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Abstract. The derived generalized algebroid and the derived generalized Lie algebroid of an

anchored vector bundle are defined. Some natural functors from the two categories of anchored

vector bundles to the corresponding categories of generalized algebroids and generalized Lie

algebroids respectively are also considered.

A natural result is proved: the derived (Lie) algebroid of an anchored vector subbundle is

a generalized (Lie) algebroid of the underlying bundle. Lifts of linear R-connections and skew-

symmetric forms respectively are constructed and the modular class of an almost Lie structure

is defined.

1. Introduction. The algebraic approach of the category of Lie algebroids [7] and its

abstract version, the Lie pseudoalgebras [10], can be enlarged to the categories of vector

bundles with differentials and their abstract versions, the modules with differentials [14].

An anchored vector bundle denoted as AVB (or a relative tangent space in [12, 13, 14])

is a vector bundle θ = (R, t,M) together a vector bundle morphism D : θ → τM , called

an anchor. A bracket (or a Lie map) on an AVB (θ,D) is a map [·, ·]θ : Γ(θ)×Γ(θ) → Γ(θ)

which enjoys the properties that it is bilinear over IR, is skew symmetric and [X, fY ]θ =

(DX)(f)Y + f [X,Y ]θ, (∀)X,Y ∈ Γ(θ) and f ∈ F(M). An almost Lie structure (ALS)

is a triple (θ,D, [·, ·]θ). An algebroid is an ALS (θ,D, [·, ·]θ) which enjoys the property

that [DX,DY ] = D[X,Y ]θ, (∀)X,Y ∈ Γ(θ), where the first bracket is the Lie bracket

on X (M). A Lie algebroid is an algebroid (θ,D, [·, ·]θ) which has a null Jacobiator, i.e.

J (X , Y , Z) ≡
∑

cycl.[[X,Y ]θ, Z]θ = 0, (∀)X , Y , Z ∈ Γ(θ). The anchored vector bundles,

the almost Lie structures, the algebroids and the Lie algebroids are called in [14] vector

bundles with differentials. A differential calculus using an ALS is constructed in [13]. In

this paper one consider vector bundles and admissible vector bundles, i.e. vector bun-

dles on a finite dimensional manifold, but which may have an infinite dimensional fiber.

Notice that the morphisms of vector bundles and vector bundles with differentials come

from the morphisms of the contravariant category of modules (see [14] for more details).
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To every anchored vector bundle (θ,D) one can associate a generalized (i.e. with an in-

finite dimensional fiber) algebroid (θ(∞), D(∞), [·, ·]θ(∞)) and a generalized Lie algebroid

(θ∞, D∞, [·, ·]θ∞), which belongs to an isomorphism class of generalized algebroids and

generalized Lie algebroids respectively, which does not depend on the linear R-connection

or the bracket, used as ingredients in the construction. We call them the derived gen-

eralized algebroid and the derived generalized Lie algebroid respectively of the anchored

vector bundle (θ,D). This correspondence related to the anchored vector bundles can be

enriched to morphisms, defining in this way four covariant functors (called the derived

functors) from the two categories of anchored vector bundles to the two categories of

generalized algebroids and the two categories of generalized Lie algebroids respectively.

In the same way as a geometric distribution is defined (using the Lie algebroid of the

tangent bundle) the derived generalized algebroid and the derived generalized Lie alge-

broid contains the given anchored vector bundle and induces an almost Lie structure

on the bundle. This construction can be interpreted as well in therms of non-holonomic

spaces of G. Vrǎnceanu [24], since a linear R-connection and its curvature, which is no

more a tensor, but a new linear R-connection on a suitable anchored vector bundle,

are used as essential ingredients. If (θ′, D′) is an anchored vector subbundle of (θ,D),

then (θ′(∞), D′(∞), [·, ·]θ′(∞) ) and (θ′∞, D′∞, [·, ·]θ′∞ ) are generalized (Lie) subalgebroids

of (θ(∞), D(∞), [·, ·]θ(∞) ) and of (θ∞, D∞, [·, ·]θ∞ ) respectively. Particularly, if D ⊂ τM is

a regular distribution, then D(∞) is a generalized sub-algebroid of τM (∞)and D∞ is a

generalized Lie subalgebroid of τM∞.

Let (θ,D) be an AVB, θ′ be a vector bundle, over the same base as θ, and ∇ :

Γ(θ)×Γ(θ′) → Γ(θ′) be a linear R-connection on θ′. Then there are linear R-connections

∇(∞) : Γ(θ(∞))×Γ(θ′) → Γ(θ′) and ∇∞ : Γ(θ∞)×Γ(θ′) → Γ(θ′) which are curvature free

and extend ∇. For p ≥ 1 any p-form ω ∈ Γ(∧pθ∗) can be lifted canonically to a closed

p-form ω(∞) ∈ Γ(∧p(θ∗)(∞)). A 1-form ω ∈ Γ(θ∗) can be lifted canonically to a closed

1-form ω∞ ∈ Γ(θ(∞)∗). These construction enable us to define the modular class of an

almost Lie structure.

Notice that the essential constructions made above on anchored vector bundles have

a pure algebraic feature, since they can be performed also for modules with differentials.

All the manifolds and vector bundles are real and smooth (i.e. of class C∞).

2. The derived algebroid of an anchored vector bundle. Let us consider a

given anchored vector bundle (θ,D), where θ = (R, π,M). A linear relative connection

(or a linear R-connection in brief) related to (θ,D) on a vector bundle ξ = (E, p,M), is

a map ∇ : Γ(θ)× Γ(ξ) → Γ(ξ), ∇(X,u)
not.
= ∇Xu, such that the Koszul conditions:

∇X+Y u = ∇Xu+∇Y u, ∇fXu = f∇Xu, (1)

∇X (u+ v) = ∇Xu+∇Xv, ∇X (fu) = D(X)(f)u+ f∇Xu, (2)

(∀)X,Y ∈ Γ(θ) and u ∈ Γ(ξ), hold. If (θ,D, [·, ·]θ) is an ALS, the curvature of ∇ is

∇X∧Y = ∇X∇Y − ∇Y ∇X − ∇[X,Y ]θ Particularly, a linear R-connection on an ALS

(θ,D) can be defined. Its torsion is T (X,Y ) = ∇XY − ∇Y X − [X,Y ]θ. The formula

[X,Y ]′θ = ∇XY −∇Y X defines a bracket, thus (θ,D) becomes an ALS (θ,D, [·, ·]′θ) with
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respect to which ∇ is torsion free. Conversely, given a linear R-connection ∇ and an ALS

(θ,D, [·, ·]θ), then the new linear R-connection ∇′ given by ∇′
XY = ∇XY − 1

2T (X,Y )

is torsion free. Using a new bracket given by [X,Y ]′θ = [X,Y ]θ + T (X,Y ), the linear

R-connection ∇ is torsion free.

Using the same idea of proof of the theorem of existence of usual linear connections

on vector bundles (i.e. when the anchor is the identity on the tangent bundle), it can be

proved that giving an anchored vector bundle (θ,D), then every vector bundle over the

same base as θ allows a linear R-connection. Taking into account the above remarks, an

anchored vector bundle allows always a torsion free linear R-connection.

If (θ,D, [·, ·]θ) is an almost Lie structure, then a vector bundle morphism D : θ ∧ θ →

τM is induced by the module morphism of sections:

D : Γ(θ ∧ θ) ∼= Γ(θ) ∧F(M) Γ(θ) → X (M),

D(X ∧ Y ) = [D(X), D(Y )]−D ([X,Y ]θ) .

Thus D is an anchor map for θ ∧ θ, i.e. (θ ∧ θ, D) is an anchored vector bundle.

Notice that the curvature of a linear R-connection ∇ on θ is a linear R-connection on

the anchored vector bundle (θ ∧ θ, D) defined above. The formula

[X ∧ Y, U ∧ V ]θ∧θ = ∇X∧Y (U ∧ V )−∇U∧V (X ∧ Y )

defines a bracket on (θ ∧ θ, D), thus (θ ∧ θ,D, [·, ·]θ∧θ) becomes an ALS.

Consider now on the vector bundle θ(1) = θ ⊕ (θ ∧ θ) the anchor given by D(1)(X +

(Y ∧ Z)) = D(X) +D(Y ∧ Z) and the bracket given by the formulas

[X,Y ]θ(1) = [X,Y ]θ +X ∧ Y, (3)

[X ∧ Y, Z]θ(1) = ∇X∧Y Z −∇Z (X ∧ Y ) , (4)

[X ∧ Y, Z ∧ T ]θ(1) = ∇X∧Y (Z ∧ T )−∇Z∧T (X ∧ Y ) . (5)

We call the almost Lie structure (θ(1), D(1), [·, ·]θ(1)) the (first) derived ALS of (θ,D, [·, ·]θ),

given by ∇.

