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E-mail: yurimv@guaymas.uson.mx

Abstract. In the framework of the connection theory, a contravariant analog of the Stern-

berg coupling procedure is developed for studying a natural class of Poisson structures on fiber

bundles, called coupling tensors. We show that every Poisson structure near a closed symplec-

tic leaf can be realized as a coupling tensor. Our main result is a geometric criterion for the

neighborhood equivalence between Poisson structures over the same leaf. This criterion gives

a Poisson analog of the relative Darboux theorem due to Weinstein. Within the category of

the algebroids, coupling tensors are introduced on the dual of the isotropy of a transitive Lie

algebroid over a symplectic base. As a basic application of these results, we show that there is

a well defined notion of a “linearized” Poisson structure over a symplectic leaf which gives rise

to a natural model for the linearization problem.

1. Introduction. The notion of a coupling form due to Sternberg [St] naturally

arises from the study of fiber compatible (pre)symplectic structures on the total space

of a symplectic bundle (for various aspects of this problem, see, for example, [Tu, We2,

We3, GoLSW, GSt, GLS, KV1]). This notion is based on the concept of connection and

curvature and can be introduced for a wide class of bundles [GLS]. A derivation of the

coupling procedure for the associated bundle P ×G g∗ (called the universal phase space)

via reduction was suggested in [We2].

We are interested in a contravariant version of the Sternberg coupling procedure

in the Poisson category. Suppose we start with a (locally trivial) Poisson fiber bundle
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(E π−→B,Vfib) equipped with a smooth field Vfib = {B ∋ b 7→ Vfib
b ∈ χ2(Eb)} of Pois-

son structures on the fibers. Unlike the symplectic case [GoLSW], the fiberwise Poisson

structure Vfib admits always a unique extension to a vertical Poisson tensor V on the

total space E. Every Ehresmann connection Hor → TE Γ−→ Vert gives rise to the space of

horizontal multivector fields on E. A connection is called Poisson if the parallel transport

preserves Vfib. Given a Poisson connection Γ, the problem is to describe Poisson bivector

fields on E of the form: Π = (Γ-horizontal bivector field)+V . Putting this decomposition

into the Jacobi identity, we get two quadratic equations for the horizontal part of Π: (I)

the horizontal Jacobi identity and (II) the curvature identity. Under the assumption: Π is

nondegenerate on the annihilator of the vertical subbundle Vert, equations (I) and (II) are

reduced to linear equations for a horizontal 2-form F. If F is a solution of these equations,

then the corresponding Poisson tensor Π is just what we call a coupling tensor associated

with data (Γ,V ,F). Note that in the case of coadjoint bundles, Poisson structures of such

a type arise naturally from the study of Wong’s equations [MoMR, Mo].

In this paper we give a systematic treatment of coupling tensors. Our first observation

is: in a tubular neighborhood E of a closed symplectic leaf B every Poisson structure Ψ

is realized as a coupling tensor (locally, this follows from the splitting theorem [We4]).

As a consequence, Ψ induces an intrinsic Poisson connection Γ on E which gives rise to a

geometric characteristic of the leaf. Moreover, the vertical part V of the coupling tensor

at the leaf B is of rank 0 and gives a “global” realization of local transverse Poisson

structures [We4]. If the symplectic leaf B is regular, then V = 0 and the coupling tensor

is the horizontal lift of the nondegenerate Poisson structure on B via the flat connection

associated with the symplectic foliation. We are interested in the non-flat case when the

rank of a Poisson structure Ψ is not locally constant at B.

So, for the study of Poisson structures near a single symplectic leaf we may restrict

our attention to the class of coupling tensors. Our main result is a geometric criterion for

a neighborhood equivalence of two coupling near a common closed symplectic leaf. The

criterion is formulated in terms of the intrinsic Poisson connection and its curvature and

implies a Poisson version of the relative Darboux theorem [We1]. This result continues

our previous investigations of the formal Poisson equivalence [IKV] . To state the result,

we use a contravariant analog of the homotopy method due to Moser [Mos] and Weinstein

[We1]. The technical part is based on the Schouten calculus [Li, KM, KV2, Va, K-SM]

and the (covariant) connection theory for general fiber bundles [GHV, GLS]. Note also

that a geometric approach, based on the notion of a contravariant Poisson connection

due to Vaisman [Va], was developed in [Fe].

