 7 of F'* such that 7% = 1
whose conductor § is relatively prime to n, a finite subset S C X5, — S(nf),
and a holomorphic function a(s) on Xg such that a(es) = afs) for all
e € {£1}°. Using the spectral expansion (5.8), we show that @%’A(n\a;g)
has an entire extension to the whole A-plane. We define the regularized
kernel \Ilieg(n|oz; g) to be the value at A = 0 of the entire extension, which is
our desired substitute for the divergent series , and obtain its spectral
expression. The upshot of this section is Proposition which gives the
period integral of the regularized kernel.

6.1. Extremal Whittaker vectors of discrete series. For v € X,
let m, be the discrete series representation of PGL(2,R) of minimal K-
type l,. Let V;, denote the Whittaker model of 7, with respect to the
character ¢p, (see §2.4). It is known that V; [, ] contains a unique vector
¢0,» characterized by

(6.1) b0, ([10]) = 2ly|k/2e*™5(y < 0), yeR".

We remark that ¢, is extremal, i.e., m,(W)dg, = 0, and Vi, [7,] = Cop.
We should also note that the local epsilon factor of m, is given as €(s,
Ty ®@sgn™, Yp,) = it for m € {0,1}.

6.2. Construction of basis. Let (m,V;) be an irreducible cuspidal
automorphic representation of G, with trivial central character such that
Vi C L3(ZyGp\Gp). We fix a family {(my, Vi) }ves, of unitarizable irre-
ducible admissible representations of G, with V., being contained in the
Y- Whittaker functions on G, such that = = ®U€ s M- The conductor of
7 is defined to be the ideal f, determined by the condition 0, = p, c(m) for
all v € Yqy, where ¢(m,) is the minimal non-negative integer among those
¢ € Ny such that Vﬂlfo(p%) # {0}. Let II.us(l,n) denote the set of all those
cuspidal representations 7 such that m, = D;, for all v € Y, and n C §,.
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For m € II.ys(l,n), let A;(n) be the set of all maps p : X, — Ng such that
p(v) € {0,...,ord,(nf;1)} for all v € Xg,. Corresponding to each p € A (n),
we have a cusp form ¢, € Vp[n]¥0™ as the image of the decomposable

tensor
® (bO,'u ® ® (bp(v)m ® ® ¢0,U

VES oo veSmizt) VE S —S(nfz ")

under the isomorphism Vi = @), sp Vr,, where for each v € Yy, the sys-
tem {¢r, | 0 < k < ord,(nf;1)} is the basis of Vﬂlfo(no“) constructed in [1§].
We remark that ¢g,, is the local new vector of m,. In this way, we have an or-
thogonal basis {¢rx, | p € Az(n)} of the finite-dimensional space V;[r]¥o(™
equipped with the L2-inner product on ZyGr\Gy [18, Proposition 17]. The
vector ¢ o, with po(v) = 0 for all v € X, is denoted by ©r"

REMARK. Let Si(nf,!) be the set of v € S(nf;!) such that ord,(nf;!)
= k, and n the maximal non-negative integer k such that Sj(nf-!) # . For
p € Az(n), by writing p, = p|Sk(nf;1) for each 0 < k < n, we can identify p

with the family (pg)o<k<n of maps as done in [I8].

6.3. Regularized periods and standard L-values. (For details, see
[21), §7] and [I§].) In this subsection, m denotes an element of IT.us(l,n). We
note that for any cusp form ¢ € V;, the regularized period Pl (¢) defined
by coincides with the global zeta integral

z:(/2me) =\ e([68][ 7 D)nttar) d s,
FX\AX
which is absolutely convergent.

PROPOSITION 6.1. For any p € Az(n), @r, has the reqularized (H,n)-
period given by

Plo(orp) = Z7(1/2,1, ¢x,p)
=0 gm{ TI Q.1 }E0/2,7 @),

veS(nfrt)
Here Q7 (ny,1) with v € S(nf;!) and k € {1,...,ordy(nf; 1)} is the con-
stant appearing in [18, Main Theorem A], and G(n) is the Gauss sum defined
in §2.4)

Proof. The first identity is obtained in [2I, Lemma 7.3]. The second
identity follows basically from [I8, Main Theorem A]. Although the hypoth-
esis 1,(—1) = 1 for all v € ¥ in [I8, Main Theorem A] is not satisfied in
our setting, it is easy to modify the proof at archimedean places by means

of.-
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Set

Pi(m;lm) = Y Bly(e) Pl(),
pEB(m;ln)

where B(;1,n) is an orthonormal basis of Vy [r;]Ko(®),

LEMMA 6.2. The sumP"(7; 1, n) is independent of the choice of B(m;1,n).

We have
_ L(1/2,m)L(1/2
(s ) = D7 () DGy HH LSO
Pr

and the value (—1)=¢MG(n)~1P"(r;1,n) is non-negative. Here wy(w) is the

explicit non-negative constant given by
w(m) = H 7(Tw, M)

veS(nfxt)

)

with r(my,my) defined as follows. Set k, = ord,(nf.1). If ny(w,) = —1, then
(s 10) :1+<—1>’“v{(q”“)(q”_”1 (e(m) =0),
o 2 1 (c(my) > 1).
If ny(wy) =1, then
T(annv)
( vt 1 ky — 1 -
1/2 . 1/2 1 {2 + (1 - 0511%11/2)(1 -y 1Q111/2)}
(1+q¢  ay)(1+aq o) gy — 1
= 1 (c(ﬂ-U) = 0)7
14k, M (em) = 1),
1+qv Xv( v)
ot (c(m) > 2),
where (aw,ayt) is the Satake parameter of m, if c(m,) = 0, and X, is
the unramified character of F) such that m, = (x| |11) Xl ’_1/2) if
c(my) = 1.

If ny(wy,) = —1 for all v € S(n), then wy(7) = 0 unless nf ! is the
square of an integral ideal.

Proof. With the aid of Proposition we obtain the assertion as in
[19, Lemma 12]. The non-negativity of (—1)~<"G(n)~'P"(r;1,n) follows
from wy! () > 0 combined with the non-negativity of L(1/2,7)L(1/2,7®n)
proved in [§]. m

The sign of the functional equation of L(s,m)L(s,m ® 1) is given as
follows.

LEMMA 6.3. We have €(1/2,7)e(1/2, 7 @n) = (=1)M7(f,). In particu-
lar, L(1/2,7)L(1/2,7 ®n) = 0 unless (—1)“M7(f,) = 1.
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Proof. Since [, is even for all v € Y, by [19, Lemma 13], we have
e(1/2,m)e(1/2, 7T®77)

H H Mo(— H Mo (@ _77ﬁn( 1)n(fx)

DISPR veS(f) UES(fﬂ)
= (=) ii(fr).
By the functional equation, we are done. =

6.4. Adjoint L-functions. Let E(v,g9) = > cp.\an y(yg) /2
(Re(v) > ) be the K-spherical Eisenstein series on Gy (for the defini-

tion of y(g), see .

LEMMA 6.4. For any m € Il.s(l,n),

(6.2) | ol (g) oI (9)E(25 — 1,9) dg
ZNGF\Gyp

1\ NGa)* D™ () L(s, m; Ad)
{ 11 2 }[Kﬁn : Ko(fr)] Cr(2s)

@GPz 14!
ves, V(s rAd) T+ ¢5°

V€Y o

X

for Re(s) > 0 and

[ omev |2 = { II 2 l“} () Kin = Ko(fx)] 'L (1, w5 Ad).
vEX o

Here we have set Sp :={v € X4, | ord,(fz) > 2} and
Zy(s) =\ | d00([§91%) b0 ([§9]0)Itl " d*tdk

K, FX
forve Xp.

Proof. By the standard procedure, we see that the left-hand side of
is a product of the integrals Z,(s) over all v € Yp. If v € Y, using ,
we easily obtain Z,(s) = 217" I'g (s) & (2s) "' L(s, mp; Ad). Together with the
computations at finite places (cf. 21, Lemma 2.14 and Corollary 2.15] and
[19, Lemma 14]), this completes the proof. m

REMARK. Nelson, Pitale and Saha [I4] also considered the integrals
Zy(s) and gave explicit formulas for Z,(s). However, as was already re-
marked in [14], 1.3], it seems difficult to give a simple formula for Z,(s) for
v € Sy.

6.5. Spectral parameters. Let m € II.s(l,n). For any v € X, —S(fr),
the v-component 7, of 7 is isomorphic to the K,-spherical principal series
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representation I, (v,) = Indgzj(| \Z“/Q X | \;V”/Q) with v, € C such that v,
or v, + 102&, belongs to (0,1) UiR>g. The point vg(m) = {vy}yes of Xg is
called the spectral parameter of m at S. We have the Hecke eigenequation

(6:3)  R(Ty)p = (g 44 )p, o eV, ve Tin— S(fa)-
Since the Hecke operator R(T,) acting on the space L?(ZyGr\Gy) is self-

adjoint, the eigenvalue q£1+””>/ 24 qq(,l_y”)/ 2

is a real number.

6.6. The spectral side. By means of Lemma [5.5 we can explicitly
describe the coefficients of \Illﬁ ,(n|@) in the L?-expansion in terms of (H, 1)-
period integrals and the spectral parameters of cuspidal representations.

LEMMA 6.5. Let m € Il.us(l,n) and vs(m) = (v(my))ves the spectral
parameter of m at S. Then, for ¢ € Vy[n]®0™ and 1/2 < Re(\) < 1/2 1,
(T 5 (na)|w) 12
_ —1/2 - _
= (~0#{ T 227} 0e K - Ko(w)] ™ alvs(m) Ple, A ():
1}6200
Proof. We note the inclusion Vi [7] C Acus(G; 7). In the same way as

in 2T, Lemma 9.2] with the aid of the majorant =) ge(x)—cq(c),s for any
sufficiently small € > 0, we obtain
. 1 \#°
Fhatilehe = (5) ] (@ha). lals) duss)

Ls(c)

for any ¢ € Aeus(G; )%™ where g(c) is sufficiently large In contrast to
[21, Lemma 9.2], the condition Re(A) > 1 is not needed. Indeed, in the proof
of [21, Lemma 9.2], the estimate |¢(g)| < ||g||5"¢ is replaced with |¢(g)| <

lg|[z™ for any m > 0, and moreover {;°y~ Re(A)+1+2€ gy, ig replaced with

[y~ Re=m+e gxy [(2)] Thus, by Lemma [5.5) and (6.3), (¥4, (n]a)|¢) 2
is equal to {[],cx 2 ”_1}vol(Hﬁn\HﬁnKo(n))Pﬁlcw\(a) multiplied by the
integral

1\ 1 2 1 2 1 2 1 2y !
( ) | {TT e mere 4 girimnrz _ gz _ qms/z)}
L

211 (©) ‘ves
C v
° x as) dpg(s).

