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Abstract. We introduce a cohomology theory of Koszul-Vinberg algebroids. The relation-

ships between that cohomology and Poisson manifolds are investigated. We focus on the com-

plex of chains of superorders [KJL1]. We prove that symbols of some sort of cycles give rise

to so called bundlelike Poisson structures. In particular we show that if E → M is a transi-

tive Koszul-Vinberg algebroid whose anchor is injective then a Koszul-Vinberg cocycle θ whose
symbol has non-zero skew symmetric component defines a transversally Poissonian symplectic

foliation in M .

1. Background material. Let A be a real algebra whose multiplication map is

denoted by

(a, b) → ab.

Given three elements a, b, c of A their associator in A is the quantity

(1) (a, b, c) = a(bc)− (ab)c.

Definition 1.1. A real algebra A is called a Koszul-Vinberg algebra if its associator

map satisfies the identity

(a, b, c) = (b, a, c).

N.B. Koszul-Vinberg algebras are also called left symmetric algebras [NB1], [PA].

Let A be a Koszul-Vinberg algebra and let W be a real vector space with two bilinear

maps

(2)
A×W → W : (a, w) → aw;

W ×A → W : (w, a) → wa.
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We will set the following: given a ∈ A and w ∈ W

(3)

(a, b, w) = a(bw)− (ab)w,

(a, w, b) = a(wb)− (aw)b,

(w, a, b) = w(ab)− (wa)b.

Definition 1.2. A vector space equiped with two bilinear maps (2) is called a Koszul-

Vinberg module of A if the following identities hold for any a, b ∈ A and w ∈ W :

(a, b, w) = (b, a, w),

(a, w, b) = (w, a, b).

Given a Koszul-Vinberg algebra A and a Koszul-Vinberg module W of A, one of the

following spaces:

J(A) = {c ∈ A/(a, b, c) = 0, ∀a ∈ A, ∀b ∈ A};

J(W ) = {w ∈ W/(a, b, w) = 0, ∀a ∈ A, ∀b ∈ A}.

The subspace J(A) ⊂ A is a subalgebra of A and the induced multiplication map is

associative. In general the vector subspace J(W ) is not invariant under the actions (2).

Examples of Koszul-Vinberg algebras and their modules

(e1) Every associative algebra is a Koszul-Vinberg algebra.

(e2) Let (M,D) be a locally flat manifold, [KJL3]; then the vector space Γ(TM) of

smooth vector fields on M is a Koszul-Vinberg algebra; its multiplication map is defined

by

(X,Y ) → XY = DXY.

(e3) Given a locally flat manifold (M,D) let W be the vector space of real valued

smooth functions on M . For any f ∈ W and X ∈ Γ(TM) we define Xf ∈ W and

fX ∈ W by putting

(Xf)(x) = < df,X > (x), (fX)(x) = 0 ∈ R.

With the above operations W becomes a Koszul-Vinberg module of A = Γ(TM).

Given a Koszul-Vinberg algebra A and two Koszul-Vinberg modules of A, called V

and W , let Hom(W,V ) be the vector space of linear maps from W to V . We consider

the following actions of A in Hom(W,V ): let θ ∈ Hom(W,V ), a ∈ A, w ∈ W then we set

(4) (aθ)(w) = a(θ(w)) − θ(aw), (θa)(w) = (θ(w))a.

Under the actions defined in (4) the vector space Hom(W,V ) becomes a Koszul-

Vinberg module ofA. More generally the vector spaceHom(⊕qW,V ) of q-linear mappings

from W to V is a Koszul-Vinberg module of A under the following actions: let θ ∈

Hom(⊕qW,V ), a ∈ A and w1, ..., wq ∈ W , we set

(aθ)(w1, ..., wq) = a(θ(w1, ..., wq))−
∑

1≤j≤q θ(...awj , ..., wq),

(θa)(w1, ..., wq) = (θ(w1, ..., wq))a.

Let q be a positive integer every pair (j, w0) where j is a non-negative integer with

j ≤ q and w0 ∈ W will define a linear map from Hom(⊗q, V ) to Hom(⊗q−1W,V ), called

ej(w0). Let θ ∈ Hom(⊗qW,V ) then ej(w0)θ ∈ Hom(⊗q−1W,V ) is defined by

(ej(w0)θ)(w1, ..., wq−1) = θ(w1, ..., wj−1, w0, wj , ..wq−1).
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The linear map ej(w0) commutes with the right action of A, viz

(ej(w0)θ)a = ej(w0)(θa).

