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Abstract. This work gives a construction of the secondary characteristic homomorphism in

the category of regular Lie algebroids generalizing the theory of Kamber-Tondeur for foliated

principal bundles equipped with reductions. Part I is a preparation and concerns the concept

of the Weil algebra Wg of the Lie algebra bundle g adjoint to a regular Lie algebroid A. A
fundamental role is played by its subalgebra (Wg)I0 of invariant cross-sections with respect to
adjoint representations. In Part II we give a construction of characteristic invariants of partially

flat regular Lie algebroids, measuring the incompatibility of two geometric structures: a partially

flat connection and a Lie subalgebroid. This generalizes the classical construction of Kamber-

Tondeur. Fundamental properties, for example, independence of the homotopy class of a Lie

subalgebroid, are given.

A comparison of the presented Lie algebroid theory with characteristic classes of foliated

principal bundles shows the algebroid nature of the latter. For globally flat connnections the

concept reduces to characteristic invariants of flat regular Lie algebroids in [K7].

In the Appendix we present the elementary theory of regular Lie algebroids in which the key

role is played by a global theorem on solutions of some system of partial differential equations

with parameters. One of the main structure theorems concerns invariant cross-sections on R×M ,
the basic fact needed in the proof of homotopy independence of characteristic classes.
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1. Introduction. This work belongs to the direction initiated by K. Mackenzie in

[Ma1, Chap. III, IV] and by Ph. Higgins & K. Mackenzie in [H-M] and developed by the

author ([K2], [K6], [K8], [K9], [K10]) and others and concerns the “pure” theory of Lie

algebroids. These works isolate this theory from the common theory of Lie groupoids and

Lie algebroids.

Originally, Lie algebroids were invented by J. Pradines (1967) in connection with the

study of differential groupoids, generalizing the construction of the Lie algebra of a Lie

group. Since every principal bundle P determines a Lie groupoid PP−1 of Ehresmann

[E], therefore—in an indirect manner—it determines a Lie algebroid A(P ). The construc-

tion of this object with the omission of the step of Lie groupoids (with the use of the

vector bundle TP/G considered by M. Atiyah [At] and P. Libermann [L]) was made in-

dependently by K. Mackenzie [Ma1] and by the author [K1]. In [K1] there is also a third

manner of constructing a Lie algebroid of a principal bundle P (M,G) as an associated

bundle W 1(P )×G1
n
(Rn × g) with the first-order prolongation of P.

Since 1977 another source of transitive Lie algebroids has been known, namely, the

theory of transversally complete foliations [Mo1], in particular, the theory of foliations

of left cosets of nonclosed Lie subgroups in Lie groups. On this ground R. Almeida

and P. Molino discovered in 1985 [A-M] (see also [Mo2]) non-integrable transitive Lie

algebroids. In [K3] the author gives a direct definition of the Lie algebroid of the TC-

foliation of left cosets without using Molino’s theory.

Differential geometry revealed also other objects which yield Lie algebroids: Poisson

manifolds [C-D-W], some complete closed pseudogroups [S] and Jacobi manifolds [K-SB].

The results of pure theory of Lie algebroids can be used just to these geometric categories

which are a potential source of new results and methods.

Problem 1.1. Can the Chern-Weil characteristic classes on the ground of principal

bundles be constructed on the level of Lie algebroids?

This problem was considered first by N. Teleman in 1972 [T1], [T2]. He constructed

the classes for some exact extensions of R-Lie-Rinehart algebras [under the terminology

of J. Huebschmann [H1]], R being a commutative unital ring containing rational numbers

Q ⊂ R. He also noticed that his construction is a generalization of the classical bundle

case, provided that the structure Lie groups are connected. The same result was repeated

in [K1] by keeping the apparatus of principal bundles only. The full answer is included in

[K2] and independently repeated by I. Belko [B1], [B2]. In [K2] one can find a construction

of an equivalent of the Chern-Weil homomorphism for regular Lie algebroids over foliated

manifolds whereas in [B1], [B2] for transitive case only. For application to the tangential

case (strengthening the Moore-Schochet construction [M-Sch]) see [K5]. In [K2], [B1]

and [B2] there is an observation that the Chern-Weil homomorphism of a connected

principal bundle is an invariant of the Lie algebroid of this bundle (the structure Lie group

may be disconnected). In [K2] a class of transitive non-integral Lie algebroids having

nontrivial Chern-Weil homomorphism is discovered (on the ground of TC-foliations of

left cosets of nonclosed Lie groups in Lie groups). J. Huebschmann [H2] generalized

results of [T2] and [K2] on the exact extensions of R-Lie Rinehart algebras without

the assumption Q ⊂ R. We add that Lie-Rinehart algebras are algebraic equivalents
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of Lie algebroids and were known—under different names—considerably earlier than Lie

algebroids (namely, since 1953 (Herz), see the survey article by K. Mackenzie [Ma2]). The

Chern-Weil homomorphism can be generalized to pairs of Lie algebroids (L,A) with the

use of the so-called L-connections in A understood as linear homomorphisms ∇ : L→ A

compatible with anchors, γA◦∇ = γL, [B-K-W]. The case when A = TP/G for a principal

fibre bundle P (M,G) or A = A(f) for a vector bundle f was considered independently by

R. L. Fernandes [F2] and M. Crainic [Cr].

The extension of Problem 1.1 also for secondary characteristic classes of flat or par-

tially flat principal bundles was posed by the author in the late eighties. The full an-

swer concerning characteristic classes of flat or partially flat objects was accomplished

(in manuscript) in 1989, submitted in 1992 to Publ. Départ. Math., Université Claude

Bernard - Lyon 1, and accepted (see [D, 1994]). However, this work has not appeared in

print because the publication of the journal was discontinued (see http://www.desargues.

univ-lyon1.fr/home/portier/bib.html). For a sketch of these results see [K4]. Part of re-

sults concerning flat objects appeared in [K7] in 1998.

The present work (Part I and Part II) is devoted to characteristic classes of partially

flat regular Lie algebroids constructed in the spirit developed by Kamber and Tondeur of

foliated bundles equipped with a reduction [K-T1], [K-T2]. In part I the Weil algebra for

the Lie algebra bundle adjoint to a regular Lie algebroid is constructed (adapting classical

theory for Lie algebras [Ca], [K-T2]); some ideas of G. Andrzejczak (unpublished) of a

change of variables in the Weil algebra are used. As an explicit application, the Chern-Weil

homomorphism of regular Lie algebroids is obtained once more. The results of part I are

done as a preparation for construction of the secondary characteristic homomorphism, the

aim of part II, measuring the incompatibility of two geometric structures on a regular Lie

algebroid: a partially flat connection and a given Lie subalgebroid. The tangent bundle

to a characteristic foliation of a regular Lie algebroid considered plays the role of the

tangent bundle for classical characteristic classes. The case of transitive Lie algebroids

B ⊂ A and a partially flat connection over a regular foliation F is a simple generalization

of the characteristic homomorphism for a regular foliation (for A the Lie algebroid of the

principal bundle P of transversal frames and B the Lie algebroid of some O(n) reduction

in P ).

Recently, Rui Loja Fernandes [F2] proposes an approach to secondary characteristic

classes including singular Stefan’s foliations appearing as the images of anchors in Lie

algebroids. The Fernandes approach is in the spirit of the original papers of Chern and

Simons [C-S1], [C-S2] of comparing two connections: a basic connection and a metric

one acting from a given (nonregular in general) Lie algebroid A. This is very important

in Poisson geometry [F1]. M. Crainic [Cr] has defined secondary characteristic classes

for a representation of a Lie algebroid, i.e. a Lie algebroid homomorphism L → A(f).

They vanish if the values of the representation are contained in the Lie subalgebroid of

some O(n)-reduction of f. For a general approach to Lie algebroids of G-vector bundles

see [K5]. The common part of the Crainic theory and the one considered in this paper

concerns Lie algebroids L = F ⊂ TM , and partial connections in vector bundles f,

λ′ : L = F → A = A(f) and Lie subalgebroids B ⊂ A which are O(n)-reductions of f. In

my opinion, it is possible to unify the Fernandes and Crainic theory with the one below.
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PART I. WEIL ALGEBRA FOR REGULAR LIE ALGEBROIDS

2. Homomorphism (dω)∨. We continue our work [K2], [K7] concerning characteris-

tic homomorphisms of regular Lie algebroids. We assume that all the manifolds considered

are C∞ and Hausdorff, and that the manifolds M, M ′. . . over which Lie algebroids are

considered, are, in addition, connected. By Ω0(M) we denote the ring of C∞ functions

on a manifold M, by X(M) the Lie algebra of C∞ vector fields on M, and by SecA the

Ω0(M)-module of all C∞ global cross-sections of a given vector bundle A over M.

By a regular Lie algebroid over a foliated manifold (M,E), we mean a system A =

(A, [[·, ·]], γ) consisting of a vector bundle A on M and mappings [[·, ·]] : SecA × SecA →

SecA, γ : A → TM, such that (1) (SecA, [[·, ·]]) is an R-Lie algebra, (2) γ, called the

anchor, is a homomorphism of vector bundles such that Im γ = E, (3) [[ξ, f · η]] =

f · [[ξ, η]] + (γ ◦ ξ)(f), f ∈ Ω0(M). The anchor is bracket preserving, i.e. Sec γ : SecA →

X(M), ξ 7→ γ ◦ ξ, is a homomorphism of Lie algebras (see [H], [B-K-W]). In the sequel,

we adopt the notions and the notations from [Ma1], [K2] and mainly from [K7]. We also

write
∧
W and

∨
W for the exterior and symmetric algebras for a given vector space W.

Let A = (A, [[·, ·]], γ) be an arbitrary regular Lie algebroid over a foliated manifold

(M,E) with the Atiyah sequence 0 → g →֒ A
γ
→ E → 0, equipped with a connection

λ : E → A having ω : A → g as its connection form. Below, the exterior derivative of

forms on the Lie algebroid A, with values in g, [also in the associated vector bundles]

with respect to the adjoint representation adA : A → A(g) [or induced ones] will be

briefly denoted by dg. dgω at a point x ∈M is a 2-linear skew-symmetric tensor (dgω)|x :

A|x × A|x → g|x understood sometimes equivalently as an element of
∧2

A∗
|x ⊗ g|x. It

defines a linear mapping with the property

(dω)x(w
∗
1) ∧ (dω)x(w

∗
2) = (dω)x(w

∗
2) ∧ (dω)x(w

∗
1), w∗

i ∈ g∗|x.

Therefore, by the universal property of the symmetric algebra
∨
g∗|x, see [G], we obtain

the existence and uniqueness of a homomorphism of algebras

(dω)∨x :
∨
g∗|x →

∧
A∗

|x(2.1)

extending (dω)x and such that (dω)∨x (1) = 1.

Lemma 2.1. Let Γ ∈
∨l
g∗|x, then for w1, . . . , w2l ∈ A|x

〈(dω)∨x (Γ), w1 ∧ . . . ∧w2l〉

=
1

l! · 2l

∑

σ

sgnσ · 〈Γ, (dgω)|x(wσ1 ∧ wσ2) ∨ . . . ∨ (dgω)|x(wσ2l−1
∧ wσ2l

)〉.

Proof. It is sufficient to prove this for a simple tensor Γ = w∗
1 ∨ . . . ∨ w

∗
l :

〈(dω)∨x (w
∗
1 ∨ . . . ∨ w

∗
l ), w1 ∧ . . . ∧w2l〉

= 〈(dω)x(w
∗
1) ∧ . . . ∧ (dω)x(w

∗
l ), w1 ∧ . . . ∧ w2l〉

=
1

2l

∑

σ

sgnσ · (dω)x(w
∗
1)(wσ1 ∧ wσ2) · . . . · (dω)x(w

∗
l )(wσ2l−1

∧ wσ2l
)

=
1

2l

∑

σ

sgnσ · 〈w∗
1 , (d

gω)|x(wσ1 ∧ wσ2)〉 · . . . · 〈w
∗
l , (d

gω)|x(wσ2l−1
∧ wσ2l

)〉
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=
∑

σ1<σ2,...,σ2l−1<σ2l

σ1<σ3<...<σ2l−1

sgnσ ·
∑

τ

〈w∗
1 , (d

gω)|x(wσ2·τ(1)−1
∧ wσ2·τ(1)

)〉 · . . .

. . . · 〈w∗
l , (d

gω)|x(wσ2·τ(l)−1
∧ wσ2·τ(l)

)〉

=
1

l! · 2l

∑

σ

sgnσ · 〈w∗
1 ∨ . . . ∨ w∗

l , (d
gω)|x(wσ1 ∧ wσ2) ∨ . . .

∨ (dgω)|x(wσ2l−1
∧ wσ2l

)〉.

According to this lemma and the fact that the canonical duality
∨l
g∗ ×

∨l
g → R

[defined pointwise by the permanent] is a C∞ 2-linear homomorphism of vector bundles,

we have the following

Corollary 2.2. For Γ ∈
∨l
g∗, the cross-section

(dω)∨(Γ) : M →
∧2l A∗, x 7→ (dω)∨x (Γx),

is a C∞ real 2l-form on A, i.e. (dω)∨(Γ) ∈ Ω2l
A(M), and it is defined by

(dω)∨(Γ) =
1

l!
· 〈Γ, dgω ∨ . . . ∨ dgω〉.

3. Weil algebra of the bundle g of Lie algebras. For the bundle g of Lie algebras,

adjoint to a given regular Lie algebroid A, we have:

•
∧
g∗|x is an anticommutative graded algebra; (

∧
g∗|x)

k :=
∧k
g∗|x, x ∈M,

•
∨
g∗|x is an (anti)commutative graded algebra over the graded vector space g∗|x with

elements of degree two only, i.e. (
∨
g∗|x)

2l =
∨l
g∗|x and (

∨
g∗|x)

2l+1 = 0.

• Wg|x :=
∧
g∗|x ⊗

∨
g∗|x is the anticommutative (bi)graded tensor product of anti-

commutative graded algebras. The bidegree (Wg|x)
k,2l =

∧k
g∗|x ⊗

∨l
g∗|x leads, as

usual, to the total degree r = k + 2l.

Wg|x as an algebra is generated by 1, w∗ ⊗ 1 and 1⊗ w∗, for w∗ ∈ g∗|x. Put

(Wg)k,2l :=
∧k
g∗ ⊗

∨l
g∗, (Wg)r :=

⊕

k+2l=r

(Wg)k,2l,

(Wg)k,2l := Sec(Wg)k,2l, (Wg)r := Sec(Wg)r (=
⊕

k+2l=r

(Wg)k,2l),

Wg :=
⊕

r

(Wg)r .

• Wg is a bigraded algebra with the multiplication defined pointwise.

Wg is called the Weil algebra of the bundle g of Lie algebras. Each element of Wg is

locally [even globally, by the paracompactness of M ] a finite sum of cross-sections of the

form ψ1 ∧ · · · ∧ ψk ⊗ Γ1 ∨ · · · ∨ Γl, ψi,Γj ∈ Sec g∗, k, l ≥ 0. Here (and below), k, l, r are

nonnegative integers.

Remark 3.1. Under the gradation considered, the homomorphism (2.1) is of degree

0. Analogously, introducing the ”pointwise” structure of an algebra in
⊕

l≥0 Sec
∨l
g∗
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and the gradation as above, we see that

(dω)∨ :
⊕

l≥0

Sec
∨l
g∗ → ΩA(M)

is a homomorphism of algebras of degree 0.

4. Auxiliary operators k, i, d, θ. Three fundamental operators i, d, θ in Wg, as well

as the mapping k : Wg → ΩA(M), will be introduced in two steps passing through some

isomorphisms ψx : Wg|x → Wg|x, x ∈ M [i.e. some change of variables]. This method,

due to G. Andrzejczak (unpublished), enables us to define and prove the property of these

objects in the clear and technically lucid manner. The main profit is that the differential

d is then defined by one simple formula.

