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Can we define Taylor polynomials
on algebraic curves?

Jean-Paul Calvi (Toulouse) and Phung Van Manh (Hanoi)

Abstract. We study the problem of finding the correct definition of a Taylor poly-
nomial of degree d at a point a for a function defined on an irreducible algebraic curve
V in C2. We show that a satisfactory definition can be given if and only if the point a
is d-Taylorian, which holds for all but finitely many points of V . We provide an applica-
tion to the study of the limit of certain Lagrangian interpolation operators when points
coalesce.

1. Introduction. There are different useful ways of looking at a Taylor
polynomial

(1.1) Td
a(f)(x) =

d∑
j=0

f (j)(a)

j!
(x− a)j

of a univariate function f . Most fundamental is the approximation point of
view: Td

a(f)(x) is the local polynomial approximant of f around a of degree
d in the sense that, when well defined,

f(x)−Td
a(f)(x) = o(x− a)d (x→ a).

A second point of view, which we may call the numerical analysis point
of view, is to consider Td

a(f)(x), for a sufficiently smooth function f , as
the limit of Lagrange interpolation polynomials of f when the interpolation
nodes tend to a, that is,

(1.2) Td
a(f)(x) = lim

A→a
L[A; f ](x),

where A = {a0, . . . , ad}, ai 6= ak, A→ a means that maxi=0,...,d |ai − a| → 0
and L[A; f ](x) is the Lagrange interpolation polynomial of f at points of A.
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This result, which is crucial in computational mathematics since it provides
the simplest way of computing (approximate) Taylor polynomials, is a well
known consequence of the Newton formula for Lagrange interpolation and
is essentially equivalent to the fact that divided differences furnish suitable
approximations of derivatives.

A third approach, which, at first, may look somewhat abstract, provides
a natural link between the first two points of view and will prove useful
what follows. We give an informal statement which will be clarified later:
the map f 7→ Td

a(f) defined, say, on the space of holomorphic functions on a
neighbourhood of a, is a polynomial projector (a linear map which coincides
with the identity on its range) whose interpolation conditions are supported
on {a} and whose kernel is an ideal.

In the multivariate seting, in general, (1.2) no longer holds true,

(1.3) in Cn, n > 1, in general, Td
a(f)(x) 6= lim

A→a
L[A; f ](x),

which should be understood as follows. First, we can find sequences of unisol-
vent arrays (i.e. sets of points for which multivariate Lagrange interpolation
is well defined) whose points tend to a and for which the limit on the right
hand side of (1.3) does not exist. Moreover, for a given function f , the limit
in (1.3) may exist and be different from the Taylor polynomial of f . Such
examples can be found in [1]. Of course, there are many important cases,
that is, particular classes of arrays A, for which equality does hold in (1.3).
One can even derive necessary and sufficient conditions on A ensuring that
L[A; f ](x) approaches Td

a(f)(x) (for regular functions f). Such conditions
can be found in [1] together with references to earlier results. We also refer
to [6] for a study in the case where interpolation is done at natural lattices.
However, and this is the important point for the present paper, in contrast
with the univariate case, equality in (1.3) requires specific assumptions on
the interpolation points A which are much stronger than mere convergence
to a single limit point.

Here, we wish to analyze the numerical analysis interpretation of Taylor
polynomials in the case of (irreducible) algebraic curves in C2 which is, in
some sense, intermediary between the univariate and multivariate cases. On
such a curve V , there is a natural space Pd(V ) of polynomials of degree
at most d (see (1.6)), and one may consider Lagrange interpolation, thus
obtaining projectors, say LV [A, ·](x) for suitably chosen sets of interpolation
points A on V . A natural definition of a Taylor polynomial Td

V,a(f)(x) on
the curve V would be

(1.4) Td
V,a(f)(x) := lim

A→a
LV [A; f ](x),

provided, of course, that the limit exists. This is the theoretical motivation
for our study of the limit of Lagrangian operators on curves. Difficulties
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however arise immediately. First, in general, not every set A containing the
correct number of points, i.e. dim Pd(V ) points, enables interpolation so that
the condition A→ a should be clarified. Further, more seriously, it does not
take much time to encounter an example for which the limit does not exist:

Example 1.1. Let V = {y = x3} ⊂ C2, a = (0, 0) and f(x, y) = x2. If

A={(x0, x30), (x1, x31), (x2, x32)} with x0 = t, x1 = 2t, x2 = −3t+ t2, t 6= 0,

then the points of A tend to (0, 0) ∈ V as t→ 0 and LV [A; ·] is well defined,
but a calculation shows that

(1.5) LV [A; f ](x, y) = −2(−3t+ t2) + (−7 + 3t)x+ y/t2,

which has no limit as t→ 0. To check (1.5), we just need to observe that the
right hand side is a polynomial of degree 1 on V which takes on the same
value as f at each point of A.

At this point, one might conjecture that, just as in the multivariate case,
the existence of the limit in (1.4) will require stronger assumptions on the
way the points of A tend to a. We will show that this is not true. Our
main result says that the supplementary assumption is an assumption on
the limit point a ∈ V rather than on the sets of interpolation points A. This
is summarized as

A→ a
a reasonable assumption on a

}
⇒ lim

A→a
LV [A; f ](x) exists.

It turns out that the required property on a was introduced by Bos and Calvi
[5] from a different perspective. The limit point a has to be d-Taylorian where
d is the degree of interpolation. The definition of a d-Taylorian point is recalled
below. Here, let us just point out that all but finitely many points on V are
d-Taylorian. We will also show that the limit Td

V,a(f) is a natural Hermitian
projector introduced in [4], thus showing that such a projector provides the
correct definition of a Taylor polynomial on an algebraic curve. In the last
section, we will apply our result to the study of the limit of certain (ordinary)
bivariate Lagrange interpolation polynomials. We restrict ourselves to the
study of the complex case in order to stick to the formalism introduced in [5].
However, with suitable translations, everything remains true in the real case.

Let us point out that the restriction to irreducible curves is natural.
For, clearly, the local behaviour of a function f around a point a on a
curve V is related to the connected component of V which contains a, and
is independent of the possible other components.

It is likely that some of the results in this paper can be extended to a
more general setting, in particular to algebraic curves in CN , N > 2, but
certainly with a less elementary treatment.
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Notation. Bold letters are used to denote points in C2, thus, for in-
stance, x = (x1, x2) ∈ C2 where xi ∈ C.

We let P = P(C2) denote the space of all polynomials on C2 and
Pd = Pd(C2) its subspace of polynomials of degree at most d, spanned by
the md = (d + 2)(d + 1)/2 monomials xα with |α| ≤ d where xα = xα1

1 xα2
2

for x = (x1, x2) and α = (α1, α2). We will also consider the spaces

(1.6) Pd(V ) = {p|V : p ∈Pd}
when V is an algebraic curve of the form

(1.7) V = V (q) = {x ∈ C2 : q(x) = 0} or, briefly, V = {q = 0},
where q is an irreducible polynomial of positive degree s. The dimension
md(V ) of Pd(V ) is md − md−s where md−m = 0 for d < m. The spaces
Pd and Pd(V ) are endowed with their usual topology of finite-dimensional
normed space. Unless otherwise specified, the degree d will be fixed through-
out the paper.