Thus the notation ej(w0)θa will be well defined.

We are now in a position to recall the definition of the complex

... → Cq(A,W )
δq
→ Cq+1(A,W ) → ...

Let A be a Koszul-Vinberg algebra and let W be a Koszul-Vinberg module of A. For

each positive integer q we set

Cq(A,W ) = Hom(⊗qA,W )

and for q = 0 we set

C0(A,W ) = J(W ).

Then the graded vector space

C(A,W ) = ⊕q≥0C
q(A,W )

is a cochain complex whose boundary operator is defined by

(5)

δ0 : C0(A,W ) → C1(A,W ), (δ0w)(a) = −aw + wa,

δq : Cq(A,W ) → Cq+1(A,W ),

(δθ)(a1, ..., aq+1) =
∑

j≤q(−1)j{(ajθ)(..âj ..aq+1) + (eq(aj)θaq+1(..âj .., âq+1)}

.

The family (δq)q satisfies the following identity

δq+1δq = 0.

The qth cohomology space of the cochain complex C(A,W ) is denoted by Hq(A,W ). We

have

Hq(A,W ) = ker(δq)/im(δq−1)

for q > 0 and

H0(A,W ) = ker(δ0).

Example. Let (M,D) be a locally flat manifold and let A = Γ(TM) be the cor-

responding Koszul-Vinberg algebra. Regarding A as a Koszul-Vinberg module of itself

the subspace J(A) consists of affine vector fields. Thus ker(δ0) is the subspace of lo-

cally linear vector fields. One sees that in general H0(A,A) will be non-trivial; e.g. if

(M,D) is the real flat torus then dimH0(A,A) = dimM. On the other hand we have

H1(A,A) = 0, [NB3].

2. Koszul-Vinberg algebroids and coalgebroids. Let M be a smooth manifold

and E a vector bundle over M . The space of smooth sections of E is denoted by Γ(E).

Definition 2.1. A Koszul-Vinberg algebroid over M is a vector bundle E over M

with a bundle map a : E → TM , called the anchor map, such that

(P1) Γ(E) is a Koszul-Vinberg algebra;

(P2) The anchor a : Γ(E) → Γ(TM) satisfies the following identities: ∀f ∈ C∞(M,R),

∀s ∈ Γ(E), ∀s′ ∈ Γ(E)

(fs)s′ = f(ss′), s(fs′) = f(ss′)+ < df, a(s) > s′.
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Remark. It follows from conditions (P1) and (P2) that the anchor map is a homo-

morphism of the associated Lie algebras.

Examples of Koszul-Vinberg algebroids

(e1) The tangent bundle of a locally flat manifold (M,D) is a Koszul-Vinberg alge-

broid. Its anchor is Identity map; given two sections of TM , called X,Y then

XY = DXY.

(e2) Let F be an affine foliation in a smooth manifold M and let EF be the tangent

bundle of F in TM . Since each leaf of F is a locally flat manifold EF is a Koszul-Vinberg

algebroid over M .

(e3) Each completely integrable system in an m-dimensional symplectic manifold

(M,ω) gives rise to an action of Rm in M . The orbits of that action are locally flat man-

ifolds; thus every completely integrable system will generate a Koszul-Vinberg algebroid.

(e4) Given a lagrangian foliation F in a symplectic manifold (M,ω) one defines a

Koszul-Vinberg algebroid E as in (e2). If s, s
′ ∈ Γ(E) then ss′ is defined by the relation

(6) ι(ss′)ω = Lsι(s
′)ω

where ι(s′) is the inner product by s′ and Ls is the Lie derivation w.r.t. s. The multipli-

cation in Γ(E) given by (6) induces a locally flat structure in each leaf of F .

Now given a Koszul-Vingberg algebroid E whose anchor map is injective, it is natural

to ask whether the locally flat structure of leaves of E extends to a locally flat structure

in M . The notion of Koszul-Vinberg co-algebroid together with cochain complex (5) help

to study the extension that we just raised, [NBW] (see also [KI] for the notion of partial

connection).

Definition 2.2. Given a Koszul-Vinberg algebroid E → M , a Koszul-Vinberg coal-

gebroid of E is a vector bundle N → M together with a bundle map α : N → TM

satisfying the following conditions:

(c1) Γ(N) is a Koszul-Vinberg algebra.

