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Summary. We prove the existence of a non-trivial non-negative radial weak solution to
the problem (−∆)αu+ bu = λ

u

|x|2α + |u|p−1u+ µ|u|r−1u in RN ,

lim
|x|→∞

u(x) = 0.

Here N > 2α, α ∈ (1/2, 1), 1 < r < p < N+2α
N−2α

and µ ∈ R. We also assume that b > 0 and

0 < λ < 4α
Γ2(N+2α

4
)

Γ2(N−2α
4

)
.

1. Introduction. In this article we show the existence of a non-trivial
non-negative radial weak solution to the problem

(1.1)


(−∆)αu+ bu = λ

u

|x|2α
+ |u|p−1u+ µ|u|r−1u in RN ,

lim
|x|→∞

u(x) = 0,

u ∈ Hα(RN ),

where N > 2α, α ∈ (1/2, 1), µ ∈ R and 1 < r < p < N+2α
N−2α . We also assume

that b > 0 and 0 < λ < 4α
Γ2(N+2α

4
)

Γ2(N−2α
4

)
. The function space Hα(RN ) will be

introduced later in Section 2.
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In the case of bounded smooth domains containing the origin, and zero
Dirichlet conditions, the above problem has been studied for p = N+2α

N−2α ,
b = 0 and µ = 0 in [12].

In [7] the authors consider problem (1.1) for b = 0, µ = 0 and with more
singular terms. They show that a positive solution exists. For different kinds
of problems related to (1.1) the readers can consult the references in [7, 12].

In Section 2 we briefly describe the natural functional framework for
problem (1.1). In Section 3 we prove the existence of a non-trivial non-
negative radial weak solution to problem (1.1) via variational methods.

2. Prerequisites. In this section we gather some tools that will be used
in Section 3 to prove our existence theorem. First we define, for each α ≥ 0,
the fractional Sobolev space

Hα(RN ) = {u ∈ L2(RN ) : |ξ|αû(ξ) ∈ L2(RN )},
via the Fourier transform Fu(ξ) = û(ξ) =

	
RN e

−2πix·ξ u(x) dx. For α ∈
(0, 1), it is well-known that Hα(RN ) is the completion of C∞0 (RN ) under
the norm

(2.1) ‖u‖Hα(RN ) =
( �

RN
bu2 dx+

�

RN
|ξ|2α|û(ξ)|2 dξ

)1/2
,

=
( �

RN
bu2 dx+

�

RN
|(−∆)α/2u|2 dx

)1/2
,

which is induced by the scalar product

〈u, v〉Hα(RN ) =
�

RN
buv dx+

�

RN
(−∆)α/2u (−∆)α/2v dx.

Here (−∆)α/2 is the fractional Laplacian defined on the Schwartz class (of
rapidly decaying C∞ functions in RN ) through the Fourier transform,

(−∆)α/2u = F−1(|ξ|αFu).

See [5] and references therein for the basics on the fractional Laplacian.
The following embedding theorem will be used. The proof can be found

in [3].

Theorem 2.1. Assume that N > 2α with α ∈ (0, 1). Then there is a
continuous embedding

(2.2) Hα(RN ) ↪→ Lp(RN ) for 2 ≤ p ≤ 2∗α =
2N

N − 2α
.

The embedding (2.2) is not compact, due to the invariance of the
Hα(RN ) and Lp(RN ) norms under translations (see [4]). A natural attempt
to overcome this problem is to guess that translation invariance is the only
reason for the failure of compactness, and to try to work in the space of
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radial functions where translations are not allowed. We define

Hα
rad(RN ) = {u ∈ Hα(RN ) : u is radial}.

Now we recall the following two theorems that characterize some prop-
erties of the function space Hα

rad(RN ).

Theorem 2.2 ([4, Theorem 7.1]). Let N > 2α with α ∈ (0, 1), and
p ∈

(
2, 2N

N−2α

)
. Then the embedding of Hα

rad(RN ) into Lp(RN ) is compact.