If X is open (or compact) in C or in a complex manifold, then A (X)
denotes the space of holomorphic functions on X (or on a neighbourhood
of X). When X = {a} we write A (a) instead of A ({a}). These spaces are
endowed with their usual topology. The space of continuous linear forms on
A (a), often called analytic functionals, is denoted by A ′(a).

The open disk of centre a and radius ρ is D(a, ρ) while B(a, ρ) denotes
the open euclidean ball of centre a and radius ρ in C2.

2. Lagrange interpolation and Vandermonde determinants. We
recall basic facts of interpolation theory and prove some simple but crucial
properties of Vandermonde determinants.

2.1. Lagrange interpolation. A subset X = {x1, . . . ,xm} of m dis-
tinct points in a given set χ is said to be unisolvent for a (vector) space F
of functions defined on χ if, for every function f defined on X, there exists
a unique P ∈ F such that P (x) = f(x) for all x ∈ X. This function is called
the (generalized) Lagrange interpolation function of f at X and is denoted
by L[X; f ].

Generalized Vandermonde determinants are fundamental in interpola-
tion theory. Given a basis B = {p1, . . . , pm} for F, the equations

(2.1) V(B;X) = (pi(xj))1≤i,j≤m and VDM(B;X) = det V(B;X)

respectively define the Vandermonde matrix and the Vandermonde deter-
minant corresponding to B and X. Note that here j is used for the row
index of the matrix. The values of VDM(B;X) for two different bases only
differ by the determinant of the basis change matrix, i.e. VDM(B1;X) =
det(M)VDM(B2;X) where M is the transition matrix giving B2 in terms
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of B1. We will always tacitly order the elements in a matrix according to
their index. A set X is unisolvent if and only if VDM(B;X) 6= 0. We may
use Vandermonde determinants to derive the following dual expressions for
the Lagrange interpolation function:

L[X; f ](x) =
m∑
i=1

f(xi)
VDM(B;X[xi ← x])

VDM(B;X)
(2.2)

=
m∑
i=1

VDM(B[fi ← f ];X)

VDM(B;X)
fi(x)

where X[xi ← x] means that we substitute x for xi in X, and likewise for
B[fi ← f ]. We will use interpolation when F = Pd or F = Pd(V ). In the
latter case, we will write LV [X; f ] rather than L[X; f ].

2.2. Limits of Vandermonde determinants. We use classical facts
on divided differences (see e.g [2] or [8, Chapter 6] for a classical treatment).
Let us just recall that if T = {t0, . . . , td} is a set of d + 1 not necessarily
distinct points in C and h is a function defined on T and holomorphic on a
neighbourhood of any repeated point, then the divided difference h[t0, . . . , td]
of h at T is the leading coefficient of the Lagrange–Hermite interpolation
polynomial of h at T . When the points are pairwise distinct, the Lagrange
interpolation formula implies

(2.3) h[t0, . . . , td] =

d∑
j=0

h(tj)

d∏
i=0
i 6=j

1

tj − ti
,

whereas when all points coincide, h[t, . . . , t] = f (d)(t)/d!, so that since di-
vided differences of a holomorphic function are continuous (even holomor-
phic) functions of the nodes, we have

(2.4) lim
t0,..., td → t

h[t0, . . . , td] =
h(d)(t)

d!
, f ∈ A (t).

Lemma 2.1. Let F = {f0, . . . , fd} be a family of functions defined on
T = {t0, . . . , td} ⊂ C, where the tj are pairwise distinct. Then

(2.5) VDM(F ;T ) =∣∣∣∣∣∣∣∣∣∣
f0[t0] f1[t0] · · · fd[t0]

f0[t0, t1] f1[t0, t1] · · · fd[t0, t1]
...

...
. . .

...

f0[t0, . . . , td] f1[t0, . . . , td] · · · fd[t0, . . . , td]

∣∣∣∣∣∣∣∣∣∣
∏

0≤i<j≤d
(tj − ti).
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Proof. Equation (2.3) can be viewed as a matrix product. Namely, if
M = (Mij)1≤i,j≤m with Mij = fj [t0, . . . , ti] and V = V(F ;T ) so that
Vkj = fj(tk), then

(2.6) Mij =
d∑

k=0

LikVkj or M = L · V,

where L is the lower triangular matrix defined by

Lij =

{∏i
s=0, s 6=j

1
tj−ts , i ≤ j,

0, i > j,
0 ≤ i, j ≤ d.

Here an empty product is taken to be 1, so that L00 = 1. We obtain the
result by taking the determinant on both sides of (2.6).

Now, we may write (2.5) as

(2.7) VDM(F ;T ) = VDM(T ) · Φ(F ; t0, . . . , td),

where VDM(T ) is the classical Vandermonde determinant and Φ is the func-
tion defined by the determinant on the right hand side. Observe that if Ω is
a simply connected domain containing the points tj , then Φ is holomorphic
on Ωd+1 when the functions fi are holomorphic on Ω.

In view of (2.5), for functions fi in A (t), Φ is holomorphic in a neighbour-
hood of (t, . . . , t) and the value of Φ at (t, . . . , t) is given by the determinant

of the matrix of f
(j)
i (t)/j!, which is the Wronskian of the family F at the

point t,

(2.8) Φ(F ; t, . . . , t) = W (F , t).

Note that ordinary Wronskians are defined without the normalization by j!
for the jth derivatives, but this difference is irrelevant in this paper. Now,
if f is another function of the same regularity, we denote by F [fk ← f ] the
family F in which we substitute f for fk. We have

(2.9) lim
t0,..., td→t
ti 6=tj

VDM(F [fk ← f ];T )

VDM(F ;T )
=
W (F [fk ← f ], t)

W (F , t)
, k = 0, . . . , d,

provided that the denominator does not vanish. Indeed, using (2.5) both
for VDM(F ;T ) and VDM(F [fk ← f ];T ), the common factor VDM(T )
vanishes, and (2.8) for F and F [fk ← f ] then yields (2.9).

In the application given in Section 6.3 below, we will need the fact that
the convergence in (2.9) holds uniformly in f . This is easily seen as follows.
In fact, if tnj → t as n → ∞ for j = 0, . . . , d, then for n large enough all

the tnj will be in the interior of a closed disk D(t, ρ) ⊂ Ω. Assume that gn
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converges to g in A (Ω). We have

gn[tn0 , . . . , t
n
j ] =

1

2iπ

�

γ

gn(z)

(z − tn0 ) · · · (z − tnj )
dz,

where γ is the circle of centre t and radius ρ with positive orientation. The
uniform convergence of gn to g on the circle implies

lim
n→∞

gn[tn0 , . . . , t
n
j ] =

1

2iπ

�

γ

g(z)

(z − t)j+1
dz =

g(j)(t)

j!
, j = 0, . . . , d.