We begin by defining some auxiliary objects k, i, d, θ. Firstly, we observe that, for

each point x ∈M, there exists exactly one homomorphism

kx :Wg|x →
∧
A∗

|x

of algebras of degree 0 such that kx(1) = 1, kx(w
∗ ⊗ 1) = ω∧

x (w
∗) (for ω∧

x see [K7])

and kx(1 ⊗ w∗) = (dω)∨x (w
∗) when w∗ ∈ g∗|x. kx is directly defined by the formula

kx(Ψx⊗Γx) = ω∧
x (Ψx)∧ (dω)∨x (Γx) for Ψx ∈

∧
g∗|x and Γx ∈

∨
g∗|x. The homomorphisms

kx, x ∈M, give rise to the homomorphism

k : Wg → ΩA(M)

of algebras of degree 0 defined pointwise: k(Ψ⊗Γ)x = kx(Ψx⊗Γx), Ψ ∈
⊕

k≥0 Sec
∧k
g∗,

Γ ∈
⊕

l≥0 Sec
∨l
g∗. It has the property

k(Ψ ⊗ Γ) = ω∧(Ψ) ∧ (dω)∨(Γ).(4.1)

Lemma 4.1. For each x ∈ M and for v ∈ g|x, there exists exactly one antiderivation

ix,v : Wg|x →Wg|x of degree −1 such that

(1) ix,v(w
∗ ⊗ 1) = 〈w∗, v〉,

(2) ix,v(1⊗ w∗) = −(w∗ ◦ adv)⊗ 1, w∗ ∈ g∗|x.

It has the following properties:

(i) ix,v|(Wg|x)
0,0 = 0,

(ii) ix,v(1⊗ w∗
1 ∨ · · · ∨w∗

l ) = −
∑
i w

∗
i ◦ adv ⊗w

∗
1 ∨ · · · î · · · ∨ w∗

l , l ≥ 1,

(iii) ix,v(Ψx ⊗ Γx) = iv(Ψx)⊗Γx + (−1)k(Ψx ⊗ 1) · ix,v(1⊗Γx) when Ψx ∈
∧k
g∗|x and

Γx ∈
∨
g∗|x,

(iv) ix,v [(Wg|x)
k,2l] ⊂ (Wg|x)

k−1,2l ⊕ (Wg|x)
k+1,2(l−1).

Proof. Uniqueness. The uniqueness of ix,v is evident because every antiderivation is

uniquely determined by the values on generators. Properties (i)–(iv) of each antiderivation

ix,v fulfilling (1) and (2) above are evident.

Existence. For l ≥ 1, there exists exactly one linear mapping

ĩlx,v :
∨l
g∗|x → g∗|x ⊗

∨l−1
g∗|x
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such that ĩlx,v(w
∗
1 ∨ · · · ∨ w∗

l ) = −
∑
iw

∗
i ◦ adv ⊗w

∗
1 ∨ · · · î · · · ∨w∗

l . It has the property

ĩm+n
x,v (Γ1x ∨ Γ2x) = ĩmx,v(Γ1x) · 1⊗ Γ2x + 1⊗ Γ1x · ĩ

n
x,v(Γ2x)

for Γ1x ∈
∨m
g∗|x and Γ2x ∈

∨n
g∗|x. For k ≥ 0 and l ≥ 1, there exists exactly one linear

mapping

i
k,2l
x,v : (Wg|x)

k,2l → (Wg|x)
k−1,2l ⊕ (Wg|x)

k+1,2(l−1)

such that i
k,2l
x,v (Ψx ⊗Γx) = iv(Ψx)⊗Γx + (−1)k(Ψx ⊗ 1) · ĩlx,v(Γx) when Ψx ∈

∧k
g∗|x and

Γx ∈
∨
g∗|x. Set, additionally, i

0,0
x,v = 0 and

i
k,0
x,v : (Wg|x)

k,0 → (Wg|x)
k−1,0, Ψx ⊗ 1 7→ ivΨx ⊗ 1,

for k ≥ 1. All the linear mappings i
k,2l
x,v , k, l ≥ 0, together define the operator

ix,v =
∑

k,l≥0

i
k,2l
x,v :Wg|x →Wg|x.

Of course, ix,v satisfies (1) and (2). It remains to show that ix,v is an antiderivation

of degree −1, i.e. ix,v(Θ1 · Θ2) = ix,v(Θ1) · Θ2 + (−1)rΘ1· ix,v(Θ2) for Θ1 ∈ (Wg|x)
r,

Θ2 ∈Wg|x, which is easy to obtain by considering elements Θi homogeneous with respect

to the bigradation only.

For a cross-section υ ∈ Sec g and for Θ ∈ Wg, the formulaM ∋ x 7→ ix,υx
(Θx) defines

an element iυ(Θ) of Wg and

iυ : Wg → Wg, Θ 7→ iυ(Θ),

is an antiderivation of degree −1. The smoothness of iυ(Θ), by Lemma 4.1(i)–(iii), follows

from the smoothness in the cases Θ = Ψ⊗ 1 where Ψ ∈ Sec
∧k
g∗, and Θ = 1⊗ Γ where

Γ ∈ Sec
∨l
g∗, which is easy to investigate. iυ has the property

iυ(Ψ ⊗ Γ) = iυΨ⊗ Γ + (−1)k(Ψ⊗ 1) · iυ(1⊗ Γ)(4.2)

for Ψ ∈ Sec
∧k
g∗ and Γ ∈ Sec

∨l
g∗.

Lemma 4.2. For each x ∈ M, there exists exactly one antiderivation dx : Wg|x →

Wg|x of degree +1 such that

1. dx(w
∗ ⊗ 1) = 1⊗ w∗,

2. dx(1⊗ w∗) = 0, w∗ ∈ g∗|x.

It has the properties:

(i) dx | (Wg|x)
0,0 = 0,

(ii) dx(w
∗
1 ∧ · · · ∧ w∗

k ⊗ 1) =
∑

i(−1)i+1w∗
1 ∧ · · · î · · · ∧ w∗

k ⊗ w∗
i , k ≥ 1,

(iii) dx(Ψx⊗Γx) = dx(Ψx⊗1)·(1⊗Γx) when Ψx ∈
∧
g∗|x and Γx ∈

∨
g∗|x, in particular,

dx(1⊗ Γx) = 0,

(iv) dx[(Wg|x)
k,2l] ⊂ (Wg|x)

k−1,2(l+1),

(v) dx is a differential, i.e. dx ◦ dx = 0.

Proof. Uniqueness. The uniqueness of dx and properties (i)–(v) are evident.

Existence. For k ≥ 1, there exists exactly one linear mapping d̃kx :
∧k
g∗|x →

(
∧k−1

g∗|x) ⊗ g
∗
|x such that d̃kx(w

∗
1 ∧ · · · ∧ w∗

k) =
∑

i(−1)i+1w∗
1 ∧ · · · î · · · ∧ w∗

k ⊗ w∗
i . It
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has the property d̃m+n
x (Ψ1x ∧ Ψ2x) = (d̃mx Ψ1x) · Ψ2x ⊗ 1 + (−1)mΨ1x ⊗ 1 · d̃nxΨ2x when

Ψ1x ∈
∧m
g∗|x and Ψ2x ∈

∧n
g∗|x. For k ≥ 0 and l ≥ 1, there exists exactly one linear map-

ping d
k,2l

x : (Wg|x)
k,2l → (Wg|x)

k−1,2(l+1) such that d
k,2l

x (Ψx⊗Γx) = (d̃kxΨx) ·(1⊗Γx) for

Ψx ∈
∧k
g∗|x and Γx ∈

∨l
g∗|x. Add d

0,0

x = 0 and put dx =
∑

k,l≥0 d
k,2l

x : Wg|x → Wg|x.

Of course, dx satisfies (1) and (2). It remains to show that dx is an antiderivation of

degree +1 which is easy to obtain by considering elements homogeneous with respect to

the bigradation.

All homomorphisms dx, x ∈M, define pointwise a homomorphism

d : Wg → Wg

which is an antiderivation of degree +1 and a differential. It has the property

d(Ψ⊗ Γ) = d(Ψ ⊗ 1) · (1 ⊗ Γ), Ψ ∈ Sec
∧k
g∗, Γ ∈ Sec

∨l
g∗.(4.3)

Lemma 4.3. For each x ∈ M and for v ∈ g|x, there exists exactly one derivation

θx,v :Wg|x →Wg|x of degree 0 such that

1. θx,v(w
∗ ⊗ 1) = −w∗ ◦ adv ⊗1,

2. θx,v(1⊗ w∗) = 1⊗ (−w∗ ◦ adv).

It has the property:

(i) θx,v(Ψx⊗Γx) = (θ∧xΨx)⊗Γx+Ψx⊗(θ∨xΓx) when Ψx ∈
∧
g∗|x and Γx ∈

∨
g∗|x, where

θ∧x and θ∨x denote the only derivations in the algebras
∧
g∗|x and

∨
g∗|x, respectively,

induced by − ad∗v : g
∗
|x → g∗|x.

Proof. The uniqueness and property (i) are evident. Formula (i) gives the required

operator.

For υ ∈ Sec g and Θ ∈ Wg, the formula M ∋ x 7→ θx,υx
(Θx) defines an element of

Wg and

θυ : Wg → Wg, Θ 7→ θυ(Θ),

is a derivation of degree 0. The adjoint representation adA : A→ A(g) [K2] determines a

representation of A on each associated vector bundle such as
∧k
g,

∨l
g,

∧k
g∗ ⊗

∨l
g∗,

etc. It will be denoted for brevity by ad. Then any element ξ ∈ SecA determines a

covariant differential operator Lad ◦ξ in the vector bundle (Wg)k,2l and determines a

linear operator

Lad ◦ξ : Wg → Wg(4.4)

such that Lad ◦υ = θυ for υ ∈ Secg.

Lemma 4.4. The linear operator (4.4) is a differentiation of the Weil algebra Wg.

Proof. Trivial calculations on simple tensors.

The relationships between the operators iυ, d, θυ,Lad ◦ξ are the following:

Lad ◦ξ ◦ d = d ◦ Lad ◦ξ,(4.5)

iυ ◦ d+ d ◦ iυ = θυ.(4.6)
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Indeed, ε1 := Lad ◦ξ ◦ d − d ◦ Lad ◦ξ is an antiderivation, whereas ε2 := iυ ◦ d + d ◦ iυ is

a derivation, of the Weil algebra Wg, therefore to prove (4.5) and (4.6) it is sufficient to

show that ε1 = 0 and ε2 = θυ on the cross-sections Ψ ⊗ 1 and 1⊗ Ψ, Ψ ∈ Sec g∗, which

is trivial.

Proposition 4.5. For Θ ∈ Sec
∧k
g∗ ⊗

∨l
g∗, the following equality holds:

dAk(Θ) = kd(Θ) +
1

k! · l!
· 〈dgΘ, (ω ∧ · · · ∧ ω)⊗ (dgω ∨ · · · ∨ dgω)〉

where dgΘ ∈ Ω1
A(M ;

∧k
g∗ ⊗

∨l
g∗) (Θ is treated as a 0-form).

Proof. We first prove the equalities

kd(Ψ⊗ 1) =
1

k!
· 〈Ψ, dg(ω ∧ · · · ∧ ω)〉 ,(4.7)

〈dg(Ψ⊗ Γ), ω ∧ · · · ∧ ω ⊗ dgω ∨ · · · ∨ dgω〉(4.8)

= 〈dgΨ, ω ∧ · · · ∧ ω〉 ∧ 〈Γ, dgω ∨ · · · ∨ dgω〉+

+ (−1)k 〈Ψ, ω ∧ · · · ∧ ω〉 ∧ 〈dgΓ, dgω ∨ · · · ∨ dgω〉

for Ψ ∈ Sec
∧k
g∗ and Γ ∈ Sec

∨l
g∗. Thanks to the linearity of both sides with respect

to Ψ, it is sufficient to show (4.7) on a simple tensor Ψ of the form Ψ = ψ1 ∧ · · · ∧ ψk
where ψi ∈ Sec g∗. Let x ∈M and vi ∈ A|x; by [K7, (2.2)] we get

1

k!
· 〈ψ1 ∧ · · · ∧ ψk, d

g(ω ∧ · · · ∧ ω)〉 (x; v1 ∧ · · · ∧ vk+1)

=
1

(k − 1)!
· 〈ψ1 ∧ · · · ∧ ψk, d

gω∧ ω ∧ · · · ∧ ω︸ ︷︷ ︸
k−1 times

〉(x; v1 ∧ · · · ∧ vk+1)

=
1

2 · (k − 1)!
·
∑

σ

sgnσ · 〈ψ1x ∧ · · · ∧ ψkx, d
gω(x; vσ(1) ∧ vσ(2))

∧ ω(x; vσ(3)) ∧ · · · ∧ ω(x; vσ(k+1))〉

=
1

2 · (k − 1)!
·
∑

σ

sgnσ ·
∑

i

(−1)i+1(dω)∨(ψi)(x; vσ(1) ∧ vσ(2))·

· 〈ψ1 ∧ · · · î · · · ∧ ψk, ω ∧ · · · ∧ ω〉(x; vσ(3) ∧ · · · ∧ vσ(k+1))

=
∑

i

(−1)i+1(dω)∨(ψi) ∧ ω
∧(ψ1 ∧ · · · î · · · ∧ ψk)(x; v1 ∧ · · · ∧ vk+1)

= (
∑

i

(−1)i+1ω∧(ψ1 ∧ · · · î · · · ∧ ψk) ∧ (dω)∨(ψi))(x; v1 ∧ · · · ∧ vk+1)

= (kd(Ψ ⊗ 1))(x; v1 ∧ · · · ∧ vk+1).

Equality (4.8) easily follows from the definitions. To prove the Proposition it is suffi-

cient to consider Θ = Ψ ⊗ Γ for Ψ ∈ Sec
∧k
g∗ and Γ ∈ Sec

∨l
g∗ and use Corollary 2.2

and the above equalities.

Let (Wg)
k,2l
I0 denote the space of cross-sections invariant with respect to the adjoint

representation ofA on (Wg)
k,2l

=
∧k
g∗⊗

∨l
g∗. Put (Wg)I0 =

⊕
k,l≥0(Wg)

k,2l
I0 . (Wg)

0,0
I0

is equal to Ω0
b(M,F) the space of F -basic functions (i.e. constant along leaves of F).

The following easily follows from Lemma 4.4.
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Corollary 4.6. (Wg)I0 is a subalgebra of the Weil algebra Wg.

Equality (4.5) implies that d maps invariant elements of Wg into invariant ones,

defining an antiderivation of algebras d0 : (Wg)I0 → (Wg)I0 , whereas Proposition 4.5

yields that k restricted to the invariant cross-sections k0 : (Wg)I0 → ΩA(M) commutes

with the differentials d0 and dA, giving a homomorphism k0# : H((Wg)I0 , d0) → HA(M)

of algebras. However, k0# is unimportant because the space ((Wg)I0 , d0) is trivial:

H((Wg)I0 , d0) ∼= (Wg)0I0 (= (Wg)0,0I0 = Ω0
b(M,F)).(4.9)

Indeed, a chain homotopy joining id to 0 is defined by the family of invariant linear

homomorphisms of vector bundles ck,l : (Wg)
k,2l

→ (Wg)
k+1,2(l−1)

such that ck,0 = 0

and, for l > 0, ck,l(w∗
1 ∧ · · · ∧w∗

k ⊗Γ1 ∨ · · · ∨ Γl) =
(−1)k

k+l ·
∑l

s=1 w
∗
1 ∧ · · · ∧w∗

k ∧ Γs ⊗Γ1 ∨

· · · ŝ · · · ∨ Γl, w
∗
i ,Γj ∈ g

∗
|x, x ∈M.

5. The change of variables in Wg|x

Proposition 5.1. There exists exactly one isomorphism ϕx :Wg|x →Wg|x of alge-

bras of degree 0 such that

1. ϕx(1) = 1,

2. ϕx(w
∗ ⊗ 1) = w∗ ⊗ 1,

3. ϕx(1⊗w∗) = 1⊗w∗ − δxw
∗ ⊗ 1, w∗ ∈ g∗|x, where δx denotes the differential in the

algebra
∧
g∗|x, defined in [K7, (2.5)].

Proof. We recall that δx is equal to minus the classical Chevalley-Eilenberg differential.