(c2) There exists a linear map j : Γ(TM) → Γ(N) such that the sequence

Γ(E)
a
→ Γ(TM)

j
→ Γ(N) → 0

is exact and j ◦ α(s) = s, ∀s ∈ Γ(N).

(c3) Let s, s
′ be elements of Γ(N) and f ∈ C∞(M,R); then

(fs)s′ = f(ss′)

and if < df, a(σ) >= 0 for every σ ∈ Γ(E) then

s(fs′) = f(ss′)+ < df, α(s) > s′.

Example. Let F be a locally flat foliation which is a transversally affine foliation

at the same time. Then the Koszul-Vinberg algebroid EF corresponding to F admits a

Koszul-Vinberg coalgebroid, [NBW].

Indeed let L be the sheaf of locally linear sections of EF , i.e. s ∈ L iff s′s = 0,

∀s′ ∈ Γ(EF ). We consider the quotient vector bundle TM/EF . Since F is transversally
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affine the space of smooth sections of N = TM/EF admits a structure of Koszul-Vinberg

algebra (every germ of submanifold which is transverse to F is a germ of affine manifold).

Thus Γ(N) admits a Koszul-Vinberg algebra structure. Let us write

J(N) = J(Γ(N)).

Then C∞(M,R)J(N) = Γ(N). Using a riemannian metric on M one constructs a section

α : N → TM

of the exact sequence

0 → EF
a
→ TM

j
→ N → 0

where j is the canonical projection.

In [NBW] we have used the Lie algebra

A = norm(L) ∩ j−1(J(N))

to study the extension problem of the locally flat structure of F ; norm(L) is the normal-

izer of L in the Lie algebra Γ(TM).

Remark that every Koszul-Vinberg algebroid E gives rise to a Lie algebroid EL; the

total space of EL is E; for s and s′ in Γ(EL) the bracket is defined by

(7) [s, s′] = ss′ − s′s.

The anchor map of E satisfies the identity

a([s, s′]) = [a(s), a(s′)].

Indeed let s, s′, s′′ be elements of Γ(E) and f ∈ C∞(M,R), then

[s, s′](fs′′) = (ss′)(fs′′)− (s′s)(fs′′) = s(s′(fs′′))− s′(s(fs′′))

and property (P2) of definition 2.1 implies that

< df, a([s, s′]) >= a(s)(a(s′)f)− a(s′)(a(s)f),

where a(s)f =< df, a(s) >.

3. Real cohomology of Koszul-Vinberg algebroids. Let E → M be a Koszul-

Vinberg algebroid. The vector space W = C∞(M,R) is a Koszul-Vinberg module of

A = Γ(E). The left action and the right action are defined by

(sf)(x) =< df, a(s) >, (f.s)(x) = 0,

where a is the anchor map of E.

We will focus on the cochain complex

(8) ... → Cq(A,W )
δq
→ Cq+1(A,W ) → ...

The qth cohomology space of (8) is denoted by Hq(E,R), i.e. Hq(E,R) = Hq(A,W ).

Definition 2.3. The vector space Hq(E,R) is called the qth cohomology space of

the Koszul-Vinberg algebroid E → M.

Example. Let E be a regular Koszul-Vinberg algebroid whose anchor map is denoted

by a. Then a(E) defines a foliation on M . A function f belongs to J(W ) iff La(s) ◦
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La(s′)(f) = 0 for arbitrary sections s, s′ of E. Thus if the anchor is injective then J(W )

consists of smooth functions which are affine along each leaf of a(E). Since H0(E,R) =

ker(δ0) we see that H0(E,R) is just the vector space of first integrals of a(E).

Theorem 3.1. If a regular Koszul-Vinberg algebroid E → M admits a dense leaf then

dimH0(E,R) = 1.

4. Koszul-Vinberg algebroids and Poisson manifolds. To every Koszul-Vin-

berg algebroid E we attach the following new Koszul-Vinberg algebroid

E = E ×R

where R is the trivial vector bundle R =: M ×R. We identify Γ(R) with the associative

algebra C∞(M,R) of smooth real valued functions on M . Thus we will identify Γ(E) with

Γ(E)× C∞(M,R) as well.

Henceforth Γ(E) is an algebra whose multiplication is

(9) (s, f)(s′, f ′) = (ss′, ff ′+ < df ′, a(s) >).