Proposition 2.1. The following properties hold true:

1. [D(1)(X), D(1)(Y )] = D(1)([X,Y ]θ(1)), (∀)X,Y ∈ Γ(θ).

2. If the linear R-connection ∇ has no torsion, then J (1)(X, Y , Z) = 0, (∀)X,Y, Z ∈

Γ(θ), where J (1) denotes the Jacobiator of [·, ·]θ(1) .

Proof. We have: [D(1)(X), D(1)(Y )] = [D(X), D(Y )] = D([X,Y ]θ) + D(X ∧ Y ) =

D([X,Y ]θ) +D(1)(X ∧ Y ) = D(1)([X,Y ]θ +X ∧ Y ) = D(1)([X,Y ]θ(1)).

For the second equality we have: [[X,Y ]θ(1) , Z]θ(1) = [[X,Y ]θ + X ∧ Y, Z]θ(1) =

[[X,Y ]θ, Z]θ + [X,Y ]θ ∧ Z + ∇X∧Y Z − ∇Z(X ∧ Y ) = [[X,Y ]θ, Z]θ + [X,Y ]θ ∧ Z +

∇X∇Y Z − ∇Y ∇XZ − ∇[X,Y ]θZ − ∇ZX ∧ Y −X ∧ ∇ZY = −∇Z [X,Y ]θ +∇X∇Y Z −

∇Y ∇XZ − ∇XY ∧ Z − ∇Y X ∧ Z + ∇ZX ∧ Y − X ∧ ∇ZY . So, [[X,Y ]θ(1) , Z]θ(1) =

−∇Z∇XY +∇Z∇Y X+∇X∇Y Z−∇Y ∇XZ−∇XY ∧Z−∇Y X∧Z+∇ZX∧Y −X∧∇ZY .

Writing the analogous expressions for [Y, Z]θ(1) , X ]θ(1) and [[Z,X ]θ(1) , Y ]θ(1) , then sum-

ming, we obtain the second equality.
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The linear R-connection ∇ on θ lifts to a torsion free linear R-connection ∇(1) on θ(1),

according to the formulas:

∇
(1)
X Y = ∇XY +

1

2
X ∧ Y, ∇

(1)
X (Y ∧ Z) = ∇X (Y ∧ Z) , (6)

∇
(1)
X∧Y Z = ∇X∧Y Z, ∇

(1)
X∧Y (Z ∧ T ) = ∇X∧Y (Z ∧ T ) .

Now we define (θ(2), D(2), M) the second derived ALS of (θ,D, [·, ·]θ), as follows:

θ(2) = θ ⊕ (θ ∧1 θ)⊕ (θ ∧2 (θ ∧1 θ))⊕ ((θ ∧1 θ) ∧2 (θ ∧1 θ)) .

The anchor D(2) : θ(2) → τM is defined by:

D(2)(X) = D(1)(X), (∀)X ∈ Γ(θ(1)) ∼= Γ(θ)⊕ (Γ(θ) ∧1 Γ(θ)) and

D(2)(X ∧2 Y ) = [D(1)(X), D(1)(Y )] −D(1)([X,Y ]θ(1)), whenever (X , Y ∈ Γ(θ ∧1 θ) ∼=

Γ(θ) ∧1 Γ(θ)) or (X ∈ Γ(θ) and Y ∈ Γ(θ) ∧1 Γ(θ)).

The linear connection ∇(2) on θ(2) is defined by:

∇
(2)
X Y = ∇XY +

1

2
X ∧1 Y = ∇

(1)
X Y , whenever X,Y ∈ Γ(θ);

∇
(2)
X Y = ∇

(1)
X Y +

1

2
X ∧2 Y , whenever (X ∈ Γ(θ) and Y ∈ Γ(θ) ∧1 Γ(θ)) or (X ∈

Γ(θ) ∧1 Γ(θ) and Y ∈ Γ(θ)) or (X,Y ∈ Γ(θ) ∧1 Γ(θ));

∇
(2)
X∧2Y

Z = ∇
(1)
X ∇

(1)
Y Z −∇

(1)
Y ∇

(1)
X Z −∇

(1)
[X,Y ]

θ(1)
Z, (∀)X , Y , Z ∈ Γ(θ(1));

∇
(2)
X (Y ∧2 Z) = ∇

(1)
X Y ∧2 Z + Y ∧2 ∇

(1)
X Z, (∀)X , Y , Z ∈ Γ(θ(1));

∇
(2)
X∧2Y

(Z ∧2 T ) = ∇
(2)
X∧2Y

Z ∧2 T + Z ∧2 ∇
(1)
X∧2Y

T , (∀)X , Y , Z, T ∈ Γ(θ) ∧1 Γ(θ).

The bracket [·, ·]θ(2) is defined by:

[X,Y ]θ(2) = [X,Y ]θ +X ∧1 Y = [X,Y ]θ(1) , (∀)X,Y ∈ Γ(θ);

[X,Y ]θ(2) = [X,Y ]θ(1)+X∧2Y , (∀)X ∈ Γ(θ) and Y ∈ Γ(θ)∧1Γ(θ), orX,Y ∈ Γ(θ)∧1Γ(θ);

[X ∧2 Y, Z]θ(2) = ∇
(2)
X∧2Y

Z −∇
(2)
Z X ∧2 Y , (∀)X , Y , Z ∈ Γ(θ(1));

[X∧2Y, Z∧2T ]θ(2) = ∇
(2)
X∧2Y

(Z ∧2 T )−∇
(2)
Z∧2T

(X ∧2 Y ), (∀)X , Y , Z, T ∈ Γ(θ)∧1Γ(θ).

It is easy to see that the R-linear connection ∇(2) on θ(2) is torsion free.

The derived almost Lie structure of order p ∈ IN (or the p-derived ALS), denoted as

(θ(p), D(p), M), is obtained inductively for p ≥ 2 as follows. Assuming θ(k) constructed

for 0 ≤ k ≤ p− 1 and0 θ(p−1) = θ(p−2) ⊕ θ̄(p), then θ(p) = θ(p−1) ⊕ (θ(p−1) ∧p θ̄
(p)). The

anchor map D(p) on θ(p) is defined by:

D(p)(X) = D(p−1)(X), whenever X ∈ Γ(θ(p−1));

D(p)(X ∧p Y ) = [D(p−1)(X), D(p−1)(Y )]−D(p−1)([X,Y ]θ(p−1)),

whenever X ∈ Γ(θ(p−1)) and Y ∈ Γ(θ̄(p)).

The linear connection ∇(p) on θ(p) is defined by:

∇
(p)
X Y = ∇

(p−2)
X Y +

1

2
X ∧p−1 Y = ∇

(p−1)
X Y , whenever X,Y ∈ Γ(θ(p−2));

∇
(p)
X Y = ∇

(p−1)
X Y +

1

2
X∧pY , whenever (X ∈ Γ(θ(p−2)) and Y ∈ Γ(θ̄(p))) or (X ∈ Γ(θ̄(p))

and Y ∈ Γ(θ(p−2))) or (X,Y ∈ Γ(θ̄(p)) );
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∇
(p)
X∧pY

Z = ∇
(p−1)
X ∇

(p−1)
Y Z − ∇

(p−1)
Y ∇

(p−1)
X Z − ∇

(p−1)
[X,Y ]

θ(p−1)
Z, whenever X , Y , Z ∈

Γ(θ(p−1));

∇
(p)
X (Y ∧p Z) = ∇

(p−1)
X Y ∧p Z + Y ∧p ∇

(p−1)
X Z, whenever X , Y , Z ∈ Γ(θ(p−1));

∇
(p)
X∧pY

(Z ∧p T )) = ∇
(p)
X∧pY

Z ∧p T + Z ∧p ∇
(p)
X∧pY

T , whenever X , Y , Z, T ∈ Γ(θ̄(p)).

The bracket on θ(p) is defined by:

[X,Y ]θ(p) = [X,Y ]θ(p−2) +X ∧p−1 Y = [X,Y ]θ(p−1) , whenever X,Y ∈ Γ(θ(p−1)),

[X,Y ]θ(p) = [X,Y ]θ(p−1) + X ∧p Y , whenever (X ∈ Γ(θ(p−2)) and Y ∈ Γ(θ̄(p))), or

(X,Y ∈ Γ(θ̄(p)));

[X ∧p Y, Z]θ(p) = ∇
(p)
X∧pY

Z −∇
(p)
Z (X ∧p Y ), whenever X , Y , Z ∈ Γ(θ(p−1));

[X ∧p Y, Z ∧p T ]θ(p) = ∇
(p)
X∧pY

(Z ∧p T ) − ∇
(p)
Z∧pT

(X ∧p Y ), whenever X , Y , Z, T ∈

Γ(θ̄(p)).