Theorem 2.3 ([4, Theorem 6.1]). Let N > 2α with α ∈ (1/2, 1), and
u ∈ Hα

rad(RN ). Then u is almost everywhere equal to a continuous function
in RN − {0} that satisfies

|u(x)| ≤ C|x|α−N/2‖u‖Hα(RN ).

For N > 2α, α ∈ (0, 1) and u ∈ Hα(RN ) we also recall the following

fractional Hardy inequality from [13] in which λα,N = 4α
Γ2(N+2α

4
)

Γ2(N−2α
4

)
is the

optimal constant:

(2.3) λα,N
�

RN

|u(x)|2

|x|2α
dx ≤

�

RN
|(−∆)α/2u(x)|2 dx.

If 0 < λ < λα,N , then by using (2.3) we can verify that the following norm
is equivalent to (2.1):

(2.4) |u|Hα(RN ) :=

(
‖(−∆)α/2u‖2L2(RN ) +

�

RN
bu2 dx−λ

�

RN

|u(x)|2

|x|2α
dx

)1/2

.

Notice that the norm (2.4) is induced by the scalar product

(2.5) (u|v)Hα(RN ) =
�

RN
(−∆)α/2u (−∆)α/2v dx+

�

RN
buv dx−λ

�

RN

uv

|x|2α
dx.

We need a method to pass from functions in Hα(RN ) to functions in
Hα

rad(RN ). One way to do this is called Schwarz symmetrization [2, 8, 9].
Let N > 2α with α ∈ (0, 1). By using [8, Theorem 3.4] and [2, 9] we deduce
that for every non-negative u ∈ Hα(RN ) there exists u∗ ∈ Hα

rad(RN ), u∗ ≥ 0,
such that �

RN
|(−∆)α/2u∗|2 dx ≤

�

RN
|(−∆)α/2u|2 dx,(2.6)

�

RN
|u∗|p dx =

�

RN
|u|p dx, ∀p > 1,(2.7)

�

RN

u2

|x|2α
dx ≤

�

RN

u∗2

|x|2α
dx.(2.8)

u∗ is called the Schwarz symmetrization of u.
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Also by [10, (A.11)], for every u ∈ Hα(RN ) we have

(2.9)
�

RN

∣∣(−∆)α/2|u|
∣∣2 dx ≤ �

RN
|(−∆)α/2u|2 dx.

Let us start with a simple observation. If H is a Hilbert space with scalar
product 〈·, ·〉 and induced norm ‖ · ‖, then J(u) = ‖u‖2 = 〈u, u〉 on H is
Fréchet differentiable at u ∈ H and J ′(u)v = 2〈u, v〉 for all v ∈ H.

The following lemma will be used in Section 3. The proof is essentially
the same as in [1, Examples 1.3.20, 1.3.21].

Lemma 2.4. Let N > 2α with α ∈ (0, 1), and 1 ≤ p ≤ N+2α
N−2α . Consider

the functional J : Hα(RN )→ R given by

J(u) =
1

p+ 1

�

RN
|u|p+1 dx.

Then J is Fréchet differentiable on Hα(RN ) and

J ′(u)v =
�

RN
u|u|p−1v dx for all u, v ∈ Hα(RN ).

3. Existence result. In this section we prove the existence of a non-
trivial non-negative radial weak solution to problem (1.1). First we give the
following definition.

Definition 3.1. We say u ∈ Hα(RN ) is a non-trivial non-negative
weak solution to problem (1.1) if u 6≡ 0 a.e. in RN , u ≥ 0 a.e. in RN ,
lim|x|→∞ u(x) = 0, and

(u|v)Hα(RN ) =
�

RN
u|u|p−1v dx+ µ

�

RN
u|u|r−1v dx

for all v ∈ Hα(RN ).

Notice that by the definition of the scalar product (2.5) the left hand side
of the above equality is well defined. Moreover by considering the assumption
1 < r < p < N+2α

N−2α and using the Hölder inequality and the embedding
theorem 2.1, we see that the right hand side is well defined too.

Now we have our existence theorem.

Theorem 3.2. Let N > 2α, α ∈ (1/2, 1), 1 < r < p < N+2α
N−2α , µ ∈ R,

b > 0 and 0 < λ < 4α
Γ2(N+2α

4
)

Γ2(N−2α
4

)
. Then problem (1.1) has a non-trivial non-

negative weak solution in Hα
rad(RN ).