We have qz(,ler(W”))/2 +q1(,1_y(7r”))/2 € R (see 3.) and vol(Hgp \ HanKo(n)) =
D}_,l/ 2[Kﬁn : Ko(n)] from [2I, Lemma 8.3]. The integral is computed as

(*) In the proof of 21, Lemma 9.2], the majorant of the integral (9.3) should be
Re(X)—€,q(c), Sfin -
(?) In the proof of [2I, Lemma 9.2], the first factor of the last integral should be

TO Y~ Re(A)+14-¢€ dxy

—
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(—=1)#5a(s) by invoking the formula

1 cv+2mi(log qv) !
- S {q£1+y(wv))/2 + q(l—y(wv))/Q o q£1+sv)/2 - qi()l—sq,)/Z)}—l

2mi o -1 v
cv—2mi(log v X av(sv) dﬂv(sv) = —OéU(Sv),

proved in [2I, Lemma 9.5] for any v € S and any even holomorphic function
ay(sy) on C/4ri(logq,) 7. =

By this lemma and , we have
(0* [ Les, 2" 105"
[Kiin : Ko(n)]
x 3L > alws(m)Piga@)ele), g€ G

mEllcus(I,n) eB(m;l,n)

Ul (n|asg) =

The integral P[}Cl 1(®@) is continued to an entire function in A for any ¢ €
Acus(G; ) by 21, Lemma 7.3]. As a finite linear combination of such, the
function \Ilfg y(n]o; g) has a holomorphic analytic continuation to the whole
A-plane. Since CT - OPBC A(@) = Cl(0)PL,(9)3(0), we can define the reg-

ularized automorphic smoothed kernel \Ilreg(n|a; g) by
CT—o ¥ \(n|as g) = WL, (n|o; 9)B(0)
for any 8 € B. Indeed, we have the pointwise expression

(~1)#{[es, 2 13Ci1(0)DL
[Kﬁn . KO( )]

xY Y alus(m)Phy(e)el9),

7Te}7cus(l ’l‘l) SOEB(W,Z,H)

U, (nfas g) =

reg

with the summation being finite. By computing the period integral
Png(lIlieg(Ma)) in terms of this expansion, we obtain one side of the rel-

ative trace formula, the spectral side.

PROPOSITION 6.6. Suppose | > 4. The function Wl_ (n|a) has the regu-

reg
larized (H,n)-period given by
ng(wieg(n’a))
1)#5 e By 6

VEX o

L(1/2,7T)L(1/2,7T®77)

X WEHZ(Z Y wg(W)QN(fﬂ)[Kﬁn Ko (Fx)]"LLS= (1, 7; Ad)a(l/g(ﬂ)),
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Proof. As was remarked in for a cusp form ¢, the regularized pe-
riod Prlg() becomes the usual zeta integral Z*(1/2,7,¢), which is abso-
lutely convergent. Thus, by termwise integration,

(—1)#{[es, 2 3Ci1(0)DL
K : Ko(n >]
< 3N PL(p) Plp)avs(m).
w€cus(I,n) @EB(m;ln)

Then we obtain the assertion by Lemma [3.4{ii), Proposition and Lem-
mas [6.2 and [6.4] =

Ply(Whey(n]0)) =

reg reg

7. Geometric expansions. The reader might wonder why we take the
regularized period in Proposition this seems unnecessary because the
function &T/rleg(n]a) is cuspidal and the usual period integral makes sense. The
reason should become evident from our computation of the other side of the
relative trace formula, the geometric side, to be performed in this section
and the next. Suppose [ = inf,ecx, 1, > 4. We compute Pﬁeg(\Ilreg(Ma)) by
using the series expression . The first step is to break the sum in
over Hp\GF into a sum of subseries according to double cosets H F5H F.
For § € G, we set St(8) := Hp NJ 1Hpd. Then the following elements
of G form a complete set of representatives for the double coset space

HF\GF/HF:

e=[49), w=[§7]
w=[51], w=[11) weo=[15] wwo=[75],
G =[], beF*—{-1}.

Moreover, St(e) = St(wg) = Hp and St(d) = Z for any ¢ € {u, @, uwp, Twp }
U{dp | be F* —{—-1}} (see [16, Lemma 1] and [21, Lemma 73]). Thus we
obtain the following expression for Re()\) > 0:

N Alnfa; [£9 1“’" ZJ5 B, A, a;t),

where § runs through the double coset representatlves listed above, and for
each such 0, J5(8, A, a;t) is the sum of @é)\(nky;&y[é [1)] [éﬁ"]) for 7 in
St(0)\Hp.

LEMMA 7.1. The functions X — J(B,\,a;t) and X — Ju (5, A, a;t)
are entire on C. Moreover, their values at A\ = 0 are Jia(a;t)B(0) and
i's(n = 0)Jiq(a; 1) 5(0), respectively, where

1\#°
natast) =a =) (5 ) | THEaE) duss)
L

211
s(c)
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with | = Y ves., v and

Ti(s) = H(l g (et D/2) =L _ glout1)/2)-1

vES

Proof. Since w0 (ly; 12) = 1 for all v € X, (Proposition S-iii)), the
assertion is proved in the same way as [21, Lemma 11.2]. =

We set
Ju(ﬂa A7a7t) - Ju(67 )\,Oé,t) + Jﬂwo(ﬂa)\7a7t)7
Jﬁ(ﬁv A7Oé;t) = Juwo(/ga /\,(X,t) + Jﬂ(ﬁ7)\7a7t)'

LEMMA 7.2. For« € {u,u}, the function A — J.(8, A, a;t) on Re(A) >0
has a holomorphic continuation to C whose value at A = 0 is J.(a, t)5(0),
where

#5
Ju(oz;t):<21m.> Z S {W (“|S (G o))
a€F Ls(c) (0) 1 077 1 0

+0, (nls; [ 0 V][, 1]wo) ba(s) dus(s)

and
Jﬁ<a;t>:(1.)“z | (O (s [19][5 7))

2mi a€F* Lg(c) 0
+ 0 (nfs; [44][ -3, $]wo) bals) dus(s).

Proof. We follow the proof of [2I, Lemma 11.3]. Take ¢ > 0 such that
1/2 > 0 + 1. Let us examine Jy(3, A, a; t). First we consider the sum of the
functions

lI/BA(n‘O‘ ul§9][e 01(1]”(1)951"})
(27”)# S {2771 S zﬁ—l—)\{wAw (ns; [1“t11][(1)m1n])

+ |t], 2l Z)(n| [1“t 1][(13361"])}612}0((5) dus(s)

over all a € F*. Here c is taken so that ¢(c) is sufficiently large. By Lem-
mas [3.2] and there exists an ideal a of F' depending on ¢ such that

7 (wls: [§ o5 [ 7 D)

Koo fla)er™mEN2 g e X (s, 2) € Lg(c) x Lo,
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where we set

fla)y= T N +iaut, 177" T] max(1, aut, ']o) =G4

VEX 5o vES
X H d(ay € aoy), a €A,
Zan—S

and use |(1+ia,t;1)* /2|, < |1—|—iavt;1\vRe(z)jl”/Qe‘Im(Z””/Q. Thus to estab-
lish the absolute convergence of the sum of Lpé y(nfesul§ 9] [aal 0] [(1) xl”])

over a € F'*, it is enough to show ) -« f(a) < oo. The convergence of the
latter sum in turn follows from the convergence of the integral § 4 fla)da,
which is a product of the archimedean integrals for all v € Y, convergent
when [,/2—0 > 1, and the non-archimedean ones convergent for sufficiently

large g(c).
The sum of the functions W s(nlagawo[§ 919" 9] [L%]) over a € FX
is analyzed similarly. By the estlmate

25 (i [ 10 0T[4, §Jwo)|
Lg.e f(a)edFﬂIm(z)‘/Q, a€F* (s,z)€lLg(c) X Ly,

the problem is reduced to the convergence of the same series ), px f(a)
as above. Hence the assertion on Jy(S3,\, a;t) is obtained. The integral
Ja(B, A, a;t) is examined in the same way. =

7.1. Hyperbolic terms. We consider the convergence of

Tp(B X sty = > T (B, A a5t).

beF* —{-1}
Let ve Y. Fort € Y, be F —{—1} and 0,p € R, set
PO (Lo t,b) = {(b+ 127 + B} 2701 4 72) 7o 2oy 22,
My (0, p, ;) = b+ 1, =P ol /402§ (O 1t )|+ de,
Y
where ¢_ = min(0, ¢) for g € R.
LEMMA 7.3. Let v € Y. Then, for any o € R,
|25 (Lo [ 11 [69])
< bl g e @2 p ) (1 8 b),  te BX, be FX —{—1}, z € L.
Proof. This follows from Propos1t10n. Lemmaand [Hb ' 1] [§9] =

[o 13’”71 0] [0 (b+1)tl+bt 1] [1;: _1t/:] with r = (£2 4+ 1)'/2. Note that e™'m(2)I/2

arises as in the proof of Lemma .
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LEMMA 7.4. Let v € Yy and l, € 2Z>o. Let o,p € R. Then
(7.1) My (0, p,1y; b) < [b+ 1|, 1o/ 4Fo /2=y e Y — {1},

if 1,/4 > |p| — /2 and 1,/4 > o/2. Moreover, for ¢ > 0 and ¢ € R, the
function [b(b+1)|S |b|_l“/4+(c+1)/4 M, (o, p,ly;b) in b € F, is locally bounded if

ol —o|+(c—p)—<e€/3<1, L/d>0/2—(0—p)-+1,
(c+1)/d>0/2—(0c—p)-.