It is easy to see that the linear R-connection ∇(p) is torsion free.

The vector bundles θ(p) (which have finite dimensional fibers) define the vector bundle

θ(∞) =
⋃

p≥0 θ
(p) (since θ(p) ⊂ θ(p+1) is a subbundle), which has infinite dimensional

fibers.

The degree of X(∞) ∈ Γ(θ(∞)), denoted as degX(∞), is the smallest n ∈ IN such that

X(∞) ∈ θ(n). The anchor of X(∞) is D
(∞)(X(∞)) =

∑n
i=0 D

(i)(Xi), where n = degX(∞).

Notice that if n = degX(∞) and m = deg Y(∞) then

[

X(∞), Y(∞)

]

θ(∞) =
∑

p≤n,q≤m

[Xp, Yq]θ(∞) . (7)

Definition 2.1. A generalized algebroid is a vector bundle overM which satisfies the

following conditions:

1. It is an inductive limit of vector bundles over M having finite dimensional fibers.

2. It allows an anchor and a bracket.

3. Its sections fulfill the conditions of an algebroid.

A generalized Lie algebroid is a generalized algebroid whose sections fulfill the condi-

tions of a Lie algebroid.

A vector bundle which satisfies the condition 1. will be called an admissible vector

bundle.

Amorphism of admissible vector bundles is a vector bundle morphism which is induced

inductively by morphisms of the underlying vector subbundles with finite dimensional

fibers, which define it.

Theorem 2.1. The triple (θ(∞), D(∞), [·, ·]θ(∞)) is a generalized algebroid.

Proof. We have to prove that (∀)X(∞), Y(∞), Z(∞) ∈ Γ(θ(∞)),

D(∞)
(

[X(∞), Y(∞)]θ(∞)

)

= [D(∞)(X(∞)), D
(∞)(Y(∞))].

In order to do this it suffices to prove that the property holds for Xp ∈ Γ(θ(p)), Xp ∈

Γ(θ(p)), but it is a simple consequence of 1) from Proposition 2.1.
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Notice that if (θ,D, [·, ·]θ) is a (Lie) algebroid, then it is not isomorphic to (θ(∞), D(∞),

[·, ·]θ(∞)).

Consider the morphism Φ : θ(∞) → θ of admissible vector bundles which associates

the θ-component with every element in θ(∞). It is clear that for every X , Y ∈ Γ(θ) we

have [X,Y ]θ = Φ([X,Y ]θ(∞)), i.e. the bracket on θ is induced by the bracket on θ(∞).

However Φ is not a morphism of anchored vector bundles.

3. Morphisms of vector bundles with differentials. Consider now an ALS

(θ′, D′, [·, ·]θ′), an algebroid (θ,D, [·, ·]θ), where θ′ and θ have the same base M and

an anchored vector bundle morphism f : θ′ → θ (i.e. D′ = D ◦ f , where D′ and D

are the anchors on θ′ and θ respectively). Denote f = f0 and define f1 : θ′(1) → θ,

f1|θ′ = f0 and f1(X ∧ Y ) = [f0(X), f0(Y )]θ − f0([X,Y ]θ′), (∀)X,Y ∈ Γ(θ′). Thus

D(1) ◦ f1(X ∧ Y ) = D(1)([f0(X), f0(Y )]θ) − D(1) ◦ f0([X,Y ]θ′) = [D(1) ◦ f0(X), D(1) ◦

f0(Y )] − D(1) ◦ f0([X,Y ]θ′) = [D′(1)(X), D′(1)(Y )] −D′(1)([X,Y ]θ′) = D′(1)(X ∧ Y ). It

follows that f1 is an anchored vector bundle morphism.

Inductively, assume that fk is constructed, then let fk+1 : θ′(k+1) → θ, fk+1|θ′′(k) = fk
and fk+1(X ∧k Y ) = [fk(X), fk(Y )]θ − fk([X,Y ]θ′(k)), (∀)X,Y ∈ Γ(θ′(k)). As in the case

k = 0, it can be shown that fk+1 is an anchored vector bundle morphism. The maps

(fk)k∈IN define a map f(∞) : θ
′(∞) → θ.

A morphism of generalized (Lie) algebroids over the same base is a morphism of

admissible vector bundles f : θ′ → θ such that D′ = D ◦ f , where D′ and D are the

anchors on θ′ and θ respectively, and [f(X), f(Y )]θ = f([X,Y ]θ′), (∀)X,Y ∈ Γ(θ′).

Proposition 3.1. If (θ′, D′, [·, ·]θ′) is an ALS, (θ,D, [·, ·]θ) is a generalized algebroid

and f : θ′ → θ is an anchored vector bundle morphism, then the map f(∞) : θ
′(∞) → θ is

a generalized algebroid morphism.

Proof. First, let X,Y ∈ Γ(θ′). Then [f(∞)(X), f(∞)(Y )]θ(∞) = [f0(X), f0(Y )]θ and

f(∞)([X,Y ]θ′(∞)) = f(∞)([X,Y ]θ′ +X ∧1 Y ) = f0([X,Y ]θ′)+f1(X ∧1 Y ) = f0([X,Y ]θ′)+

[f0(X), f0(Y )]θ − f0([X,Y ]θ′) = [f0(X), f0(Y )]θ. In the same way, for p ≥ 0, we have

[f(∞)(Xp), f(∞)(Yp)]θ = f(∞)([Xp, Yp]θ′(∞)), (∀)Xp, Yp ∈ Γ(θ′(p)). The additivity of f(∞)

leads to the same relation for every X,Y ∈ Γ(θ′(∞)).

Proposition 3.2. Let f : θ′ → θ be an anchored vector bundle morphism of two

ALS’s over the same base. Then a generalized algebroid morphism f(∞) : θ
′(∞) → θ(∞)

is induced.

Proof. First f can be extended to f ′ : θ′ → θ(∞), f ′ = i ◦ f , where i : θ → θ(∞) is the

inclusion morphism. Then using Proposition 3.1 one takes f(∞) = f ′
(∞).

Notice that Proposition 3.1 is not a particular case of the above Proposition because

the brackets on θ and θ(∞) are not the same.

Proposition 3.3. If i : θ → θ is the identity morphism of an ALS (θ,D, [·, ·]θ), then

i(∞) : θ
(∞) → θ(∞) is the identity map.

Proof. It suffices to show that if Xp, Yp ∈ Γ(θ(p)), where p = max(degXp, deg Yp)

then i(∞)(Xp∧p+1 Yp) = Xp∧p+1 Yp. Indeed, using induction and taking into account the



ANCHORED VECTOR BUNDLES 57

definitions of i(∞) and of the bracket on θ(p+1) we have i(∞)(Xp∧p+1 Yp) = ip+1(Xp∧p+1

Yp) = [Xp, Yp]θ(p+1) − [Xp, Yp]θ(p) = Xp ∧p+1 Yp. ✷

Proposition 3.4. If (θ′′, D′′, [·, ·]θ′′)
f ′

→ (θ′, D′, [·, ·]θ′)
f
→ (θ,D, [·, ·]θ) are morphisms

of ALS’s over the same manifold, then (f ′ ◦ f)(∞) = f ′
(∞) ◦ f(∞).

Proof. The proof is essentially the same as that of Theorem 3.2.

Proposition 3.5. Let [·, ·]1 and [·, ·]2 be two brackets that correspond to the same

anchor on the anchored vector bundle (θ,D). Then the generalized algebroids θ
(∞)
1 and

θ
(∞)
2 which correspond to the ALS’s are isomorphic.

Proof. The identity i of θ is an anchored vector bundle morphism in four different

ways. It extends to i11(∞) = id
θ
(∞)
1

: θ
(∞)
1 → θ

(∞)
1 , i22(∞) = id

θ
(∞)
2

: θ
(∞)
2 → θ

(∞)
2 ,

i12(∞) : θ
(∞)
1 → θ

(∞)
2 and i21(∞) : θ

(∞)
2 → θ

(∞)
1 . Using the above results it follows

that i12(∞) and i21(∞) are inverse to each other, where the indices are according to the

brackets.

A similar argument can be used in order to prove the following result.