It is easy to see that (9) endows Γ(E) with a structure of Koszul-Vinberg algebra. Morever

if g ∈ C∞(M,R) then we have

(g(s, f))(s′, f ′) = g((s, f)(s′, f ′))

and

(s, f)(g(s′, f ′)) = g((s, f)(s′, f ′))+ < dg, a(s) > (s′, f ′).

Naturally the anchor map of E is defined by

aǫ(s, f) = a(s)

where a is the anchor of E → M. The Koszul-Vinberg algebra Γ(E) is the semi-product

Γ(E)× C∞(M,R).

Now let V be a vector space, let r be a non-negative integer; we will put

T r(V ) = ⊗rV.

Henceforth we are concerned with the cochain complex

... → Cq(G,W )
δq
→ Cq(G,W ) → ...

where G is the Koszul-Vinberg algebra (9) and W = C∞(M,R). For each non-negative

integer q the vector space Cq(G,W ) is bigraded

Cq(G,W ) = ⊕r+s=qC
r,s(G,W )

with

Cr,s(G,W ) = Hom(T rA⊗ T sW,W ),

r and s being non-negative integers.

The boundary operator δq goes from Cr,s(G,W ) to the direct sum Cr+1,s(G,W ) ⊕

Cr,s+1(G,W ). Thus we will equip the cohomology space Hq(G,W ) with the bigradation

Hq(G,W ) = ⊕r+s=qH
r,s(G,W )
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with

Hr,s(G,W ) =
ker(δq : Cr,s(G,W ) → Cr+1,s(G,W )⊕ Cr,s+1(G,W ))

δq−1(Cq−1(G,W )) ∩ Cr,s(G,W )
.

Naturally one sees that

δq−1(C
q−1(G,W )) ∩Cr,s(G,W ) = δq−1(C

r−1,s(G,W ) + Cr,s−1(G,W )) ∩ Cr,s(G,W ).

We will develop the analogue of the complex of differential forms of superorder intro-

duced by Jean-Louis Koszul, [KJL2].

To begin with, let ξ ∈ G, for a non-negative integer k and x ∈ M jkxξ is the kth jet at

x of ξ ∈ G. We will present jkxξ by

jkxξ = (d1xξ, .., d
l
xξ, .., d

k
xξ)

where dlxξ is the lth differential at x of the section ξ ∈ Γ(E).

Definition [KJL2]. A cochain θ ∈ Cq(G,W ) is of order ≤ k if at every x ∈ M and

for ξ1, .., ξq ∈ G the value at x of θ(ξ1, ..ξq) depends on, j
k
xξ1, ..j

k
xξq.

Let I = (i1, .., iq) be a q-tuple of non-negative integers such that il ≤ k. Given a

q-cochain θ ∈ Cq(G,W ) of order ≤ k, we set

(11) θI(ξ1, .., ξq)(x) = θ(di1x ξ1, .., d
iq
x ξq).

Since θ is q-multilinear (11) makes sense.

Thus every θ ∈ Cq(G,W ) which is of order ≤ k will be decomposed as follows

θ(ξ1, .., ξq) =
∑

I

θI(ξ1, .., ξq)

where I = (i1, .., iq) with 0 ≤ i1, .., iq ≤ k.

We call θI the component of type I of θ.

The following definition is crucial for the forthcoming applications.

Definition 4.1 Given a cochain of order ≤ k, say θ ∈ Cq(G,W ), then its component

of type (k, .., k) is called the symbol of θ.

Notice that the symbol of θ may be zero.

Proposition [NB4]. The symbol σ(θ) of every q-cocycle θ ∈ C0,q(G,W ) is δqclosed

and satisfies the identity

sσ(θ) = 0

for any arbitrary element s ∈ Γ(E).

We recall that

(s(σ(θ))(ξ1 , .., ξq) = a(s)(σ(θ)(ξ1 , .., ξq))−
∑

j≤q

σ(θ)(...sξj , ..ξq).

For every non-negative interger r, Hr,0(G,W ) = 0. (That phenomenon may be ex-

plained by using an appropriate spectral sequence.)

We are going now to relate symbols of so called Koszul-Vinberg cocycle to Poisson

manifolds structures.

We will deal with the vector spaces Cr,s(G,W ) such that rs = 0. For instance

C0,2(G,W ) may contain Poisson tensors as well as Jacobi tensors.
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On the other hand let us suppose that the Koszul-Vinberg algebroid E → M has an

injective anchor map. Then Riemannian metrics or symplectic structures on the vector

bundle E → M give rise to elements of C2,0(G,W ).