This readily yields the following lemma.

Lemma 2.2. Let gn → g in A (Ω). If, for each n, Tn = {tn0 , . . . , tnd} is a
set of d+1 pairwise distinct elements in Ω with tni → t ∈ Ω for i = 0, . . . , d
and W (F , t) 6= 0, then

(2.10) lim
n→∞

VDM(F [fk ← gn];Tn)

VDM(F ;Tn)
=
W (F [fk ← g], t)

W (F , t)
, k = 0, . . . , d.

3. Algebraic curves around Taylorian points

3.1. d-Taylorian points. Let q be an irreducible polynomial in C2. We
denote by V = V (q) the algebraic curve generated by q (see (1.7)). A regular
(or smooth) point is a point on V for which the gradient of q does not van-
ish. The set of regular points, denoted by V 0, forms a complex manifold of
dimension 1 [11, Th. 2 and Th. I, §24]. The implicit function theorem gives
a local parametrization z2 = φ(z1) when ∂2q(a) 6= 0 (or z1 = φ(z2) when
∂1q(a) 6= 0) where φ is holomorphic in a neighbourhood of a1 (or of a2) with
a = (a1, a2). More generally, a (local) parametrization of V at a ∈ V 0 is
any local chart L = (a, U,R) at a of V 0, where a ∈ C, U is an open neigh-
bourhood of a and R = (R1, R2) : U → C2 is such that R(a) = a and R(U)
⊂ V 0. Every such R coincides with φ1 (or φ2) composed with a holomor-
phic diffeomorphism from a neighbourhood of a onto a neighbourhood of a1
(or of a2). In particular, the map R defines a homeomorphism from U onto
R(U) ⊂ V .

Given such a local parametrization, we consider the space

PL
d := Pd ◦R = Pd(V ) ◦R.

This is a space of holomorphic functions defined on U . The least part f↓ of
an element f ∈PL

d at a is the first nonzero element in the series expansion
of f at a, i.e., if f(t) = ck(t − a)k +

∑
j>k cj(t − a)j with ck 6= 0 then

f↓(t) = ck(t− a)k. We set

PL
d↓ = span{f↓ : f ∈PL

d }.
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Any element (t − a)k in PL
d↓ is called a least a-monomial (for L ). A fun-

damental object is

pow(a, d) = {k ∈ N : (t− a)k is a least a-monomial}.
It is known [5, p. 548] that

]pow(a, d) = dim PL
d = md(V ).

It is proved in [5, Lemma 3.1] that, in conformity with the notation, pow(a, d)
does not depend on L but only on a. From now on, we will assume—without
loss of generality—that a = 0.

The interesting case occurs when pow(a, d) is gap-free, that is,

pow(a, d) = {0, 1, . . . ,md(V )− 1}.
In that case, the point a is said to be d-Taylorian (for V ).

Many examples can be found in [5]. A simple explicit example is treated
in Example 3.3 below.

We now recall the most important property that will be used in this
paper. It provides the key connection between Vandermonde determinants
(and Lagrange interpolation) as studied in Section 2 and the property of
being d-Taylorian.

Theorem 3.1 (Bos–Calvi [5, Theorem 4.5]). Let V = V (q) be an irre-
ducible algebraic curve and a a regular point on V . Then a is d-Taylorian
if and only if for one (and hence every ) parametrization L = (a, U,R) at
a ∈ V 0, the Wronskian W (F , a) does not vanish, where F = {pi ◦ R :
i = 0, . . . ,md(V )− 1} and the pi form a basis of Pd(V ).

Further properties of Taylorian points will be used (and recalled) below.
Here, let us just point out that, as shown in [5], every point on a line or an
irreducible quadric in C2 is d-Taylorian for every d ≥ 1; and, more generally,
for each d ≥ 1, all but finitely many points on an irreducible algebraic curve
in C2 are d-Taylorian.

3.2. Unisolvent sets of points on a curve. The following theorem
gives an important property of Taylorian points.

Theorem 3.2. Let q be an irreducible polynomial in C2 and V = V (q).
If a is a d-Taylorian point then there exists a neighbourhood Ω of a in V 0

such that any set of md(V ) distinct points in Ω is unisolvent for Pd(V ).

Proof. Choose a parametrization L = (0, U,R) of V at a and apply
Lemma 2.1 in the form (2.7) with F = {pi ◦ R : i = 0, . . . ,m − 1} where
m = md(V ) and the m polynomials pi form a basis of Pd(V ). For a set
X = {R(ti) : i = 0, . . . ,m− 1} of m distinct points in R(U), we have

(3.1) VDM(F ;X) = VDM(T ) · Φ(F ; t0, . . . , tm−1).
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Since the functions in F are holomorphic on a neighbourhood of 0, according
to (2.8) the value at 0 of Φ(F ; t0, . . . , tm−1) is the Wronskian W (F , 0).
Now, in view of Theorem 3.1, this Wronskian does not vanish when a is
d-Taylorian. By continuity, Φ(F ; t0, . . . , tm−1) will not vanish for ti close
enough to zero, say ti ∈ D(0, δ) ⊂ U for i = 0, . . . ,m − 1. So it suffices to
take Ω = R(D(0, δ)).

The above result says that the space of polynomials Pd(V ) restricted
to Ω is a Haar space and we may reword the above result by saying that
Pd(V ) is locally Haar around d-Taylorian points.

As shown by the following example, the assumption that a is d-Taylorian
cannot be removed.

Example 3.3. Let V = {y = x3} and L be the trivial parametrization
of V at 0 = (0, 0) (i.e., R(x) = (x, x3)). We work with d = 1. We have

P1(V ) = span{1, x, y} ⇒ PL
1 = span{1, x, x3}.

Since 1, x and x3 are three obviously linearly independent elements in PL
1↓ ,

which is a vector space of the same dimension as PL
1 , we actually have

PL
1 = PL

1↓ ,

so that

pow(0, 1) = {0, 1, 3}.

It follows that 0 is not 1-Taylorian.

Now, if X = {x0,x1,x2} ⊂ V with xj = (xj , yj) = (xj , x
3
j ), j = 0, 1, 2,

then

VDM(B;X) =

∣∣∣∣∣∣∣
1 x0 x30
1 x1 x31
1 x2 x32

∣∣∣∣∣∣∣ = (x0 + x1 + x2)
∏

0≤i<j≤2
(xj − xi).