Proposition 3.6. If ∇ and ∇′ are two linear R-connections on an AVB (θ,D), then

the generalized algebroids which correspond to them are isomorphic.

We can summarize all these in the following result:

Theorem 3.1. If (θ,D) is an anchored vector bundle, then θ(∞) belongs to an iso-

morphism class of generalized algebroids, which does not depend on the linear connections

or the brackets.

The correspondences (θ,D) → (θ(∞), D(∞), [·, ·]θ(∞)) and f → f(∞) define a covari-

ant functor from the category of anchored vector bundles to the category of generalized

algebroids over the same base. It induces also a functor from the category of almost Lie

structures to the category of generalized algebroids over the same base.

Notice that if (θ,D, [·, ·]θ) is an algebroid, then it is a quotient algebroid of (θ(∞), D(∞),

[·, ·]θ(∞)). The projection morphism is i(∞) : θ
(∞) → θ, where i is the identity map of θ.

Notice also that the inclusion j : θ → θ(∞) is a right splitting of i(∞), i.e. i(∞) ◦ j = i,

but it is never an algebroid morphism since [j(X), j(Y )]θ(∞) = [X,Y ]θ + X ∧1 Y and

j([X,Y ]θ) = [X,Y ]θ, (∀)X,Y ∈ Γ(θ).

Now we extend the functor to both categories of anchored vector bundles (covariant

and contravariant ones).

There are two categories which have as objects the vector bundles, but different mor-

phisms. One of these categories of vector bundles is the usual one, when the morphisms are

the usual morphisms of vector bundles ξ′
(g,f)
→ ξ: if the vector bundles are ξ′ = (E′, π′,M ′)

and ξ = (E, π,M), g : M ′ → M and f : E′ → E are such that g ◦ π′ = π ◦ f

and f restricted to fibres, f|π−1(x′) : π′−1(x′) → π−1(g(x′)), is linear. The other cate-

gory of vector bundles has as morphisms the comorphisms of vector bundles ξ′ →
(g,f)

ξ,

g : M ′ → M and f : E → E′ are such that g ◦ π′ ◦ f = π and f restricted to fibres,

f|π−1(g(x′)) : π
−1(g(x′)) → π′−1(x′) is linear.
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Notice that for the vector bundles over the same base, where g is the identity of the

base, the two categories of vector bundles have the same morphisms.

One can also use the module morphisms of sections (see [4] for more details). If ξ =

(E, π,M) is a vector bundle, then (F(M),Γ(ξ)) is a module. A morphism of vector bun-

dles ξ′
(g,f)
→ ξ defines and it is defined by a con-morphism of modules (F(M ′),Γ(ξ′))

(g∗,f∗)
→

(F(M),Γ(ξ)), i.e. g∗ : F(M) → F(M ′), g∗(u) = u◦g and f∗ : Γ(ξ′) → F(M ′)⊗F(M)Γ(ξ),

which is a morphism of F(M ′)-modules. Notice that there is an isomorphism of mod-

ules F(M ′) ⊗F(M) Γ(ξ) ∼= Γ(f∗ξ). A comorphism of vector bundles ξ′ →
(g,f)

ξ defines

and it is defined by a cov-morphism of modules (F(M ′),Γ(ξ′)) →
(g∗,f∗)

(F(M),Γ(ξ)), i.e.

g∗ : F(M) → F(M ′), g∗(u) = u ◦ f0 and f∗ : Γ(ξ) → Γ(ξ′), which is a morphism of

F(M)-modules.

All these can be adapted for morphisms of allowed vector bundles.

Let (θ′, D′) and (θ,D) be two anchored vector bundles over the bases M ′ and M

respectively. A comorphism of anchored vector bundles

(θ′, D′) →
(g,f)

(θ,D)

is a comorphism of vector bundles θ′ →
(g,f)

θ (or a cov-morphism of modules (F(M ′),Γ(θ′))

→
(g∗,f∗)

(F(M),Γ(θ))) such that if X ∈ Γ(θ) and u ∈ F(M) then we have D(X)(u) =

D′(f∗(X))(g∗(u)), or g∗ ([X,u]θ) = [f∗(X), g∗(u)]θ′ . A morphism of anchored vector

bundles

(θ′, D′)
(g,f)
−→ (θ,D)

is a morphism of vector bundles θ′
(g,f)
−→ θ (or a con-morphism of modules (F(M ′),Γ(θ′))

(g,f∗)
−→ (F(M),Γ(θ))) such that if u ∈ F(M) and X ′ ∈ Γ(θ′) allows the decomposition

f∗(X
′) =

∑

i

a′i ⊗F(M) Xi ∈ F(M ′)⊗F(M) Γ(θ), (8)

then [X ′, g∗(u)]θ′ =
∑

i a
′
i · g

∗([Xi, u]θ).

If (θ′, D′, [·, ·]θ′) and (θ,D, [·, ·]θ) are ALS’s, then a comorphism of almost Lie struc-

tures is a comorphism of the anchored vector bundles, such that (∀)X,Y ∈ Γ(θ):

[f∗(X), f∗(Y )]θ′ = f∗ ([X,Y ]θ) .

A morphism of almost Lie structures is a morphism of anchored vector bundles, such that

(∀)X ′, Y ′ ∈ Γ(θ′) which allow the decompositions (8) and

f∗(Y
′) =

∑

α

a′α ⊗F(M) Yα ∈ F(M ′)⊗F(M) Γ(θ), (9)

respectively, then:

f∗([X
′, Y ′]θ′) =

∑

α

[X ′, b′α]θ′ ⊗F(M) Yα −
∑

i

[Y ′, a′i]θ′ ⊗F(M) Xi

+
∑

i,α

a′ib
′
α ⊗F(M) [Xi, Yα] .
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Morphisms of algebroids and (Lie) algebroids are the very morphisms of almost Lie

structures, forgetting the restrictive conditions for brackets. In the sequel we consider

comorphisms and morphisms of vector bundles with differentials (i.e. anchored vector

bundles, almost Lie structures, algebroids or Lie algebroids), simply called (co)morphisms.

Using the tensor representations, one can define in an analogous way morphisms of

allowed vector bundles with differentials. However, in the sequel we need only morphisms

of generalized algebroids and generalized Lie algebroids.

Consider an ALS (θ′, D′, [·, ·]θ′), an algebroid (θ,D, [·, ·]θ) and (g, f) a (co)morphism

of ALS.

First we consider the case when (g, f) is a comorphism.

Proposition 3.7. If (g, f) is a comorphism of anchored vector bundles, where (θ′, D′,

[·, ·]θ′) is an ALS and (θ,D, [·, ·]θ) is a generalized algebroid, then there is a generalized

algebroid comorphism (θ′(∞), D′(∞), [·, ·]θ′(∞)) −→
(g,f(∞))

(θ,D, [·, ·]θ).

Proof. A map f(∞) : θ′(∞) → θ can be constructed using the same ideas as in the

case M ′ = M and g = idM (see Proposition 3.1). Using the same arguments as in the

proof of Proposition 3.1, a comorphism (θ′(∞), D′(∞), [·, ·]θ′(∞)) −→
(g,f(∞))

(θ,D, [·, ·]θ) can

be constructed.

Proposition 3.8. If (g, f) is a comorphism of anchored vector bundles, where (θ′, D′,

[·, ·]θ′) and (θ,D, [·, ·]θ) are ALS’s, then there is a generalized algebroid comorphism

(θ′(∞), D′(∞), [·, ·]θ′(∞)) −→
(g,f∞)

(θ(∞), D(∞), [·, ·]θ(∞)).

Proof. We have θ ⊂ θ(∞), as an anchored vector subbundle; denote as i : θ → θ(∞)

the inclusion, consider the anchored module morphism (θ′, D′, [·, ·]θ′) →
(g,f◦i)

(θ(∞), D(∞),

[·, ·]θ(∞)), then take f(∞) = (f ◦ i)(∞) using Proposition 3.7.