The uniqueness is evident. To prove the existence, take two uniquely determined linear

mappings ϕ̃x+ , ϕ̃x− :
∨
g∗|x →Wg|x, satisfying the conditions

(i) ϕ̃x±(1) = 1,

(ii) ϕ̃x±(Γ1x ∨ · · · ∨ Γlx) =
∏l
i=1(1 ⊗ Γix ± δx(Γix)⊗ 1), Γix ∈ g∗|x, l ≥ 1.

They are homomorphisms of algebras of degree 0 [the degree Γx = 2 for Γx ∈ g∗|x] and

ϕ̃x± [
∨l
g∗|x] ⊂

l⊕

m=0

(
∧2(l−m)

g∗|x ⊗
∨m
g∗|x).

Clearly, there exist two linear mappings ϕx+ , ϕx− :Wg|x →Wg|x such that

(iii±) ϕx±(Ψx ⊗ Γx) = Ψx ⊗ 1 · ϕ̃x±(Γx), Ψx ∈
∧
g∗|x, Γx ∈

∨
g∗|x.

They are homomorphisms of algebras of degree 0 (which can be easily proved by

considering tensors bihomogeneous only), and fulfil the property

(iv±) ϕx±(1⊗ w∗) = 1⊗ w∗ ± δxw
∗ ⊗ 1, w∗ ∈ g∗|x.

To end the proof, put ϕx := ϕx− . To see that ϕx is an isomorphism, we check the

equalities ϕx− ◦ ϕx+ = id, ϕx+ ◦ ϕx− = id. Both sides of these are homomorphisms of

algebras, therefore it is sufficient to check them on the generators, which is trivial.

All the isomorphisms ϕx, x ∈M, establish an isomorphism of algebras

ϕ : Wg → Wg,
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ϕ(Θ)(x) = ϕx(Θx), x ∈M. By the proof above,

ϕ−1(Ψ⊗ 1) = Ψ⊗ 1 and ϕ−1(1⊗Ψ) = 1⊗Ψ+ δΨ⊗ 1

for Ψ ∈ Sec g∗. Moreover, ϕx establish linear homomorphisms of vector bundles

ϕl :
∧
g∗ ⊗

∨≤l
g∗

∼=
→

∧
g∗ ⊗

∨≤l
g∗, ϕk,2l : (Wg)k,2l →

l⊕

m=0

(Wg)k+2(l−m),2m.

The following equality holds:

ϕk,2l ◦ (Ψ ⊗ Γ) = Ψ⊗ 1 · (ϕ0,2l ◦ (1 ⊗ Γ)), Ψ ∈ Sec
∧k
g∗, Γ ∈ Sec

∨l
g∗.(5.1)

Proposition 5.2. ϕk,2l is an invariant homomorphism.

Proof. We have to prove only that

Lad ◦ξ(ϕ
k,2l ◦Θ) = ϕk,2l ◦ Lad ◦ξΘ(5.2)

for ξ ∈ SecA and Θ ∈ Sec
∧k
g∗ ⊗

∨l
g∗. First, we check the equality

Lad ◦ξ(δΓ) = δ(Lad ◦ξΓ)(5.3)

for Γ ∈ Sec g∗. To this end, take ν1, ν2 ∈ Sec g. The Jacobi identity implies

〈Lad ◦ξ(δΓ), ν1 ∧ ν2〉 = (γ ◦ ξ)〈Γ, [[ν1, ν2]]〉 − 〈Γ, [[[[ξ, ν1]], ν2]]〉 − 〈Γ, [[ν1, [[ξ, ν2]]]]〉

= 〈Lad ◦ξΓ, [[ν1, ν2]]〉 = 〈δ(Lad ◦ξΓ), ν1 ∧ ν2〉.

Next, we obtain

(5.4) Lad ◦ξ(ϕ
0,2 ◦ (1⊗ Γ)) = 1⊗ Lad ◦ξΓ− δ(Lad ◦ξΓ)⊗ 1 = ϕ0,2 ◦ (1⊗ Lad ◦ξΓ),

for Γ ∈ Sec g∗. As usual, to obtain (5.2) it is sufficient to consider Θ = ψ1 ∧ · · · ∧ ψk ⊗

Γ1 ∨ · · · ∨ Γl, ψi, Γj ∈ Sec g∗. By (5.1), (5.4) and Lemma 4.4 we obtain

Lad ◦ξ(ϕ
k,2l ◦ (ψ1 ∧ · · · ∧ ψk ⊗ Γ1 ∨ · · · ∨ Γl))

=
∑

i

ψ1 ∧ · · · ∧ Lad ◦ξ(ψi) ∧ · · · ∧ ψk ⊗ 1 · ϕ0,2l ◦ (1⊗ Γ1 ∨ · · · ∨ Γl)

+ ψ1 ∧ · · · ∧ ψk ⊗ 1 ·
∑

i

ϕ0,2 ◦ (1⊗ Γ1) · . . . · ϕ
0,2 ◦ (1⊗ Lad ◦ξΓi)) · . . .

. . . · (ϕ0,2 ◦ (1⊗ Γl)

= ϕk,2l ◦
(∑

i

ψ1 ∧ · · · ∧ Lad ◦ξ(ψi) ∧ · · · ∧ ψk ⊗ Γ1 ∨ · · · ∨ Γl

+ ψ1 ∧ · · · ∧ ψk ⊗
∑

i

Γ1 ∨ · · · ∨ Lad ◦ξ(Γi) ∨ · · · ∨ Γl

)

= ϕk,2l ◦ Lad ◦ξ(ψ1 ∧ · · · ∧ ψk ⊗ Γ1 ∨ · · · ∨ Γl).

Corollary 5.3. (1) ϕl :
∧
g∗⊗

∨≤l
g∗ →

∧
g∗⊗

∨≤l
g∗ is an invariant isomorphism

of vector bundles, therefore (ϕl)−1 is invariant, too.

(2) ϕ(Θ) is an invariant element of Wg whenever Θ ∈ Wg is invariant.

(3) ϕ0 : (Wg)I0 → (Wg)I0 , the restriction of ϕ to invariant cross-sections, is an

isomorphism of algebras.
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6. Operators iν , d, θν and their properties. We define the fundamental opera-

tors iν , d, θν in Wg in such a way that the following diagram commutes:

Wg Wg✲ϕ

Wg Wg✲
ϕ

❄

iν , d, θν

❄
iν , d, θν

Of course, one can follow this procedure on each level of x ∈M to obtain the operators

ix,v, dx, θx,v on Wg|x, with the relations ix,νx(θx) = iν(Θ)(x), etc.

Proposition 6.1. The fundamental properties of the operators iν , d, θν are as follows:

(1) θν = θν , (2) Lad ◦ξ ◦ d = d ◦ Lad ◦ξ, (3) iν ◦ d+ d ◦ iν = θν .

Proof. To prove (1) we recall that θν and θν are derivations, therefore it is sufficient

to show the equality θν(Θ) = θν(Θ) for the cross-sections Θ = Ψ⊗ 1 and Θ = 1⊗Ψ,Ψ ∈

Sec g∗ which is easy to obtain. Equality (2) is evident because Lad ◦ξ commutes with

ϕ, ϕ−1 and d. Analogously we check (3).

Proposition 6.2. (1) iν is an antiderivation of degree −1 defined uniquely by the

conditions iν(Ψ ⊗ 1) = iνΨ, and iν(1 ⊗Ψ) = 0, Ψ ∈ Sec g∗. It has the property

(i) iν(Ψ⊗ Γ) = iν(Ψ)⊗ Γ for Ψ ∈ Sec
∧k
g∗, Γ ∈ Sec

∨l
g∗.

(2) d is an antiderivation of degree +1 defined uniquely by the conditions

(1◦) d(Ψ ⊗ 1) = 1⊗Ψ+ δΨ⊗ 1,

(2◦) d(1⊗Ψ) is an element of (Wg)1,2 = Sec(g∗⊗g∗) such that iν ◦d(1⊗Ψ) = θνΨ

for ν ∈ Secg.

Proof. Trivially follows from Prop. 6.1.

The families of operators ix,νx , dx, θx,νx , indexed by x ∈ M, give rise, for k, l ≥ 0, to

the linear homomorphisms of vector bundles

ik,2lν : (Wg)k,2l → (Wg)k−1,2l, θk,2lν : (Wg)k,2l → (Wg)k,2l,

dk,2lν : (Wg)k,2l → (Wg)k+1,2l ⊕ (Wg)k−1,2(l+1).

Proposition 6.1(2) implies

Corollary 6.3. d maps invariant elements of Wg into invariant ones, defining an

antiderivation d0 : (Wg)I0 → (Wg)I0 .

ϕ0 : (Wg)I0 → (Wg)I0 commuting with d0 and d0 gives an isomorphism

ϕ0# : H((Wg)I0 , d0)
∼=
→ H((Wg)I0 , d0),

therefore H((Wg)I0 , d0) is trivial according to (4.9).

The cross-sections Θ ∈ Wg, for which iνΘ = 0 for each ν ∈ Sec g, are called horizontal

(or more precisely, g-horizontal). Since iν is an antiderivation, all horizontal cross-sections

form a subalgebra of Wg denoted by (Wg)i. This construction can be performed on each

level of x ∈ M to obtain the algebra (Wg|x)i. Of course, Θ ∈ (Wg)i ⇐⇒ Θx ∈ (Wg|x)i
for each x ∈M.
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Lemma 6.4. (Wg)i =
⊕l≥0

(Wg)
0,2l ∼=

⊕l≥0
Sec

∨l
g∗; equivalently,

(Wg|x)i = R⊗
∨
g∗|x

for each x ∈ M. In consequence, each nontrivial homogeneous element of (Wg)i has an

even degree.

Proof. Let ψx =
∑

j ψ
j
x ⊗ Γjx ∈ (Wg|x)i, ψ

j
x ∈

∧
g∗|x and Γjx ∈

∨
g∗|x; we can assume

the linear independence of Γjx [G, p. 7]. Since 0 = ix,v(ψx) =
∑

j ix,v(ψ
j
x)⊗ Γjx, therefore

ix,v(ψ
j
x) = 0 for each v ∈ g|x. But

⋂
v∈g|x

ker ix,v = R [G, p. 117], then we obtain

ψjx = rj ∈ R ⊂
∧
g∗|x.

Lemma 4.4 and Proposition 6.1 yield

Corollary 6.5. d maps invariant and (simultaneously) horizontal elements of Wg

into such elements, defining the antiderivation di,0 : (Wg|x)i,I0 → (Wg|x)i,I0 .

7. The mapping k. Put k = k ◦ ϕ : Wg → ΩA(M), which is a homomorphism of

algebras.

Lemma 7.1. k0 : (Wg)I0 → ΩA(M), the restriction of k to the invariant cross-

sections commutes with the differentials d0 and dA.

Proof. For Θ ∈ (Wg)I0 we have, by Corollary 5.3(2), dA ◦ k0(Θ) = dA ◦ k0 ◦ ϕ(Θ) =

k ◦ d ◦ ϕ(Θ) = k0 ◦ d0(Θ).

Proposition 7.2. k(Ψ⊗ Γ) = ω∧(Ψ) ∧ Ω∨(Γ).

Proof. k(Ψ ⊗ Γ) = k(Ψ ⊗ 1 · 1 ⊗ Γ) = k(Ψ ⊗ 1) ∧ k(1 ⊗ Γ) = ω∧(Ψ) ∧ k(1 ⊗ Γ). It

remains to verify that k(1⊗Γ) = Ω∨(Γ). But the mappings Γ 7→ k(1⊗Γ) and Γ 7→ Ω∨(Γ)

are homomorphisms of algebras such that 1 7→ 1, therefore it is sufficient to check the

equality for Γ = Ψ ∈ Secg∗. Formula [K7, (2.6)] yields

k(1⊗Ψ) = k ◦ ϕ(1 ⊗Ψ) = k(1⊗Ψ− δΨ ⊗ 1)

= (dω)∨(Ψ)− ω∧(δΨ) = 〈Ψ, dgω〉 − ω∧(δΨ) = Ω∨(Ψ).

Proposition 7.3. iν ◦ k = k ◦ iν for ν ∈ Secg.

Proof. By the horizontality of the forms in ImΩ∨ [which easily follows from the

horizontality of Ω], the standard property of the substitution operator iν : ΩA(M) →

ΩA(M), equality [K7, (2.3)] and Prop. 6.2(1)(i) above, we get, for Ψ ∈ Sec
∧k
g∗ and

Γ ∈
⊕

l≥0 Sec
∨l
g∗,

iν ◦ k(Ψ⊗ Γ) = iν(ω
∧(Ψ) ∧ Ω∨(Γ)) + (−1)kω∧(Ψ) ∧ iν(Ω

∨(Γ))

= ω∧(iν(Ψ)) ∧Ω∨(Γ) = k(iν(Ψ)⊗ Γ) = k(iν(Ψ⊗ Γ)).

Our proposition now follows from the linearity of k and iν .

8. The Chern-Weil homomorphism of regular Lie algebroids, revisited. As

a simple consequence of Proposition 7.2 we obtain the Chern-Weil homomorphism of

regular Lie algebroids constructed earlier in [K2].
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k maps horizontal elements of Wg into horizontal real forms on A, giving a ho-

momorphism of algebras ki : (Wg)i → ΩA,i(M). This mapping is defined by the for-

mula ki(1 ⊗ Γ) = Ω∨(Γ), Γ ∈
⊕

l≥0 Sec
∨l
g∗. Consider the further restriction of k,

k0,i : (Wg)I0,i → ΩA,i(M) where (Wg)I0,i denotes the algebra of elements horizontal

and invariant simultaneously. We prove that

d|(Wg)I0,i = 0.(8.1)

Let 0 6= Θ ∈ (Wg)I0,i. By Corollary 6.5, dΘ ∈ (Wg)I0,i. But Θ has an even degree

(see Lemma 6.4), whereas d is an antiderivation of degree +1, therefore dΘ has an odd

degree. Using Lemma 6.4 once again, we assert that dΘ = 0.

According to Lemma 7.1 and (8.1), the forms in Imk0,i are d
A-closed. The isomor-

phism λ∗ : ΩA,i(M) → ΩE(M) ([K7, sec. 2]) maps dA-closed forms into dE -closed forms,

see [K7, (2.1)]. By the above, there exists a homomorphism of algebras
⊕

l≥0

(Sec
∨l
g∗)I0 → HE(M), Γ 7→ [λ∗(Ω

∨(Γ))].(8.2)

However, λ∗(Ω
∨(Γ)) = 1

l! · 〈Γ, λ∗Ω ∨ · · · ∨ λ∗Ω〉 = 1
l! · 〈Γ,Ωb ∨ · · · ∨ Ωb〉, therefore

[λ∗(Ω
∨(Γ))] = [ 1l! · 〈Γ,Ωb ∨ · · · ∨ Ωb〉] = hA(Γ) according to [K2, Ch. 4], which means

that (8.2) is the Chern-Weil homomorphism of the regular Lie algebroid A.

PART II. SECONDARY CHARACTERISTIC HOMOMORPHISM OF

PARTIALLY REGULAR LIE ALGEBROIDS

9. Regular Lie algebroids and ideals. Take two vector bundles F ′ and F on a

paracompact manifold M , such that F ′ ⊂ F, and define (see [K6, sec. 2]), for k ≥ 1,

I∧ kF ′ :=
⋃

x∈M

I∧ k(F ′
|x
) ⊂

∧
F.

I∧k
F ′ is a vector subbundle of

∧
F and the space of global cross-sections Sec(I∧k

F ′) is

an ideal in the algebra Sec(
∧
F ); moreover, Sec(I∧k

F ′) = (Sec(IF ′)k, k ≥ 1.

Let E′ ⊂ E ⊂ TM be two C∞ constant dimensional distributions on M, and suppose

E to be integrable. Denote by E′⊥ the vector subbundle of E∗ consisting of all covectors

vanishing on E′. Using the above (for F = E∗, F ′ = E′⊥, k = 1), we obtain an ideal I

in the algebra ΩE(M) = Sec
∧
E∗ of tangential defferential forms, generated by 1-forms

vanishing on E′. Standard calculations give the following

Theorem 9.1 (The Frobenius Theorem for subdistributions). E′ is involutive if and

only if the ideal I is differential, i.e. dE [I] ⊂ I.