In any neighbourhood Ω of 0 in V we can choose X = {x0,x1,x2} ⊂ Ω
such that xi 6= xj for i 6= j and VDM(B;X) = 0.

4. Existence and characterization of the limit

4.1. Existence. As a consequence of Theorem 3.2, the polynomial
LV [A; f ] is well defined for every choice of md(V ) points sufficiently close
to a, and it is therefore meaningful to study limA→a LV [A; f ](x) whereA→ a
retains its ordinary meaning. We now prove the existence of the limit.

Theorem 4.1. Let V be an irreducible algebraic curve in C2 and a ∈ V 0

a d-Taylorian point. Let Xn ⊂ V , n ∈ N, be a sequence of unisolvent sets for
Pd(V ) whose points tend to a, i.e. max{|x− a| : x ∈ Xn} → 0 as n→∞.
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Then

(4.1) lim
n→∞

LV [Xn; f ] exists

for every function f holomorphic on a neighbourhood of a in C2.

Equivalently, since the limit must be independent of the sequence (Xn),
the theorem states that for every d-Taylorian point a in V 0,

lim
A→a

LV [A; f ] exists.

Proof. Let L = (0, U,R) be a local parametrization of V 0 at a and let
B = {p0, . . . , pm−1} be any basis for Pd(V ), where m = md(V ). For n large
enough we have Xn ⊂ R(U), so that

Xn = {R(tn0 ), . . . , R(tnm−1)} with tnj → 0 as n→∞, j = 0, . . . ,m− 1.

In view of (2.1), we have

(4.2) LV [Xn; f ](x) =
m−1∑
i=0

VDM(B[pi ← f ];Xn)

VDM(B;Xn)
pi(x).

Now, setting F = B ◦R and Tn = {tn0 , . . . , tnm−1}, we have VDM(B;Xn) =
VDM(F ;Tn), and likewise for VDM(B[pi ← f ];Xn), so that, passing to the
limit in (4.2) with the help of (2.9), we get

lim
n→∞

LV [Xn; f ](x) = lim
n→∞

{m−1∑
i=0

VDM(F [fi ← f ◦R];Tn)

VDM(F ;Tn)
pi(x)

}
(4.3)

=
m−1∑
i=0

W (F [fi ← f ◦R] , 0)

W (F , 0)
pi(x),

where fi = pi ◦R. The limit is well defined. Indeed, in view of Theorem 3.1,
since a is d-Taylorian, W (F , 0) does not vanish.

The theorem explains the negative conclusion in Example 1.1. Indeed,
when V = {y = x3}, the point a = (0, 0) is not 1-Taylorian. This fact was
proved in Example 3.3.

4.2.Characterization of the limit: Taylor interpolation on curves.
The right hand side of (4.3) actually gives an explicit expression for the limit,
and according to the discussion in the introduction, it provides a suitable
definition for a Taylor polynomial of f at a. The formula however apparently
depends on R, and more importantly it is desirable to know whether such
a Taylor polynomial furnishes a local approximant of f in the sense that
generalizes the classical one. In fact, it turns out that this limiting operator
coincides with a Hermitian interpolation procedure studied in [5].
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Theorem 4.2 (Bos–Calvi). Let V be an irreducible algebraic curve in C2

and a ∈ V 0 a d-Taylorian point, d ≥ 1. Then, for every function f holo-
morphic on a neighbourhood of a in C2, there exists a unique polynomial
P ∈ Pd(V ) such that, for every local parametrization L = (0, U,R) of V
at a with R(0) = a,

(4.4) (P ◦R)(i)(0) = (f ◦R)(i)(0), i = 0, . . . ,md(V )− 1.

The above interpolation polynomial is called the d-Taylor polynomial of
f at a and is denoted by Td

a(f). The map f 7→ Td
a(f) is the Taylor projector

of degree d at a on V .
Corresponding to (1.1), we have

(f −Td
a(f))(R(t)) = o(tm−1) (t→ 0).

Observe that (4.4) implies that a polynomial P computed with one local
parametrization works as well for any other parametrization. In other words,
to check that a given polynomial p ∈ Pd(V ) equals Td

a(f), it suffices to
check (4.4) for only one parametrization. One says that the linear forms
f 7→ (f ◦R)(i)(0) are the interpolation conditions for Td

a.
We will use the following multiplicative property of Taylor interpola-

tion on curves (see [5, Corollary 3.6]). For any suitably defined functions g1
and g2, we have

(4.5) Td
a(g1g2) = Td

a

(
Td

a(g1)T
d
a(g2)

)
.

Theorem 4.3. The limit whose existence is proved in Theorem 4.1
is Td

a(f). Thus, for every d-Taylorian point a on V ,

lim
A→a

LV [A; f ] = Td
a(f).

Proof. We just need to prove that the limit given by the right hand side
of (4.3), and which we will now denote by P ,

P (x) =

m−1∑
i=0

W (F [fi ← f ◦R], 0)

W (F , 0)
pi(x),

is exactly Td
a(f). To do so, since P ∈ Pd(V ), according to the remark

following Theorem 4.2, it suffices to check that (P ◦R)(i)(0) = (f ◦R)(i)(0)
for i = 0, . . . ,m−1. We use the notation introduced in the proof of Theorem
4.1. Observe that since the map f →W (F [fi ← f ◦R], 0) is linear and

W (F [fi ← fj ], 0) = δij W (F , 0), i, j = 0, . . . ,m− 1,

we have

W (F [fj ← P ◦R], 0) =

m−1∑
i=0

W (F [fi ← f ◦R], 0)

W (F , 0)
· δijW (F , 0)

= W (F [fj ← f ◦R], 0), j = 0, . . . ,m− 1.
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By expanding the above relations, we obtain the differential identities

(4.6)
m−1∑
k=0

Cjk
(P ◦R)(k)(0)

k!
=

m−1∑
k=0

Cjk
(f ◦R)(k)(0)

k!
, j = 0, . . . ,m− 1,

where Cjk is the cofactor of the matrix giving W (F , 0). Since this matrix is

invertible, so is its co-matrix; hence, relations (4.6) imply that (P ◦R)(j)(0) =
(f ◦R)(j)(0) for j = 0, . . . ,m− 1, and this concludes the proof of the theo-
rem.

Using (2.10) instead of (2.9), we obtain the following corollary which we
will need in Section 6.3.

Corollary 4.4. Under the assumptions of Theorem 4.1, if gn converges
to g in the standard topology of A (Ω) where Ω is an open neighbourhood of
a in V 0 then

(4.7) lim
n→∞

LV [Xn; gn] = Td
a(g).

5. A new characterization of Taylorian points on curves. The
main objective, in this part, is to prove a converse to Theorem 4.1: if
LV [Xn; f ] converge for a sole sequence (Xn) of interpolation arrays tending
to a limit point a, and for all holomorphic functions on a neighbourhood
of a, then a must be d-Taylorian (and the limit is the Taylor polynomial
defined above).