Proof. The assertion is proved in a similar way to [2I, Lemma 11.14].
From b2 +t2(b+ 1)2 > 2[b| |b + 1] |t| and /2 — 1,,/4 < 0, we estimate

My (0, p, 1y b) < [b+ 1|70=P)= |p|lv/4=0/2

(7.2)

X S{]b| b+ 1] ’t’}O/Qflv/4(1+t*2)*0/271v/4’t’70+pd><t
0
‘b—i-l’ ly/4+0/2—(o—p)— S ‘t‘p+l”/4+g/2(1+t2) o/2— l”/4d><
0

The integral converges absolutely if [,/4 > [p| — 0/2. As in [2I], proof of
Lemma 11.14], we have

[b(b + 1)|<[p| /A EAVIM, (0, p, 13 b)
< ’b + 1|Uf|p|f(ofp)_+e/3|b|(c+1)/4+o/27|p|+e/3|b(b + 1)|€/3m(r; b(b + 1))’
where r = [, + 20 — 4|p| — 4¢/3 and

m(r;b(b+ 1)) = | [(1+¢7) (B +£2(b+ 1)*}] /4 d*t.
0

By [21, Lemma 15.5], the function [b(b+ 1)|*m(r;b(b+ 1)) (with r» > 0) is
locally bounded on F,. From this, |b(b+ 1)|¢|b|~t/4H D40, (a0, p, 1,: D) is
also locally bounded on F;, if
o—|pl—(c—p)-+€/3>0, r=1I,+20—4|p| —4¢/3 >0,
(c+1)/4+0/2—|p|+¢€/3 >0,
which in turn follow from ([7.2)). Thus, under (|7.2)), the estimate ([7.1]) is
extendable to Fj; from this, the last assertion is obvious. =

Let ¢ = (co)ves € RS, 1= (l)vesn, € (2Zs2) >, t € A, b€ F* —{~1}
and o,p € R. For v € S, we set
1 CU+1)/2+U <
(et =min(L e 27 {20l ) (el <)
max (1, |ty|y|04+1]y)~ (cot+1)/2+0 (Jto]o > 1),
My(o, p,c;b) =max(1, b+ 1|,)” (e+1)/4+0/2+o—p|
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and for v € Xy, — 5, we set
F57) (b0, b) = min(L, [£,|72)78 (b € p, 707, g 2T bl, < [ty]y < [0+ 11,7).
Then, define

N(n|o,l,c; t, b) = ‘t’?& H fga)(vatvvb) H flgg)(cv;tva b)

V€Yo vES
x ] 6(to € non) £t b) 11 £ (t,,b),
veS(n) vEZgn—(SUS(n))
M(njo,p,1,e;b) = [ 16,7/ M, (0, p, L b)
VEY 5o
x [T 1bly o 0/4 /20, (0, p; ey, b)
vES
x [ max(,plg™?) ] 6(b€f 'noy)
UISPIN vEXg,—S5

and Mc(n|o, p,l,¢;0) = {[[,ex_ b(b+ 1)|5}M(n|o, p,l,c;b) for € > 0. By
closely following [21], §11.4], we obtain the following series of lemmas.

LEMMA 7.5. If q(c) > |o| + 1, then
77 (nls: 0[5 81 [ 7 1) | < Nnlor L est, b)etemmI/2,
uniformly in (z,s) € L, x Lg(c), b€ F* — {1} and t € A*.

Proof. This follows from Lemma and 21, Corollary 11.6 and Lem-
ma 11.10]. ]

LEMMA 7.6. If q(c) > |o| + |p| + 1, [/4 > max(c/2,|p| — 0/2) and
o # +p, then
| Nlo,1,c;t,0)[t] ¥t <c Mc(nlo,p,1,¢;b)N(n)S,  be F* —{-1},
AX
for any € > 0, with the implied constant independent of the ideal n.

Proof. We can apply the same argument as in [2I, Lemma 11.16] by
using [, in place of ¢, + 1 for all 1 € Y. =

LEMMA 7.7. Let U be a compact subset of A*. If q(c) > |o|+ |p| + 1,
l/4 > max(c/2,|p| —0/2) and o # £p, then
> Nlo,l,¢;at,b) <c Mc(n|o, p,1,c;D)N(n)", beF* tel,
acF>*
for any € > 0, with the implied constant independent of the ideal n.

Proof. This follows from Lemma and the argument in [21, Corol-
lary 11.17]. m
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LEMMA 7.8. If o +p > —1, 0 # *p, (c+1)/4 > 5|0|/2 + 2|p| + 1,
/4> ol +|pl+1 and /2 > (c+1)/4 4 3|o|/2 + |p| + 1, then
S Mnlopliet) < Nin)~ (/a2
beFx {1}
for any € > 0 such that ||p| — o] + (6 — p)— < €¢/3 < 1 and 1/2 >

(c+1)/4 + 3lo|/2 + |p| + 1 + 2¢, with the implied constant independent
of n. Here ¢ = (¢y)pes with ¢, = ¢ (for allv € S).

Proof. The proof follows that of [21, Lemma 11.19], with ¢, + 1 replaced
by [, for all « € Y. Under the present assumption on [, g, p, ¢, the series

So { T Wt (o,p.1:0) )

beo(S)—{—1} vEXeo

X {H max(L, [b|7H°) My (a, p, cv: b)}|N(b(b 1)
veS
which is denoted by Ag(o,p,l,c), converges for any ¢ > 0 such that
ol —o|+(c—p)- <€/3<1andl/2> (c+1)/4+3|o|/2+|p|+1+2¢. Here
0(.S) denotes the S-integer ring of F. Indeed, this follows from Lemma
and [2I, Lemma 11.18]. By the Artin product formula |b[y = 1 for b € F’*,
we have

Z M(n|o, p,1,c;b)

beFX*—{—1}
= > { T max el { T 1ol /20, (0, p, i)}
bef~1no(S)—{0,—1} v€Xfn veS
< LTI 11745720 (0 s ) NGB+ D)
VEY 5o

= Z { H maX(l,|b|Z+P)]b|£]C+1)/4—a/z}

bef~1no(S)/0(S)* vEXEn—S
b£0, -1

< 30 { T fubl =D o 1)}

u€o(S)X  VESao

X {H max(1, [ubl7+*) M, (o, p, c; ub)}\N(ub(ub F1))e
veS

< Y { T wax(upg e Aglo,pil.).
bef~1no(S)/0(S)* vEXfin—S
b£0,-1

We note that the series in the last line is majorized by N(n)~(c+1)/4+o/2+otp|
as in the proof of 21, Lemma 11.19]. m
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For c € R, set Lg(c) = {s € X5 | Re(sy) = ¢ (Vv € 5)}.

LEMMA 7.9. Let | = (Iy)ves., € (2Z>2)*= and c,0 € R. Assume that
1>6, o>-1, (c+1)/4>9]0]/2+1, /2> (c+1)/4+5|0|/2+ 1.
Then, for any compact subset U of A, the series

> Y P wsa[5 1)
beFX —{—1} aeF*

converges uniformly in (t,z,8) € U x Ly x Lg(c), and there exists € > 0 such
that, for any p € R satisfying 0 < Hp\ - U} < € and o+ p > —1, the integral

SV w696 D) 1 ae
beFX —{—1} teAX
converges uniformly in (z,8) € Ly x Lg(c).

Proof. By assumption, we can take p € R such that (c+1)/4 > 5|o|/2+
2lp|+1,0+p>—1,1/4 > |o|+|p| +1and 1/2 > (c+1)/4+3|o|/2+|p| + 1
(we can take p = 0 if 0 > —1 and o # 0). Thus the assertion follows from
Lemmas We remark that the condition [ > 6 is forced by the third

and the fourth inequalities in Lemma([7.9} indeed, they imply (/2 > 7|o|+2,
and hence [ > 4. m

LEMMA 7.10. Suppose | > 6. The function Juyp (53, A, a;t) on Re(A) > 1
has a holomorphic continuation to C whose value at A = 0 equals
Jnyp(c;t)B(0), where

Inyp(a;t) = Z Z 5[/ n]a 5b T ][(1)901"])
beFX —{—1} aeF*
The series converges absolutely and uniformly in t € A*. Here we have set
45
- (0 1 0
000 = () 5 #Owlsig)als) dusto
L

21
s(e)

with ¢ being a real number such that (¢ +1)/4 > 1 (cf. [21], §6.3]).

Proof. This follows from Lemma in the same way as [2I, Lem-
ma 11.21]. =

From Lemmas[7.1] [7.2] and we have
(7.3) Wl (s [£9][07]) = (1 +d'd(n = 0)) Jialas )
+ Ju(ost) + Ju(ast) + Juyp( t)

for any ¢t € A*. Some terms on the right-hand side, viewed as functions on
ZyHp\Hy individually, have divergent (H,n)-period integrals; to proceed
further, we need to regularize them.
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8. Geometric side. Suppose [ = inf,ex I, > 6. Let § € B. For §j €
{id, u, @, hyp}, we set

B Na)= | Jlast){Br(ltla) + Ba([tl ) In(tay) dt.
FX\AX
In this section, we shall show that this integral converges absolutely when
Re(A) > 0 and has a meromorphic continuation to a neighborhood of A = 0;
at the same time, we determine the constant term in its Laurent expansion
at A = 0. As a result, by the identity

Py \(Breg(n]a)) = T4(8, A o) +13(n = 0)J34(8, A )
+ T8, A @) + T3(B, s @) + I (B, A @)
obtained from (7.3)), we have another expression of Pils(W¥! _(n|a)) already

reg

computed in Proposition by means of the spectral expansion.
LEMMA 8.1. For Re(\) > 0, the I, (8, \; &) converges absolutely and

" aan( )Y 1 26(0)
Ty xie) =davol(P A (51 )] T austs) 2.
Ls(c)
where 6,1 = 6(n =1). We have a meromorphic continuation of I (8, X; )
(Re(A) > 0) to C with CT = I, (8, \; ) = 0.

Proof. The first claim is shown in the same way as [2I, Lemma 12.2].
From the expression, the function J! (8, X\; ) (Re(\) > 0), which is just a
constant multiple of A~!, obviously has a meromorphic continuation to C
with CTx—oJ,(8,A\;a) =0. =

Let us examine the terms JU(3,\;a) and J2(8,\;«). Assume that
qg(Re(s)) > Re(A\) >0 >1and 1 <o <[/2, and set

1 ,3(2) 0 - z * z
Usi(Nis) = gm-LS S ASX v (nls; [ [0 7 Dnteay) el d e dz,
Fo
1 | B) —_—
Uiy(Xis) = 5 LS 1 ASX % (nls: [ 1 9] [, @ Jwo)n(tay) e d*t dz
Fo

with wy = [[1) *01], and

Yi(zis) = [[(1 = nu(wy)g, FHETD) 71 (1 = gfeotD/2)=1
veS

Tg’l(z; s) = DEI/Q{#(U/f) 3!

I (s

Here ¢, € {0,1} is the sign of 7, for v € Xy, (see §2.4).
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LEMMA 8.2. The double integrals U(fn()\; s) and Ui[n()\;s) converge ab-
solutely, and

1
Ui (359 = 52§ NG LGz (1) O () d,
1
Ufn()\SS) = i
< | 2NN )6 = o)Lz, )i T ()
Fo

where Z: ZUEEOO lv and 6(”) = ZUEEOO €v-

Proof. This is proved in the same way as [21, Lemma 12.3]; to compute
the archimedean integral, we use Lemma [3.6] =

Since 1 < o < [/2, the possible poles of the integrand of Udfn()\; s) in the
region —o < Re(z) < o are z = 0, —1. In fact, we observe that the integrand
is holomorphic at z = —1. We shift the contour L_, to L,; by the residue
theorem,

Ugp(Xis) = 2mLS Zﬁf))\N(f)ZL(—Z,n)(—l)e(")Tg’l(z;s) dz
- 6()\0)577,1RFT§ (s),
where Rp is the residue of (p(s) at s = 1. In a similar manner,
Ui, (As) = 27%8 Zﬂf))\N(f)_zL(—z, n)é(n = 0)i'TY,(2;5) dz
- BE\O)émlRF(S(n = 0)ilTi(s).