We deal now with morphisms. Let (θ′, D′, [·, ·]θ′)
(g,f)
→ (θ,D, [·, ·]θ) be a morphism

of the ALS (θ′, D′, [·, ·]θ′) and an algebroid (θ,D, [·, ·]θ). Denote f = f0 and define

f1 : θ′(1) → F(M ′) ⊗F(M) Γ(θ), f1|θ′ = f0 and for X ′, Y ′ ∈ Γ(θ′) which allow the

f∗-decompositions given by (8) and (9), then let f1(X
′ ∧ Y ′) =

∑

i a
′
ib

′
α ⊗ [Xi, Yα]θ +

∑

α [X ′, b′α]θ′ ⊗ Yα −
∑

i[Y
′, a′i]θ′ ⊗Xi − f0([X

′, Y ′]θ′). For every a ∈ F(M) we have:

[X ′ ∧ Y ′, g∗(a)]θ′(1) = [D(0)(X ′), D(0)(Y ′)](g∗(a))− [[X ′, Y ′]θ′ , g
∗(a)]θ′ =

[X ′, [Y ′, g∗(a)]θ′ ]θ′ − [Y ′, [X ′, g∗(a)]θ′ ]θ′ − [[X ′, Y ′]θ′ , g
∗(a)]θ′ =

∑

i

a′ib
′
αg

∗([Xi, [Yα, a]]− [Yα, [Xi, a]]) +
∑

α

[X ′, b′α]θ′g∗([Yα, a])−

∑

i

[Y ′, a′i]θ′g∗([Xi, a])− [[X ′, Y ′]θ′ , g
∗(a)]θ′ =

∑

i

a′ib
′
αg

∗([[Xi, Yα], a])

+
∑

α

[X ′, b′α]θ′g∗([Yα, a])−
∑

i

[Y ′, a′i]θ′g∗([Xi, a])− [[X ′, Y ′]θ′ , g
∗(a)]θ′ ,

(∀)X ′, Y ′ ∈ Γ(θ′), thus (θ′(1), D(1))
(g,f1)
−→ (θ,D) is an anchored vector bundle morphism.
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Inductively, assume that fk is constructed, then let fk+1 : θ′(k+1) → θ, fk+1|θ′(k) = fk
and fk+1(X

′ ∧ Y ′) =
∑

i a
′
ib

′
α ⊗ [Xi, Yα]θ +

∑

α[X
′, b′α]θ′ ⊗ Yα −

∑

i[Y
′, a′i]θ′ ⊗ Xi −

fk([X
′, Y ′]θ′), (∀)X ′, Y ′ ∈ Γ(θ′(k)), where X ′ and Y ′ have (f := fk)-decompositions (8)

and (9). In the same way as in the case k = 1 it follows that fk is an anchored vector

bundle morphism. The maps (fk)k∈IN define a map f(∞) : θ
′(∞) → g∗θ.

Proposition 3.9. If (θ,D, [·, ·]θ) is a (generalized) algebroid and (θ′, D′)
(g,f)
−→ (θ,D)

is a morphism of anchored vector bundles, then (θ′(∞), D′(∞), [·, ·]θ′(∞))
(g,f(∞))
−→ (θ,D, [·, ·]θ)

is a generalized algebroid morphism.

Proof. First, let X ′, Y ′ ∈ Γ(θ′) which have f∗-decompositions (8) and (9) respectively.

Then f(∞)([X
′, Y ′]θ′(∞)) = f1([X

′, Y ′]θ′(1)) = f1([X
′, Y ′]θ′ + X ′ ∧1 Y ′) =

∑

i a
′
ib

′
α ⊗

[Xi, Yα]θ+
∑

α[X
′, b′α]θ′ ⊗Yα−

∑

i[Y
′, a′i]θ′ ⊗Xi. In the same way, if k ∈ IN , p ∈ IN∗ and

X ′, Y ′ ∈ θ′(k), where k = max(degX ′, deg Y ′) have (f := fk)-decompositions (8) and (9)

respectively, then

f(∞)([X
′, Y ′]θ′(∞)) = fk+1([X

′, Y ′]θ′(k) +X ′ ∧k Y ′)

= fk([X
′, Y ′]θ′(k)) + fk+1(X

′ ∧k Y ′)

=
∑

i

a′ib
′
α ⊗ [Xi, Yα]θ +

∑

α

[X ′, b′α]θ′(k) ⊗ Yα −
∑

i

[Y ′, a′i]θ′(k) ⊗X.

The additivity of f(∞) leads to the same relation for every X ′, Y ′ ∈ Γ(θ′(∞)) which have

(f := f(∞))-decompositions (8) and (9) respectively.

Notice that the above result extends Proposition 3.2.

Proposition 3.10. If (θ′, D′, [·, ·]θ′)
(g,f)
−→ (θ,D, [·, ·]θ) is an anchored vector bundle

morphism, then a generalized algebroid morphism

(θ′(∞), D′(∞), [·, ·]θ′(∞))
(g,f(∞))
−→ (θ(∞), D(∞), [·, ·]θ(∞))

is induced. If (θ′, D′, [·, ·]θ′) −→
(g,f)

(θ,D, [·, ·]θ) is an anchored vector bundle comorphism,

then a generalized algebroid comorphism

(θ′(∞), D′(∞), [·, ·]θ′(∞)) −→
(g,f(∞))

(θ(∞), D(∞), [·, ·]θ(∞))

is induced.

Proof. For morphisms one uses Proposition 3.9 and for comorphisms one use Propo-

sition 3.7. In both cases one considers the inclusion i : θ → θ(∞) which is a morphism of

anchored vector bundles.

Theorem 3.2. The associations (θ,D)→(θ(∞), D(∞), [·, ·]θ(∞)) and (g, f) 7→(g, f(∞))

define two functors from the two categories of anchored vector bundle in the corresponding

categories of generalized algebroids.

Proof. In the case of comorphisms the proof is similar to the case of the vector bundles

over the same base, essentially as the proof below. In the case of morphisms we have to
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show that if (θ′′, D′′)
(g′,f ′)
−→ (θ′, D′)

(g,f)
−→ (θ,D) are anchored vector bundle morphisms,

then (g, f(∞)) ◦ (g′, f ′
(∞)) = (g ◦ g′, (f ◦ f ′)(∞)). We use the tensor representations of

sections.

Consider X ′′, Y ′′ ∈ Γ(θ′′) which allow the f ′(= f ′
(∞))-decompositions f ′(X ′′) =

f ′
(∞)(X

′′) =
∑

i a
′′
i ⊗ X ′

i and f ′(Y ′′) = f ′
(∞)(Y

′) =
∑

α b′′α ⊗ Y ′
α respectively. Then

f ′
(∞)(X

′′ ∧1 Y ′′) = f ′
1(X

′′ ∧1 Y ′′) =
∑

i,α a′′i b
′′
α ⊗ [X ′

i, Y
′
α]θ′(∞) +

∑

α[X
′′, b′′α]θ′′ ⊗ Y ′

α −
∑

i[Y
′′, a′′i ]θ′′⊗X ′

i−f ′
0([X

′′, Y ′′]θ′′(∞)). Since (g, f(∞)) is a generalized algebroid morphism,

it follows that if X ′
i and Y ′

α have the f(= f(∞))-decompositions f(X ′
i) = f(∞)(X

′
i) =

∑

u c
′
iu⊗Ziu and f(Y ′

α) = f(∞)(Y
′
α) =

∑

v d
′
αv⊗Tαv respectively, then f(∞)([X

′
i, Y

′
α]θ′(∞) ])

=
∑

u,v c
′
iud

′
αv ⊗ [Ziu, Tαv]θ(∞) +

∑

v[X
′
i, d

′
αv]⊗ Tαv −

∑

u[Y
′
α, c

′
iu]⊗ Ziu. It follows that

f(∞) ◦ f
′
(∞)(X

′′ ∧1 Y
′′) =

∑

i,α,u,v

a′′i b
′′
αϕ

′(ciu)ϕ
′(dαv)⊗ [Ziu, Tαv]θ(∞)

+
∑

i,α,v

a′′i b
′′
αϕ

′([X ′
i, d

′
αv]θ′)⊗ Tαv

−
∑

i,α,u

a′′i b
′′
αϕ

′([Y ′
α, c

′
iu]θ′)⊗ Ziu

+
∑

i,α,v

[X ′′, b′′α]θ′′ϕ′(d′αv)⊗ Tαv

−
∑

i

[Y ′′, a′′i ]θ′′ϕ′(c′iu)⊗ Ziu − f ◦ f ′
0([X

′′, Y ′′]θ′′)

=
∑

i,α,u,v

a′′i ϕ
′(ciu)b

′′
αϕ

′(dαv)⊗ [Ziu, Tαv]θ(∞)

+
∑

α,v

[X ′′, b′′α · ϕ′(d′αv)]θ′′ ⊗ Tαv

−
∑

i,u

[Y ′′, a′′i · ϕ′(c′iu)]θ′′ ⊗ Ziu − f0 ◦ f
′
0([X

′′, Y ′′]θ′′)

= (f ◦ f ′)(∞)(X
′′ ∧1 Y

′′).

An analogous calculation can be performed in higher degrees.