5.1. Analytic functionals. Recall that an analytic functional µ be-
longs to A ′(0) if its restriction to all A (Ω) is continuous, where Ω runs
over all open neighbourhoods of the origin. In particular, µ ∈ A ′(0) if and
only if for every ρ > 0, there exists a positive constant Mρ such that

|µ(f)| ≤Mρ‖f‖D(0,ρ), f ∈ A (D(0, ρ)).

In particular, taking f(z) = zm we obtain

|µ(zm)| ≤Mρρ
m, m ≥ 0.

Observe that if f(z) =
∑∞

m=0 amz
m for |z| ≤ ρ, we have

(5.1) µ(f) =
∞∑
m=0

amµ(zm) =
∞∑
m=0

bmf
(m)(0), bm = µ(zm)/m!.

Note that
bm = µ(zm)/m! = O(ρm/m!),

and since this is true for every positive ρ, the function F (z) =
∑∞

m=0 bmz
m is

entire. The relation µ(f) =
∑∞

m=0 bmD
m(f)(0) will be written as µ = F (D).

Likewise, given an irreducible algebraic curve V = {q = 0} and a ∈ V 0,
we may consider ν ∈ A ′(a). In fact, given such a ν and a local parametriza-
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tion L = (0, U,R) of V 0 at a, there exists µR ∈ A ′(0) such that ν(f) =
µR(f ◦ R) for every f ∈ A (a) (since the map f ∈ A (a) 7→ f ◦ R ∈ A (0)
is onto, the relation ν(f) = µR(f ◦ R) defines µR on A (0) and it is readily
seen that it is continuous). Thus any ν ∈ A ′(a) is defined by a relation of
the form

(5.2) ν(f) = F (D)(f ◦R), f ∈ A (a),

where F is a univariate entire function. We will write ν = FR(D). If F is a
polynomial, we say that ν is a Hermitian functional at a.

5.2. Polynomial projectors whose coefficients are Hermitian
functionals. If (pi) is a basis for Pd(V ) and π : A (a) → Pd(V ) is a
polynomial projector then for every f ,

(5.3) π(f) =

md(V )∑
i=1

ci(f)pi,

where the ci are analytic functionals which we refer to as the coefficients of
π (with respect to the basis (pi)).

Theorem 5.1. Let V = V (q) be an irreducible curve in C2 and a ∈ V 0.
If there exists a polynomial projector π : A (a)→Pd(V ) such that

(1) kerπ is an ideal, and
(2) the coefficients of π are Hermitian functionals at a,

then a is d-Taylorian and π = Td
a.

Clearly, the second assumption does not depend on the basis we choose
for Pd(V ). This assumption is given in a more intrinsic form below.

Let L = (0, U,R) be a parametrization of V at a = (a1, a2) such that
R(U) ⊂ V 0. We have R′(0) 6= 0. We will always assume that the first
coordinate of R′(0) is not null. Otherwise, we may work with the second
coordinate R2 with obvious changes. This assumption implies:

(P1) R1 defines a complex diffeomorphism between a neighbourhood of 0
and a neighbourhood of a1, which implies the following.

(P2) The map

(5.4) Θ : φ ∈ A (a1) 7→ φ ◦R1 ∈ A (0)

defines an isomorphism from the vector space A (a1) onto A (0).

We denote by S(π) the subspace of A ′(a) spanned by the functionals µ
such that µ(f) = µ(π(f)) for every f ∈ A (a). Equivalently, S(π) is the
(md(V )-dimensional) subspace of A ′(a) spanned by the coordinates of π in
any basis of Pd(V ); for instance, in view of (5.3),

S(π) = span{ci : i = 1, . . . ,md(V )}.
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In view of the definition of a Hermitian functional given above, assumption
(2) of Theorem 5.1 ensures that every ci, hence every element µ of S(π), is
defined by a relation of the form

µ(f) = QR(D)(f) = Q(D)(f ◦R) =
∑
j∈Jµ

cjD
j(f ◦R)(0),

where Q is the polynomial Q(z) =
∑

j∈Jµ cjz
j (Jµ is finite).

Lemma 5.2. With the assumptions of the theorem, if QR(D) ∈ S(π)

then Q
(i)
R (D) ∈ S(π) for i = 1, . . . ,degQ.

Proof. Suppose that, for some j ∈ {1, . . . , s} where s = degQ, µ =

Q
(j)
R (D) does not belong to S(π). First, we can find f ∈ kerπ such that

Q
(j)
R (D)(f) 6= 0. Indeed, since µ 6∈ S(π), there exists h ∈ A (a) such that

µ(h − π(h)) 6= 0 and it suffices to take f = h − π(h), the fact that π is a
projector ensuring f ∈ kerπ. The assumption now gives fg ∈ kerπ, hence
in particular QR(D)(fg) = 0 for all g ∈ A (a). The use of a general Leibniz
formula (which is readily derived from the usual one) now yields

QR(D)(fg) =
s∑
i=0

1

i!
(g ◦R)(i)(0)Q

(i)
R (D)(f).

Omitting the term for i = 0 (which vanishes), we have

(5.5) 0 =
s∑
i=1

1

i!
(g ◦R)(i)(0)Q

(i)
R (D)(f), g ∈ A (a).

Yet, since the vector (Q
(1)
R (D)(f), . . . , Q

(s)
R (D)(f)) is not null (because its

jth coordinate is nonzero), a nonorthogonal vector can be found, that is,

a vector (v1, . . . , vs) such that
∑s

i=1 viQ
(i)
R (D)(f) 6= 0. Hence, to obtain a

contradiction, it suffices to show that there exists g ∈ A (a) with

1

i!
(g ◦R)(i)(0) = vi, i = 1, . . . , s.

This can be done as follows. The automorphism Θ in (5.4) ensures that there
exists h ∈ A (a1) such that (1/i!)(h ◦ R1)

(i)(0) = vi, i = 1, . . . , s (take the
preimage under Θ of

∑s
i=1 vix

i). Then it suffices to define g(x, y) = h(x).

Proof of Theorem 5.1. An application of the previous lemma readily
gives

(5.6) S(π) = span{Γi : i = 0, . . . ,M}, Γi : f 7→ (f ◦R)(i)(0),

where M is the supremum of the degrees of the polynomials Q for which
QR(D) ∈ S(π). Indeed, if QM is a polynomial of maximal degree, then

{Q(i)
M : i = 0, . . . ,M} forms a basis of PM (C) so that each zj is a linear
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combination of the Q
(i)
M for j = 0, . . . ,M . Hence, in view of Lemma 5.2 the

right hand side of (5.6) is included in S(π). The converse inclusion follows
from the maximality of M .

We construct a basis for σ(π), the space of restrictions of elements of
S(π) to Pd(V ), as follows. Recall that

dimS(π) = dimσ(π) = m, where m = md(V ).