Define Cy(n) and R(n) by
L(s,n) = R()(s —1) "'+ Co(n) + O(s —1) (s = 1).
We remark that Rp = R(n) if n is trivial. Let Cgyler be Euler’s constant.

LEMMA 8.3. The function A — Ju(B, ;) on Re(\) > 1 has a mero-
morphic continuation to the region Re(\) > —1/2. The constant term of
JU(B, A ) at A =0 equals JU(1,n|a)3(0). Here we have set

(1, nja) = (=1)G(n) Dy (1 + (=1)5(n)i'o(n = o))

#5
x < 1 ) | ra(s)el, (s)als) dus(s)
L

2mi
s(c)
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with
d lo/2—1 1
€4(5) = 7 Coln) + Al { - F (G +1om) + 3
vEX e k=1
log gy
+Z - v+1 +logDF}.
veS

In particular, Qﬁg,u(s) = Lan(1,m) if n is non-trivial.
Proof. By definition,
J2(B, A )
45
_ (b | (U5, (N 9) +Ug, (A 8) + U, (As8) + U, (As8)) als) dus(s)
~\om 0n\A S 0n\A S 1p\A; 8 1p\A;8))ols)aps(s).
Ls(c)
From Lemma and the computation after it,
1\*° 1 ¢ B(2) 7
Ju(ﬁ’)‘aa) (27’1’2) § S( . S (( ].) +1 (5('(1 0))
S

27rzLdz+)\

{N(F)""L(—2,m)Y4,(2;5) + N(F)*L(2,1)Yg,(—2;5)} dz a(s) dus(s)
B (—1)<m 4 iZ(S(n =0)
2

with 1 < 0 < [/2 and Re(\) > —o. Since o is arbitrary, this gives a meromor-
phic continuation of Ji(, \; &) to Re(\) > —1/2. By the above expression,

J?d(ﬁ? >\7 Oé),

CTh=o I (8, A )
#S -
~(5m) 1 5 120 4= )

21 211 z
]Ls(c) LO‘

< AN()"*L(=2,m)Tg,(z;8) + N(f)*L(z, n)Y{;(=2:8)} dz a(s) dus(s)
= ((=1)<™ 4 5(11 = o))211 S bE) {fulz) + fu(—2)}dz
L

o

= (10 + 500 = 0) Reseca (2,0

= (=) +i'5(n = 0))5(0) CTs=0 fu(2).
Here we have set fu(z) = N(f)"*L(—2,1)Yg,(2;s). By setting

7Y (2:8) = DY > {#(0/§)}7L (2:9),
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the constant term is computed as follows:

a

CTam fulz) = TN *2L(=2 )T, (z9)

z=0

= (NG x = DYENG) 0 /))

X G DNV Lz 41, DR {# (0 /7)Y 1 T (2:8)}

z=0
d N
i“PGm)DY? x T {DipzL(z+ 1) Té9}

=0
~ d T
= g(n)Dy/ erf‘")Tg’(s){(log Dr)R(n) + Co(n) + R(y )W}
Here €(n) = > cx. €0~ We note that fg,zm; s) = (_m)e(n)yg(o; s) since

2I'(—2)I'(1,/2 + z) . ™ Cade
FR(—z—Fev)F(lu/Q)l cos<2( + v))

for v € Y. The logarithmic derivative of Tk%’l(z; s) at z = 0 is computed as
(1y/2
> & e ()]
P Te(=)I(1,/2) 2

d —(z S —_ s _
+)° —log(1—q, (s +1)/2) )1 (1 _ glowt1)/2)=1

-y {wv/z)—;lovgi (;@w(‘;)—w—z)) }+§1_lofv?1

VEY 5o

= (—im)®

z2=0

z=0

z=0

By the formulas

ly/2—1
1 1 —z 1
w(lv/Z) = —CEuler + ; %7 (2¢< 9 > - ¢(_Z)> = §OEuler7

z=0
we are done. m

Assume that g(Re(s)) > Re(A) > o and 1 < ¢ < [/2. Analyzing the
integrals

1 . .
5 ) ) o' (nfs; [L9][ L %))t ¢]£* d¥t d,
Lis A%
1
Ii S S WI(O) (nfs; [§ 1] [—%:,, ?]wo)n(tﬂc;)ltIXz d*tdz

Lis A%

in the same way as Ufn()\; s), we obtain the following lemma.
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LEMMA 8.4. The function X\ — J2(8,\;a) on Re(\) > 1 has a mero-
morphic continuation to the region Re(\) > —I/2. The constant term of
JHB, X;a) at A =0 equals J2(I,n]a)B(0). Here we have set

Ti(tnla) = (=) G D (1) ij(n) + 6(n = 0))

45
(5) 1 TUL(G)als) dusto

27
Ls(c)
with € (s) = €4 ,(s) + R(n) log N(n).
Let us consider the term Jﬁyp(ﬁ , A; ), which is, by definition, equal to
(0 T A A — *
Vo> B (s [69] L6 DABt) + Ba(ltl (e dt.
AX beF* —{—1}

LEMMA 8.5. The integral Jﬁyp(ﬂ, ;) converges absolutely and has an

analytic continuation to the region Re(\) > —e for some ¢ > 0. Moreover,
CT)y—o ngp(ﬂ,)\; a) = ngp(l,n\a)ﬂ(O). Here Jﬁyp(l,ﬂa) is defined by

1 \*°
Jﬁyp(l,nla): <2m> S RE(Lnls)a(s) dus(s)
Ls(c)
with
sy = S V7P (s [§9] [L9 ) ntas) d¥t.

bEFX —{—1} A%

Proof. We choose ¢ € R such that [/2—1 > (c+1)/4 > 1. Set ¢ = (¢)yes.-
Then, from Lemmas and there exists € > 0 such that for 0 <
|p| < € the integral

(8.1) | la(s)l | dus(s)]

‘| 18(2)] ST 1O (s [£O1[E ) K1 + 67} A<t d],

Ly |2+ Al bEFX—{—1} AX

which is majorized by

16(2)]

| Ja@®)ldusG)] | =25 1

Ls(c) L,
x> {Mc(n[0, p,1,¢;b) + Mc(n]0,—p, 1, ¢;b)} N(n)",
beFx —{—1}

is convergent. Since [t} +[t|,” > 2 (t € A¥), the integral (8.1]) is finite even
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for p = 0. Hence, we obtain an analytic continuation of the function

hyp(ﬁa )‘ Oé)

1 \*°
= (51)
L

{1290 puPmsaliny)

s(c) L, bEFX —{—1} AX
(1 + e3)m;) 1) s bas) ()

in the variable A to the region Re(\) > —e. =

9. The relative trace formula. Let n be an integral ideal of F', [ =
(Iy)ves,, an even weight with [, > 6 for all v € ¥, and 7 a real valued idele
class character of F* unramified at all v € S(n). Let f denote the conductor
of 7. We assume (—1)*™3j(n) = 1 (for the definition of €(n), see . Set
l= > ves., lv- Let S be a finite subset of Yg, disjoint from S(n) U S(f). For
v € S, let A, be the space of all holomorphic functions «,(s,) in s, € C
satisfying ay(sy) = ap(—s,) and «, (sv + lfg’r; ) = a(Sy). Let Ag denote
the space of holomorphic functions on Xg such that a(es) = a(s) for all

e € {£1}°. Then @, g Av C As.

THEOREM 9.1. For any a € Ag,

9.1)  CmnS) Y T(mln)as(T)
wEMcus(I,n) "
= J1(l,n|a) + Jﬁyp(l,n|a).

Here vg(m) = {vy(m) }ves is the spectral parameter of 7 at S (see §6.5)),

-1
C(l n, S) ( )#S{ H 27TF(lv —)21)}DF [Kﬁn : Ko(n)]il,

AL T2 2
L(1/2,7)L(1/2, 7
) = GO S R A

with wy () given in Lemmal6.2}, and
111 nfa) = 2(=1)“ DG () D> (1 + i'6(n = o))

#S
“(5) T ) duss)

21
Ls(c)

#S
30, (0 wla) = (;m> | /2 nls)a(s) dus(s)

Ls(c)

I
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with
€2 nfs) = { L0~ molom)ay %) 11 — gl /)4
veES
log gy
X {C}Zﬂ(lv“) + R(n) Z 1(sv+1)/2}7
veES — Qv
sy = S {7V (s [§9][1 % ) nttas) d
beF X —{—1} AX
and
CL(l,n) = 7 Co(n)
p ly/2— N
+R(77){F(CEuler+log7r)+log(DFN )2y 4 Z Z k}
v€EX o k=1

We remark that CL(I,n) = Lgy(1,n) if n is non-trivial.
Proof. From Lemmas and Prlg reg (n]e)) is given by the
right-hand side of (| . the left hand side is provided by Proposition "
We restrict our attention to the test functions of the form «(s) =
[Toes ad™ (s,) with
(9.2) o™ (s,) = ¢ /2 4 gm0 /2 we S, meN,.

As is well known, these functions form a C-basis of the image of the spherical
Hecke algebra H(G,, K, ) under the spherical Fourier transform. Thus, by
restricting our consideration to these functions, no generality is lost practi-
cally. The following two theorems are proved in and

THEOREM 9.2. For o = @), g, we have

Tp(lnla) = Y7 {HJZZ“(b;av)}{H T (tsb)H [T e ®)}.

beF*—{—-1} veS veX vEXE—

Here JJJ" (b; o) is given by Lemmal10.2, J." (b) is given by Lemmas. -
andm and JJ" (Ly; b) is given by Lemma 10.15]

THEOREM 9.3. For a = @Q,cg v, we have
Bt nja) = 2(-1)G(m) D*(1 +i'5(n = 0))
{C" l,n) HU”“ () + R(n ZU’ () H U{Zw(aw)}.
veS ves weS—{v}
Here U} (o) and U} (cw,) are ewplicitly given in Proposition [11.1]

The proof of Theorem (1.1} By the same procedure as in [19], §7.1],
the estimation is reduced to that for a similar average over Il.us(l,n) (in
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place of I}

us

(I,n)). From [2I, Lemma 13.15], we have

Ji(l,nfa)
= 2(=1) (1 1 i'5(n = 0)) DG () Lan(1.m) § als) dpiy(s).
X
By Theorem [9.1] it suffices to show

ngp (l7 n‘Oé) = Oﬁ,l,n,a(N(n)i infye s, lv/2+1+5)

for any sufficiently small € > 0. This follows from the proof of Lemma [8.5
and Lemma by taking ¢ € R and p # 0 such that inf,ex _[,/2 —1 >
(c+1)/4> (c+1)/4—|p| > infyex, ly/2—1—€>1and |p| is sufficiently
small. When n is square-free, by noting wy(7) = d(n = f.), we need no
procedure as in [19, §7.1]. Thus the exponent of the error term is not affected
and remains — inf,ex. l,/2 + 1 + € in the final result. =

COROLLARY 9.4. Suppose n,(—1) = =1 for all v € Y. Let a be an
integral ideal. Then Jﬁyp(l,n\a) =0 for any ideal n such that N(n) > N(fa)
and for any o € Ag of the form @, cq an with ay(s,) being a linear combi-

nation of aqgm)(sy) (0 <m < ordy(a)).