Summarizing, we have the following result, which extends Theorem 3.1:

Theorem 3.3. If (θ,D) is an anchored vector bundle, then θ(∞) belongs to an iso-

morphism class of generalized algebroids, which does not depend on the linear connections

or the brackets.

The correspondences (θ,D) → (θ(∞), D(∞), [·, ·]θ(∞)) and (g, f) → (g, f(∞)) define two

covariant functors from the two categories of anchored vector bundles in the corresponding

two categories of generalized algebroids. They induce also functors from the two categories

of almost Lie structures in the corresponding categories of generalized algebroids.

A particular case is when the anchor on θ is null. In this case one has an algebroid

structure given by a skew-symmetric map b : θ ∧ θ → θ. The generalized algebroid θ(∞)

does not depend on b. In particular the map b can be chosen null.
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4. The derived Lie algebroid of an anchored vector bundle. A special case

for an anchored vector bundle is when the vector bundle is parallelisable, for example,

when the vector bundle is restricted to a domain of a vectorial chart. In this case, the

bracket and the adapted linear R-connection can be taken null when restricted to the local

base. According to Theorems 3.1 and 3.3, the derived algebroid constructed using this

particular bracket is isomorphic to any other derived algebroid using another bracket or

another linear R-connection. Consider the F(M)-submodule MJ ⊂ Γ(θ(∞)) generated

by the Jacobiator J (θ) = {J (X,Y, Z)|X,Y, Z ∈ Γ(θ(∞))} and successive brackets of

elements from Γ(θ(∞)), but starting from J (θ). Taking into account the construction

of the derived algebroid, this module does not depend on the anchor; there is also a

generalized subalgebroid (θL, D0) ⊂ (θ(∞), θ(∞)), which has a null anchor (D0 is θ(∞)

restricted to θL), such that Γ(θL) is just MJ . We can consider the quotient generalized

vector bundle θ∞ = θ(∞)/θL; since the anchor D0 is null and the bracket [·, ·]θ(∞) has the

property that [X,Y ]θ ∈ ML = Γ(θL) whenever X ∈ Γ(θL) and Y ∈ Γ(θ(∞)), it follows

thatD(∞) induces an anchorD∞ and the bracket [·, ·]θ(∞) induces a bracket [·, ·]θ∞ on θ∞,

which becomes a Lie algebroid. This local construction can be extended for any anchored

vector bundle (θ,D). We call (θ∞, D∞(θ), [·, ·]θ∞) the derived Lie algebroid of (θ,D).

The following result is an analogue of Theorem 3.3:

Theorem 4.1. If (θ,D) is an anchored vector bundle, then θ∞ belongs to an isomor-

phism class of generalized Lie algebroids, which does not depend on the linear connections

or the brackets.

The correspondences (θ,D) → (θ∞, D∞, [·, ·]θ∞) and (g, f) → (g, f∞) define two co-

variant functors from the two categories of anchored vector bundles in the corresponding

two categories of generalized Lie algebroids. The correspondences above induce also func-

tors from the two categories of almost Lie structures in the corresponding categories of

generalized Lie algebroids.

If (θ′, D′) is an anchored vector subbundle of (θ,D), then it is natural to know if there

is a similar relation between the derived (Lie) algebroids.

Theorem 4.2. If (θ′, D′) is an anchored vector subbundle of (θ,D), then (θ′(∞), D′(∞),

[·, ·]θ′(∞)) is a subalgebroid of (θ(∞), D(∞)(θ), [·, ·]θ(∞)) and (θ′∞, D′∞, [·, ·]θ′∞) is a Lie

subalgebroid of (θ∞, D∞(θ), [·, ·]θ∞).

Proof. Let θ′′ ⊂ θ be a vector subbundle such that θ can be reduced as θ′ ⊕ θ′′,

Π′, Π′′ : θ → θ be the natural projectors on θ′ and θ′′ respectively and ∇̄ be a linear

R-connection on θ. If X ∈ Γ(θ), denote as X = X ′ +X ′′ the decomposition according to

the reduction θ = θ′ ⊕ θ′′ (i.e. X ′ = Π′(X) and X ′′ = Π′′(X)). The linear R-connections

∇ and ∇′ on θ and θ′ respectively, defined by:

∇X′+X′′ (Y ′ + Y ′′) = Π′ (∇X′Y ′) +∇X′Y ′′ +∇X′′Y ′ +∇X′′Y ′′,

∇′
X′Y ′ = Π′ (∇X′Y ′) ,

fulfill the condition

∇X′Y ′ = ∇′
X′Y ′, (∀)X ′, Y ′ ∈ Γ(θ′).
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Consider now the brackets [·, ·]θ and [·, ·]θ′ such that the linear R-connections ∇

and ∇′ respectively are torsion free. Taking account of the constructions of the derived

generalized (Lie) algebroids the conclusion follows.

Using Propositions 3.9 and 3.7, the following universal properties of the derived Lie

algebroid can be proved.

Theorem 4.3. If (θ,D, [·, ·]θ) is a (generalized Lie) algebroid and (θ′, D′)
(g,f)
−→ (θ,D)

is a morphism of anchored vector bundles, then (θ′∞, D′∞, [·, ·]θ′(∞))
(g,f∞)
−→ (θ,D, [·, ·]θ)

is the unique generalized Lie algebroid morphism such that (g, f) = (g, f∞) ◦ (idM , i),

where (θ′, D′, [·, ·]θ′)
(idM ,i)
−→ (θ′∞, D′∞, [·, ·]θ′(∞)) is the canonical inclusion morphism of

anchored vector bundles.

5. Anchored vector bundles and foliations. It is well-known that the distribu-

tion defined by an algebroid integrates to a Stefan-Sussmann foliation (see for example [1]

or [15]). The following example shows that the distribution defined by a generalized Lie

algebroid fails to integrate to a Stefan-Sussmann foliation. Consider the smooth function

ϕ(t) =

{

e−1/t2 if t > 0,

0 if t ≤ 0,

and define an anchor D : θ = τIR2 → τIR2 by

D

(

u(x, y)
∂

∂x
+ v(x, y)

∂

∂y

)

= u(x, y)
∂

∂x
+ ϕ(x) · v(x, y)

∂

∂y
. (10)

The distribution defined by this anchor is the horizontal line for x ≤ 0 and the whole

IR2 for x > 0. It is obvious that it is not integrable in the sense of Stefan-Sussmann. It

is easily to check that the F(IR2)-submodule Mp = D{p}(Γ(θ(p))) ⊂ X (IR2) is generated

by the vector fields
{

∂

∂x
, ϕ(x)

∂

∂y
, ϕ′(x)

∂

∂y
, ϕ′′(x)

∂

∂y
, . . . , ϕ(p)(x)

∂

∂y

}

which are F(IR2)-linearly independent in Mp. We have

M0 ( M1 ( · · · ( Mp ( · · · ( M∞ = D(∞)(Γ(θ(∞))), (11)

but they are equal as distributions. Obviously the resulting distribution is not integrable

and D(∞)(Γ(θ(∞))) is not finitely generated.

Another example can be considered for the function

ϕ(t) =

{

e−1/t2 if t 6= 0;

0 if t = 0.

The anchor D : θ = τIR2 → τIR2 can be also considered using formula (10). Then the

distribution defined by this anchor is integrable, but the module of vector fields D(Γ(θ))

is not involutive; the involutive module it generates isD(∞)(Γ(θ(∞))), which is not finitely

generated.

These two examples show that the construction of θ(∞) is motivated at least by the

reason to include the two kinds of distributions in those studied by (Lie) algebroids.
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The sequence (11) can be considered also for every anchored vector bundle (θ,D). We

say that this sequence is stationary if there is n ∈ IN such that Mn = Mn+1 = · · · = M∞.

Theorem 5.1. If for an anchored vector bundle (θ,D) the sequence (11) is stationary,

then the distribution defined by D(∞)(Γ(θ(∞))) = D∞(Γ(θ∞)) is integrable in the sense

of Stefan-Sussmann.

Proof. The hypothesis implies that there is n ∈ IN such that D(∞)(Γ(θ(∞))) =

D(n)(Γ(θ(n))), thus D(∞)(Γ(θ(∞))) is finitely generated. The proof of the integrability

uses similar ideas as for Lie algebroids in [1] or as for generalized algebroids in [15]. ✷

6. Lifts of linear connections and differential forms. In this section (θ,D, [·, ·]θ)

is an almost Lie structure.