We let

γi = Γi|Pd(V ), i = 0, . . . ,M.

If the indices i0 < · · · < ik have been selected, we choose ik+1 as the smallest
index such that

γik+1
6∈ σk = span{γij : j = 0, . . . , k}.

Observe that i0 = 0 and, for ik < j < ik+1, γj ∈ σk. In this way, we obtain
a basis γij , j = 0, . . . ,m− 1, for σ(π).

We claim that the theorem will be proved if we show that im−1 = m−1,
so that ij = j for every j. Indeed, in that case a will be d-Taylorian (and
π = Td

a since the interpolation conditions of both projectors will coincide).
To see that, observe that if σ(π) = span{γi : i = 0, . . . ,m − 1} then the γi
form a basis for σ(π) and we may construct a dual basis (pj) for Pd(V ),
that is,

γi(pj) = δij , i, j = 0, . . . ,m− 1.

So, using the notation introduced in Subsection 3.1, we have (pj ◦ R) =
zj/j! + (terms of higher order), which means (pj ◦ R)↓ = tj/j!, so that
tj ∈PL

d↓ . Since this is true for every j ∈ {0, . . . ,m− 1} and dim PL
d↓ = m,

we have pow(a, d) = {0, . . . ,m− 1} and a is Taylorian.

We now turn to the proof of the above claim. The reasoning is inspired
from [5, proof of Theorem 3.2] .

We consider the sequence of integers

I = (i0, i1, . . . , im−1).

We assume that im−1 > m− 1 and look for a contradiction.

Since im−1 > m − 1, there must be at least one gap in the sequence
I and we may define is as the greatest integer in I so that is + 1 6∈ I.
Note that s ≤ m− 2 and I contains all integers from is+1 to im−1, that is,
is+k = is+1 + k− 1 for k = 1, . . . ,m− 1− s. Consider the function f defined
by f(x, y) = (x−a1)τ where τ = is+1− 1 ≥ is + 1 so that τ does not belong
to I. We have

(f ◦R)(t) = R′1(0)tτ + o(tτ+1)

= R′1(0)tτ + α1t
is+1 + α2t

is+2 + · · ·+ αm−1−st
im−1 + o(tim−1+1).
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Now, for r = 1, . . . ,m− 1− s, we may find pr ∈Pd(V ) such that

γij (pr) = δj, s+r, j = 0, . . . ,m− 1.

Since span{γi : i < is+1} = σs, this implies further that γi(pr) = 0 for
i < is+1, hence

(pr ◦R)(t) =
1

is+r!
tis+r + o(tim−1+1).

It follows that, setting

F = f −
m−1−s∑

r=1, αr 6=0

is+r!

αr
pr,

we have

(F ◦R)(t) = R′1(0)tτ + o(tim−1+1).

This implies that Γik(F ) = 0 for all k ∈ I, hence F ∈ kerπ. Yet xF does
not belong to kerπ since γis+1(xF ) = R′1(0)(is+1!) 6= 0. This contradicts the
fact that kerπ is an ideal and concludes the proof the theorem.

5.3. A converse to Theorem 4.1

Theorem 5.3. Let V be an irreducible curve in C2 and a ∈ V 0. If there
exists a sequence Xn ⊂ V , n ∈ N, of unisolvent sets for Pd(V ) whose points
tend to a such that for every f ∈ A (a) the limit

(5.7) lim
n→∞

LV [Xn; f ] = L(f)

exists (as an element of Pd(V )), then a is d-Taylorian and L = Td
a.

Proof. We will prove that the projector L satisfies the assumptions of
Theorem 5.1.

Step 1. L is a continuous linear projector on A (a). Let Ω be an open
neighbourhood of a in V 0. For n large enough, the coefficients cni (f) of
LV [Xn; f ] relative to any fixed basis (p1, . . . , pmd(V )) of Pd(V ), which are
linear combinations of point-evaluations at elements of Xn, can be regarded
as elements of A ′(Ω). The assumption ensures that for every f ∈ A (Ω),
cni (f) converges to ci(f), the corresponding coefficient of L(f). By the uni-
form boundedness principle, the convergence is uniform. In particular, for
every ρ > 0, there exists Mρ such that

|cni (f)| ≤Mρ‖f‖Bρ , n ≥ n0, f ∈ A (Ω),

where Bρ = V 0∩B(a, ρ) ⊂ Ω. Letting n→∞, we obtain an inequality which
shows that since ρ can be taken arbitrarily small, each ci is an element of
A ′(a). Hence L is a continuous linear map on A (a), and it is immediate
that it is a projector (with values in Pd(V )).
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Step 2. The kernel of L is an ideal. We start from the relation (cf. (4.5))

LV [Xn; g1g2] = LV
[
Xn; LV [Xn; g1]LV [Xn; g2]

]
,

(both sides are elements of Pd(V ) that match g1g2 on Xn). Passing to the
limit, we readily get L(g1g2) = L(L(g1)L(g2)) so that if g1 ∈ kerL then
0 = L(g1)⇒ L(L(g1)L(g2)) = L(0) = 0⇒ L(g1g2) = 0, so that g1g2 ∈ kerL
and kerL is an ideal.

Step 3. The functionals ci are Hermitian. Given a parametrization L =
(0, U,R), since, as shown in the first step, ci ∈ A ′(a), according to the
discussion in Subsection 5.1 we have

ci(f) = (Fi)R(D)(f) = Fi(D)(f ◦R) =
∞∑
m=0

bimD
m(f ◦R)(0),

where Fi(z) =
∑∞

m=0 b
i
mz

m is entire. For n > n0, we have Xn ⊂ R(U).
Consider the function

fn(x, y) = (g ◦R−11 )(x)
∏

b=(b1,b2)∈Xn

(R−11 (x)−R−11 (b1)),

where g(x) is any univariate entire function. (Recall that we have assumed
R′1(0) 6= 0, see (P2) following Theorem 5.1, so that fn ∈ A (a).) Since
fn(b) = 0 for b ∈ Xn, we have LV [Xn; fn] = 0, and passing to the limit
yields L(f) = 0 where

f(x, y) = (g ◦R−11 )(x)(R−11 (x))md .

Here we have used the uniform convergence of LV [Xn; ·] to L (see the first
step). Hence, ci(f) = 0 and

0 =

∞∑
m=0

bimD
m(f ◦R)(0) =

∞∑
m=0

bimD
m(xmdg(x))(0)

=

∞∑
m=md

bimD
m(xmdg(x))(0).

In particular, if g is the entire function

g(x) =

∞∑
m=md

bimx
m−md ,

then the above identity reduces to

0 =
∞∑

m=md

|bim|2m!,

so that bim = 0 for m ≥ md. This proves that ci is Hermitian and concludes
the proof of the theorem.
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6. Application. Limit of bivariate Lagrange projectors

6.1. Introduction. So far, we have considered problems for which the
interpolation points all tend to the same limit point. Relatively little is
known, it seems, in the more general case for which the limiting configura-
tion is not reduced to a single point. An interesting result was obtained by
Shekhtman [10] who specified a (computable) set of conditions enabling one
to decide whether a given projector is the limit of Lagrange projectors.