Consider a regular Lie algebroid (A, [[·, ·]], γ) over a foliated manifold (M,E) and an in-

volutive subdistribution E′⊂E. This produces a new regular Lie algebroid (A′, [[·, ·]], γ|A′)

in which A′ = γ−1[E′].

In the sequel, the symbols A′⊥ and E′⊥ are understood with respect to the canonical

dualities A∗ ×A→ R and E∗ × E → R (see [K6]). Consider the ideal

Sec(I∧k
(A′⊥)

) ⊂ ΩA(M) = Sec
∧
A∗
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which is the k-power of the ideal of real forms on the Lie algebroid A, vanishing on A′.

Since Ψ ∈ SecA′⊥ if and only if Ψ = γ∗θ for some θ ∈ SecE′⊥, we obtain that each

form Ψ ∈ Sec(I∧k
(A′⊥)

) is globally of the form Ψ =
∑l

i=1 γ∗(θ
1
i ∧ . . . ∧ θ

k
i ) ∧ Ψi for an

integer l, θji ∈ Sec(E′⊥) and Ψi ∈ ΩA(M). The above Theorem 9.1, and the equalities

dAγ∗ = γ∗d
E ([K7, (2.1)]), iξγ∗ = γ∗iγ◦ξ, θAξ γ∗ = γ∗θγ◦ξ for ξ ∈ SecA′, make the

following proposition obvious:

Proposition 9.2. The ideal Sec(I∧k
(A′⊥)

) is closed with respect to the operators

dA, iξ, θ
A
ξ for ξ ∈ SecA′.

The fact that
∧
γ∗ :

∧
E∗ →

∧
A∗ is a monomorphism and the equality

iw1∧···∧wh−k+1
(γ∗θ) = γ∗iγw1∧···∧γwh−k+1

θ

for θ ∈ ΩE(M) and wi ∈ SecA (see also [K6] and [An]) imply

Corollary 9.3. θ ∈ Sec(I∧k
(E′⊥)

) ⇐⇒ γ∗θ ∈ Sec(I∧k
(A′⊥)

).

Recall that [K-T2], [K6, Rem. 4.2] by a partial connection in A over E′ we mean any

connection λ′ : E′ → A′ in the regular Lie algebroid A′ = γ−1[E′].

If λ′ is flat, then the pair (A, λ′) is called a partially flat regular Lie algebroid. Any

foliated principal bundle [K-T2, p. 20] gives in a natural manner a partially flat regular

Lie algebroid. A connection λ : E → A in A is said to be adapted to λ′ when λ′ = λ|E′

(an adapted connection always exists).

Assume that A is equipped with a connection λ and a partial connection λ′ over

E′. Let Ω and Ω′ (Ωb and Ω′
b) be the curvature forms (the curvature tensors) of these

connections (see [K7, Sec. 2], and [K2, 3.1.1]). From the equality Ω = γ∗Ωb and Corollary

9.3 (see also [K6]), we obtain

Theorem 9.4. If λ is adapted to λ′, then

(a) λ′ is flat if and only if 〈v∗,Ω|x〉 ∈I
(2)∧

1
(A′⊥

|x
)
for any x ∈M and v∗ ∈ g∗|x,

(b) λ is basic if and only if 〈v∗,Ω|x〉 ∈ I
(2)∧2

(A′⊥
|x

)
for any x ∈M and v∗ ∈ g∗|x.

We now pass to the Weil algebrasWg|x and Wg. Wg|x has a standard even decreasing

filtration by ideals

F2p(Wg|x) := I
R⊗

∨
pg∗

|x
=

∧
g∗|x ⊗

∨≥pg∗|x.

These, for all x ∈M, define an even decreasing filtration by ideals of the Weil algebra

Wg

F2p(Wg) := {Θ ∈ Wg; ∀x ∈M, Θx ∈ F2p(Wg|x)} =
⊕

l≥p

Sec(
∧
g∗ ⊗

∨l
g∗).

The algebras
∧
A∗

|x and
∧
E∗

|x possess decreasing filtrations by ideals

Fp(
∧
A∗

|x) = I∧p
(A′⊥

|x
), Fp(

∧
E∗

|x) = I∧p
(E′⊥

|x
)

which determine decreasing filtrations by ideals of the algebras ΩA(M) and ΩE(M)

Fp(ΩA(M)) = {Ψ ∈ ΩA(M); ∀x ∈M, Ψx ∈ Fp(
∧
A∗

|x)} = Sec I∧p
(A′⊥),

Fp(ΩE(M)) = {Θ ∈ ΩE(M); ∀x ∈M, Θx ∈ Fp(
∧
E∗

|x)} = Sec I∧p
(E′⊥).
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Proposition 9.5. Let (A, λ′) be a partially flat regular Lie algebroid and λ an adapted

connection. Then the homomorphism k : Wg → ΩA(M) (defined in Part I for λ) is

filtration-preserving in the sense that k[F2p(Wg)] ⊂ Fp(ΩA(M)), p ≥ 0. Moreover, if λ

is basic, then k[F2p(Wg)] ⊂ F2p(ΩA(M)), p ≥ 0.

Proof. Of course, it is sufficient to verify that kx : Wg|x →
∧
A∗

|x preserves the

filtrations. Since I
R⊗

∨
pg∗

|x
= (IR⊗g∗

|x
)p, therefore F2p(Wg|x) = (F2(Wg|x))

p. On the

other hand, kx is a homomorphism of algebras, thus we need only check the inclusion

kx[F
2(Wg|x)] ⊂ F1(

∧
A∗

|x), whereas, in the case of a basic connection kx[F
2(Wg|x)] ⊂

F2(
∧
A∗

|x).

F2(Wg|x), F
1(
∧
A∗

|x) and F2(
∧
A∗

|x) are ideals and F2(Wg|x) equals I
R

⊗
g∗
|x
, so it

suffices to check that kx(1⊗w∗) ∈ I
(2)∧

1
(A′⊥

|x
)
, w∗ ∈ g∗|x, and for a basic connection λ, that

kx(1⊗ w∗) ∈ I
(2)∧

2
(A′⊥

|x
)
, w∗ ∈ g∗|x.

However, kx(1⊗ w∗) = 〈w∗,Ω|x〉, so the assertion follows from Theorem 9.4.

Corollary 9.6. Let the situation be as in the previous proposition. If q=rank(E/E′)

(i.e. q equals the codimension of F ′ with respect to F ; F ′ and F being the foliations

determined by E and E′, respectively), then

k[F2p(Wg)] = 0 for p ≥ q + 1.

If λ is, in addition, basic, then

k[F2p(Wg)] = 0 for p ≥
[q
2

]
+ 1.

Proof. Clearly, q = rank(A/A′) = dim(A′⊥
|x ) for each x ∈M, which gives

∧p
(A′⊥

|x ) = 0

for p ≥ q + 1 and, in consequence, Fp(Ω(A)) = 0 for p ≥ q + 1; then Proposition

9.5 implies k[F2p(Wg)] = 0 for such p. Under the additional assumption concerning λ,

k[F2p(Wg)] = 0 for 2p ≥ q + 1, i.e. for p ≥ [ q2 ] + 1.

The filtration of Wg in the intersection with the subalgebra
⊕

l≥0 Sec(
∨l
g∗)I0 gives

a filtration of the latter with

F2p
(⊕

l≥0

Sec(
∨l
g∗)I0

)
:=

(⊕

l≥0

Sec(
∨l
g∗)I0

)
∩ F2p(Wg) =

⊕

l≥p

Sec(
∨l
g∗)I0 .

Notice also, see Corollary 9.3 and [K7, s. 2], that the isomorphism γ∗ : ΩE(M) → ΩA,i(M)

preserves the filtration. As a corollary we obtain the so-called ”Vanishing Bott’s Phe-

nomenon” [K6] for regular Lie algebroids.

10. The truncated Weil algebra

Definition 10.1. By the symmetric truncated algebra over a vector space g we shall

mean the space
∨≤l

g∗ with the canonical even gradation, and with the structure of an

(anti)commutative graded algebra such that

(u∗1 ∨ . . . ∨ u
∗
k) · (v

∗
1 ∨ . . . ∨ v∗s ) =

{
u∗1 ∨ . . . ∨ u

∗
k ∨ v

∗
1 ∨ . . . ∨ v∗s when k + s ≤ l

0 when k + s > l.
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This algebra can be constructed isomorphically as a quotient algebra (
∨
g∗)/I∨>l

g∗ of

the symmetric algebra
∨
g∗ by the ideal generated by

∨l+1
g∗. The mapping

∨≤l
g∗ → (

∨
g∗)/I∨>l

g∗ , w∗ 7→ [w∗],

establishes the canonical isomorphism of algebras. The canonical projection πl :
∨
g∗ →∨≤l

g∗ is, of course, a homomorphism of algebras.

Denote by

(Wg)l :=
∧
g∗ ⊗

∨≤l
g∗

the anticommutative graded tensor product of the anticommutative graded algebras. It

is called the truncated Weil algebra of the vector space g.

We return to the consideration of a regular Lie algebroid A over (M,E), with the

Atiyah sequence 0 → g →֒ A
γ
→ E → 0. Notice that, for each x ∈M,

(Wg|x)l ∼= (Wg|x)/F
2(l+1)(Wg|x)

(θx 7→ [θx] establishes the canonical isomorphism) and, by the relation

dx
[
(Wg|x)

k,2s
]
⊂ (Wg|x)

k+1,2s ⊕ (Wg|x)
k−1,2(s+1),

dx defines a new differential

[dx]l : (Wg|x)l → (Wg|x)l.

Writing dx = d′x + d′′x where d′x
[
(Wg|x)

k,2s
]
⊂ (Wg|x)

k+1,2s and d′′x
[
(Wg|x)

k,2s
]
⊂

(Wg|x)
k−1,2(s+1), we see that

[dx]l(ϕx ⊗ Γx) =

{
dx(ϕx ⊗ Γx) when Γx ∈

∨<l
g∗|x,

d′x(ϕx ⊗ Γx) when Γx ∈
∨l
g∗|x.

Put (Wg)l :=
∧
g∗

⊗∨≤l
g∗and (Wg)l := Sec(Wg)l. Of course,

(Wg)l ∼= (Wg)/F2(l+1)(Wg).

(Wg)l will be called the truncated Weil algebra of the vector bundle g.

The family [dx]l, x ∈ M, determines an endomorphism [d]l : (Wg)l → (Wg)l and a

differential, denoted by the same letter,

[d]l : (Wg)l → (Wg)l.(10.1)

For s < l, the projection (Wg)l → (Wg)s is a homomorphism of algebras commuting

with the differentials [d]l and [d]s.

Take the canonical adjoint representation adA of A on (Wg)l and denote by (Wg)l,Io

the space (in fact, a subalgebra of (Wg)l) of invariant cross-sections. (Wg)l,I0 is stable

under the operator [d]l. Indeed, let Θ be a bihomogeneous element of (Wg)l,I0 . Then dΘ

is invariant, in particular, d′Θ is invariant; [d]lΘ being equal to dΘ or d′Θ, is invariant,

too.

Let λ be any connection in A and let k : Wg → ΩA(M) be the homomorphism of

algebras determined by λ.
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Proposition 10.2. Assume that k[F2(l+1)(Wg)] = 0. Then

(1) there exists a homomorphism of algebras [k]l : (Wg)l → ΩA(M) such that the

diagram

(Wg)l ΩA(M)✲[k]l

Wg

✻

π k

�
�
�
�
�
�✒

commutes (π being the canonical projection),

(2) [k]l is equal to the restriction k|(Wg)l,

(3) [k]l restricted to the invariant cross-sections (Wg)l,I0 commutes with the differen-

tials [d]l and d
A, defining a homomorphism of algebras

[k]l# : H((Wg)l,I0 , [d]l) → HA(M).

The class [k]l#[Θ] for Θ ∈ (Sec
∧k
g∗ ⊗

∨s
g∗)I0 , s ≤ l, has the form 1

k!·s! ·

〈Θ, ω ∧ . . . ∧ ω︸ ︷︷ ︸
k times

⊗ Ω ∨ . . . ∨ Ω︸ ︷︷ ︸
s times

〉 as its representative.

Proof. (1) and (2) are evident.

(3) Let Θ ∈ (Wg)l,I0 (⊂ (Wg)I0). By Lemma 7.1

dA ◦ [k]l(Θ) = dA ◦ k(Θ) = k ◦ d(Θ) = [k]l ◦ π ◦ d(Θ)

= [k]l ◦ [d]l ◦ π(Θ) = [k]l ◦ [d]l(Θ).

The last sentence is a consequence of Proposition 7.2 (see also [K7, Sec. 2]).

Example 10.3. Assume that A is equipped with a flat partial connection λ′ over E′ ⊂

E (as in Prop. 9.5) and let q = rank(E/E′). According to Corollary 9.6, k[F2(q+1)(Wg)]

= 0 for an adapted connection λ, and k[F2([q/2]+1)(Wg)] = 0 for a basic connection λ.

Prop. 10.2 produces in these situations the homomorphisms of algebras [k]q′ : (Wg)q′ →

ΩA(M) for q′ ≥ q and q′ ≥ [q/2], respectively, and next, the corresponding homomor-

phisms on cohomology. The homomorphism [k]q# : H((Wg)q, [d]q) → HA(M) generalizes

the ω# described in [K7, Cor. 2.3 and Rem. 1]: In the case when E′ = E, i.e. when λ′ is

a flat connection in A, we have q = 0 and [k]0 = ω∧
0 .

11. Characteristic homomorphism—construction. Here we construct some

characteristic homomorphism of a partially flat regular Lie algebroid, which is a gen-

eralization of the one constructed in [K7] for a flat regular Lie algebroid.

Consider, in a given regular Lie algebroid A over (M,E), two geometric structures:

(1) a partial flat connection λ′ over an involutive subdistribution E′ ⊂ E,

(2) a subalgebroid B ⊂ A over (M,E), see the following diagram:
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(11.1)

0 g✲ A′✲ ✲γ
✛
λ′

E′ 0✲

0 g✲ A✲ E✲γA
0✲

0 h✲
∪

B✲ E✲γB
0✲

⊂

⊂

⊂

γ−1
A [E′]

‖

‖

❄

∩

❄

∩

✻

∪

✻
‖

The system (A,B, λ′) is called a PFS-regular Lie algebroid over (M,E,E′).

The construction of the characteristic homomorphism of a PFS-regular Lie algebroid

has, as in the case of an FS-regular Lie algebroid [K7], a number of steps.

1) Let s :g → g/h denote, as in [K7, Sec. 3], the canonical projection. Put, for a

positive integer l, W (g;h)l :=
∧
(g/h)∗ ⊗

∨≤l
g∗ and W(g;h)l := SecW (g;h)l. W(g;h)l

with the natural structure of an algebra will be called the truncated relative Weil algebra.

The representation ad∧B,g of B on
∧
(g/h)∗ described in [K7, p. 211], together with the

representation adA |B of B on
∨≤l
g∗ (the restriction to B of the adjoint representation

of A on
∨≤l
g∗), yields the representation of B on W (g;h)l denoted also - for brevity -

by ad. For an arbitrary ξ ∈ SecB, the differential operator Lad ◦ξ : W(g;h)l → W(g;h)l
is a differentiation of the truncated relative Weil algebra W(g;h)l, from which we obtain

that the space W(g;h)l,I0 of invariant cross-sections is a subalgebra of W(g;h)l.

The monomorphisms
∧
s∗ :

∧
(g/h)∗ →

∧
g∗ and

∧
s∗ ⊗ idl :

∧
(g/h)∗ ⊗

∨≤l
g∗ →

∧
g∗ ⊗

∨≤l
g∗

of vector bundles are invariant with respect to the representations considered of the Lie

algebroid B, which is easy to see by the definitions. As a corollary from the above we

obtain that (
∧
s∗ ⊗ idl) ◦ Ψ, Ψ ∈ W(g;h)l, is an invariant cross-section if and only if Ψ

is invariant, and that

W(g;h)l,I0 ∋ Ψ 7→ (
∧
s∗ ⊗ idl) ◦Ψ ∈ W(g)l,I0

is a homomorphism of algebras. On the other hand, a cross-section Ψ′ of (Wg)l is of the

image of some cross-section of the bundle W (g;h)l if and only if Ψ′ is h-horizontal (i.e.

if and only if ινΨ = 0 for ν ∈ Sech, where ιν is the operator defined in subsection 6), so

W(g;h)l,I0 → W(g)l,h,I0 , Ψ 7→ (
∧

s∗ ⊗ idl) ◦Ψ,

is an isomorphism of algebras where W(g)l,h,I0 ⊂ W(g)l,I0 is a subalgebra of h-invariant

elements.