Definition 4.2. (i) A cochain θ ∈ C2(G,W ) is called a Koszul-Vinberg cochain if for

arbitrary elements ξ1, ξ2, ξ3 of G one has

(ξ1, ξ2, ξ3)θ = (ξ2, ξ1, ξ3)θ

where

(ξ1, ξ2, ξ3)θ = θ(ξ1, θ(ξ2, ξ3))− θ(θ(ξ1, ξ2), ξ3).

(ii) θ ∈ C2(G,W ) is a Koszul-Vinberg cocycle if δΠθ = δ.θ = 0 and (ξ1, ξ2, ξ3)θ =

(ξ2, ξ1, ξ3)θ.

Definition 4.2 makes sense because W may be regarded as a subspace of G.

Every Koszul-Vinberg cochain θ ∈ C2(G,W ) defines a Koszul-Vinberg algebra struc-

ture whose multiplication is given by

ξ1ξ2 = θ(ξ1, ξ2).

Therefore we define in G a new Lie algebra structure called Gθ, whose bracket is given by

[ξ1, ξ2]θ = θ(ξ1, ξ2)− θ(ξ2, ξ1).

Before continuing we will recall some differential geometry structures related to the

cohomology of Koszul-Vinberg algebroids.

Definition 4.3. (i) A Poisson foliation in a manifold M is a foliation F whose leaves

are Poisson manifolds.

(ii) A transversally Poisson foliation in M is a foliation whose sheaf of basic functions

is a sheaf of Poisson algebra.

Part (ii) in definition 4.3 has the following meaning: the sheaf of local first integrals

of F admits a Lie algebra bracket

(f, g) → {f, g}

such that

{f, gh} = g{f, h}+ {f, g}h.

Let us go back to considerations regarding the complex

.. → Cq(G,W )
δq
→ Cq+1(G,W ) → ..

which is defined by a Koszul-Vinberg algebroid E → M . The following claim is easily

verified [KM]. Let A be an associative and commutative algebra and let C(A,A) be its

Hochschild complex. Given any 2-cocycle θ ∈ C2(A,A) and any ξ ∈ A, then the linear

map say θξ

ζ → θ(ξ, ζ) − θ(ζ, ξ)
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is a derivation of the algebraA. This elementary result has deep consequences; for example

given a smooth manifold M with a start product in C∞(M,R), say

f ∗ g = fg +
∑

k>0

hkBk(f, g)

the bilinear map B1 : C∞(M,R)2 → C∞(M,R) is a cocycle of the Hochschild complex

of C∞(M,R). One deduces that B1 is a bidifferential operator of order 1 whose skew

symmetric component defines a Poisson manifold structure on M , [KM]. The same claim

doesn’t hold in the cohomology theory of Koszul-Vinberg algebras. For instance in a

Koszul-Vinberg algebra A the multiplication map

(a, b) → ab

is an exact cocycle of C(A,A), but the linear map

b → ab− ba

for a fixed a is a derivation of A iff a ∈ J(A). That makes relevant the theorem which is

stated below.

Let E → M be a Koszul-Vinberg algebroid and let C(G,W ) be the complex associated

to G = Γ(E).

Theorem I [NB4]. Let θ ∈ C0,2(G,W ) be a cocycle of order ≤ k. If the skew symmetric

component of the symbol σ(θ) is non-zero, then k = 1.

An important consequence of theorem is the following statement:

Theorem II [NB4]. The skew symmetric component of the symbol σ(θ) of every

Koszul-Vinberg cocycle θ ∈ C0,2(G,W ) is a Poisson tensor.

Now let us assume the Koszul-Vinberg algebroid E → M to be regular. Then E

defines a foliation EF in M . Given any Koszul-Vinberg cocycle θ ∈ C0,2(G,W ) of order

≤ k we denote by Πθ the skew symmetric component of σ(θ). The following corollary

follows directly from theorem II.

Corollary 4.4. Every germ of submanifold in M which is normal to FE is a germ

of Poisson submanifold of (M,Πθ). In particular if FE is simple then the quotient man-

ifold M/FE admits a Poisson manifold structure (M/FE , Π̃θ) such that the canonical

projection from M to M/FE is a Poisson morphism from (M,Πθ) to (M/FE, Π̃θ).