Proof. From Theorem the condition on a implies that the hyperbolic
term is a sum of terms indexed by b € F* — {—1} such that b € nf~la~!
(Lemmas [10.3H10.5 and [10.9)) and 0 < |N(b)| < 1 (Lemma|[10.15)). Thus, the
summation becomes empty if N(n) > N(fa). m

REMARK. The vanishing of the term Jﬁyp(l,n|a) for (n,«) with both
N(n) and deg(«) large is called stability, and was already observed in [I1], [4]
and [I3] at least when n is square-free. Actually, even when 1 admits a place
v € X such that n,(—1) = 1, our relative trace formula (Theorems
combined) gives an exact formula for the spectral average, although the
expression involves an infinite sum.

10. Explicit formula for the hyperbolic term. In this section, we
compute Jﬁyp (I,n|a) further for particular test functions a = @), g . By
changing the order of integrals, we have

Hpnla) = > AT @en }{ TT 70} T1 7o)},
beF* —{—1} veS =5 VESn—S

where

1
J (b; o) = 5 ) S( ){FSX T (5050 [ 5 9])mo(t) dXt}av(sy) dpiy(sy)
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for v € S with EZEO)(SU; —) being the Green function on G, (Lemma ,
T = § @@ [69] [3 =" D) meltwy, T d¥t it v € Sy — S,
E)
TI (i b) = | @O (1,16, [§9])mu(t) At if v € D,
RX
with SPQEO)(ZU; —) being the Shintani function (Proposition , and L,(c)

denotes the vertical contour directed from ¢ — I fg;v to c+

log g *

10.1. An evaluation of non-archimedean integrals (for unrami-

(m))

fied 7,). In this subsection, we explicitly compute the integrals J;/* (b; cvy
at v € S and the integrals J;"" (b) at v € Xg, — S U S(f).

LEMMA 10.1. Let v e S. Let agm)(sv) = anS”/2 —l—q;ms”/Q with m € Ny.
Set

—

1
- 0) (g . (m)
@vm(gv) o . S( ) Q;v (Sv; gU)OZU (Su) d,uv(s'u).

If m >0, then for any = € F, with max(|z|,, 1) = ¢}, with | € Ny, we have

0 (I>m+1),
Do ([33]) =4 —aa ™" (1=m),
m—1—1g ™~ (m—1+1)g™?* (0<i<m).

If m =0, then for any x € F, with max(|z|,,1) = ¢, with | € Ng, we have
Puo([67]) = —20(1=0).

Proof. From Lemma and the formula dy,(s) = 27! (log qv)(qq(}HS)/2 -

qél‘s)”) ds, we have

= 1
@Um([(l) éf]) = % S qv—(S-i-l)l/Z(l - q;(s+l)/2)_1(1 - q1()s+1)/2)—1

Ly(c)
% <qv—ms/2 —i—q;ns/Q)Q_l(lOg QU)(qq(;l+S)/2 - ql()l—s)/2) ds.
By the change of variable z = qi/ 2, this becomes
(1-1)/2
Qv _ _ 1\ — 1/ m “m 4. dz

b g )T - ) e Y e - )

|z|=R

c/2

with R = ¢,’” (> 1). Thus, by the residue theorem,
(10.1) Bum([§3]) = a2 (Res__126(2) + Resa—o(2))
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m m 1/
with ¢(z) = % Tt+7. By a direct computation, we obtain
q

(102)  Res__ 1/20(z) = —q{"*)/?
< ({(m+1+1)(1 =g, ) +20, 102 +H{(=m+ 1+ 1) (1- ;1) + 20,1}, ™),
(10.3)  Res._o6(2)
= 6(1 2 m o D{( = m+ gl /2 — (= — 1)gl-mD/2)
002 1—m){ (14 m+ 12— (14 g — 1)gf+m1/2)
T {80m = 1)+ 6(m = —) g2
From 7, we easily obtain the desired formula. m
LEMMA 10.2. Let v e S. Let ozq(, )( v) = qZ,nSU/Q—}— Ums”/Q with m € Ny.
Then, for any b € F) —{—1},
T00 (b 6™ = T (13 b) + m () I (ms w7 (b + 1)
with
LY (m;b) = Vol(off)Q‘s(m:O)

m—1

(ot ee Y {mel-Dg el 0).
I=max(0,— ord, (b))

where for n € Ny,

(ord, (b) + 1)6(n:0) (Mo(wy) = 1),
27 (1 (b) +1))°0=0 () = —1).
b) +

J(m;b) 4+ I (m;b) with
I} (m;b) and I (m;b) being the integrals of @y, (6§ §])ny(t) with respect
to the measure d*t over |t|, < 1 and over |t|, > 1, respectlvely From
[21, Lemma 11.4],

o (b) = 6([bl < gy)nw(wy) {

Proof. Let m > 0. By definition, J." (b; ) = I}

tlo1bly tly < 1),
(10.4) (5b[8(1)] EHU[%)?{]KU with ‘$|v{| ] (Itl, <1)

[tlolb+ 1o (th > 1).
Hence, by Lemma I} (m;b) becomes the sum of

(10.5) | (—a, ™)y (t) d*t

\t|v<1
max(1, [t [blo) =g
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and
(10.6)
m—1
| {n—1=1g ™2 — (m— 1+ 1)g, ™ (1) d*t.
1=0 [t]o<1

max(1,|t]5 1 |bls)=¢

v

The condition [t|, < 1, max(1,|t|;1]b,) = ¢ is equivalent to b, < ¢!,
It]y = q; bl if 1 > O and to ]b[ < |t| < 1if I = 0. Hence, ([10.5) is equal to

—qu m/2 vol(0¢)d,w (b), and ([10.6)) equals

m—1

vol(0) > {(m —1—1)g-™2 — (m — 1+ 1)g; ™26 ().

l=max(0,—ord, (b))

This completes the evaluation of the integral I} (m;b). In the same way, the
integral I (m;b) is calculated in a similar form; from the resulting expres-
sion, one can see that I, (m;b) = n,(w, )L} (m;w, (b+1)). This settles the
case of m > 0. The case m = 0 is similar. m

From Lemma we have a useful estimate for J,(b, o).

LEMMA 10.3. Let aq(,m)(sv) = q;nsv/Q + q;msvﬂ with m € Ng. If m > 0,
then

72 (b, ™)
< (mA Dby < gDy ™2+ 0(bly = a)g; ™2} be FY {1},
with the implied constant independent of v and m. If m =0, then
TP (b, oY) = =2 vol(o)) A (b),
where A is the function on E) — {1} defined by
(10.7) Al (b) = 6(b € 0y)00" (b(b+ 1)).

Proof. To infer the estimate from Lemma [I0.2]in the case when m > 0,
it suffices to note that I} (ww, t(b+ 1)) = 0 if |b|, > ¢, or equivalently if

|, 1 (b+1)], > g7t The formula for J," (b, ozq(,O)) is obtained by noting the
relation A" (b) = 80" (b) + 1y (w)80" (wwy L(b+1)). m

LEMMA 10.4. Let v € Xg, — SUS(nf). Then
gy (b) = vol(o) A7 (b)
with A7 (b) being defined by (10.7)).

Proof. This is proved in the same way as the case m = 0 in Lem-

ma[l0.3 =
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LEMMA 10.5. Let v € S(n) — S(f). If ny(wy) =1, then
J(b) = vol(a,:)d(b € noy){ord,(b) — ord,(n) + 1}.
If ny(wy,) = —1, then
T (b) = vol(0;)8(b € n0,)27 (1, (b) + (—1)7" ™).

Proof. This is proved in the same way as Lemma [I0.4] We only have to
remark that the assertion in the last sentence of [21, Lemma 11.4] is relevant
here. =

10.2. An evaluation of non-archimedean integrals (for rami-
fied 7,). We shall calculate the integral J,"”(b) at finitely many places
v € S(f). In this subsection, we fix v € S(f) and set f = f(n,); thus f is a
positive integer. For [ € Z, consider the following subsets of F, depending
onbe F) —{-1})

Dy(b) ={t € B} | [tlo = ¢, ", |1 + tw, |y b+ tw, T (0 + 1]y < ¢, '}

(lezZ—-{f}),
Dy(b) = {t € F,)' | =t € @) (o) — Uu(f)),

11+t /|y b+ tw, F(b+1)|w < g, 7,
where U,(m) = 1 + p2* for any positive integer m.

LEMMA 10.6. Let | > f. Then Dy(b) = 0 unless | = f — ord,(b+ 1)
+ ord,(b), in which case ord,(b) > 0, ord,(b+ 1) =0 and

S ne(t) d*t = m(—wgb(b +1)7N(1 - g ) g 2,
tEDl(b)
Proof. By the change of variable t = wlt’, we have
S ny(t)d*t = nv(wf}) S m(t/) d*t
teD;(b) teD!

with D' = {t/ € 02 | |1+ t'wh |, b+ '@ T (b+ )| < ;') Let ¢ € 0.
Then the condition

1+t Ty b+ ooy (b + 1)y < g,

is equivalent to

—b
-1 1,—
(108) t/ € w{j m(l + wvb 101;).
If |wlb=t|, > 1, then 1 + ! b~to, = wlb~to,. Hence, from (10.5),
—b @l
1= t/ < f=r_—7 . lbfl _ v
|’U—wv b+1 Wy ) b_l_lva




46 S. Sugiyama and M. Tsuzuki

andsob+1 € pfj. Since f > 0, we obtain |b|, = 1, which, combined with
yw54n>1immwhmn>1cmummmg1>f>o

If|wb1\v—1 then b € w!0X; thus, [b+ 1|, = 1 because | > f > 0.
Hence, from ,

., —=b
1=l < el | =
v

’U’U’

which is impossible due to f > 0. From the considerations so far, we have the
inequality |l b~1|, < 1, which yields 1+w! b0, C 0. Hence, from (10.8)),
we have the second equality of

! b
b+1
which implies [ = f — ord,(b + 1) + ord, (b) From this and [ > f, we

get ord,(b + 1) < ordy(b), which holds if and only if ord,(b) > 0 and
ord,(b+1) = 0.