2) The subspace W(g)l,h,I0 is stable under the differential (10.1). Indeed, for an in-

variant element Ψ′ of W(g)l, we have ιν ◦ d(Ψ
′) = −d ◦ ιν(Ψ

′) by Lemma 4.4 and Propo-

sition 6.1, and, in consequence, ιν ◦ d′(Ψ′) = −d′ ◦ ιν(Ψ
′). Therefore, for a bihomoge-
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neous element Ψ′ ∈ W(g)l, ιν ◦ [d]l(Ψ
′) = ιν(dΨ

′) = −d(ινΨ
′) = 0 or ιν ◦ [d]l(Ψ

′) =

ιν(d
′Ψ′) = −d′(ινΨ

′) = 0, see Section 10.1. This enables us to define the differen-

tial dl,h : W(g;h)l,I0 → W(g;h)l,I0 in such a way that the following diagram com-

mutes:

W(g;h)l,I0 W(g)l,h,I0✲
∼=

W(g;h)l,I0 W(g)l,h,I0✲∼=

❄

dl,h

❄

[d]l

(11.2)

3) Consider any connection λ : E → A in A and let the homomorphism k be con-

structed for λ. Assuming k[F2(l+1)(Wg)] = 0 (see Proposition 10.2) the form ϕ(Ψ) :=

[k]l((
∧

s∗ ⊗ idl) ◦ Ψ), Ψ ∈ W(g;h)l, is h-horizontal, which follows in an easy way from

Propositions 6.2 and 7.3. Therefore, the form j∗(ϕ(Ψ)) ∈ ΩB(M) is horizontal. Then

there exists a form ∆Ψ ∈ ΩE(M) such that

(γB)∗(∆Ψ) = j∗([k]l((
∧

s∗ ⊗ idl) ◦Ψ)).

Remark 11.1. One can easily check that if λ is a connection in B, then for Ψ ∈

Sec
∧k

(g/h)∗ ⊗
∨l
g∗

∆Ψ =

{
0 when k > 0,

λ∗(Ω
∨Ψ) when k = 0.

4) Let q = rank(E/E′) and let λ be adapted to λ′. Defined in the above manner, the

mapping

∆q′ : W(g;h)q′ → ΩE(M), Ψ 7→ ∆Ψ,

q′ ≥ q (and q′ ≥ [q/2] in the case of a basic connection), is a homomorphism of algebras,

see Example 10.3 and the following commutative diagram.

W(g;h)q′ ΩE(M)✲∆q′

(Wg)q′ ΩA(M)✲
[k]q′

❄
ΩA,h(M)✛

ΩB,i(M)
❄

(γB)∗

❄

∼=

✻
j∗
✻

∼=

⊃

ϕ

❅
❅
❅
❅
❅
❅
❅
❅❅❘

(11.3)

Proposition 11.2. The mapping ∆q′ restricted to the invariant cross-sections

∆q′∗ : W(g;h)q′,I0 → ΩE(M)

commutes with the differentials dq′,h and dE .

Proof. j and γB are homomorphisms of regular Lie algebroids; then, according to the

commutativity of j∗ with the differentials dA and dB , and from the last diagram and the

definition of dl,h, we notice that it is sufficient to show that [k]q′ : W(g)q′,h,I0 → ΩA(M)

commutes with [d]q′ and d
A, but this follows from Proposition 10.2.
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As a corollary we obtain

Theorem 11.3. The mapping

∆q′# : H(W(g,h)q′,I0 , dq′,h) → HE(M), [Ψ] 7→ [∆q′∗Ψ],(11.4)

is a correctly defined homomorphism of algebras.

5) If λ is basic, then the following diagram commutes:

∆[q/2]#

�
�
�
�✒
HE(M)

∆q#

❅
❅
❅
❅❘

H(W(g,h)q,I0)

H(W(g,h)[q/2],I0)
❄

in which the vertical arrow is a homomorphism of algebras, induced by the projection.

∆q# (also ∆[q/2]# for a basic connection) is called the characteristic homomorphism

of the PFS-regular Lie algebroid (A,B, λ′), its image is a subalgebra of HE(M) called

the characteristic algebra of the PFS-regular Lie algebroid (A,B, λ′), and its elements

the characteristic classes of this algebroid.

12. The functoriality and other properties. Let (Ai, Bi, λ
′
i) be PFS-regular Lie

algebroids over (Mi, Ei, E
′
i), i = 1, 2.

Definition 12.1. By a homomorphism H : (A1, B1, λ
′
1) → (A2, B2, λ

′
2) we mean a

homomorphism H : A1 → A2 of regular Lie algebroids, say over f : (M1, E1) → (M2, E2)

such that (1) f∗[E
′
1] ⊂ E′

2, (2) H ◦ λ′1 = λ′2 ◦ f∗|E
′
1, (3) H [B1] ⊂ B2.

In the sequel gi,hi, A
′
i, E

′
i denote the analogous objects related to Ai, Bi and Ei as

in diagram (11) for g, h, A and E, respectively.

By the pullback of a PFS-regular Lie algebroid (A,B, λ′) over (M,E,E′) via a map-

ping f : (M1, E1, E
′
1) → (M,E,E′), i.e. a smooth mapping f : M1 → M such that

f∗[E1] ⊂ E and f∗[E
′
1] ⊂ E′, we mean the PFS-regular Lie algebroid (f∧A, f∧B, λ̄′)

where λ̄′ : E′
1 → f∧A1 is the pullback of λ′ [K2, 3.2.1] : λ̄′(v) = (v, λ′(f∗v)), v ∈ E′

1.

Proposition [K2, Prop. 3.3.2] gives the flatness of λ̄′. The canonical homomorphism

pr2 : f∧A→ A is a homomorphism of PFS-regular Lie algebroids.

Let H : A1 → A2 be a homomorphism of regular Lie algebroids over f : (M1, E1) →

(M2, E2). Define the pullback

H+∗ : W(g2) → W(g1)

in the standard way: H+∗(Ψ)(x) = H+∗
x (Ψf(x)), x ∈M, where H+∗

x =
∧
H+∗

|x ⊗
∨
H+∗

|x .

It is clear that H+∗ is a homomorphism of algebras of bidegree (0, 0).

Proposition 12.2. The pullback H+∗ has the following properties:

(1) ix,v ◦ H
+∗
x = H+∗

x ◦ if(x),H+(v) for v ∈ g1|x, x ∈ M1; in consequence, H+∗ maps

h2-horizontal elements into h1-horizontal ones.
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(2) δ ◦H+∗(Θ) = H+∗ ◦ δ(Θ) for Θ ∈ Sec(
∧
g∗2), where δ’s denote the differentials [K7,

(2.5)].

(3) ϕ ◦H+∗ = H+∗ ◦ ϕ where ϕ’s denote the change of variable, see Subsec. 5.1.

(4) d ◦H+∗ = H+∗ ◦ d,

(5) [d]l1 ◦H
+∗ = H+∗ ◦ [d]l2 for l1 ≤ l2.

(6) Lad(v) ◦H
+∗
x = H+∗

x ◦ Lad(Hv) for v ∈ A1|x; in consequence, H+∗ maps invariant

elements into invariant ones.

Proof. (1) Since H+∗
x is a homomorphism and ix,v is an antiderivation, it is sufficient

to check the equality for the elements of W (g2|f(x)) of the forms θ ⊗ 1 and 1 ⊗ θ, where

θ ∈ g∗2|f(x).

ix,v ◦H
+∗
x (θ ⊗ 1) = ix,v(H

+∗
x θ ⊗ 1) = ix,v(H

+∗
x θ) = 〈θ,H+(v)〉

= if(x),H+(v)(θ) = H+∗
x ◦ if(x),H+(v)(θ ⊗ 1).

ix,v ◦H
+∗
x (1⊗ θ) = ix,v(1⊗H+∗

x θ) = H+∗
x ◦ if(x),H+(v)(1⊗ θ).

(2) δ’s are antiderivations, therefore it is sufficient to consider Θ ∈ Sec g∗2 . For x ∈M1

and wi ∈ g1|x

〈(δ ◦H+∗Θ)x, w0 ∧w1〉 = 〈Θf(x), H
+
x [w0, w1]〉

= 〈(δΘ)f(x), H
+
x (w0) ∧H

+
x (w1)〉 = 〈(H+∗ ◦ δ(Θ))x, w0 ∧ w1〉.

(3) By (2) above we easily check the equality on generators 1, Θ⊗ 1, 1⊗Θ.

(4) Thanks to the previous property, it follows from the equality d ◦H+∗ = H+∗ ◦ d

which can be checked trivially.

(5) Property (4) yields d′ ◦H+∗ = H+∗ ◦ d′ and then (5) follows immediately.

(6) First, we show, for Θ ∈ Sec g∗2 , that

〈Lad♮ ◦ξ1(H
+∗Θ), ν1〉 = 〈H+∗(Lad♮ ◦ξ2Θ), ν1〉

where H ◦ ξ1 = ξ2 ◦ f and ν1 ∈ Sec g1 is a cross-section for which there exists ν2 ∈ Sec g2
fulfilling H+ ◦ν1 = ν2 ◦f. For this purpose, we notice [K2] that H+ ◦ [[ξ1, ν1]] = [[ξ2, ν2]]◦f.

Thus

〈Lad♮ ◦ξ1(H
+∗Θ), ν1〉 = (γ1 ◦ ξ1) ◦ 〈H

+∗Θ, ν1〉 − 〈H+∗Θ, [[ξ1, ν1]]〉

= (γ2 ◦ ξ2)〈Θ, ν2〉 ◦ f − 〈Θ, [[ξ2, ν2]]〉 ◦ f = 〈Lad♮ ◦ξ2Θ, ν2〉 ◦ f

= 〈H+∗(Lad♮ ◦ξ2Θ), ν1〉.

Lemma 4.4 leads now to the equality

〈Lad ◦ξ1(H
+∗Ψ), ν1〉 = 〈H+∗(Lad ◦ξ2Ψ), ν1〉,(12.1)

Ψ ∈ Wg2, where ν1, ξi are as above.

The equality Lad ◦ξ1(H
+∗Ψ) = H+∗(Lad ◦ξ2Ψ) follows in an evident manner from

those for a strong homomorphism and for a canonical one. In each of these cases, this

follows from (12.1) and the observation that

• for arbitrary x ∈ M1 and v ∈ g1|x, there exist local cross-sections ν1 and ν2 such

that ν1(x) = v and ν1 and ν2 fulfil the required condition H+ ◦ ν1 = ν2 ◦ f.

Hence we obtain (6).
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Corollary 12.3. H+∗ maps h2-horizontal and invariant elements into h1-horizon-

tal and invariant ones, defining, for l2 ≥ l1, a homomorphism of algebras

H+∗ : (Wg2)l2,h2,I0 → (Wg1)l1,h1,I0

commuting with the differentials (i.e. [d]l1 ◦H
+∗ = H+∗ ◦ [d]l2).

Each homomorphism H : (A1, B1, λ
′
1) → (A2, B2, λ

′
2) of PFS-regular Lie algebroids

can be represented in the form of a superposition of a strong homomorphism with the

canonical one

(A1, B1, λ
′
1)

H̄
→ (f∧A2, f

∧B2, λ̄
′
2)

pr2→ (A2, B2, λ
′
2).

In the standard way, one can define the pullback

[H ]+∗ : W(g2,h2) → W(g1,h1)

([H ]+∗(Ψ)(x) =
∧
[H+

x ]
∗ ⊗

∨
H∗
x(Ψ(x)) where [H+

x ]
∗ : g1/h1 → g2/h2 is the induced

linear homomorphism). Since the following diagram (for l2 ≥ l1)

W(g2;h2)l2,I0 (Wg2)l2,h2,I0✲
∼=

W(g1;h1)l1,I0 (Wg1)l1,h1,I0✲∼=

✻
[H ]+∗

✻
[H ]+∗

commutes, we obtain by the above that [H ]+∗ commutes with the differentials, i.e. H+∗ ◦

[d]l2,h2 = [d]l1,h1 ◦ [H ]+∗ giving a homomorphism on cohomology

[H ]+# : H(W(g2,h2)l2,I0) → H(W(g1,h1)l1,I0).

Theorem 12.4 (Functoriality of ∆q#). Let (A1, B1, λ
′
1) and (A2, B2, λ

′
2) be PFS-reg-

ular Lie algebroids over (M1, E1, E
′
1) and (M2, E2, E

′
2), respectively; put qi=rank(Ei/E

′
i).

Let H : (A1, B1, λ
′
1) → (A2, B2, λ

′
2) be a homomorphism over f : (M1, E1, E

′
1) →

(M2, E2, E
′
2). Assume that the adapted connections λ1 and λ2, such that H ◦λ1 = λ2 ◦f∗,

are given. Then the following diagram commutes:

H(W(g1;h1))q1,I0 H(E1)✲
∆q1#

H(W(g2;h2)max(q1,q2),I0
) H(E2)✲∆max(q1,q2)#

❄

[H ]+∗

❄

f#

Proof. From the commutativity of diagrams (11.2) and (11.3) it follows that it is

sufficient to check the same for the diagram

W(g1) ΩA1(M)✲
k1

W(g2) ΩA2(M)✲k2

❄

[H ]+∗

❄
H∗
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in which k2 and k1 are defined for λ2 and λ1, respectively. Using (a) H+
∗ ω1 = H+∗ω2

and (b) H+
∗ Ω1 = H∗Ω2 (ωi and Ωi being the connection forms and the curvature forms

of λi, i = 1, 2), one can prove the commutativity at each point x ∈ M, considering the

generators 1, 1 ⊗ θ, θ ⊗ 1, θ ∈ g∗2|f(x), only. Equality (a) is evident, whereas (b) follows

from [K2, 3.2.2] and the horizontality of the curvature forms.

Theorem 12.5 (Independence of ∆q′# of an adapted connection). For any PFS-

regular Lie algebroid (A,B, λ′) over (M,E,E′), the characteristic homomorphism 11.4

for q′ ≥ rank(E/E′) is independent of the choice of an adapted connection.

Proof. Let us consider any two connections λ0, λ1 : E → A adapted to λ′ and the

connection λ : TR× E → TR×A in TR×A defined by

λ|(t,x)(v, w) = (v, λ0(w) · (1 − t) + λ1(w) · t), (v, w) ∈ TtR× E|x.

λ is adapted to the flat partial connection id×λ′ : TR× E′ → TR× A′. Of course, the

system (TR × A, TR × B, id×λ′) is a PFS-regular Lie algebroid and λ is an adapted

connection. One can prove that the connection form ω : TR × A → 0 × g of λ equals

ω(t,x)(v, w) = (0, ω0(w) · (1 − t) + ω1(w) · t), (v, w) ∈ TtR × A|x, where ω0 and ω1 are

the connection forms of λ0 and λ1, respectively. The homomorphisms Fi : A→ TR×A,

w 7→ (θi, w), i = 0, 1, of regular Lie algebroids (over fi : M → R × M, x 7→ (i, x)),

defined in [K7, Sec. 5], give homomorphisms Fi : (A,B, λ
′) → (TR× A, TR×B, id×λ′)

of PFS-regular Lie algebroids such that Fi ◦ λi = λ ◦ fi∗, i = 0, 1. The principle of

functoriality (Theorem 12.4) ensures the commutativity of the diagrams

H(W(g,h)q′ ) HE(M)✲
∆iq′#

H(W(0× g, 0×h)q′ ) HTR×E(R×M)✲∆q′#

❄

[Fi]
+#

❄
f#
i

i = 0, 1. Since f#
0 = f#

1 (see the proof of Th. 4.3.1 from [K2]) and the superposition

A
Fi→ TR × A

pr2→ A of homomorphisms of regular Lie algebroids is equal to idA, this

gives [Fi]
+# ◦ [pr2]

+# = id (pr2 does not determine a PFS-homomorphism, but this is no

problem), therefore we have

∆0q′# = ∆0q′# ◦ [F0]
+# ◦ [pr2]

+# = f#
0 ◦∆0q′# ◦ [pr2]

+#

= f#
1 ◦∆0q′# ◦ [pr2]

+# = ∆1q′# ◦ [F1]
+# ◦ [pr2]

+# = ∆1q′#.