As a basic application of the Poisson neighborhood theorem, we show that there

exists a well defined notion of a linearized Poisson structure over a closed symplectic leaf

which is well known in the zero-dimensional case [We4]. The linearized Poisson structure is

completely determined by the transitive Lie algebroid of a symplectic leaf [KV2]. To derive

this fact, we introduce and study a class of coupling tensors associated with transitive

Lie algebroids over a symplectic base. This class consists of isomorphic Poisson structures

parametrized by connections on the Lie algebroid in the sense of Mackenzie [Mz]. Here

we use the technique of adjoint connections on the dual of a Lie algebriod. Adjoint

connections naturally arise in the general theory of Lie algebriods [Mz] (also see [Ku]) as
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well as in the context of infinitesimal Poisson geometry [KV2, IKV]. We show that the

holonomy of adjoint connections is related with the notion of a linear Poisson holonomy

introduced in [GiGo] (the definition of this notion in terms of contravariant connections

can be found in [Fe]).

In this paper we do not discuss the linearization problem. But we hope that the

linearized Poisson model, introduced here, can be used for extension of results on the

linearizability at a point [We4, Cn1, Cn2, Du] to the higher-dimentional case.

The body of the paper is organized as follows. In Section 2, a general description of

coupling tensors in terms of geometric data is given in Theorem 2.1. In Section 3, we

formulate main results on a neighborhood equivalence of two coupling tensors with the

same symplectic leaf, Theorem 3.1. and Theorem 3.2. The important technical part of

the proof of Lemma 3.1., is given in Appendix A. Section 4 is devoted to coupling tensors

associated with transitive Lie algebroids. Here we show that the criterion in Theorem 3.1

leads to the equivalence relation for Lie algebroids. In Section 5, using results of Section 4,

we give a definition of the linearized Poisson structure of a symplectic leaf and discuss

some applications.
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2. Coupling tensors. Let π : E → B be a fiber bundle (that is, a surjective sub-

mersion). Let Vert = ker (dπ) ⊂ TE be the vertical subbundle. Smooth sections of Vert

form the Lie algebra of vertical vector fields on the total space E which will be denoted by

XV (E). Consider the annihilator Vert0 ⊂ T ∗E of the vertical subbundle. Sections of Vert0

are called horizontal 1-forms. Denote by χk(E) = Γ(ΛkTE) the space of k-vector fields

on E. A k-vector field T ∈ χk(E) is said to be vertical if α⌋T = 0 for every horizontal

1-form α. The space of vertical k-vector fields will be denoted by χk
V (E).

We say that a bivector field Π ∈ χ2(E) is horizontally nondegenerate if for every e ∈ E

the antisymmetric bilinear form Πe : T
∗
eE ×T ∗

eE → R is nondegenerate on the subspace

Vert0e ⊂ T ∗
eE. In other words,

Π#(Vert0) ∩ Vert = {0}, (2.1)

rankΠ#(Vert0) = dimB. (2.2)

Here Π# : T ∗E → TE is the vector bundle morphism associated with Π, Π#(α) := α⌋Π

(α ∈ Ω1(E)).

Recall that a bivector field Π on E is said to be a Poisson tensor if Π satisfies the

Jacobi identity [Li]

[[Π,Π]]E = 0. (2.3)

Here [[·, ·]]E denotes the Schouten bracket for multivector fields on the total space E. The
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corresponding Poisson bracket is given by

{F,G}Π = Π(dF, dG) =
〈
dG,Π#(dF )

〉
.

The correspondence C∞(E) ∋ F 7→ Π#(dF ) ∈ X (E) is a homomorphism from the

Poisson algebra (C∞(E),{ , }Π) onto the Lie algebra XHam(E) of Hamiltonian vector

fields.

Our goal is to describe horizontally nondegenerate Poisson tensors on E. First, we

formulate some preliminary facts.