Proof. Consider the functional I : Hα(RN )→ R defined by

I(u) =
1

2
(u|u)Hα(RN ) −

�

RN

|u|p+1

p+ 1
dx− µ

�

RN

|u|r+1

r + 1
dx.
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By Lemma 2.4 and Fréchet differentiability of the first term in the above
expression it follows that I is Fréchet differentiable on Hα(RN ). Hence

I ′(u)v = (u|v)Hα(RN ) −
�

RN
u|u|p−1v dx− µ

�

RN
u|u|r−1v dx

for all u, v ∈ Hα(RN ). Thus weak solutions to problem (1.1) can be found
among the critical points of I. So we look for a solution of (1.1) as a mini-
mizer of the associated functional I constrained on the Nehari manifold

N = {u ∈ Hα(RN ) : u 6= 0, I ′(u)u = 0}
= {u ∈ Hα(RN ) : u 6= 0, |u|2Hα(RN ) = ‖u‖p+1

Lp+1(RN )
+ µ‖u‖r+1

Lr+1(RN )
}.

The Nehari manifold N is not empty: to see this, fix u 6= 0 in Hα(RN ) and
define

h(t) = I ′(tu)tu = t2|u|2Hα(RN ) − t
p+1‖u‖p+1

Lp+1(RN )
− µtr+1‖u‖r+1

Lr+1(RN )
;

then h(t) is positive for small t > 0 and limt→∞ h(t) = −∞. Continuity of
h(t) implies that there exists t0 > 0 such that I ′(t0u)t0u = 0, so t0u ∈ N .
Notice that if u ∈ N , then

(3.1) I(u) =

(
1

2
− 1

r + 1

)
|u|2Hα(RN ) +

(
1

r + 1
− 1

p+ 1

)
‖u‖p+1

Lp+1(RN )
.

Now define
m = inf

u∈N
I(u).

If u ∈ N , then by the embedding theorem 2.1 there exists K > 0 such that

|u|2Hα(RN ) = ‖u‖p+1
Lp+1(RN )

+ µ‖u‖r+1
Lr+1(RN )

≤ K
(
|u|p+1

Hα(RN )
+ |u|r+1

Hα(RN )

)
.

Hence
1 ≤ K

(
|u|p−1

Hα(RN )
+ |u|r−1

Hα(RN )

)
.

If |u|Hα(RN ) ≤ 1, then the above inequality implies 1 ≤ 2K|u|r−1
Hα(RN )

. So we

have obtained, for all u ∈ N ,

(3.2) |u|Hα(RN ) ≥ min{1, (2K)−1/(r−1)} = C > 0.

On the other hand, by invoking the assumption 1 < r < p and using (3.1)
and (3.2) we get

(3.3) I(u) >

(
1

2
− 1

r + 1

)
|u|2Hα(RN ) ≥

(
1

2
− 1

r + 1

)
C2

for all u ∈ N . Therefore m is positive.
Now we want to show that there exists u ∈ N such that I(u) = m. First

we show that a minimizing sequence for m can be chosen fromN∩Hα
rad(RN ).

To see this, let {vk} ⊂ N be any minimizing sequence, that is,

I(vk)→ m k →∞.
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Because of (2.9) we can assume vk ≥ 0. Now let wk = v∗k ∈ Hα
rad(RN ) be

the Schwarz symmetrization of vk. By applying (2.6)–(2.8) we can write

|wk|2Hα(RN ) = ‖(−∆)α/2v∗k‖2L2(RN ) +
�

RN
bv∗k

2 dx− λ
�

RN

|v∗k(x)|2

|x|2α
dx

≤ ‖(−∆)α/2vk‖2L2(RN ) +
�

RN
bv2
k dx− λ

�

RN

|vk(x)|2

|x|2α
dx

= |vk|2Hα(RN ),

so for every non-negative vk ∈ Hα(RN ) we have

(3.4) |v∗k|2Hα(RN ) ≤ |vk|
2
Hα(RN ).