Proposition 6.1. Let θ′ be a vector bundle and ∇ : Γ(θ)× Γ(θ′) → Γ(θ′) be a linear

R-connection on θ. Then there is a linear R-connection ∇(∞) : Γ(θ(∞))× Γ(θ′) → Γ(θ′)

which is curvature free and extends ∇.

Proof. Consider the derived vector bundles θ(n), n ≥ 0. Denote ∇ = ∇(0) and θ = θ(0).

First we define the linear connection ∇(1) : Γ(θ(1)) × Γ(θ′) → Γ(θ′), ∇
(1)

|θ(0) = ∇(0) and

∇
(1)
X∧1Y

X ′ = ∇
(0)
X ∇

(0)
Y X ′−∇

(0)
Y ∇

(0)
X X ′−∇

(0)
[X,Y ]

θ(0)
X ′, (∀)X,Y ∈ Γ(θ(0)),X ′ ∈ Γ(θ′), then

inductively we construct in the same way, for every k ∈ IN , the linear connections ∇(k) :

Γ(θ(k))× Γ(θ′) → Γ(θ′). These linear connections define ∇(∞) : Γ(θ(∞))× Γ(θ′) → Γ(θ′)

as follows: if X ′ ∈ Γ(θ′) and X ∈ Γ(θ(p)) have a degree p ≥ 0, then ∇
(∞)
X X ′ = ∇

(p)
X X ′.

It follows that if k is the greatest degree ofX and Y , then∇
(∞)
X ∇

(∞)
Y X ′−∇

(∞)
Y ∇

(∞)
X X ′

−∇
(∞)
[X,Y ]

θ(∞)
X ′ = ∇

(k)
X ∇

(k)
Y X ′−∇

(k)
Y ∇

(k)
X X ′−∇

(∞)
[X,Y ]

θ(∞)
X ′ = ∇

(k)
X ∇

(k)
Y X ′−∇

(k)
Y ∇

(k)
X X ′−

∇
(∞)
[X,Y ]

θ(k)+X∧k+1Y
X ′ = ∇

(k)
X ∇

(k)
Y X ′ −∇

(k)
Y ∇

(k)
X X ′ −∇

(k+2)
[X,Y ]

θ(k)+X∧k+1Y
X ′ = 0.

We say that the linear connection ∇(∞) is the lift of ∇ to θ(∞).

Proposition 6.2. Let θ′ be a vector bundle and ∇ : Γ(θ)× Γ(θ′) → Γ(θ′) be a linear

R-connection on θ. Then there is a linear R-connection ∇∞ : Γ(θ∞) × Γ(θ′) → Γ(θ′)

which is curvature free and extends ∇.

Proof. It suffices to prove that

∇
(∞)
X X ′ = 0, (∀)X ∈ MJ , X ′ ∈ Γ(θ′). (12)

Then ∇∞ can be defined using ∇(∞) in an obvious manner as ∇∞
Π(Y )X

′ = ∇
(∞)
ΠY X ′, where

Π : Γ(θ(∞)) → Γ(θ∞) is the canonical projection.

In order to prove the assertion (12), consider first X ∈ J (θ) = {J (A,B,C)|A,B,C ∈

Γ(θ(∞))}. Then using that ∇(∞) is curvature free, it follows easily that ∇
(∞)
J (A,B,C)X

′ = 0.

Consider now X = [A,B]θ(∞) , where A ∈ MJ has the property ∇
(∞)
A X ′ = 0 for any

X ′ ∈ Γ(θ′) and B ∈ Γ(θ(∞)); then ∇
(∞)
[A,B]X

′ = ∇
(∞)
A ∇

(∞)
B X ′ − ∇

(∞)
B ∇

(∞)
A X ′ = 0. The

assertion (12) follows.

Consider now an allowed vector bundle θ over M . For k ≥ 0, let ∧kθ∗ be the exterior

vector bundle of order k of θ∗. A section of Γ(∧kθ∗) can be regarded as a skew symmetric
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and F(M)-linear map ω : Γ(θ)k → F(M). Let us suppose that on θ are given an anchor

D and a bracket [·, ·]θ which corresponds to D. Define

dθ : ∧k θ∗ −→ ∧k+1θ∗ :

(dθω)(X0, . . . , Xk) =
∑

i

(−1)i[Xi, ω(X1, . . . , X̂i, . . . , Xk)]θ (13)

+
∑

i<j

(−1)i+jω([Xi, Xj]θ, X0, . . . , X̂i, . . . , X̂j , . . . , Xk).

It is well-defined and satisfies d2θ = 0 iff (θ,D, [·, ·]θ) is a generalized Lie algebroid.

Let (θ,D, [·, ·]θ) be a generalized algebroid. Then d2θf = 0 only for f ∈ F(M). Consider

the ideal I ⊂ Γ(∧∗θ∗) generated by the image of d2θ. Then d can be extended to a

1-degree derivation d̃ on Γ̃∗ = Γ(∧∗θ∗)/I, so (Γ̃∗, d̃) is a graded differential complex. The

cohomology of this differential complex can be called the algebroid cohomology of L, and

we denote it by H•(θ).

Consider now a generalized algebroid (θ,D, [·, ·]θ), an allowed vector bundle ξ over

the same base M as θ and a linear connection ∇ on ξ related to θ. We suppose that ∇

is curvature free. We can define

Γ̃n(θ∗, ξ) = Γ̃n ⊗ ξ.

The linear connection ∇ can be regarded as defined by the F(M)-linear map:

δ : Γ̃0(θ∗, ξ) = Γ(ξ) −→ Γ̃1(θ∗, ξ), δ(m)(X) = ∇Xm.

Using d̃, we can extend δ to a map

δ : Γ̃n(θ∗, ξ) → Γ̃n+1(θ∗, ξ)

by the rule

δ(ω ⊗ s) = d̃ω ⊗ s + (−1)nω ⊗ δs,

where ω ∈ Γ̃n(θ∗) and s ∈ Γ(ξ). Then δ2 = 0 iff (θ,D, L) is a generalized Lie algebroid;

the cohomology of (Γ̃∗(θ∗, ξ), δ) is called in this case the cohomology of θ with coefficients

in ξ.

The operator δ satisfies

δ((ω ∧ η)⊗ s) = (d̃ω ∧ η)⊗ s + (−1)|ω|ω ∧ δ(η ⊗ s) (14)

for ω, η ∈ Γ̃∗L∗ and s ∈ Γ(ξ).

Consider now an (allowed) vector bundle ξ and a linear connection ∇ on ξ related

to an ALS (θ,D, [·, ·]θ). According to Proposition 6.1, the linear connection ∇ lifts to a

linear connection ∇(∞) on ξ, related to the Lie pseudoalgebra θ(∞), which is curvature

free. It follows that we can consider the differential complex of θ(∞) with coefficients in

ξ, related to ∇.

A special case is when ξ is the trivial bundle (M × IR, pr1,M), when Γ(ξ) = F(M),

∇Xa = [X, f ]L, (∀)X ∈ Γ(θ) and a ∈ F(M). Then the curvature of ∇ is ∇X∧Y a =

D(X∧Y )(a); it is null only if (θ,D, [·, ·]θ) is a generalized algebroid. The lifted connection

∇(∞) is ∇
(∞)
X(∞)

a = D(∞)(X(∞))(a), (∀)X(∞) ∈ Γ(θ(∞)) and a ∈ F(M). It follows that
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the differential complex of θ(∞) with coefficients in (M × IR, pr1,M), related to this

connection, is just the differential complex of θ(∞) with real cofficients.

Let ω ∈ Γ(θ∗) = Γ(∧1θ∗) be a 1-form. Denote ω = ω(0) and define ω(1) ∈ Γ(Λ1(θ(1)))

by ω(1)(X) = ω(0)(X), ω(1)(X ∧1 Y ) = dθ(0)ω(0)(X,Y ), (∀)X,Y ∈ Γ(θ) = Γ(θ(0)). In-

ductively, assume that ω(k) is defined for k ≥ 1, then define ω(k+1) ∈ Γ(Λ1(θ(k+1))) by

ω(k+1)(X) = ω(k)(X), ω(k+1)(X ∧1 Y ) = dθ(k)ω(k)(X,Y ), (∀)X,Y ∈ Γ(θ(k)). These forms

define ω(∞) ∈ Γ(Λ1(θ(∞))) which define to its turn ω(∞) ∈ Γ(Λ1(θ(∞))) by restriction.