2.1. Geometric data. Suppose we are given a horizontally nondegenerate bivector field

Π ∈ χ2(E). By conditions (2.1), (2.2), we deduce that Π induces an intrinsic Ehresmann

connection Γ ∈ Ω1(E)⊗XV (E) whose horizontal subbundle Hor = ker Γ ⊂ TE is defined

as the image of Vert0 under the bundle map Π#,

Hor := Π#(Vert0). (2.4)

So, we have the splitting

TE = Hor⊕Vert . (2.5)

Then H = id− Γ is the horizontal projection. Let Hor0 ⊂ T ∗E be the annihilator of the

horizontal subbundle. Sections of Hor0 are called vertical 1-forms. The set of k-vector

fields T ∈ χk(E) such that β⌋T = 0 for every vertical 1-form β forms the space of

horizontal k-vector fields denoted by χk
H(E). In particular, XH(E) = χ1

H(E) will denote

the space of horizontal vector fields on E.

The splitting (2.5) induces a C∞(B) homomorphism

hor : X (B) → XH(E)

sending a smooth vector field u on B to a smooth section hor(u) of Hor and satisfying

Lhor(u)(π
∗f) = π∗(Luf) for every f ∈ C∞(B). The vector field hor(u) is called the

horizontal lift of a base vector field u, associated with the connection Γ. Notice that the

flow Flt of hor(u) is π-related with the flow ϕt of u, π ◦ Flt = ϕt ◦ π.

It follows from (2.4) that the subbundles Hor0 and Vert0 are Π-orthogonal. Thus there

is a unique decomposition of Π into horizontal and vertical parts:

Π = ΠH +ΠV , where ΠH ∈ χ2
H(E), ΠV ∈ χ2

V (E). (2.6)

Consider the horizontal part ΠH . The horizontal nondegeneracy of Π implies that the

restriction
◦

Π
#

H := Π#
H

∣∣
Vert0

: Vert0 → Hor (2.7)

is a vector bundle isomorphism. Note that ΠH , as a horizontal bivector field, is uniquely

determined by
◦

Π
#

H .

Consider the tensor product Ωk(B) ⊗ C∞(E) of C∞(B)-modules. One can think of

the elements of this space as k-forms on the base B with values in the space C∞(E), that

is, antisymmetric k-linear over C∞(B) mappings X (B) × . . .× X (B) → C∞(E). Hence

if F ∈Ωk(B) ⊗ C∞(E) and u1, . . . , uk ∈ X (B), then the restriction of F(u1, . . . , uk) to

the fiber Eb depends only on u1(b), . . . , uk(b) and we have a k-linear (over R) mapping

Fb : TbB × . . .× TbB → C∞(Eb).
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Moreover, there is a natural identification of Ωk(B)⊗ C∞(E) with the space Ωk
H(E) of

horizontal k-forms on E: Ωk(B)⊗C∞(E) ∋ F 7→ Fh ∈ Ωk
H(E), where Fh is a horizontal

k-form defined by

Fh(Y1, . . . , Yk) := Fπ(e)(deπY1, . . . , deπYk)(e)

for Y1, . . . , Yk ∈ TeE, e ∈ E. In particular, Fh(hor(u1), . . . , hor(uk)) = F(u1, . . . , uk) and

(ω ⊗ 1)h = π∗ω for ω ∈ Ωk(B). We will say that F ∈Ω2(B) ⊗ C∞(E) is nondegenerate

at a point e ∈ E if the restriction of Fh to the horisontal space Hore ≈ TeE/Verte is a

nondegenerate bilinear form.

Let us associate to Π the 2-form F ∈ Ω2(B)⊗ C∞(E) defined by

F(u1, u2) := −
〈( ◦

Π
#

H

)−1
hor(u1), hor(u2)

〉
(2.8)

for u1, u2 ∈ X (B). Note that the 2-form F is nondegenerate,

u⌋F = 0 for u ∈ X (B) implies u = 0. (2.9)

Here the interior product u⌋F is an element of the space Ω1(B)⊗ C∞(E).