1= ’t,‘v = wqjj

Ifwesett = w{,c lbjrblr then ((10.8)) becomes r € 1—|—w b—lo, = l—i—w{joy;
thus
_; —=b
S (1) d*t = nu(Wi)ﬁv (wz{ ZM> S N (r) d*r
teDy(b) rel+wio,
—b _ o
=77< Zb+1>q f=d2(1 — gy 1) .

LEMMA 10.7. Let I < f. Then Dy(b) = 0 unless | = f — ord,(b+ 1)
+ ord,(b), in which case ord,(b+ 1) >0, ord,(b) =0 and

S ny(t)d*t = m(—w{fb(bJr 1)—1)<1 _ qv—l)—lqv—f_dv/Q.
teD;(b)

Proof. This is proved in the same way as the previous lemma. =

LEMMA 10.8. The set D¢(b) is empty unless ord,(b) = ord,(b+ 1) <0,
in which case

| m@)dt=05(bb+1)" €0 )ny(—fbd+1)7)

D¢(b
teD; (b) « (1 o qv—l)—lqv—f—i-ordv(b)—dv/Q.

Proof. Ast = —wvt the set D¢(b) is mapped bijectively onto the set
of ' such that
(10.9) t' e o) —U,(f),
(10.10) 1—t|, b=t (b+1)], < g7
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We shall show that (10.9) and (10.10|) are equivalent to the following con-
ditions:

b
10.11 ! 1 f
(10.11) t€b+1(+wb 0v)s
b
10.12 — v
(10.12) bﬂeo bep

Noting that, under the condition (10.12]), the sets U, (1) and (1+w{jb Lo,)

are disjoint, we easily see that (10.11]) and ((10.12]) imply (10.9)) and (10.10 m

For the converse, we first observe that (| - is equlvalent to t' € o) and
[t/ — 1], > qvf Hence by m,
b=+ Dl <q 1t 1" <1,

or equivalently
(10.13) b—t'(b+1) € p,.
If b € p,, then b+ 1 € 0. From these and ([10.13)), ¢’ € Hil + Py = py; this
contradicts ¢’ € 0. Thus b & p,. From (10.13)), we have t’HTl €1l+4p, Cof.
Since ¢’ € 0 by (10.9), we get b% € 0. From (10.13)),

b1 b
b+l b1 T bt
Since b~! € 0,, we have ' € b+1U (1), which yields ¢’ € 0t — U,(1) because

b+1U (1) NU,(1) = 0. Thus |¢t' — 1|, = 1. Combining this with (10.10)), we
obtain ([10.11]). This settles the desired converse implication. Consequently,

| omo(t) @t =ny(—)) \mo(t) ¥
teD4(b)

—5<bi€%=b€ >m ( ’ > Vo () der

t' e (14 b"1p,).

b+1
rel+wib—1o,

= 5(b+bl S 05)% (wsz:er (b€ o)), T rord®=d/2(] — g )71 a
LEMMA 10.9. Let n, be a character of F, of order 2 and of conductor
f > 0. Then, forbe F) —{—1}
T (0) = 6(b € py ) {no(—1)+ (3(b € 0,) +8(b ¢ 0,)g5" @)y (—b(b+1)) }
e
Proof. From [21, Lemmas 11.4 and 11.5],
T (b) = 8(b € p, T)(J)1(0) + T4 (D)

v,
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with
gy (b) = | m(-nare,
—tewiU,(f)
[t]o]b+1]»<1
Jo5(b) = | m(tw, 1) d*t.

—teF) —wl U, @3]
[1+twwy f |y [bttwy 0+ D)o <[t]w

Ifbep,’, then t € —wlU,(f) implies |b+ 1], < ¢f = [t|;1; thus,
TP (b) = 1u(—1) vol (= Uy (f); d*t) = ny(—1) vol(Uy (f); d*¢)
= no(—1)gy /21— g; "),

The integral domain of J'5(b) is a disjoint union of the sets Dy(b)(I € Z).
From Lemmas [T0.6H10.8, we have

T1(b) = (3(b € 00) +6(b ¢ 0,)g @), (b‘fl> e S T

LEMMA 10.10. Let n be an idele class character of F* with conductor §
such that n* = 1. There exists a constant C > 1 independent of 1 such that

T (B)] < C8([bly < gf™))g, /)
for any v € S(f) and for any b € F) —{—1}.

Proof. This is obvious from the previous lemma. Indeed, C = 4 is suffi-
cient. m

COROLLARY 10.11. For any € > 0,
| H 7)) < { T] s eps /™) INGT*,  ber* —{-1},
veS(f veS(f)

with the zmplzed constant independent of n and b € F* — {—1}.

Proof. Given e > 0, let P(€) be the set of v € X, such that ¢, < C/¢,
where C' > 1 is the constant in the previous lemma. Then, from the lemma,

|72 (b)] < C5([bls < g]"))g, TP *eif v € S(F) N Pe),
[T ()] < 8(Jbly < gf g, 7T if v e S(f) - Pe).
Taking the product of these inequalities, we obtain

1HJ% ={ II wrof{ II ol

veS(f veS(HNP(e) veS(f)—Ple)

< c#SOLTT o € py /) NG~

veS(f)
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10.3. An evaluation of archimedean integrals. In this subsection,
we explicitly evaluate the integral

(10.14) J110) = | 0O L6, [§9])n(t)d*t,  beR* —{-1},
RX

where 7 : R* — {#1} is a character and ¥(O)(I; —) is the holomorphic
Shintani function of weight [ (> 4).

LEMMA 10.12. We have
J10) = | (= it) 2@+ b+ 10i)Pyt)d*t,  beR* —{-1}.
RX
Proof. From Lemma [3.2]
v O (10,[§9]) = (L) i 8 [§9] € T[] ko-

From the proof of Lemma [7.3, we have e? = \}% and x = bt~ 1 +¢(b+1).
Thus,

JN(1;b) = ( L )l 14+i(bt™ 4+ t(b+ 1)y 2nt) d*t
()Rﬁxm{( (b+1)} (t)
= | (1 —it) 2+ b+t i) () d¥t. -
B
LEMMA 10.13. Define

o0 . —~1/2
J+(l;b) = Z'l/2(1 + b)—l/Z S (t + i)‘Z/Q (t + bﬁfl) A2=1 gy
0

Then
JUE0) = Ty (0) + T4 (150), T (1) = J4(1;0) — J1(1; D).

Proof. By dividing the integral J"7(I; b) into two parts according to ¢ > 0
and ¢t < 0, we obtain the assertions immediately. m

LEMMA 10.14. Suppose b(b+ 1) > 0. Then
1 1 —1/2
Jo(l;b) = (1 +b)7V? (S)ul/Q_l(l — )21 (b+1u + 1) du
= (1 +0) 7202’ r() " 2R (1/2,1/2;0; (b +1)7Y)
=2Q/2-1(2b+ 1),
where Qp(x) is the Legendre function of the second kind.
Proof. If we set
F2) = P40 0) Pz bi ) (b4 1)}
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then f(z) is a meromorphic function on C with poles only at z = —i and
—bi/(1+b), both in the lower half-plane Im(z) < 0. For R > 0, let Qg
denote the rectangle 0 < Im(z) < R, 0 < Re(z) < R. Regarding 0Qr as
a contour with counterclockwise orientation, by Cauchy’s theorem we have
$o0,, f(2) dz = 0. From this,

J+(l;0) = S f(z)dz — lim S f(z)dz = S f(z)dz
. R—o0 ) )
0: 8Q r—[0,R)Ui[0,R] 01
a2\ 1 b\ 1
_ —1/2 —1/2 2-1
=1+b)72\(E+1) <t+b+1> t12=1 gt

0

By the change of variable ¢t 4+ 1 = u~!, this becomes
1

_1 12
—1/2(, 1/2—1 1/2—1
(1+0) /(S)u/ (1—u) <b+1u+1) du.

By using the integral representation of 9 Fi(a, b; ¢, z) in [10} p. 54], we obtain
Jr(l;0) = (L+0) 720 (1/2)20 (1)~ o 1 (1/2,1/2;1; (b + 1) 71).

If we further apply the formula
2720 + )I(n!) 2 Qule) = (1+2)" <n+1>2F1(n+1 om0 il)
(L0, p. 233]) with n = /2 — 1 and = = 2b+ 1, we obtain Ji(I;b) =
2Q1/2-1(2b + 1) as desired. =

LEMMA 10.15.

(1) If b(b+1) > 0, then

JHUb) = (1+b)7Y2201/2)20 (1) 2 Fy (1/2,1/2; 1 (0 +1)71),
JEV(1; b) = 0.
(2) If b(b+1) <0, then

(10.15) JH(; b) = 2log brl Pl/2_1(2b +1)
[t/4]
4 + 1)
- Z 2m )Pl/2 om (20 + 1),
(1016) JSgn(l; b) = 27TZPl/2_1(2b + 1),

where P, (z) denotes the Legendre polynomial of degree n.
Proof. First suppose b € R and b(b+ 1) > 0. Then from the previous
lemma, J (I;b) is a real number. Thus, J*(I;b) = 2J7(I;b) and J%"(I;b) = 0
by Lemma [10.13
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From J (I;b) = 2Q;/2-1(2b+ 1), applying the formula in [10, p. 234], we
obtain

[1/4]
4l —4m +1
- Z ( ) Pja 0m(20+1)

= (2m —1)(l — 2m)

for b € R such that b(b+ 1) > 0. From the defining formula for J (I;b), the
function b — Jy(I;b) on R* — {—1} has a holomorphic continuation to the
whole complex b-plane away from theset S = {b € C | bi/(b+ 1) € (—00,0)}
U {0,—1}, which is the upper half of the circle centered at —1/2 of ra-
dius 1/2 with the edge points included. Thus, if we choose the branch of
log((1 + b)/b) on the domain C — S so that it is real for b > 0, then the for-
mula remains valid on C—.S by analytic continuation. Let b € R such
that b(b+ 1) < 0. Then b € C — S. Hence, by taking the sum of and
its complex conjugate, we obtain the formula for J1(I;b). As for J%"(I;b),
we have

_ 1 1
JE(b) = T, (1) — T3 (55) = {m(”j;) - 1og(b§> }Pl/g_l(% 1)
= 27T’L.Pl/2_1(2b + 1) | |

11. Explicit formula for the unipotent term. Let v € S. The aim
of this section is to evaluate the integrals

(11.1)
1 —(s — £} —
Ugv(av) = % S (1 - nv(wv)%}( +1)/2) 1(1 - Ch(; +1)/2) 1av(5) dﬂv(s)v
Ly(c)
(11.2)
lo v s — —(s -
Ublaw) = 5200 | (1= gl /)21 = g CH0/2) Ny (5) du ),

Ly(c)

for the test functions « given by (9.2)), where L,(c) = ¢+ [1;;;;,7 102’;”].