Considering the case of Koszul-Vinberg algebroids with injective anchor maps, we see

that such algebroids define locally flat foliations in their base manifolds. Thus we can

state the following

Theorem III [NB4]. Let E → M be a Koszul-Vinberg algebroid whose anchor map

is injective. If E is transitive, then every Koszul-Vinberg cocycle θ ∈ C0,2(G,W ) defines

a regular Poisson structure on M .

Remark thatW being a Koszul-Vinberg submodule of G every Koszul-Vinberg cochain

θ̃ ∈ C2(G,G) induces a Koszul-Vinberg cochain θ ∈ C0,2(G,W ).
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5. The Koszul-Vinberg analogues of star product. Let M be a smooth man-

ifold and let W be the vector space C∞(M,R) endowed with its natural structure of

associative and commutative algebra.

Given a start product in W , say

f ∗ f ′ = ff ′ +
∑

k>0

hkBk(f, f
′)

it is well known that the skew symmetric component of B1 is a Poisson tensor on M ,

[KM]. Regarding theorem II a natural question arises: does the same phenomenon persist

in Koszul-Vinberg algebra structures.

Henceforth we will consider a Koszul-Vinberg algebroid E → M . As before we denote

by G the vector space of smooth sections of the Wihtney sum E ⊕ R. We consider the

multiplication already defined by (9), i.e. for ξ = (s, f), ξ′ = (s′, f ′)

ξξ′ = (ss′, ff ′+ < df ′, a(s) >)

where a is the anchor map of E. Let h be some parameter; we will focus on the familly

of multiplication in G

(12) ξ ∗h ξ′ = ξξ′ +
∑

k>0

hkθk(f, f
′)

with θk ∈ C2(G,G). We suppose the multiplication (12) to satisfy Definition 1.1, viz

(ξ1, ξ2, ξ3)∗h = (ξ2, ξ1, ξ3)∗h

for elements ξ1, ξ2, ξ3 of G. Thus we obtain a family Gh of Koszul-Vinberg algebras. The

coefficient θ1 is a cocycle of the complex C(G,G).

Each Koszul-Vinberg algebra Gh give rise to a Lie algebra whose bracket is given by

[ξ, ξ′]h = ξ ∗h ξ′ − ξ′ ∗h ξ = [ξ, ξ′] +
∑

k>0

hkΛk(ξ, ξ
′)

with Λk(ξ, ξ
′) = θk(ξ, ξ

′)− θk(ξ
′, ξ).

In order that the pair (E ⊕ R,Gh) define a Koszul-Vinberg algebroid with the same

anchor map a as the pair (E ⊕R,G) it is necessary that

a([ξ, ξ′]h) = a([ξ, ξ]).

Thus we must have

(13) a(
∑

k>0

hkΛk(ξ, ξ
′)) = 0.

Therefore we see that for every positive integer k one has a(Λk(ξ, ξ
′)) = 0. On the

other hand recall that W is a two-sided ideal of the Koszul-Vinberg algebra G whose

multiplication is (9). Then the W -component of the cocycle θ1 is a W -valued 2-cocycle

of the cochain complex C(G,W ). By assuming that the map a is also the anchor map of

the pair

(E ⊕R,Gh)

we deduce from the condition

ξ(f ∗h ξ′) = f(ξ ∗ ξ′)+ < df, a(ξ) > ξ′
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that the chains θk are of order zero, that is to say that each θk is tensorial. This phe-

nomenon is in contrast to the case of star products in the associative and commutative

algebra C∞(M,R).

To end the present paper we deduce from (13) the following statement.

Proposition 5.1. Let E → M be a Koszul-Vinberg algebroid whose anchor map is

injective. Suppose that the associated algebroid E ⊕R admits a one parameter family of

deformations (E ⊕R,Gh) whose multiplication is

ξ ∗h ξ′ = ξξ′ +
∑

k>0

hkθk(ξ, ξ
′).

Then the coefficients θk are symmetric chains of the cochain complex C(G,G).
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Ann. Scient. Ec. Norm. Sup 7 (1964), 139–159.

[KJL2] J-L. Koszul, Déformations des connections localement plates, Ann. Inst. Fourier 18

(1968), 103–114.

[KJL3] J-L. Koszul, Crochet de Schouten-Nijenhuis et cohomologie, in: Elie Cartan et les
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