Let us show that the form ω(∞) is closed, i.e. d(∞)ω(∞) = 0. Indeed, if X , Y ∈

Γ(θ(k)) then ω(k+2)(X ∧k+2 Y ) = [X,ω(k+1)(Y )]− [Y, ω(k+1)(X)]−ω(k+1)([X,Y ]θ(k+1)) =

[X,ω(k)(Y )]− [Y, ω(k)(X)]− ω(k+1)([X,Y ]θ(k) +X ∧k+1 Y ) = 0; it follows that if X , Y ∈

Γ(θ(k)) then d(∞)ω(∞)(X,Y ) = [X,ω(∞)(Y )](∞) − [Y, ω(∞)(X)](∞) − ω(∞)([X,Y ](∞)) =

[X,ω(k)(Y )](k) − [Y, ω(k)(X)](k) − ω(∞)([X,Y ](k) +X ∧k+1 Y ) = 0, thus d(∞)ω(∞) = 0.

This construction can be extended to any p-form.

Proposition 6.3. For p ≥ 1 any p-form ω ∈ Γ(∧pθ∗) can be extended canonically to

a closed p-form ω(∞) ∈ Γ(∧pθ(∞)∗).

Proof. Denote ω = ω(0) and define ω(1) ∈ Γ(Λp(θ(1))) by

ω(1)(X1, . . . , Xp) = ω(0)(X1, . . . , Xp),

ω(1)(X0 ∧1 X1, X2, . . . , Xp) = −
2

p(p− 1)
dθ(0)ω(0)(X0, X1, X2, . . . , Xp),

(∀)X0, . . . , Xp ∈ Γ(θ) = Γ(θ(0)) and 0 in the other cases. Inductively, assume that ω(k) is

defined for k ≥ 1, then define ω(k+1) ∈ Γ(Λp(θ(k+1))) by

ω(k+1)(X1, . . . , Xp) = ω(k)(X1, . . . , Xp),

ω(k+1)(X0 ∧1 X1, X2, . . . , Xp) = −
1

N
dθ(k)ω(k)(X0, X1, X2, . . . , Xp), (∀)X0, . . ., Xp ∈

Γ(θ(k)), all homogeneous (i.e. Xi ∈ Γ(θ(s))\Γ(θ(s−1)) and we say that Xi has degree s)

and 0 otherwise, where N is the number of the couples (Xi, Xj), i 6= j, such that Xi or

Xj has degree k. These forms define ω(∞) ∈ Γ(Λp(θ(∞))).

If X0, . . . , Xp ∈ Γ(θ(k)) then

d(∞)ω(∞)(X0, . . . , Xp) = dθ(k)ω(k)(X0, X1, X2, . . . , Xp)

+
1

N

∑

i<j

(−1)i+jω(k+1)(Xi ∧k+1 Xj , X0, . . . , X̂i, . . . , X̂j , . . . , Xp) = 0.

We say that the p-form ω(∞) is the lift of the p-form ω.

Every p-form ω ∈ Γ(∧pθ∗) define the p-form ω̃′ ∈ Γ(∧pθ(∞)∗), ω̃′ = π∗ω, where

π : θ(∞) → θ is the canonical projection as vector bundle morphism. It is easy to see that

ω̃ = ω(∞) iff dω = 0. Consistent examples can be obtained in the case of the lift of a form

ω ∈ Λtop(θ∗), when the lift is ω̃ since dθω = 0.

The following result shows that concerning the lift the case p = 1 is quite different

from the case p > 1.

Proposition 6.4. Any exact 1-form ω ∈ ∧1Γ(θ(∞)∗) is the lift of an exact 1-form.

More precisely ω(∞) = d(∞)f iff ω = dθf .

Proof. For k = 0 the equality ω(∞) = d(∞)f means that ω = dθf . Conversely, if ω =

dθf then using induction it follows that dθ(k)ω(k)(X,Y ) = [X∧kY, f ]θ(k) = ω(k+1)(X∧k+1
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Y ) for k ≥ 1 and X,Y ∈ θ(k), thus ω(∞) = d(∞)f and ω(∞) = d(∞)f .

Proposition 6.5. For any closed 1-form ω ∈ ∧1Γ(θ(∞)∗) there is a closed 1-form

ω′ ∈ ∧1Γ(θ∞∗) such that ω = Π∗ω′, where Π : θ(∞) → θ∞ is the canonical projection.

Proof. It suffices to prove that if X ∈ MJ then ω(X) = 0. Since ω is closed, it follows

that

ω([X,Y ]θ(∞)) = [X,ω(Y )]θ(∞) − [Y, ω(X)]θ(∞), (15)

(∀)X,Y ∈ Γ(θ(∞)). Let us take X,Y, Z ∈ Γ(θ(∞)). Using this formula and the fact that

(θ(∞), D(∞)(θ), [·, ·]θ(∞)) is an algebroid, it follows that

ω([[X,Y ]θ(∞) , Z]θ(∞)) = [X, [Y, ω(Z)]θ(∞)]θ(∞) − [Y, [X,ω(Z)]θ(∞) ]θ(∞)

− [Z, [X,ω(Y )]θ(∞) ]θ(∞) + [Z, [Y, ω(X)]θ(∞)]θ(∞) .

Writing analogous formulas for ω([[Y , Z]θ(∞) , X ]θ(∞)) and ω([[Z,X ]θ(∞), Y ]θ(∞)), then

summing, we obtain that ω(Jθ(∞)(X ,Y ,Z)) = 0. Take now X ∈ Γ(θ(∞)) and Y ∈ MJ

such that ω(Y ) = 0. Then using the formula (15) and using also that D(∞)(Y ) = 0, it

follows that ω([X,Y ]θ(∞)) = 0. Thus ω(X) = 0, (∀)X ∈ MJ .

Notice that analogous results for a p-form ω ∈ ∧pθ(∞)∗, p ≥ 2, seem to fail.

Notice also that an interesting application is in the case of the de Rham complex of

a manifold M . Every antisymmetric form lifts to a closed form on τM (∞). Every 1-form

lifts also to a closed 1-form on τM∞, but not every p-form on M (p ≥ 2) lifts to a closed

p-form on τM∞. We expect that the study of the differential complexes associated with

τM (∞) and τM∞ will give in the future more information about the manifold.

We give now an application, constructing the modular class of an ALS in the same way

as in [5] for Lie algebroids. Consider an ALS (θ,D, [·, ·]) and let ξ be a line bundle over

the same base M as θ. Then ξ′ = ξ⊗ ξ is a trivial line bundle, thus Γ(ξ′) is 1-dimensional

as an F(M)-module. In this case let s0 ∈ Γ(ξ′) be such that Γ(ξ′) = {f · s0|f ∈ F(M)}.

If ∇ is a connection on ξ related to θ, then the formula:

∇Xs0 = ω(X) · s0, X ∈ Γ(ξ′) (16)

defines ω ∈ Λ1(θ∗). Consider another element s′0 = f0 · s0 ∈ Γ(ξ′) which generates Γ(ξ′)

and defines ω′ ∈ Λ1((Γ(θ(∞))∗). Then ω′ = dθ(|f0|+ω. The connection ∇ is curvature free

iff (θ,D, [·, ·]) is an algebroid (D = 0) and dθω = 0. Consider now the lifted connection

∇∞ on ξ′, related to θ(∞). An analogous formula (16) defines ω∞ ∈ Λ1((Γ(θ(∞)))∗). Since

∇∞ is curvature free, it follows that ω∞ has d θ∞ω∞ = 0, thus it is closed and defines

a cohomology class [ω∞] ∈ H1(θ∞). We define the characteristic class of ξ′ related to

∇ as [ω∞], denoted as Θξ′ . If ∇ is a linear R-connection on ξ, then it defines a linear

R-connection ∇′ on ξ′ = ξ ⊗ ξ. We define the characteristic class of ξ related to ∇ as
1

2
Θξ′ , where the characteristic class considered on ξ′ is related to ∇′. As in [5], it remains

to define a line bundle ξ and a linear R-connection ∇ on ξ which is intrinsic. We can take

several situations.

First, following [5] we take ξ = (∧topθ) ⊗ (∧topτ∗M) and for ω ⊗ ω′ ∈ Γ(ξ) and

X ∈ Γ(θ) we define

∇X(ω ⊗ ω′) = LXω ⊗ ω′ − ω ⊗ LD(X)ω
′, (17)
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where D is the anchor of θ and LX , LD(X) are the Lie derivatives on ∧∗θ and ∧∗τ∗M

respectively. Other intrinsic definitions are ξ′ = (∧topθ∗) ⊗ (∧topτM), ξ′′ = (∧topθ) ⊗

(∧topτM) and ξ′′′ = (∧topθ∗) ⊗ (∧topτ∗M). The formula (17) defines also linear R-

connections on each of these vector bundles.
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