Definition 12.6. Let us consider two PFS-regular Lie algebroids (A,Bi, λ
′), i = 0, 1

(which differ only in subalgebroids) over (M,E,E′). By analogy with definition [K7,

Def. 5.4] we say that the characteristic homomorphisms ∆iq′# : H(W(g,hi)q′,I0) →

HE(M), i = 0, 1, q′ ≥ rank(E/E′), are equivalent if there exists an isomorphism of

algebras α : H(W(g,h0)q′,I0) → H(W(g,h1)q′,I0) such that ∆0q′# = ∆1q′# ◦ α.

Theorem 12.7 (Homotopic independence). If B0 and B1 are homotopic (for defini-

tion, see [K7, Def. 5.1]), then ∆0q′# and ∆1q′# are equivalent.
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Proof. By the same argument as in the proof of [K7, Prop. 5.3], we see that ∆0q′#

and ∆1q′# are related via the commutative diagram:

H(W(g,h0)q′ )

H(W(0× g, 0× h)q′ )

✻
[F0]

+#

H(W(g,h1)q′ )
❄

[F1]
+#

HE(M).

∆0q′#

❅
❅
❅
❅❘

∆1q′#

�
�
�
�✒

It remains to show that [Fi]
+# is an isomorphism of algebras, i = 0, 1. We do it as

in the proof of [K7, Th. 5.5]. For Fi being the superposition pr2 ◦F̄i (in which F̄i is

an isomorphism), the problem reduces to the consideration of the canonical projection

pr2 : (f∧
i (TR×A), f∧

i B, id×λ
′) → (TR×A,B, id×λ′), more exactly, to the investigation

of the homomorphism

pr+∗
2 : W(0× g,0× h)q′,I0 → W(f∗

i (0× g), f
∗
i (0× h))q′,I0 .

After the canonical identification

f∗
i (
∧
(0× g/h)∗ ⊗

∨≤q′
(0× g)∗) ∼=

∧
(f∗
i (0× g)/f

∗
i (0× h))

∗ ⊗
∨≤q′

f∗
i (0× g)

∗,

according to f∗
i (adB,g) = adf∧

i
B,f∗

i
g [K7] and the fact that f∗

i (
⊗

kT ) =
⊗

k(f∗
i T ) for

any representation T (cf. [K2, 2.3.3] and the proof of [K7, Prop. 4.2]), we obtain that

f∧
i (ad) = ad (the ad’s denote the canonical representations induced by the adjoint one),

and that pr+∗
2 Ψ = f∗

i Ψ. As in the proof of [K7, Th. 5.5], the rest follows from Theorem

20.2 below.

13. A comparison with the tangential classes of partially flat principal bun-

dles. A PFS-regular Lie algebroid (A,B, λ′) over (M,E,E′) determines an FS-regular

Lie algebroid (A′, B′, λ′) over (M,E′) in which A′ = γ−1
A [E′], B′ = γ−1

B [E′]. With these

objects we have associated some homomorphisms: ∆q′∗ : W(g,h)q′,I0
B

→ ΩE(M) and

∆∗ : W(g,h)0,I0
B′

→ ΩE′(M) (see Theorem 11.3 and [K7, Prop. 3.3]). The indices B

and B′ on I indicate the regular Lie algebroid with respect to which the invariant ele-

ments are taken. A simple relation between ∆q′∗ and ∆∗ is described by the following

diagram:

(Sec
∧
(g/h)∗)I0

B
W(g,h)q′,I0

B

✲ ΩE(M)✲∆q′∗

(Sec
∧
(g/h)∗)I0

B′
ΩE′(M).✲

∆∗

❄ ❄

⊂

Remark 13.1. The problem of what the relation looks like on the cohomology level

will not be investigated here. We only notice that each element Ψ ∈ (Sec
∧
(g/h)∗)I0

B
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being a cycle in W(g,h)q′,I0
B

(i.e. with respect to [d]q′) is a cycle in W(g,h)0 (i.e. with

respect to δ̄); the converse is not true in general, which may be the source of the char-

acteristic classes (in HE′(M)) measuring the concordance of λ′ with B, which cannot be

obtained by ∆q′ .

14. A comparison with the characteristic classes of foliated bundles. Let

there be given:

(a) a G-principal fibre bundle P = (P, π,M,G, ·),

(b) a flat partial connection in P over an involutive regular distribution F ⊂ TM,

(c) a closed Lie subgroup H ⊂ G and an H-reduction P ′ ⊂ P.

In other words, we are given some foliated principal bundle with a reduction, con-

sidered, for example, in [K-T2]. As usual, let g and h denote the Lie algebras of G and

H, respectively. In [K-T2], to such a bundle there corresponds a characteristic homomor-

phism ∆̂1q′# : H(g, H)q′ → HdR(M) (denoted there by ∆) where q′ ≥ codimF , F being

the foliation determined by F, and

H(g, H)q′ = (
∧

g∗ ⊗
∨≤q′

g∗)H
S
∼= (

∧
(g/h)∗ ⊗

∨≤q′
g∗)IH(14.1)

is the truncated relative Weil algebra constructed isomorphically as the subalgebra of

the truncated algebra
∧
(g/h)∗ ⊗

∨≤q′
g∗, consisting only of those elements which are

invariant with respect to the representation Adq
′

of H induced by the restriction to H of

the adjoint representation AdG : G → GL(g). The differential dq′ in W (g, H)q′ , defined

in the standard way, comes from the differential, denoted here by dLg , in the Weil algebra

Wg =
∧
g∗ ⊗

∨
g∗, defined as follows: we treat g as a left Lie algebra of G (with the

bracket denoted by [·, ·]L) and dLg :Wg →Wg is an antiderivation of total degree +1 such

that dLg (w
∗ ⊗ 1) = 1⊗w∗ + d∧w

∗ ⊗ 1 and ιvd
L
g (1⊗w∗) = θLgw

∗ for v ∈ g, w∗ ∈ g∗ (d∧ is

the Chevalley-Eilenberg differential, whereas θLgw
∗ = −w∗ ◦ adLg where adLg (µ) = [·, µ]L,

µ ∈ g). In the sequel, as opposed to the left Lie algebra, the bracket in the right Lie

algebra of G will be denoted by [·, ·]R; there is a relation [v, µ]L = −[v, µ]R, and we recall

once again that, for z ∈ P|x, ẑ : g → g|x is an isomorphism of Lie algebras when g is

equipped with the right structure.

The partial connection in P determines a partial connection λ′ in the transitive Lie

algebroid A(P ), and the system obtained (A(P ), A(P ′), λ′) is a PFS-transitive Lie al-

gebroid. In Theorem 11.3 the characteristic homomorphism ∆q′# : H(W(g,h)q′,I0) →

HdR(M) is obtained (g and h being the Lie algebra bundles adjoint to A(P ) and A(P ′),

respectively). We compare ∆̂1q′# with ∆q′#. For this purpose, consider the adjoint repre-

sentation AdP : P → L(g) [K2, 5.3.2] and the representation Adq
′

P ′,g : P
′ → L(W (g/h)q′ ),

Adq
′

P ′,g = Ad∧
P ′,g⊗

∨≤q′
(AdP |P ′)♮ (for Ad∧P ′,g see [K7, Sec. 6]), induced by it. As in

[K7, Sec. 6], we notice that the differential of Adq
′

P ′,g is equal to the representation

adq
′

A(P ′),g = ad∧A(P ′),g ⊗
∨≤q′

(adA(P ′) |A(P
′))♮ : A(P ′) → A(W (g/h)q′ ). Propositions

5.5.2-3 from [K2] give a monomorphism

κ̄ : (
∧
(g/h)∗ ⊗

∨≤q′
g∗)IH

∼=
→ (Sec

∧
(g/h)∗ ⊗

∨≤q′
g∗)I

→֒ (Sec
∧
(g/h)∗ ⊗

∨≤q′
g∗)I0
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defined by the formula κ̄(ψ)(x) = Adq
′

P ′,g(z)(x), z ∈ P ′
|x, i.e.

κ̄(ψ)(x) = (
∧
[ẑ]∗−1 ⊗

∨≤q′ ẑ∗−1)(ψ),

which is an isomorphism when P ′ is connected.

Theorem 14.1. κ̄◦S (see (14.1)) commutes with the differentials dq′ and dq′,h, giving

the commutative diagram

∆q′#

�
�
�
�✒
HdR(M)

∆̂q′#

❅
❅
❅
❅❘

H(W (g, H)q′)

H(W(g,h)q′,I0)
❄

(κ ◦ S)#

Proof. The evident commutativity of the diagram

(Sec
∧
g∗⊗

∨≤q′
g∗)h,I0 (Sec

∧
(g/h)∗⊗

∨≤q′
g∗)I0

✲
S

(
∧
h∗⊗

∨≤q′
g∗)h,IH (

∧
(g/h)∗⊗

∨≤q′
g∗)IH

✲S

❄

κ

❄

κ

in which κ(ψ)(x) = (
∧
ẑ∗−1 ⊗

∨≤q′
ẑ∗−1)(ψ), z ∈ P ′

|x, and of diagram (11.2), implies

that the commutativity of κ̄ ◦ S with the differentials follows from the commutativity of

κz =
∧
ẑ∗−1 ⊗

∨
ẑ∗−1 : Wg → Wg|x with dLg and dx which can be checked directly on

generators:

κz ◦ d
L
g (w

∗ ⊗ 1) = 1⊗ κzw
∗ + κz(d∧w

∗)⊗ 1 = dx ◦ κz(w
∗ ⊗ 1).

ιv ◦ κz ◦ d
L
g (1⊗ w∗) = κz(1⊗ θLẑ−1(v)w

∗) = −θv ◦ κz(1 ⊗ w∗) = ιv ◦ dx ◦ κz(1 ⊗ w∗).

Passing to the second part of our theorem we can write a diagram analogous to the

one in the proof of [K7, Th. 6.1]. Analogously, we need the equality j∗(kq′(ωP )(θ)) = ρ ◦

(di)∗[k]q′(κ̃(θ)) where κ̃ is the superposition W (g, H)q′ → W(g,h)q′,I0 → W(g)q′,h, I0,

where ωP is the connection form of an adapted connection. The equality (checked trivially

on generators when one only knows the relations ω|x◦π
A
|z = ẑ◦ωP |z, Ω|z ◦

∧2
πA|z = ẑ◦Ω|z;

ω is the connection form in A(P ) corresponding to ωP ) is equivalent to the commutativity

of the following simple diagram

Wg|x
∧
A|x

✲
kx

Wg
∧
T ∗
z P

✲kz

❄

κz
✻∧

(πA|z)
∗
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for any x ∈M and z ∈ P|x. In this diagram, kz is a homomorphism of algebras fulfilling

kz(θ) = (k(ωP )(θ))z .

PART III. APPENDIX: LOCAL PROPERTIES OF REGULAR LIE

ALGEBROIDS, ELEMENTARY THEORY

The fundamental role in the elementary proofs of some structural theorems on the lo-

cal shape of regular Lie algebroids and their properties is played by a theorem concerning

global solutions of some system of differential equations.

15. Global smooth solution of some system of differential equations with

parameters. We prove (by methods of differential geometry) the existence of a global

smooth solution of a system of linear partial differential equation with parameters, whose

coefficients are smooth functions on the whole Euclidean space. The simple classical

theorem asserts only the existence and uniqueness of some C∞ solution determined locally

in some neighbourhood of an arbitrary point of the form (0, y).

Denote the canonical coordinates on Rm×Rn by (x1, . . . , xm, y1, . . . , yn). In the proof

of the following theorem we use only the global existence of a solution of some system of

ordinary differential equations without parameters and some elementary facts concerning

the theory of foliations as for example:

(T) if (M,F ) is a foliated manifold and N →֒ M is a transversal submanifold of F such

that each leaf L of F cuts N in at most one point, then the sum of leaves passing

through N is also a submanifold of dimension dimF+dimN.

Theorem 15.1. Let C∞ functions bki , a
k
ri : R

m ×Rn → R, r, k ≤ q, i ≤ m, be given.

Consider the following system of linear partial differential equations with parameters:

∂zk

∂xi
(x, y) = −bki (x, y) +

q∑

r=1

akri(x, y) · z
r, k ≤ q, i ≤ m,(15.1)

satisfying the conditions of local integrability:

∂bki
∂xs

−
∂bks
∂xi

= −

q∑

u=1

akui · b
u
s +

q∑

u=1

akus · b
u
i ,

∂akri
∂xs

−
∂akrs
∂xi

=

q∑

u=1

akus · a
u
ri −

q∑

u=1

akui · a
u
rs,

i, s ≤ m, r ≤ q. Then, for every C∞ mapping g : Rn → Rq, there exists exactly one

globally defined C∞ solution z : Rm×Rn → Rq of (15.1) such that z(0, y) = g(y), y ∈ Rn.

Proof. Put M = Rm × Rn × Rq with coordinates (xi, yj, zk) and define C∞ differ-

ential 1-forms ωk = dzk +
∑m
i=1(b

k
i (x, y) −

∑q
r=1 a

k
ri(x, y) · z

r)dxi on M. Consider the

system (ω1, . . . , ωq, dy1, . . . , dyn) of linearly independent differential 1-forms on M . The

distribution E generated by this system of 1-forms has dimension m and is integrable:

d(dyj) = 0, dωk =
∑

u α
k
u ∧ ω

u +
∑

j β
k
j ∧ dyj , where

αku =
m∑

i=1

akui · dx
i, βkj =

m∑

i=1

(−
∂bki
∂yj

+

q∑

r=1

∂akri
∂yj

· zr) · dxi.



CHARACTERISTIC HOMOMORPHISMS 163

A C∞ mapping z : Rm × Rn → Rq is a solution of (15.1) if and only if, for each point

y0 ∈ Rn, the manifold Ly0(z) := {(x, y0, z(x, y0)); x ∈ Rm} is an integral of E. We easily

check that

(*) The space E|(x,y,z) lies on the plane 0XZ.Moreover, for v =
∑

i a
i · ∂
∂xi +

∑
r c
r · ∂
∂zr ,

we have ωk(v) = ck +
∑
i(b

k
i −

∑
r a

k
ri · z

r) · ai, which implies that, for v ∈ E|(x,y,z),

if ai = 0 for all i, then v = 0.

Let L be the leaf of the distribution E, passing through a point (x0, y0, z0). Take the

projection pr1 : L→ Rm. Since (pr1)∗(
∑

i a
i · ∂

∂xi +
∑

r c
r · ∂

∂zr ) =
∑

i a
i · ∂

∂xi , (*) above

gives that (pr1)∗ is an isomorphism at each point, therefore pr1 is a local diffeomorphism.

Since Rm is simply connected, to see that pr1 is a diffeomorphism, we only have to

notice that pr1 is a covering, but this is equivalent to the fulfilment of the following two

properties (see lemma 15.2 below):

— the surjectivity of this projection, and

— the lifting property for smooth paths.

To check the surjectivity, take x1 ∈ Rm and λ := x1 − x0. Define the embedding

ϕ : R × Rq → Rm × Rn × Rq, ϕ(t, z) = (x0 + t · λ, y0, z), and calculate: ϕ∗(dxi) =

λi · dt, ϕ∗ωk = dzk +
∑

i(b̃
k
i −

∑q
r=1 ã

k
ri · z

r) · λi · dt, k ≤ q, where b̃ki , ã
k
ri : R → R

are defined by b̃ki (t) = bki (x0 + t · λ, y0), ã
k
ri(t) = akri(x0 + t · λ, y0). The 1-forms ϕ∗ωk

correspond to the linear nonhomogeneous system of ordinary differential equations of the

first order

dzk(t)

dt
= −

∑

i

b̃ki (t) · λ
i +

∑

r

(
∑

i

ãkri(t) · λ
i) · zr(t), k ≤ q.