Here, we apply the results obtained in the previous sections to address
the problem of limits of sequences of Lagrange interpolation polynomials
at natural bivariate configurations of points. A typical question that is an-
swered in this section is illustrated below.

Lagrange interpolation Hermite interpolation

(A) (B)

In (A), we show a Bos configuration formed by 21 = 11 + 7 + 3 points
distributed on three circles in R2 ⊂ C2 (the number of points on each circle
is fixed) for interpolation by polynomials of degree at most five in C2. The
construction is recalled below. Now, assume that, as indicated in (B), on
each circle, the points move towards one limit point, drawn in larger size,
one limit point for each circle. The natural questions are the following.

(1) Does the sequence of Lagrange operators obtained by moving the
points converge?

(2) If yes, how is the limiting operator defined? Can it be understood as
a Hermitian interpolation operator at the three limiting points?

We will show that the answers to the above questions are (in general) pos-
itive and that the limiting operator is given by a Hermitian interpolation
procedure previously introduced by Bos and Calvi [4, 5] whose construction
will be recalled below. Note that Phung [9] also studied the limit of Lagrange
projectors when the interpolation points are Bos configurations on circles.
But the coalescence of points is different: the centres of the circles are fixed
and the radii tend to 0.
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6.2. Bos configurations. In the whole section, we work with the fol-
lowing objects:

(1) A family of ν ≥ 2 curves Vi ⊂ C2, where
(2) for each i, Vi = {qi = 0} with qi an irreducible polynomial of degree

ri ≥ 1 in C2.
(3) To each d ∈ N such that

(6.1) r1 + · · ·+ rν−1 < d ≤ r1 + · · ·+ rν ,

we associate a finite sequence of integers si defined as

(6.2) s1 = d and si = d− r1 − · · · − ri−1, i = 2, . . . , ν.

A difference occurs according to whether equality holds (case 2) in the
upper bound of (6.1), i.e. d =

∑ν
i=1 ri, or not (case 1). The latter leads to

somewhat shorter statements. The above definitions are motivated by the
following theorem due to Bos [3] which proposes a way to construct suitable
configurations of points for interpolation in C2 by collecting unisolvent sets
on the curves Vi (see [7] for the treatment of the complex case).

Theorem 6.1. For i = 1, . . . , ν, let Xi ⊂ Vi be unisolvent for Psi with
Xi ∩ Vj = ∅ for i > j.

(1) In case 1, X =
⋃ν
i=1Xi is unisolvent for Pd(C2).

(2) In case 2, X∪{b}, with b outside
⋃ν
i=1 Vi, is unisolvent for Pd(C2).

Such a configuration will be called a Bos configuration. The distribution
of points shown in Figure (A) is an example of such a configuration (case 1).
It corresponds to d = 5, ν = 3 and Vi = {x2 + y2 = ρ2i }.

Within the same setting, Bos and Calvi [4, 5] later proved the following
result.

Theorem 6.2. For i = 1, . . . , ν, let ai be an si-Taylorian point on Vi
such that ai /∈ Vj for i > j and a suitably defined function f .

(1) In case 1, there exists a unique polynomial

H = H[(a1, s1), . . . , (aν , sν); f ] ∈Pd(C2)

such that

(6.3) Tsi
ai(f −H) = 0, i = 1, . . . , ν.

(2) In case 2, if aν+1 is a supplementary point lying outside the Vi, there
exists a unique polynomial H = H[(a1, s1), . . . , (aν , sν),aν+1; f ] ∈
Pd(C2) such that together with (6.3), we have H(aν+1) = f(aν+1).

Here and below, by a ‘suitably defined function f ’, we mean a function
which is holomorphic on a neighbourhood of each point ai.
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6.3. The limit theorem. Now, the natural conjecture is to expect that
when the points of each Xi in a Bos configuration converge to ai, the cor-
responding Lagrange interpolation operator will converge to H[(a1, s1), . . . ,
(aν , sν); ·] (in case 1). This is the next theorem.

Theorem 6.3. For i = 1, . . . , ν and n ∈ N, let Xn
i ⊂ Vi be unisolvent

for Psi with Xn
i ∩ Vj = ∅ for i > j such that

(6.4) max{|x− ai| : x ∈ Xn
i } → 0 as n→∞

where ai is an si-Taylorian point for Vi.

(1) In case 1, setting Xn =
⋃ν
i=1X

n
i , for any suitably defined function f ,

we have

lim
n→∞

L[Xn; f ] = H[(a1, s1), . . . , (aν , sν); f ].

(2) In case 2, if the above set Xn is replaced by Xn ∪ {bn} with bn

outside
⋃ν
i=1 Vi and converging to a point aν+1, then

lim
n→∞

L[Xn ∪ {bn}; f ] = H[(a1, s1), . . . , (aν , sν),aν+1; f ].

Proof. We only prove the first statement. The proof of the second one
is similar. It is a consequence of Theorem 4.1 (and of Theorem 6.2) once we
observe that Ln = L[Xn; f ] is given by

(6.5)

Ln =
ν∑
i=1

Lni , Lnk = q1 · · · qk−1LVk
[
Xn
k ;

(
f − Ln1 − · · · − Lnk−1

q1 · · · qk−1

)
|Vk

]
,

k = 1, . . . , ν, where the empty product in the definition of Ln1 is taken as 1
(and the empty sum is taken as 0).

The formula requires some explanation since Lnk must be an element
of Pd(C2) while LVk [Xn

k ; ·] produces an element of Pd(Vk). Actually, it is
readily seen that choosing different polynomials in Pd(C2) whose restric-
tions to Vk coincide would merely result in adding a zero polynomial to the
final sum. A more rigorous formula is obtained by using a linear isomor-
phism between Pd(Vk) and a (fixed) complementary space of the kernel of
p 7→ p|Vk in Pd(C2). In that case, the notation in (6.5) confuses an element

of Pd(Vk) with its preimage in Pd(C2). The continuity of such a map is
used below.

Note that the interpolated function in (6.5) is well defined on Xn
k since,

by assumption, q1 · · · qk−1 does not vanish on Xn
k .

This being said, one readily verifies that the right hand side of (6.5)
provides a polynomial of degree at most d which matches f on Xn. Indeed,
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on Xn
1 , Ln = Ln1 = f and, for j > 1, on Xn

j , we have

Ln =

j∑
k=1

Lnk = Lnj +

j−1∑
k=1

Lnk = q1 · · · qk−1
(
f −

∑j−1
k=1 L

n
k

q1 · · · qk−1

)
+

j−1∑
k=1

Lnk = f.