By using (3.4) and (2.7) we get

|wk|2Hα(RN ) ≤ |vk|
2
Hα(RN ) = ‖vk‖p+1

Lp+1(RN )
+ µ‖vk‖r+1

Lr+1(RN )

= ‖wk‖p+1
Lp+1(RN )

+ µ‖wk‖r+1
Lr+1(RN )

.

Hence if we set

gl(t) = t2|wk|2Hα(RN ) −
(
tp+1‖wk‖p+1

Lp+1(RN )
+ µtr+1‖wk‖r+1

Lr+1(RN )

)
,

we obtain gl(1) ≤ 0, while gl(t) > 0 for all t positive and small. Therefore
there exists 0 < tk ≤ 1 such that gl(tk) = 0, that is, tkwk ∈ N . Thus from
(3.1), (2.7) and (3.4) we obtain

m ≤ I(tkwk)

= t2k

(
1

2
− 1

r + 1

)
|wk|2Hα(RN ) + tp+1

k

(
1

r + 1
− 1

p+ 1

)
‖wk‖p+1

Lp+1(RN )

≤ t2k
(

1

2
− 1

r + 1

)
|vk|2Hα(RN ) + tp+1

k

(
1

r + 1
− 1

p+ 1

)
‖vk‖p+1

Lp+1(RN )

≤ I(vk).

This implies that tkwk ∈ Hα
rad(RN ) is also a minimizing sequence for m.

From (3.3) we see that {tkwk} is a bounded sequence in Hα(RN ). We
set uk = tkwk. Of course, uk ≥ 0, and we can assume that, up to subse-
quences, uk ⇀ u in Hα(RN ) weakly. By the compactness of the embedding
Hα

rad(RN ) ↪→ Lp+1(RN ) for p ∈ (1, 2∗α − 1) (Theorem 2.2), we can deduce

uk → u in Lp+1(RN ) and Lr+1(RN ).

Again up to subsequences, uk(x) → u(x) almost everywhere, so that u ≥ 0
a.e. in RN and u ∈ Hα

rad(RN ).
We now prove that the weak limit u belongs to N and I(u) = m. From

(3.2) and the definition of the Nehari manifold N we have

(3.5) 0 < C2 ≤ |uk|2Hα(RN ) = ‖uk‖p+1
Lp+1(RN )

+ µ‖uk‖r+1
Lr+1(RN )

,
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and hence, passing to the limit,

0 < C2 ≤ ‖u‖p+1
Lp+1(RN )

+ µ‖u‖r+1
Lr+1(RN )

.

This implies u 6≡ 0 a.e. in RN . Now from (3.5), we also get

|u|2Hα(RN ) ≤ ‖u‖
p+1
Lp+1(RN )

+ µ‖u‖r+1
Lr+1(RN )

.

If

|u|2Hα(RN ) = ‖u‖p+1
Lp+1(RN )

+ µ‖u‖r+1
Lr+1(RN )

,

then u ∈ N . Towards a contradiction, assume that

|u|2Hα(RN ) < ‖u‖
p+1
Lp+1(RN )

+ µ‖u‖r+1
Lr+1(RN )

.

For t > 0, let

h(t) = I ′(tu)tu = t2|u|2Hα(RN ) − t
p+1‖u‖p+1

Lp+1(RN )
− µtr+1‖u‖r+1

Lr+1(RN )
.

Then h(t) > 0 for small t > 0, while

h(1) = I ′(u)u = |u|2Hα(RN ) − ‖u‖
p+1
Lp+1(RN )

− µ‖u‖r+1
Lr+1(RN )

< 0.