Now we claim that horizontally nondegenerate bivector fields on E can be paramet-

rized by some geometric data. By geometric data we mean a triple (Γ,V ,F) consisting

of

• an Ehresmann connection Γ on π;

• a vertical bivector field V ∈ χ2
V (E);

• a nondegenerate C∞(E)-valued 2-form F ∈ Ω2(B)⊗ C∞(E) on the base B.

Direct mapping Π 7→ (Γ,V ,F). We associate to a given horizontally nondegenerate

bivector field Π on E the geometric data (Γ,V ,F), where

• Γ : TE → Vert is the projection along the subbundle (2.4);

• V = ΠV is the vertical part of Π in (2.6);

• F is the 2-form in (2.8).

Inverse mapping (Γ,V ,F) 7→ Π. Taking geometric data (Γ,V ,F), we introduce the

horizontally nondegenerate bivector field

Π = τΓ(F) + V , (2.10)

where the Γ-dependent correspondence F 7→ τΓ(F) ∈ χ2
H(E) is defined in the following

way. The nondegenerate 2-form F ∈ Ω2(B) ⊗ C∞(E) induces the vector bundle isomor-

phism

F
♭ : Hor → Vert0 ≈ Hor∗ (2.11)

such that

〈F ♭(hor(u1)), hor(u2)〉 = F(u1, u2) (2.12)

for every u1, u2 ∈ X (B). Then the horizontal bivector field τΓ(F) is determined by the

condition

τΓ(F)(β1, β2) = −〈β2, (F
♭)−1β1〉 (2.13)

for all β1, β2 ∈ Γ(Vert0).
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2.2. Coupling tensors. Now we can try to rewrite the Jacobi identity (2.3) for a

horizontally nondegenerate bivector field in terms of its geometric data. To formulate the

result, we recall some definitions.

If Γ is an Ehresmann connection on a fiber bundle π : E → B, then the curvature

form is a vector valued 2-form CurvΓ ∈ Ω2(B,Vert) ≈ Ω2(B)⊗XV (E) on the base defined

as

CurvΓ(u1, u2) := −Γ
(
[hor(u1), hor(u2)]

)

for u1, u2 ∈ X (B).

The connection Γ induces the covariant exterior derivative [GHV]

∂Γ : Ωk(B)⊗ C∞(E) → Ωk+1(B)⊗ C∞(E)

taking a k-form F to a (k+1)-form ∂ΓF , which at vector fields u0, u1, . . . , uk ∈ X (B) is:

(∂ΓF)(u0, u1, . . . , uk) :=

k∑

i=0

(−1)iLhor(ui)F(u0, u1, . . . , ûi, . . . , uk)

+
∑

0≤i<j≤k

(−1)i+jF
(
[ui, uj ], u0, u1, . . . , ûi, . . . , ûj , . . . , uk

)
. (2.14)

Notice that ∂Γ is a coboundary operator, ∂2
Γ = 0 if and only if CurvΓ = 0, that is, Γ is flat.

Moreover, we have (∂ΓF)h = H∗ ◦ d(Fh). Here H∗ : Ωk(E) → Ωk
H(E) is the horizontal

projection and d is the usual differential of forms. In particular,

∂Γ(ω ⊗ 1) = dω ⊗ 1 (2.15)

for every k-form ω on the base B.

Theorem 2.1. Let π : E → B be a fiber bundle. A horizontally nondegenerate bivec-

tor field Π ∈ χ2(E) is a Poisson tensor if and only if its geometric data (Γ,V ,F) satisfy

the following conditions:

(i) the vertical part V of Π is a Poisson tensor,

[[V ,V ]]E = 0; (2.16)

(ii) the connection Γ preserves V, that is, for every u ∈ X (B) the horizontal lift hor(u)

is an infinitesimal automorphism of V,

Lhor(u)V ≡ [[hor(u),V ]]E = 0; (2.17)

(iii) the nondegenerate 2-form F ∈ Ω2(B)⊗ C∞(E) satisfies

∂ΓF = 0, (2.18)

and the “curvature identity”

CurvΓ(u1, u2) = V#dF(u1, u2) (2.19)

for u1, u2 ∈ X (B).