Consider the initial condition zk(0) = zk0 . The well-known classical theorem states that

there exists a unique globally determined (on the whole space R) solution z = (z1, . . . , zq)

of this system, satisfying the initial condition. As previously,

L̃ = {(t, z(t)); t ∈ R}

is a maximal integral of the one-dimensional distribution determined by the system of 1-

forms (ϕ∗ω1, . . . , ϕ∗ωq). The mapping κ : R → L̃, t 7→ (t, z(t)), is a global trivialization of

L̃. Using (*) above, we can easily prove that ϕ[L̃] is an integral manifold of the distribution

E. Then x1 = pr1(x1, y0, z(1)) = pr1 ◦ϕ ◦ κ(1) ∈ pr1[L̃]. To check the lifting property

for smooth paths, take a smooth path τ = (τ1, . . . , τm) : R → Rm, such that τ(0) = x0.

The lifting of τ to the point (x0, y0, z0) is a smooth path τ∗ : R → Rm × Rn × Rq such

that τ∗(0) = (x0, y0, z0),
dτ∗(t)
dt ∈ E|τ∗(t) and pr1 ◦τ

∗ = τ (i.e. τ∗i = τ i, i ≤ m). Since
dτ∗(t)
dt ∈ E|τ∗(t) if and only if ωk(dτ

∗(t)
dt ) = 0 and dyj(dτ

∗(t)
dt ) = 0, we see that τ∗ is the

lifting of τ if and only if τ∗i = τ i, i ≤ m, τ∗m+j ≡ yjo, j ≤ n, and

dτ∗m+n+k(t)

dt
= −

m∑

i=1

bki (τ(t), y0) ·
dτ i(t)

dt
+

q∑

r=1

m∑

i=1

akri(τ(t), y0) ·
dτ i(t)

dt
· τ∗m+n+r(t),

k ≤ q, with the initial condition τ∗k(0) = zk0 . According to the above-mentioned classical

theorem, there exists exactly one globally determined (on the whole space R) solution
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(τ∗m+n+1, . . . , τ∗m+n+q) of this system, satisfying the initial condition. The path

τ∗(t) = (τ1(t), . . . , τm(t), y10 , . . . , y
n
0 , τ

∗m+n+1(t), . . . , τ∗m+n+q(t)),

t ∈ R, is the desired lifting.

Take g : Rn → Rq and a submanifold N = {(0, y, g(y)); y ∈ Rn} ⊂ M . Using (*) as

above we assert that N is a transversal of the foliation E, T(0,y,g(y))N ∩ E|(0,y,g(y)) = 0.

Denote by Ly the leaf of E passing through (0, y, g(y)), and define L̄ =
⋃
y∈Rn Ly. L

is, of course, a submanifold of M (see (T) above). We prove that pr = pr1,2 |L̄ : L̄ →

Rm × Rn is a diffeomorphism. Clearly, pr is a smooth bijection (see the previous step).

Take (x0, y0, z0) ∈ L̄ and v ∈ T(x0,y0,z0)L̄ such that pr∗(v) = 0. The equality v = 0

is what we need to show; v is of the form v =
∑

k c
k · ∂

∂zk
. Consider two complete

transversals T0 and Tx0 of E determined by the equations x = 0 and x = x0, respectively,

and a diffeomorphism ϕ : Tx0 → T0 such that the points (x0, y, z) and ϕ(x0, y, z) lie on

one of the leaves of E. The diffeomorphism ϕ is, of course, uniquely determined. The

vector v is tangent to Tx0 . Since ϕ is of the form ϕ(x0, y, z) = (0, y, ϕ̃(y, z)) for some

function ϕ̃, therefore w := ϕ∗(v) is of the form w =
∑

k c̃
k · ∂

∂zk , i.e. its coordinates with

respect to the vectors ∂
∂yj are zero. On the other hand, v ∈ T(x0,y0,z0)L̄∩ T(x0,y0,z0)Tx0 =

T(x0,y0,z0)(L̄∩ Tx0) (L̄∩ Tx0 is equal to ϕ−1[N ] and is a submanifold) and ϕ(x0, y0, z0) =

(0, y0, g(y0)); then w ∈ T(0,y0,g(y0))N. However, N is the image of the mapping ψ : Rn →

Rm × Rn × Rq, y 7→ (0, y, g(y)), so, w = ψ∗y0(w̄) for some w̄ ∈ Ty0R
n. Therefore 0 =

pr∗(w) = pr∗(ψ∗y0(w̄)) = w̄,which implies w = 0 and, next, v = 0.

Let pr3 : Rm×Rn×Rq → Rq denote the projection onto the last factor. The mapping

z : Rm × Rn → Rq equal to z := pr3 ◦(pr)
−1 is the required solution of (15.1).

Lemma 15.2. A surjective local diffeomorphism π : M → N of connected manifolds

is a covering if and only if it possesses the lifting property for smooth paths.

Proof. This clearly follows from Ehresmann’s lemma in P. Molino’s version [Mo2,

p. 114]. We only need to take an arbitrary family L′
c of smooth compact support vector

fields on N generating at each point x ∈ N the entire tangent space TxN. Under the

lifting property for smooth paths, the family Lc of the liftings of X ∈ L′
c consists of

complete fields.

16. Trivial regular Lie algebroids. If the anchor is equal to zero, a Lie algebroid

is called [Ma1] completely intransitive. It is simply a bundle of Lie algebras (Lie algebras

A|x and A|y, x, y ∈ M, need not be isomorphic, although the bracket [ξ, η] of C∞ cross-

sections of A, defined pointwise: [ξ, η]x = [ξx, ηx], is C
∞, too).

One of the most important constructions is the inverse-image f∧A by a homo-

morphism of foliated manifolds f : (M ′, E′) → (M,E) [K2]: f∧A = E′ ×(f∗,γ) A =

{(v, w) ∈ E′ ×A; f∗(v) = γ(w)} ⊂ E′ ⊕ f∗A,

[[(X,
∑

j

f j · ξj ◦ f), (Y,
∑

k

gk · ηk ◦ f)]]

=
(
[X,Y ],

∑

j,k

f j · gk · [[ξj , ηk]] ◦ f +
∑

k

X(gk) · ηk ◦ f −
∑

j

Y (f j) · ξj ◦ f
)
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for f j , gk ∈ Ω0(M ′), ξj , ηk ∈ SecA. The projection onto the first component pr1 : f∧A =

E′ ×(f∗,γ) A → E′ serves as the anchor. A nonstrong homomorphism H : A′ → A of

regular Lie algebroids (over f : (M ′, E′) → (M,E)) [K2] can be defined as a superposition

A′ H̄→ f∧A
κ
→ A of some strong homomorphism H̄ and the canonical one κ = pr2 . Here

are the basic properties of the inverse-image operation:

— (g ◦ f)∧A ∼= f∧(g∧A),

— if ix : {x} →֒ M is the inclusion, then i∧xA
∼= g|x.

Definition 16.1. By a trivial regular lie algebroid over (M,E) we shall mean each

algebroid isomorphic to f∧A for some completely intransitive Lie algebroid A.

EachC∞ constant dimensional and completely integrable distribution E on a manifold

M is a regular Lie algebroid being, of course, trivial.

Example 16.2 (Transitive trivial Lie algebroid). Let a trivial Lie algebroid f∧A

(where A is a completely intransitive Lie algebroid on a manifold N) be transitive (this

means that it is over (M,TM)). Then f is a constant mapping, say f(x) ≡ y. Put

ȳ :M → {y} , x 7→ y, and let iy : {y} →֒ N be the inclusion. Then

f∧A ∼= ȳ∧(i∧yA)
∼= ȳ∧(g) = TM × g (g = g|y).

Clearly, ȳ∧(g) is the usual trivial transitive Lie algebroid [NVQ], [K2].

Example 16.3. Consider two manifolds M and N, the projection pr2 :M ×N → N

and a vector bundle of Lie algebras f on N considered as a completely intransitive Lie

algebroid. Of course, pr2 : (M × N, TM × 0) → (N, 0) is a homomorphism of foliated

manifolds. We see that the inverse-image pr∧2 (f) is equal to (TM×0)⊕pr∗2(f). Each cross-

section of pr∧2 (f) is a sum of cross-sections of the form (X, f ·σ◦pr2) for X ∈ Sec(TM×0),

f ∈ Ω0(M × N), σ ∈ Sec f. Therefore the structure of a Lie algebra in Sec pr∧2 (f) is

determined uniquely by demanding that

[[(X, f · σ ◦ pr2), (Y, g · η ◦ pr2)]]

= ([X,Y ], f · g · [[ξ, η]] ◦ pr2 +X(g) · η ◦ pr2 −Y (f) · ξ ◦ pr2).

17. A regular Lie algebroid over (Rp×Rq, TRp×0) possesses a flat connection.

The following theorem generalizes the result of K. Mackenzie [Ma1] concerning transitive

Lie algebroids (see also [A-M]).

Theorem 17.1. Every regular Lie algebroid over (Rp ×Rq, TRp× 0) possesses a flat

connection.

Proof. Consider any regular Lie algebroid B over (Rp × Rq, TRp × 0), let g = kerγ

where γ : B → TRp×0 is the anchor. Denote by (y1, . . . , yp, yp+1, . . . , yp+q) the canonical

coordinates on Rp×Rq. We prove, by induction with respect to n = 1, 2, . . . , p, that there

exist linearly independent cross-sections Y1, . . . , Yn of B such that

γ ◦ Yi =
∂

∂yi
, [[Yi, Yj ]] = 0, i, j ≤ n.(17.1)

Of course, the cross-sections Y1, . . . , Yn fulfilling (17.1) for n = p give rise to a connec-

tion λ : TRp×0 → B defined uniquely by demanding that λ◦ ∂
∂yi = Yi, i ≤ p. Clearly, λ is
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flat. (17.1) is evidently valid for n = 1. Let (17.1) be valid for somem ∈ {1, . . . , p− 1} .We

prove that it is true for m+1. For this purpose, take linearly independent cross-sections

X1, . . . , Xq′ , Y1, . . . , Ym of B such that X1, . . . , Xq′ form a basis of g and Y1, . . . , Ym fulfil

(17.1) for n = m. Let Ȳ be an arbitrary cross-section of B for which γ ◦ Ȳ = ∂
∂ym+1 .

We shall find C∞ functions z1, . . . , zq
′

∈ Ω0(Rp × Rq) such that [[Yi, Ym+1]] = 0, i ≤ m,

where Ym+1 :=
∑q′

i=1 z
i · Xi + Ȳ . To this end, put [[Yi, Ȳ ]] =

∑q′

k=1 b
k
i · Xk, i ≤ m, and

[Xi, Xj ] =
∑q′

k=1 a
k
ij ·Xk, i, j ≤ q′. Then the equations [[Yi, Ym+1]] = 0, i ≤ m, are all equiv-

alent to the following system of differential equations with parameters ym+1, . . . , yp+q :

∂zk

∂yi
(. . . , yi, . . . , ym+1, . . . , yp+q)

= −bki (. . . , y
i, . . . , ym+1, . . . , yp+q) +

q′∑

r=1

akri(. . . , y
i, . . . , ym+1, . . . , yp+q) · zr,

k ≤ q′ and i ≤ m. A system like this is always uniquely integrable. The following

conditions of local integrability hold by the Jacobi identities: [[[[Ys, Ȳ ]], Yi]] + cycl = 0 and

[[[[Xr, Ys]], Yi]] + cycl = 0. According to Theorem 15.1, the system has a global solution

(z1, . . . , zq
′

) ∈ Ω0(Rp × Rq,Rq
′

) fulfilling an arbitrary initial condition. To prove our

lemma, take the system (Y1, . . . , Ym, Ym+1) where Ym+1 =
∑q′

i=1 z
i ·Xi + Ȳ .

18. A regular Lie algebroid over (Rp × Rq, TRp × 0) is trivial. Let B be any

regular Lie algebroid over (Rp × Rq, TRp × 0). We begin with the following lemma.

Lemma 18.1 (cf. [A-M]). Let Y1, . . . , Yp be cross-sections of B satisfying conditions

(17.1) for n = p. Then there exists a basis (X1, . . . , Xq′) of g such that

[[Yi, Xj ]] = 0, i ≤ p, j ≤ q′.(18.1)

Proof. The vector bundle g being over Rp×Rq is trivial, therefore it possesses a global

basis (X̄1, . . . , X̄q′) of cross-sections. We find C∞ functions f rj , j, r ≤ q′, such that

(10) det[f rj (x)] 6= 0 for all x ∈ Rp × Rq,

(20) the cross-sections Xj =
∑

r f
r
j · X̄r satisfy (18.1) above.

Condition (20) is equivalent to ∂
∂yi (f

k
j ) +

∑
r f

r
j · akri = 0, i ≤ p, k, j ≤ q′,where akri

are defined by [[Yi, X̄r]] =
∑

k a
k
ri ·X̄k. Consider the following system of partial differential

equations (with parameters (yp+1, . . . , yp+q))

∂zk

∂yi
(. . . , yi, . . . , yp+1, . . . , yp+q) = −

q′∑

r=1

akri(. . . , y
i, . . . , yp+1, . . . , yp+q) · zr,(18.2)

k ≤ q′, i ≤ p. The conditions of its local integrability are equivalent to the true equality

[[X̄r, [[Yi, Ys]]]] = 0. Consider q′ initial conditions of the form

zk(0, y) = δkj , k = 1, . . . , q′, y ∈ Rq,(18.3)

indexed by j = 1, . . . , q′. Let f1
j , . . . , f

q′

j be the solution of (18.2) defined on Rp×Rq and

satisfying condition (18.3) (the existence is obtained by Th. 15.1). It remains to show

condition (10) above. Assume to the contrary that, at some point (x0, y0) ∈ Rp × Rq,
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det[f rj (x0, y0)] = 0. This means that the vectors
[
f1
j (x0, y0), . . . , f

q′

j (x0, y0)
]
, j ≤ q′, are

linearly dependent. Changing, if necessary, the numbering of the initial conditions, we

may assume that
[
f1
1 (x0, y0), . . . , f

q′

1 (x0, y0)
]
=

∑q′

j=2 C
j ·

[
f1
j (x0, y0), . . . , f

q′

j (x0, y0)
]
.

Fix in equations (18.2) the parameters (yp+1, . . . , yp+q) by setting them equal to y0. In

the equations thus obtained (without parameters) consider the initial condition zk(x0) =∑q′

j=2 C
j · fkj (x0, y0), k ≤ q′. It is clearly fulfilled by the solution (f1

1 (·, y0), . . . , f
q′

1 (·, y0))

and, simultaneously, by the family gk =
∑q′

j=2 C
j ·fkj (·, y0), k ≤ q′, which is also a solution

of the system of differential equations obtained. By the uniqueness of solutions of this sys-

tem, fk1 (·, y0) = gk for k ≤ q′. In particular, we have fk1 (0, y0) = gk(0), which means that

the vector
[
f1
1 (0, y0), . . . , f

q′

1 (0, y0)
]
is a linear combination of

[
f1
j (0, y0), . . . , f

q′

j (0, y0)
]
,

2 ≤ j ≤ q′, which is not possible.

Theorem 18.2. Every regular Lie algebroid B over (Rp × Rq, TRp × 0) is trivial.

Proof. Assume that the cross-sections (X1, . . . , Xq′ , Y1, . . . , Yp) satisfy conditions

(17.1) and (18.1). Then the structure functions ckij such that [[Xi, Xj]] =
∑

k c
k
ij · Xk

are constant on plaques of the foliation TRp × 0, i.e. on the submanifolds Rp × {∗} . In-

deed, 0 = [[Ys, [[Xi, Xj ]]]] + cycl =
∑
k

∂
∂ys (c

k
ij) ·Xk. The mapping λ : TRp × 0 → B given

by λ ◦ ∂
∂yi = Yi is a flat connection. Take the embedding ι : Rq → Rp × Rq, y 7→ (0, y),

and put f = ι∗g. The system (X̄1, . . . , X̄q′) of cross-sections given by X̄i(y) = Xi(0, y)

serves as a basis of f. Consider the projection pr2 : Rp × Rq → Rq and an isomorphism

of vector bundles ϕ : pr∗2(f) → g such that ϕ|(x,y)(
∑

i a
i · X̄i(y)) =

∑
i a
i ·Xi(x, y). Next,

we shall treat f as a completely nontransitive Lie algebroid over Rq. Using Ex. 16.3 we

can easily prove that the isomorphism of vector bundles

F : pr∧2 (f) = (TRp × 0)⊕ pr∗2(f) → B, (v, w) 7→ λ(v) + ϕ(w),

is an isomorphism of regular Lie algebroids.