Now, an application of Theorem 4.3 and its corollary shows that Ln has
a limit, given by

(6.6) lim
n→∞

Ln =
ν∑
k=1

Tsk
ak

(
f − Λ1 − · · · − Λk−1

q1 · · · qk−1

) k−1∏
i=1

qi

with

(6.7) Λk = q1 · · · qk−1Tsk
ak

(
f − Λ1 − · · · − Λk−1

q1 · · · qk−1

)
, k = 1, . . . , ν.

In fact, Theorem 4.3 implies Ln1 → Λ1, and then Corollary 4.4 may be used
to prove Lnk → Λk for k = 2, . . . , ν.

To conclude the proof, it remains to show that the polynomial on the
right hand side of (6.6) is indeed H[(a1, s1), . . . , (aν , sν); f ]. To do so, we
will use the multiplicative property (4.5). We denote by Q the right hand
side of (6.6) and prove that

T
sj
aj (Q) = T

sj
aj (f), j = 1, . . . , ν.

For j = 1, the claim is easy, for on V1, Q = Ts1
a1

(f). For j > 1, we first
observe that on Vj , all the terms for k > j vanish, so that

T
sj
aj (Q) =

j∑
k=1

T
sj
aj

(
Tsk

ak

(
f − Λ1 − · · · − Λk−1

q1 · · · qk−1

)
q1 · · · qk−1

)
=

j∑
k=1

T
sj
aj (Λk),

where we have used (6.7). We first consider the term for k = j. Writing

Πj = q1 · · · qk−1 and Σj =
∑j−1

k=1 Λk, using (4.5) we obtain

T
sj
aj (Λj) = T

sj
aj

{
T
sj
aj

(
f −Σj
Πj

)
Πj

}
= T

sj
aj

{
T
sj
aj

(
T
sj
aj

(
f −Σj
Πj

))
T
sj
aj (Πj)

}
.

Now, since T
sj
aj ◦T

sj
aj = T

sj
aj , using again (4.5) on the second line we get

T
sj
aj (Λj) = T

sj
aj

{
T
sj
aj

(
f −Σj
Πj

)
T
sj
aj (Πj)

}
= T

sj
aj

{(
f −Σj
Πj

)
· Πj

}
= T

sj
aj (f −Σj) = T

sj
aj (f)−T

sj
aj (Σj).

Hence,

T
sj
aj (f) = T

sj
aj (Σj) + T

sj
aj (Λj) =

j∑
k=1

T
sj
aj (Λk) = T

sj
aj (Q),

and this concludes the proof of the theorem.
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6.4. A few examples

Example 6.4. We are now able to answer the problem raised in Sub-
section 6.1. When the interpolation points in Figure (A) tend to the points
ai = ρi(cos(θi), sin(θi)) where ρi is the radius of the ith circle, i = 1, 2, 3, as
in Figure (B), the corresponding sequence of Lagrange interpolation poly-
nomials converges to the operator H[(a1, 5), (a2, 3), (a3, 1); ·] which is the
Hermitian projector defined by the interpolation conditions

f 7→ dk

dθk
f
(
(ρi cos θ, ρi sin θ)

)∣∣∣∣
θ=θi

, k = 0, . . . ,mi, i = 1, 2, 3,

where m1 = 10, m2 = 6 and m3 = 2.

Example 6.5. Let V1 = {y = x} and V2 = {y = x2 + 1}. We obtain a
Bos configuration for interpolation by polynomials of degree at most 2 by
taking three points on V1 (s1 = 2) and three points V2 (s2 = 1) as in the
figure below.

We want to study the limit of the Lagrange interpolation projector con-
structed with these six points when the three points on the line tend to
a1 = (0, 0) (which is 2-Taylorian) and the three points on the parabola
tend to a2 = (1, 0) (which is 1-Taylorian). According to Theorem 6.3, the
limit is given by the projector H[(a1, 2), (a2, 1); ·] defined by the following
six interpolation conditions:

f 7→ f(0, 0), f 7→ f(0, 1), f 7→ ∂2f(0, 0) + ∂1f(0, 0), f 7→ ∂1f(0, 1),

f 7→ ∂22f(0, 0) + ∂21f(0, 0) + 2∂212f(0, 0), f 7→ 2∂2f(0, 1) + ∂21f(0, 1).

Example 6.6. Since the projectors H[(a1, s1), . . . , (am, sm); ·] are limits
of Lagrange projectors, it is natural to further ask what happens when the
points ai in turn tend to a unique limit point, a situation that may occur
when the intersection of the curves Vi is not empty. Here, we present a two-
point example H[(a1, 3), (a2, 1); ·] for which the limit does not exist. Since, in
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view of Theorem 6.3, there exist Lagrange projectors (at Bos configurations
for degree 3) arbitrarily close to H[(a1, 3), (a2, 1); ·], this example shows
that a sequence of Lagrange interpolation projectors at Bos configurations
whose points tend to a single limit point may fail to converge. Of course,
this motivates the question to find conditions upon which convergence would
hold.

We consider the irreducible polynomials q1(x) = y − x2 and q2(x) =
y − x2 − x8 and the corresponding curves V1 = {x : q1(x) = 0} and V2 =
{x : q2(x) = 0}. Every point is 3-Taylorian for V1. We consider the points
a1 = (0, 0) and a2 = (ε, ε2 + ε8) which is easily shown to be 1-Taylorian
and show that, for f(x, y) = xy3, H[(a1, 3), (a2, 1); f ] has no limit as ε→ 0.
Clearly, the failed convergence is associated to the fact that q1 and q2 locally
coincide up to order 7 in a neighbourhood of the origin. We have T3

a1
(f) = 0

(because the jth derivative of t 7→ f(t, t2) at t = 0 vanishes for j = 0, . . . , 6).
Hence, in view of (6.7), we have

H[(a1, 3), (a2, 1); f ] = q1T
1
a2

(f/q1).

Since q1(x, y) = y−x2, the coefficient of y in H[(a1, 3), (a2, 1); f ] is given by

T1
a2

(
f

q1

)
(a2) =

f(a2)

q1(a2)
=
ε(ε2 + ε8)3

ε8
∼ 1

ε
,

so that H[(a1, 3), (a2, 1); f ] has no limit as ε→ 0.
Interestingly enough, if we change q2 to q2(x) = y−x2−xk with 5 ≤ k < 8,

then for the same points a1 and a2 and the same function f , it can be shown
that H[(a1, 3), (a2, 1); f ] has a limit as ε → 0 but the limit depends on
k = 5, 6, 7 and never coincides with the Taylor polynomial of f at the origin,
namely we have

lim
ε→0

H[(a1, 3), (a2, 1); f ] =


y(y − x2) (k = 5),

x(y − x2) (k = 6),

y − x2 (k = 7).
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