The proof is a direct verification with the use of the Poisson–Ehresmann calculus. For

a symplectic version of Theorem 2.1 see [GLS].
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So, if geometric data (Γ,V ,F) satisfy conditions (2.16)–(2.19), then formula (2.10)

determines a Poisson tensor Π on E which will be called a coupling tensor associated

with (Γ,V ,F).

The hypotheses in Theorem 2.1 have the following interpretations. Suppose we are

given some geometric data (Γ,V ,F) satisfying conditions (2.16)–(2.19).

It follows from (2.16) that (E,V) is a Poisson manifold with vertical Poisson tensor

V . Let CasimV(E) be the space of Casimir functions on (E,V), that is, the center of

the Poisson algebra (C∞(E), { , }V). Clearly, π∗C∞(B) ⊂ CasimV(E). Every fiber Eb =

π−1(b) (b ∈ B) is a Poisson submanifold of (E,V) which carries a unique Poisson structure

Vfib
b with the property: the inclusion Eb →֒ E is a Poisson mapping (see [We4]). Thus,

V induces a smooth field of Poisson structures on the fibers: B ∋ b 7→ Vfib
b ∈ χ2(Eb)

called a fiberwise Poisson structure. Notice that if we start with a locally trivial Poisson

fiber bundle (the typical fiber is a Poissin manifold), then the fiberwise Poisson structure

induces a unique compatible vertical Poisson tensor.

Condition (2.17) means that the horizontal lift hor(u) of every base vector field u

is a Poisson vector field (an infinitesimal Poisson automorphism) of the vertical Pois-

son structure V . The Ehresmann connection Γ is compatible with the fiberwise Poisson

structure in the sense that the (local) flow Flt of hor(u) is a fiber preserving Poisson mor-

phism. In other words, the parallel transport associated with the connection Γ preserves

the fiberwise Poisson structure. Such a connection is called a Poisson connection on a

bundle of Poisson manifolds.

Denote by XPoiss
V (E) the Lie algebra of vertical Poisson vector fields and by XHam

V (E)

the Lie subalgebra of vertical Hamiltonian vector fields on (E,V). Then XHam
V (E) is an

ideal in XPoiss
V (E). Consider the quotient space

H1
V (E;V) = XPoiss

V (E)/XHam
V (E). (2.20)

Notice that the symplectic leaf of V through a point e ∈ E coincides with the symplectic

leaf of the Poisson structure Vfib
b on the fiber Eπ(e). Hence every Hamiltonian vector

field on (E,V) is an element of XHam
V (E). Moreover, every Poisson vector field of V is

represented as a sum of a horozontal lift of some base field and an element of XPoiss
V (E).

From here we deduce: the first Poisson cohomology space [Li, KM, Va] of V is isomorphic

to the direct sum X (B)⊕H1
V (E;V).

One can show that condition (2.17) implies the property: for every u1, u2 ∈ X (B) the

curvature vector field CurvΓ(u1, u2) is a vertical Poisson vector field,

CurvΓ(u1, u2) ∈ XPoiss
V (E). (2.21)

The curvature identity (2.19) leads to the stronger requirement: CurvΓ(u1, u2) is a vertical

Hamiltonian vector field with the Hamiltonian function F(u1, u2),

CurvΓ(u1, u2) ∈ XHam
V (E) (2.22)

and hence the equivalence class of CurvΓ(u1, u2) in H1
V (E,V) is trivial.

Remark also that conditions (2.18) and (2.19) are independent in general. Indeed, the

curvature identity (2.19) and the Bianchi identity for the curvature form of Γ imply only

that

∂ΓF ∈ Ω2(B)⊗ CasimV(E). (2.23)
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Consider the following two ”extreme” cases.

Example 2.1 (Flat Poisson bundles). Suppose we start with a Poisson bundle over

symplectic base: (E π−→B,V , ω), where V is a vertical Poisson tensor and ω is a base

symplectic structure. Then we can assign to every flat Poisson connection Γ on π the

coupling tensor ΠΓ defined by (2.10), where F = ω⊗ 1. In this case, (2.19) holds because

of the flatness, CurvΓ = 0. And (2.18) follows from the closedness of ω. The horizontal

part ΠΓ
H is just lifting of the nondegenerate Poisson structure on (B,ω) via Γ. In the

nonflat case, to satisfy the curvature identity (2.19) we have to deform the symplectic

structure on the base.