As a simple corollary we obtain the well known fact

Corollary 18.3. Any transitive Lie algebroid over Rn is isomorphic to the trivial

Lie algebroid TRn × g for some Lie algebra g.

Using a distinguished chart U
ϕ
→ Rp×Rq of a given regular foliation E on a manifold

M with ϕ−1[Rp × {∗}] as plaques we obtain as a corollary that for any regular Lie

algebroid A on M and any point x ∈ M there exists a neighbourhood U of x such that

A restricted to U (i.e. i∧A where i : U →֒M is the inclusion) is trivial.

19. Representations of the trivial transitive Lie algebroid on Rn on a vector

bundle. The main results of this section easily follow from a more general Theorem

IV.1.19 by K. Mackenzie [Ma1]. We give here an elementary proof using Th. 15.1.

With a real vector bundle f over M there is associated a transitive Lie algebroid

A(f) over M [Ma1], [K2], whose fibre over x ∈ M consists of all f-vectors at x, i.e.

linear homomorphisms l : Sec f → f|x for which there exists a vector u ∈ TxM such

that l(f · ν) = f(x) · l(ν) + u(f) · ν(x), f ∈ Ω0(M) and ν ∈ Sec f. The vector u is

determined by l uniquely and serves as its anchor. A local trivialization of A(f) gives the

mapping ψ̄ : TU ×End(V ) → A(f)|U (V is the typical fibre of f) defined for a given local
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trivialization ψ : U × V → f|U of f by the formula ψ̄(v, a)(ν) = ψ|x(v(νψ) + a(νψ(x)))

where, for ν ∈ Sec f, νψ : U → V is a function x 7→ ψ−1
|x (νx) [K2, Lemma 5.4.4]. A cross-

section ξ ∈ SecA(f) determines a covariant differential operator Lξ : Sec(f) → Sec(f)

by the formula Lξ(ν)(x) = ξx(ν). The correspondence ξ 7→ Lξ is 1-1. The bracket [[·, ·]]

is defined classically (from the point of view of differential operators). The Lie algebra

bundle adjoint of A(f) can be identified with the vector bundle End(f). Lemma 5.4.4

from [K2] mentioned above asserts also that ψ̄ is an isomorphism of Lie algebroids. In

particular, taking ψ = idRn×V , we find that the Lie algebroid A(Rn × V ) of the trivial

vector bundle f = Rn × V is isomorphic to the trivial algebroid TRn × End(V ) via

the canonical isomorphism L : TRn × End(V ) → A(Rn × V ) defined by the formula:

L|x(v, a)(ν) = v(ν) + a(νx). Denote by L(X,σ) the differential operator determined by

the cross-section L ◦ (X, σ) of A(Rn × V ), where X ∈ X(Rn) and σ ∈ Ω0(Rn,End(V )).

Clearly

L(X,σ) : Ω
0(Rn × V ) → Ω0(Rn × V ), ν 7→ X(ν) + σ(ν).(19.1)

By a representation of a Lie algebroid A on f (both over M) we mean a strong homo-

morphism T : A → A(f) of Lie algebroids [Ma1]. T induces a linear homomorphism

T+ : g →End(f) of vector bundles of Lie algebras [K2]. A cross-section ν ∈ Sec(f) is

called T -invariant if T (v)(ν) = 0 for all v ∈ A. The space of all T -invariant cross-sections

is denoted by (Sec(f))I0(T ) (or, briefly, by (Sec(f))I0).

Theorem 19.1 (cf. [Ma1]). Let T̄ : TRn × g → A(f) be any representation of the

trivial Lie algebroid TRn × g on f. Then, for each T̄+
|x -invariant vector v ∈ f|x, there

exists exactly one T̄ -invariant cross-section ν ∈ Sec(f) (determined globally) such that

νx = v.

Proof. A vector bundle f over Rn is trivial, therefore we may assume that f = Rn×V.

T̄ determines a homomorphism T : TRn × g → TRn × End(V ) such that L ◦ T = T̄ . T

can be written in the form T ◦ (X,µ) = T ◦ (X, 0) + T ◦ (0, µ) = (X,ω(X) + T+ ◦ µ)

(X ∈ X(Rn), µ ∈ Ω0(Rn, g)) for a 1-form ω ∈ Ω1(Rn; End(V )). ω and T+ satisfy the

following identities (cf. [Ma1, p. 102]):

−dω(X,Y ) = [ω(X), ω(Y )],(19.2)

X(T+ ◦ µ)− T+ ◦ (X(µ)) + [ω(X), T+ ◦ µ] = 0.(19.3)

ν ∈ Sec(f) is T̄ -invariant if and only if (a) LT◦(X,0)(ν) = 0, (b) LT◦(0,µ)(ν) = 0. Equation

(a) is equivalent to the invariance of ν with respect to the ”reduced representation”

TRn →֒ TRn × g
T̄
→ A(Rn × V ) whereas (b) says that, for each x ∈ Rn, the vector νx

is T̄+
|x -invariant. Condition (a) yields that 0 = L(X,ω(X))(ν) = X(ν) + Lω(X)(ν), i.e. the

differential equation

X(ν) = −Lω(X)(ν),(19.4)

called the differential equation of an invariant cross-section, is satisfied. Taking a basis

w1, . . . , wq of V and writing ν =
∑
i z
i · ws, we can equivalently replace equation (19.4)

by the following system of partial differential equations:

∂zk

∂xi
= −

q∑

r=1

ar,ki · zr, i ≤ n, l ≤ q,(19.5)
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where ar,ki are functions such that ω
(
∂
∂xi ) =

∑
r,k a

r,k
i · ur,k, ur,k = w∗

r ⊗ wk is a basis

of End(V ) = V ∗ ⊗ V . It is easy to see that equation (19.2) is the condition of the

local integrability of the equation (19.5). According to Th. 15.1, the initial conditions

z1(0) = z10 , . . . , z
q(0) = zq0 (uniquely) determine a solution (z1, . . . , zq) of (19.5) defined

on the whole Rn. It remains to solve the following problem: if the vector ν(0) =
∑
i z
i
0 ·wi

is (T+
|0 : g → End(V ))-invariant, then, for each x ∈ Rn, the vector ν(x) =

∑
i z
i(x) ·wi is

T+
|x -invariant. The invariance of ν(x) means that LT+

|x
(h)(νx) = 0 for all h ∈ g. Therefore

it is sufficient to show that the function LT+◦h̄(ν) is identically zero, where h̄ : Rn → g

is the constant function h̄(x) = h. Put β = LT+◦h̄(ν) and assume that β(0) = 0. Using

(19.3) and (19.4), we obtain a linear first order differential equation X(β) = L−ω(X)(β)

for X ∈ X(Rn), fulfilled by the function identically equal to zero. On account of the

uniqueness of solutions, we have β ≡ 0, which ends the proof.

As a corollary we obtain

Corollary 19.2. For an arbitrary representation T : A → A(f) of a transitive Lie

algebroid A on f, each invariant cross-section of f (defined locally on a connected subset)

is uniquely determined by the value at one point. In particular, if such a cross-section is

zero at one point, then it is zero globally.

20. Invariant cross-sections over R×M . Using the previous theorems, we prove

that the space of global cross-sections of a vector bundle f over R ×M , invariant with

respect to a representation of a regular Lie algebroidB over (R×M,TR×E), is canonically

isomorphic to the space of cross-sections of the vector bundle f|{t0}×M , invariant with

respect to a suitable ”restricted” representation. First, we recall the inverse-image of a

representation [K2]. Let A be any regular Lie algebroid over (M,E) and f any vector

bundle on M, whereas f : (M ′, E′) → (M,E) any morphism of foliated manifolds. By

the inverse-image of a representation T : A → A(f) over f we mean the representation

f∗T : f∧A → A(f∗f) defined as the superposition f∗T : f∧A
f∧T
→ f∧(A(f))

cf
→ A(f∗f)

where (a) f∧T is a homomorphism of Lie algebroids defined by: f∧T (u, v) = (u, T (v)),

u ∈ E′, v ∈ A (f∗u = γv), (b) cf is the canonical strong isomorphism of Lie algebroids

such that, for (u, l) ∈ f∧(A(f))|x, w := cf(u, l) has u as its anchor and satisfies the relation:

w(ν ◦ f) = l(ν) for ν ∈ Sec(f). Obviously, c+f appears as the canonical isomorphism of

vector bundles f∗(End(f)) ∼= End(f∗f), and, furthermore, we can write (f∗T )+|x = T+
|f(x)

for x ∈M ′. We can write f∗(g∗T ) = (g ◦ f)∗T, see Section 16.

According to [K2, Ch. 2], the linear mapping f∗ : Sec f → Sec f∗f, ν 7→ ν ◦ f, can be

restricted to the space of cross-sections invariant under T and f∗T, respectively:

f∗
I0 : (Sec f)I0(T ) → (Sec f∗f)I0(f∗T ).

Lemma 20.1. If the saturation of f [M ′] with leaves of E equals M, then f∗
I0 is a

monomorphism.

Proof. Assume that f∗
I0(ν) = 0 for an invariant cross-section ν. This means that

νf(x) = 0 for all x ∈ M ′. Take x0 ∈ M ′ and let ι : L →֒ M be the leaf of E passing

through f(x0), ν|L is invariant with respect to ι∗T : ι∧A→ A(ι∗f). Since ι∧A is transitive

Cor. 19.2 yields ν|L = 0. Saturation of f [M ′] with leaves of E implies the equality ν ≡ 0.
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We prove that the space of global cross-sections of a vector bundle f over R × M

invariant with respect to the representation T : B → A(f) of a regular Lie algebroid

B over (R ×M,TR× E) is canonically isomorphic to the space of cross-sections of the

vector bundle f|{t0}×M , invariant with respect to a suitable “restricted” representation.

The following theorem plays a crucial role in all problems of the homotopy independence

of the characteristic homomorphisms considered on the category of Lie algebroids.

Theorem 20.2 (on invariant cross-sections over R×M). Let B be a regular Lie al-

gebroid over the foliated manifold (R ×M,TR× E) and f a vector bundle over R ×M ,

and T : A→ A(f) a given representation. Take t ∈ R and the mapping ft :M → R×M,

x 7→ (t, x). Then the restriction mapping f∗
t : Sec f → Sec f|{t}×M (f|{t}×M ∼= f∗

t f) maps

isomorphically the space of invariant cross-sections with respect to T onto the space of

invariant cross-sections with respect to the restricted representation f∗
t T :

(f∗
t )I0 : (Sec f)I0(T )

∼=
→ (Sec f|{t}×M )I0(f∗

t T ).

Proof. Thanks to the Lemma above it remains to show that (f∗
t )I0 is an epimorphism.

Let σ ∈ Sec(f|{t}×M ) be an invariant cross-section. Then, for each x ∈ M, the vector

σ(x) ∈ f|(t,x) is invariant with respect to the representation T+
|(t,x) : g|(t,x) → End(f|(t,x)).

Consider the embedding fx : R → R×M, t 7→ (t, x). Since Im(fx) = R×{x} is contained

in some leaf of TR× E, therefore (fx)
∧(B) is a transitive and, by Cor. 18.3, trivial Lie

algebroid. Th. 19.1 (also Th. IV.1.19 of [Ma1, p.195]) yields that the vector σ(x) can be

uniquely extended to some C∞ cross-section σx of the vector bundle (fx)
∗(f) = f|R×{x},

invariant with respect to the representation (fx)
∗T : (fx)

∧(B) → A(f|R×{x}). The family

{σx : x ∈M} determines a global cross-section σ1 : R×M → f by the formula: σ1(t, x) =

σx(t). It is evident that (ft)
∗(σ1) = σ. To end the proof, all we need is to show (a) the

smoothness of σ1, (b) the T -invariance of σ1. First, we check (a). For this purpose, take

x0 ∈ M and a simple distinguished open neighbourhood U ⊂ M of x0 [the domain of

some distinguished chart of the foliation E]. The foliation E|U has a global connected

transversal manifold, say N, and its leaves are diffeomorphic to a Euclidean space. Then

N ′ := {t} ×N is a transversal manifold of the distribution TR× E. The cross-section

σ0 : N ′ → f|N ′ , (t, x) 7→ σ(x),

is C∞ and invariant with respect to the representation j∗T, j : N ′ →֒ M ′ := R × U ⊂

R×M being the inclusion, moreover, σ′ := σ1|M ′ is some extension of σ0.

Let B′ := B|M ′ . B′ is a regular Lie algebroid over (R×U, TR× (E|U )). Leaves of the

foliation TR×(E|U) are of the form R×L where L is a leaf of E|U . They are diffeomorphic

to a Euclidean space and proper; N ′ is a global transversal manifold of TR× (E|U ) which

cuts each leaf in exactly one point. Therefore, it is obvious that, without loss of generality,

we may assume that

— M ′ = Rp × Rq,

— B′ is over (Rp × Rq, TRp × 0).

In the context considered above, p is equal to the dimension of the foliation TR× E

and q = dimN ′. By the proof of Th. 17.1, we obtain the existence of global cross-

sections Y1, . . . , Yp ∈ SecB′ such that γ ◦ Yi =
∂
∂yi and [[Yi, Yj ]] = 0, i, j ≤ p. Moreover,
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in the remainder of the proof of our theorem, we can assume that N ′ = {0} × Rq,

f = (Rp × Rq)× V and A(f) = T (Rp×Rq)×End(V ). In this context, a C∞ cross-section

σ0 : {0}×Rq → f|{0}×Rq such that σ0(0, y) is invariant with respect to the representation

T+
|(0,y) : g|(0,y) → End(V ) is given, and we know that there exists a cross-section σ′ :

Rp×Rq→f (whose smoothness we are proving) extending σ0 and such that σ′|Rp×
{
y0
}
is,

for each y0 ∈ Rq, of class C∞ and invariant with respect to the representation T|Rp×{y0}

of the transitive Lie algebroid B′
|Rp×{yo} on f|Rp×{yo} (the restriction . . . |Rp × {yo} is

understood as the inverse-image over the suitable inclusion).

Let T ◦ Yi = ( ∂
∂yi , c

i) for some ci : Rp × Rq → End(V ), i ≤ p. The fact that T is a

representation gives the equality: 0 = T [[Yi, Yj ]] = (0,
∂cj
∂yi −

∂ci
∂yj + [ci, cj ]), i.e.

[ci, cj ] =
∂ci
∂yj

−
∂cj
∂yi

, i, j ≤ p.(20.1)

Let w1, . . . , wn be a basis of V ; write ci(x)(ws) =
∑n

k=1 c
k
si(x) ·wk , x ∈ Rp×Rq. It follows

immediately that (20.1) is equivalent to the following conditions:

∂ckri
∂ys

−
∂ckrs
∂yi

=

n∑

u=1

curi · c
k
us −

n∑

u=1

curs · c
k
ui, i, s ≤ p, k, r ≤ n.(20.2)

The invariance of a cross-section τ ∈ Sec f = Ω0(Rp × Rq, V ) with respect to the repre-

sentation T : B′ → T (Rp ×Rq) × End(V ) means that LT◦X(τ) = 0 for all X ∈ Sec(B′),

in particular, that LT◦Yi
(τ) = 0, i ≤ p. The last condition says that ∂τ

∂yi + ci(τ) = 0,

i ≤ p, or, equivalently,

∂τk

∂yi
= −

n∑

r=1

ckri · τ
r, i ≤ p.(20.3)

System (20.3) of differential equations is of the first order in the parameters (yp+1, . . .).

It is easy to notice that (20.2) forms conditions of the local integrability of (20.3). From

Th. 15.1 it follows that there exists exactly one (globally defined) C∞ cross-section σ̃ :

Rp×Rq → f which is a solution of (20.3) and satisfies the given initial condition σ̃(0, y) =

σ0(0, y), y ∈ Rq. Of course, σ̃ = σ′, which confirms the smoothness of σ′. Finally, we see

that (b) now follows trivially.
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