PROPOSITION 11.1. Let a(s) = ™2 & g™ with m € No. Then
3(m > 0)gy "™*{(m—1) — (m+1)g; '} — 26(m = 0)
Ul (o) = (Mo(wow) = 1),

(m € 2N)gy " (1—q; ") —26(m=0)  (n(wy) = 1),
Ul(aw) = —27 Y (log g,)gt ™26 (m > 0){(m — 1)(m — 2) — m(m + 1)g; '}
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Proof. We give an indication of the proof for (11.1)) when n,(w,) = —1;
the remaining cases are similar. By a change of variable,

Uy (aw)
1 —1/2 —1y—1 1/2_ N\—1/_m —my,1/2 _1, dz
:% § (1+QU z ) (1_qv Z) (Z +z )QU (Z—Z )7
|2|=qy/?

= {ResZ:q;1/2 + Resz:_q;1/2 + Res,—o}o(2),

where ¢(z) = %# L By evaluating the residues, we are done. =

12. Subconvexity estimates in the weight aspect. In this section
we prove Theorem by using the relative trace formula (Theorem ;
we take a particular test function af € Ag depending on a fixed cuspi-
dal representation m with varying .S. To have a good control of the term
ngp(n|ag) revealing the dependence on S, our formula for local orbital in-
tegrals (Lemma is indispensable. In this section, § € [0,1] is such
that the spectral radms of the Satake parameter A,(m) of m € Il ys(l,n) at
v € Y, — S(fr) is no greater than qg/2 for all v € Xg, — S(fr). Since the
Ramanujan conjecture for the holomorphic Hilbert cusp forms is known to
hold [I], we can actually take 6§ = 0; however, we let 6 be unspecified until
the very end to be able to keep track of the dependence on the Ramanujan
exponent # in various estimations.

In this section, we abuse the symbol p, to designate the global ideal
Py No.

12.1. An auxiliary estimate of semilocal terms. Let S be a finite
set of finite places v such that 7,(w,) = —1. For a decomposable function

as(s) = HUES ay(sy) in Ag, we set

sbas) = [[ Jb;an), be F*—{-1},

where we simply write J,(b; ) in place of Jy"(b; o). Extending this lin-
early, we have a linear functional ag + Jg(b;ag) on the space @), cq Ao
Given 7 € II.ys(l,n), set

M(m) =trAy(m), v € Xgn — SHFr)s

with A,(7) € GL(2,C) the Satake parameter of m,. Then we define an
element of Ag depending on the automorphic representation m as follows:

= (St 5 G240

veS
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where z, = qi”/Q for each v € S. We need an estimate of Jg(b;a%) with
varying b. For an o-ideal a such that S(a) C S, let us define a function
Dg(a;—) on F* —{—1} by

Ds(a;b) = {wesr_[s(a) Aw<b>}{vels](a)6<|b|v < g @),

where Ay (b) = (b € 0)(ordy (b(b + 1)) + 1).

PROPOSITION 12.1. Set P = {(vy,v2) € S? | vy # va}. Then

| Ts(b;0%)] < > {Ds(0;0)g" ™/ + Dg(pu; b))
veES
+ Dg(p2; )¢5 + Dg(p3;b)g,* + Ds(pi; b)g, 2}

+ Y {Ds(0:0)gl 7TV 1 D (py,55)g ST + D (o, puy: b)
(Ul,UQ)EP

+ D (p3 uni by, + Ds(p2,50)a,, ¢\0 7 + D (p2 92,300y, 0, }
for b e F* — {—1}, where the implied constant is absolute.
Proof. Set Z, = \p(m)(20 + 2, 1) — (22 4+ 2,2 + 1) for any v € S. By

expanding the square, we have ag(s) = > ¢ Z3+Z(v1’v2)ep Zy, Zy,, which,
together with Lemma [10.3] gives

(121)  Js(b;af)

S T Julbs )}t 22)

veS weS—{v}

+ Z { H Juw (b 1)}Jvl(b; Z; ) Iy (03 Zy)

(v1,v2)EP weS—{vi,va}

:Z{ 11 _vol(o;)Agw(b)}Jv(b;ZE)

veS weS—{v}

+ 3 T ol AL (0) b (b Z,) o (55 Zus).

(vi,v2)€P weS—{vi,v2}
Let us estimate the integral .J,(b; Z2). By expanding the square,
Z2=X(m)? (22 + 2,2 4+ 2) + (g + 2,0 +2) +2(20 + 2,2) + 1
— 22, () (23 + 2573) — A\ (T) (20 + 2,1)
= Xo(m)2(@f? + al?) + ol + 202 + 30l — 20, (m)alP) — 4X, (7)all.

v
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Noting that A7"(b) < A,(b), by this expression and by the estimates in
Lemma |10.3] we obtain
(12.2)  [Ju(b; Z3)| vol(oy) ™"
< 8(Ibly < D{[Ao(m)]g0’* + Au(0) (1 + [N (m)])}
+8(blo < gu) { Ao (m)]ay 2 + 1+ Ao ()}
+8(1blo < @) {No(m)lay 2 + a5 + ()P, '}
+ (bl < g {Xo(m)la,*? + 45"} + 6(ble < ¢3)q,
< 8(1blo < D{g"™7? + A, (b)gl} + 5(Ibly < q0)d]
+ 6(1bl < g2)al " + 3(bk < g2)a; "+ 6(1bly < al)a,
where to show the second inequality we use the estimate |\, (7)| < 2qy 612 as

well as the inequalities —1 < (0 —-1)/2 <6 < (#+1)/2, (#—3)/2 < —1. For
Jyu(b; Zy), directly from Lemma we have

(123) (b Zo)|vol(02) ) < 8(Jbly < 1){g#*V/2 + A,(b)}

+6([blo < o) +3(Iblo < 3)ay
From -, we immediately obtain the desired estimate. m

12.2. A basic majorant for the hyperbolic term (odd case).
For b € F* — {—1}, viewing b as a real number, say b,, by the mapping
F — F, 2R for each v € XY, we define

moo(130) = [ 178 (s b)),
VEY 5o

where J%8"(l,; b,) is the integral (10.14]). For relatively prime integral ideals
nand a and for I = (Iy)pes., € (2Z2)>>, we set

e = { I A }Dsab)moo(l b),
beno(S)—{0,—1} v€Xg[—S

where S is a finite set of places such that S(a) C S C Yg, —S(n), and o(5)
is the S-integer ring. We note that the right-hand side is independent of S.
Indeed, if we set

#Ow) = T A [] ollbls < g ™),
v€Xgn—S(a) veS(a)
then

(12.4) ma) = > O (b)m(1;b).

bena—1—-{0,—1}



Hilbert modular forms 55

LEMMA 12.2. Let a and n be relatively prime ideals. Then, for any € > 0,
1/2

lna<<e{Hl} N (a)5/4+e

UEEOO
with the implied constant depending on € while independent of (I,n,a). If a
is trivial, then J3(l,n,0) =0 for any n and .
12.3. The proof of Lemma [12.2]
LEMMA 12.3. For any € > 0,

79@(b) < (N@)?NB(b+1))),, beat—{0,-1},
with the implied constant independent of b.

Proof. Let b € a='—{0}; then (b(b+1))a® = b IT5=, p;j for some e; € N,
where p; are prime ideals of o relatively prime to a, and b is an ideal of
o dividing a. For each j, there exist a prime number p; and d; € N such
that N(p;) = p?j. By taking norms, we see that N(a)2|N(b(b + 1))| equals
N(b) [Tj=; N(p;) = N(b) [T}, p;ljej, and hence

d(N(a)?IN(b(b +1))]) = d(N(6)) [ [(e5; + 1) = [ [ (e5 + 1) = 75 (@),
j=1 j=1
where, for a natural number m, d(m) denotes the number of positive divisors

of m. Invoking the well-known bound d(m) < m¢, we obtain the desired
estimate. =

From Lemmas and [10.15
I ) < N@P 3 NEO+D)IC ] 208, a(2b+ 1),

bena~1NQx v€EX
where Q, denotes the cube (—1,0)*> in [], .y, R. Invoking the inequality
|P(x)] < (1 —22)" Y202 for |z| < 1, n € N ([I0, p. 237]), we have

(12.5)
I(lma) < T N@ Y NGO+ D)V T @/2- 172

bena—1NQ VEX oo
To estimate » ;e -1n0. IN(b(b + 1))|~1/4*¢, we need several lemmas.

LEMMA 12.4. For a positive integer c, let v(c) be the number of o0-ideals ¢
such that N(¢) = c. Then, for any € > 0, v(c) <, ¢ with the implied constant
independent of c.

Proof. Suppose c is a prime power p'. Then an ideal ¢ such that N(¢) = p*

must be a power of a prime ideal p lying above p. The number of choices
for p is at most dp = [F : Q]. If ¢ = p®, then N(c¢) = p' is equivalent to
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p™¢ = pt, where N(p) = p™. Hence e = t/m < t < tlogy p < logy p'. From
this, we have v(p') < dplog, p'.

Given € > 0, let z(e) > 1 be such that dplogyx < z€ for any z > z(e).
Let Q(¢) be the set of prime powers p’ such that p* < z(e). Noting that Q(e)
is a finite set, we set C' ( ) = Il eq(e v(a), which is a constant depending
only on €. Let ¢ (resp ") be the product of the prime powers p ¢ such that
P € Q(e) (vesp. pi' € Q(e)) in the prime factorization ¢ = [[; pi of c. Since
v is multiphcatlve we have

v(e) =v(d)v(d") < H H dr logy plt < C(e H phe

q€Q(e) i:pi|c”’ i:pilc!!
(sz ) < C(e

LEMMA 12.5. Let C = {Cy}vex., be a family of positive real numbers.
For any € > 0, we have

H{u € 0* | uy] < Cy (Vo € 50)} <o ( I1 c)
'UGEOO
with the implied constant independent of C'.

Proof. For simplicity, we set d = dp. By the Dirichlet unit theorem,
there exist fundamental units €; (1 < j < d — 1) such that any v € 0* is
written uniquely in the form v = £e7* - Edd ' with integers n; € Z. From
this, the inequality |v,| < C, can be written as

d—1
(12.6) an log |(gj)s| <logC, (ve Xy).

j=1
Let 4U(C) be the set of u € 0™ such that |u,| < C, for all v € Y. Thus,
#4(C) is bounded from above by the number of points (n;)1<j<d—1 € 74-1
lying on the Euclidean domain D(C) in R*"! defined by the system of
linear inequalities (12.6)). Fix an enumeration Yo = {v1,...,v4} and let
E; = (log |(¢j)v;])1<j<a—1 € R?! for 1 < i < d. The first d — 1 vectors E;
(1 <4 < d—1) form a basis of R¥1; let EJ* (1 <j<d-1) beits dual basis.
From the relation |N(e;)| = 1, we have Zgzl E; = 0. Hence, if we write a
general point y € R as y = Zf:_ll (log Cy, — i) EF, then y € D(C) if and
only if

yi>0 (1<i<d—1), Y yi<)> logCy.