Thus, there is 0 < t < 1 such that tu ∈ N . Hence by the weak lower
semicontinuity of the norm (2.4), that is, |u|Hα(RN ) ≤ lim infn→∞ |un|Hα(RN )

for every sequence un ∈ Hα(RN ) such that un ⇀ u in Hα(RN ) weakly, we
deduce that

I(tu) = t2
(

1

2
− 1

r + 1

)
|u|2Hα(RN ) + tp+1

(
1

r + 1
− 1

p+ 1

)
‖u‖p+1

Lp+1(RN )

<

(
1

2
− 1

r + 1

)
|u|2Hα(RN ) +

(
1

r + 1
− 1

p+ 1

)
‖u‖p+1

Lp+1(RN )

≤ lim inf
k→∞

(
1

2
− 1

r + 1

)
|uk|2Hα(RN )

+ lim
k→∞

(
1

r + 1
− 1

p+ 1

)
‖uk‖p+1

Lp+1(RN )

≤ lim inf
k→∞

((
1

2
− 1

r + 1

)
|uk|2Hα(RN ) +

(
1

r + 1
− 1

p+ 1

)
‖uk‖p+1

Lp+1(RN )

)
= lim inf

k→∞
I(uk) = m.

This contradiction proves that |u|2
Hα(RN )

= ‖u‖p+1
Lp+1(RN )

+ µ‖u‖r+1
Lr+1(RN )

.

Therefore u ∈ N . Again, by the weak lower semicontinuity of the norm it is
easy to check that I(u) ≤ lim infk→∞ I(uk) = m, and therefore I(u) = m.

Now we claim that the minimum u obtained above is a critical point of I
in Hα(RN ). To see this, fix v ∈ Hα(RN ) and ε > 0 such that u+ sv 6= 0 for
all s ∈ (−ε, ε). Define φ : (−ε, ε)× (0,∞)→ R by

φ(s, t) = I ′(t(u+ sv))t(u+ sv).
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Then φ(0, 1) = |u|2
Hα(RN )

− ‖u‖p+1
Lp+1(RN )

− µ‖u‖r+1
Lr+1(RN )

= 0, and

∂φ

∂t
(0, 1) = 2|u|2Hα(RN ) − (p+ 1)‖u‖p+1

Lp+1(RN )
− (r + 1)µ‖u‖r+1

Lr+1(RN )

= (1− r)|u|2Hα(RN ) + (r − p)‖u‖p+1
Lp+1(RN )

< 0.

Therefore, by the Implicit Function Theorem there exists a C1 function
t : (−ε0, ε0) → R such that t(0) = 1 and φ(s, t(s)) = 0 for all s ∈ (−ε0, ε0).
Defining

γ(s) = I(t(s)(u+ sv)),

we see that γ is differentiable and has a minimum point at s = 0, therefore

0 = γ′(0) = I ′(t(0)u)(t′(0)u+ t(0)v) = I ′(u)v.

Since this holds for all v ∈ Hα(RN ), we have I ′(u) = 0. So u ∈ Hα
rad(RN ) is

a critical point of I. Also by using Theorem 2.3, we obtain

|u(x)| ≤ C0|x|α−N/2

for some C0 > 0 and any x 6= 0. The above estimate and the assumption
N > 2α imply that lim|x|→∞ u(x) = 0. Therefore u is a non-trivial non-
negative radial weak solution of problem (1.1).

Remark 3.3. It can be proved that the non-negative solution obtained
above is actually everywhere positive in RN . One way to prove this is the
following. We construct recursively a sequence {un} starting with

(−∆)αu1 + bu1 = T1(up + µur) in RN ,
u1 ≥ 0 in RN ,
lim
|x|→∞

u1(x) = 0,

where u is the weak solution of (1.1) obtained above and

Tk(s) =

{
s, |s| ≤ k,
k sign(s), |s| ≥ k,

is the usual truncation operator. By iteration we define, for n > 1,
(−∆)αun + bun = λ

un−1

|x|2α + 1/n
+ Tn−1(up + µur) in RN ,

un ≥ 0 in RN ,
lim
|x|→∞

un(x) = 0.

By [6, Proposition 5.1.1] one can show that un ∈ L∞(RN ). By [11, Theo-
rem 1] one can show that un is also a solution in the viscosity sense. Then
the Strong Maximum Principle [11, Proposition 5.2.1] implies that un is ev-
erywhere positive in RN . On the other hand, by using [11, Lemma 6], we
can deduce that u1 ≤ · · · ≤ un ≤ u in RN . Therefore, u > 0 in RN .
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