The volume of this region in the y-space with respect to the Euclidean
measure is m(Z?ﬂ log C’Uj)d, where rp is the regulator of F. Thus

vol(D(0)) < (log [T, Cv)? < ([T, Cu)€, and we are done. m
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LEMMA 12.6. Let a be an integral ideal and c a positive integer. For any
e, ¢ >0,
#{beca N | N((b)a) = c} Ko ¢ “N(a)
with the implied constant independent of a and c.
Proof. Let ¢ be an integral ideal such that N(¢) = ¢. From Lemma m

the number of such ¢ is bounded by ¢¢ for any ¢ > 0. If ca™! is a principal
ideal, say (£), then using Lemma we have

#{bE a”'n Qoo | ¢= (b)a} = #{u € o” ‘ ’uv| < |§v|_1 (VU € Z100)}
< (IT 16l ™) = (IN@©I™)" = (! N(@)".

UEEOO
12.3.1. The completion of the proof of Lemma . From (|12.5)), we
have
1/2
(127) 3, n,a) <. N { I1 & } S IN(b(b+ 1))
vEX o bea—1N0x

with the implied constant independent of (I,n,a). Setting N((b)a) = ¢, we
rewrite the last sum as

Y N+ 1))

bea_lmgoo o0
— N(a)1/4—e 20—1/4—1—6 Z |N(b + 1)|—1/4+e'
c=1 bEaflﬁQoo

IN((b)a)|=c
The range of ¢ is reduced to 1 < ¢ < N(a) by the condition b € Q. Since
(0) # (b+1)a C 0, we have N((b+1)a) > 1, so the last sum over b is trivially
bounded by N(a)/4~“#{b € a=' N QO | IN((b)a)| = ¢} for any € € (0,1/4).
Combining these considerations with Lemma [12.6] we obtain

(12.8) > N+ 1))
b€a—1NQx N(a)
Loy N(a) /27263 " VA< =N (a)’?
c=1
Lesst N(a)1/2726 N(Cl)(s % N(a)3/4+6+5’75 IOgN(Cl)
N(a)%4+9 1og N(a)

for any sufﬁciently small §,8" > 0. Consequently, we have the desired esti-
mate from ((12.7)) and ( -

It remains to show the second assertion of Lemma Suppose that
b€ nn Q. The integrality of b yields N(b) € Z. Since b € Q, we have
0 < |by| <1forallve Yy, so0<|N(b)| < 1. Thus, if a = o, then the sum
on the right-hand side of is empty. This completes the proof.
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12.4. An estimate of the hyperbolic term. Let n be a quadratic
idele class character of F* with conductor § such that n,(—1) = —1 for
all v € Y. Given an integral ideal n, for a large K > 2, let S = S =
{v e Xg — SMf) | ny(wy) = -1, K < g, < 2K}, and consider the test
function a§(s) depending on m € ITcus(l,n) (see §12.1).

LEMMA 12.7. There exists a constant C > 1 independent of n and n
such that

C'K(logK) ' < #S <CK(log K)™'  for all K > 2.

Proof. This follows from an analogue of Dirichlet’s theorem on arith-
metic progressions for number fields. =
PROPOSITION 12.8. Let € Iloys(l,n). For any € > 0,

Ty (L nlag) !<<5{ H L, } Y 2N YL/ e eBe

'UEEOO

with the implied constant independent of I, n, m, n and K.
Proof. Set P = {(v1,ve) € S? | v # va}. From Lemmas and

< Y Wstad{ ]I Hllum ) fmoo (150).

beFx—{-1} vEEﬁn—SUS(f) veS(f

Combining this with Corollary [10.11] and Proposition [12.1] we see that this
is majorized by N(f)~1*¢ multiplied by

{Zq§9+1>/2} L)+ 3 a3 pd) + > a) (0 n, p2)

vES vES veES
+) a0 p) + ) gy *I(n, pf)
veS vES
{3 a0 s+ Y A p)
(v1,v2)€P (vi,v2)€P

+ Z I n, o poof) + Z q_l~ lin pvlpmf)

(v1,v2)EP (v1,v2)EP
+ Z q'ul qu+1 (l7n7 p’Ul Z Q'l)llq'u_gl/.v l n pvlpvgf)
(v1,v2)€P (v1,v2)EP

Invoking the bound £S5 <« K obtained from Lemma and applying
Lemma [12.2] we estimate each term occurring above. Thus, after a power

saving, we obtain |J}] (I, n|aF)| <. N(f)~'*o(l, K), where L = [ ex. 1
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and (1, K) is
N(f)5/4+6L71/2(K(9+3)/2 + K9+9/4+E + K9+5/2+26 + K15/4+36 + K4+4€
+ K3+9 + K(29+15)/4+6 + K9/2+26 + K19/4+3E + K(9+8)/2+25 + K5+4€).

Since 6 € [0,1], this is bounded by N(f)/4+2¢L~1/2 K54 This completes
the proof. m

12.5. An estimate of the unipotent term. Set S = SI“(’77 with K > 2.
PROPOSITION 12.9. Let 7 € IIoys(l,n). For any € > 0,
T2 n[a)| <e [G(n)IN(F) KT
with the implied constant independent of I, n, w, n and K.

Proof. We use the same notation as in the proof of Proposition [12.1
By substituting the expression a%(s) = Y., cq Z2 + 2 (o1 wa)eP L1 Zvg, We
obtain

T4, njag)]

<cpm({ T ez

veS weS—{v}

+ > I w o (Zo)l Uk (Z.,))

(v1,02)EP weS—{v1,v2}
< L) (S UF @D+ Y UL (Za) IV (Z)]):
vES (U1,U2)EP

where to simplify, we use Uy (1) = —1 from Proposition As in the
proof of Proposition [12.1} using Proposition [11.1} we compute each term as
follows:

U (22) = MU ) + U (00)
+U1"}711( (4))_|_2U77v( ()) 3U77v( (0))
=AM {1 =g, ") =2} +4, (1 -, ") +2(1 — ¢, ") = 3.

Since |Ay(7)| < q3/2 with & € [0,1], the above yields |UJ'(Z2)] <
G+ )+ a2 +q; ' +1 < ¢f. In a similar way, Ul (Z,) = ¢, . Applying
these, we continue the estimate of J{(/,n|a%) as follows:

o (Sit+ ) eon{en s (i) %)

vES (v1,02)EP

< N(jK+

We remark that Lg,(1,7) < N(f)¢ [8, Theorem 2|. This completes the
proof. =
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12.6. A subconvexity bound (odd case). Let n be an ideal of o.
For a family | = (I)yex,, of positive even 1ntegers let 11}, (I,n) denote the
set of all cuspidal automorphic representations 7 = @), . sp Mo Of PGL(2,4A)
such that f = n and m, is isomorphic to the discrete series representation
Dy, of minimal K%-type I, for each v € X

THEOREM 12.10. Let n be a quadratic idele class character of F* with
conductor § such that n,(—1) = —1 for all v € X Let n be an integral
ideal relatively prime to f. Assume that 1, > 6 for all v € Y. Then, for
any € >0,

|Lgn(1/2, 7) Lgn(1/2, 7 @ )|
<e (N()KL)*N(n) (LK + N(j)¥4 L2 K3),

where L = HUEE ly and the implied constant is independent of I, n, n,
K>2and e Hc*us(l n).

Proof. Let m € II},(I,n) and let S = S". By applying Theorem for
the test function ag(s), we have

Cun S| D (st n)afws(x))|

W’Echs(lan)

< [JR(nlag)| + |Thy, (1 nlag))|
with
C(l,n,8) = (-1)*527' D! [Kgy : Ko(m)] ' [ 27000 — 1)/T(1,/2)%.

’UGEOO

From Proposition |6.6| and the non-negativity of Ifus(7’; 1, n)/(—=1)<MG(n) by
Lemma the left-hand side becomes

C(1,n,8)]1G(n)]
K : Ko(f)] o o L(1/2,7)L(1/2,7 @ 1)
2 NG ) TS A

which is greater than the summand corresponding to m by non-negativity
again.

X

ag(vs(t)),

7! €l cus (l,l‘l)

Let us examine the 7-term more closely. First, from the explicit formula,
wy(m) =1 for fr =n. Let Ay (7 ) = diag(zy, 2, ) be the Satake parameter of
our 7. Then, using Lemma we obtain

- (Z{(Zv +2,) = (2 42,7+ 1)})2 = (#9)? > K*.

veES
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Separating the gamma factors from the L-functions, we get

C(tn, )| R O
- . — 2 (1, — 1) F(C(ZU/Q)Q
= [Kin : Ko(n) 1{1;[ W}{I;Imﬂ:(l)}
[Kﬁn -1 H l _1
v€EX o

where all the implied constants only depend on F. The remaining factors
in the m-term are easily seen to be bounded from below by a constant inde-
pendent of (I,n,m,n). The considerations so far yield

1 Lan(1/2,7) Ly (1/2,m @ n)
ng(l, m; Ad)
<e [T njaf)| + |Th, (L n|aF)]-
From Propositions and the right-hand side is estimated by
L |GINF K 4 N(f) /LK

(12.9)  G(m)|K**N(n)~"'L~

To complete the proof, we invoke the bound ng(l,ﬂ;Ad) <¢ (N(n)L)<,
which is known to hold for a general class of L-series [3, Theorem 2]. We

remark that ()] = D" N(H)~/? [T,es)(1—a; 1) " = Dy P N(f) /2.

THEOREM 12.11. Let n be a quadratic idele class character of F* such
that n,(—1) = =1 for all v € Y. Let n be an integral ideal relatively prime
to f. Assume that 1, > 6 for all v € Y. Then, for any € > 0,

/(8—20)+¢
|Lin(1/2,7) Lan (1/2, 7 @ 7)| < N(F)3/4+ N( 1+5{ H I, }
VEX o
with the implied constant independent of 1, n, n and 7 € II} (I, n).

Proof. We apply the estimate in Theorem [12.10] with K such that
LK1 =< LY2K3 or equivalently K = LY(-29) Then we obtain the de-
sired estimate. m

If # € [0,1), the estimate in Theorem breaks the convex bound
Lgn(1/2,m) Lan(1/2,m © ) < {C(m)C(m @ m '/ < ([[ep, )+ in
the weight aspect with a fixed level n and a fixed character n. To deduce
Theorem we only have to invoke the Ramanujan bound 6 = 0 (see [1])

in Theorem [[2.11]
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