Example 2.2 (Coupling forms [St, GLS]). Under the same starting point as in Ex-

ample 2.1, assume also that the Poisson structure Vb is nondegenerate on each fiber Eb.

Then V induces a fiberwise symplectic structure B ∋ b 7→ σb ∈ Ω2(Eb) and the bundle E

becomes a symplectic fiber bundle (E, σ) over a symplectic base (B,ω). In this case, every

Poisson connection Γ on E is also symplectic, that is, the parallel transport preserves the

fiberwise symplectic structure σ. Furthermore, CasimV(E) ≈ C∞(B). Let us make the

extra assumption: the fiber bundle π : E → B is locally trivial and the typical fiber is

compact, connected and simply connected. Then we have (see [GLS])

H1
V (E;V) = 0. (2.24)

Let Γ be a Poisson connection. It follows from (2.21) and (2.24) that (2.22) holds. The

problem now is to find F in (2.19) satisfying also condition (2.18). Taking into account

our assumption, introduce a C∞(B) linear mapping

XHam
V (E) ∋ Z 7→ m(Z) ∈ C∞(E)

which is determined by the conditions

Z⌋σb = −dmb(Z) on Eb, (2.25)∫

Eb

mb(Z)σn
b = 0, 2n = dim(fiber) (2.26)

for every b ∈ B. Here mb(Z) = m(Z)
∣∣
Eb

and σn
b = 1

n!σb ∧ . . .∧σb (n-times) is the volume

form. Then we claim that the formula

F
Γ(u1, u2) = π∗ω(u1, u2) +m(CurvΓ(u1, u2))

defines just the desired form F
Γ ∈ Ω2(B) ⊗ C∞(E) satisfying (2.18) and (2.19). Indeed,

(2.18) holds automatically. The symplecticity of Γ and the normalization condition (2.26)

imply that the “collective Hamiltonian” m is Γ-invariant, m((Fl−1
t )∗Z) = Fl∗t (m(Z)),

where Flt is the flow of hor(u). This leads to (2.19). Denote by σv the vertical 2-form on

E which coincides with σb on each fiber Eb. Then the closed 2-form

ΩΓ = (FΓ)h + σv (2.27)

is called a coupling form associated with the symplectic connection Γ [GLS]. The closed-

ness of ΩΓ is just equivalent to conditions (2.18) and (2.19) for F = F
Γ. In a domain

where F
Γ is nondegenerate, ΩΓ is symplectic and its nondegenerate Poisson structure is

the coupling tensor ΠΓ generated by the triple (Γ,V ,FΓ).
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3. Neighborhood equivalence. Here we show that coupling tensors naturally ap-

pear in the classification problem of Poisson structures near a single symplectic leaf.

3.1. Geometric splitting. Let ν : N → B be a fiber bundle over a connected base B.

Suppose we have a cross-section s : B → N of ν.

We say that a Poisson tensor Π on N is compatible with section s, or briefly, s-

compatible if s(B) is a symplectic leaf of Π.

Proposition 3.1. Let Π ∈ χ2(N ) be an s-compatible Poisson tensor. Then there

exists a tubular neighborhood E of s(B) in N such that Π is a coupling tensor on E. In

particular, there is an intrinsic Ehresmann connection Γ on π = ν
∣∣
E

: E → B which

induces a unique decomposition

Π = ΠH +ΠV on E, (3.1)

where

• ΠH ∈ χ2
H(E) is a Γ-horizontal bivector field,

• ΠV ∈ χ2
V (E) is a vertical Poisson tensor such that

rankΠV = 0 at every point in s(B). (3.2)

The connection Γ is determined by (2.4).

Proof. Since s(B) is a symplectic leaf of Π, the bivector field Π is nondegenerate

on subspaces Vert0e ⊂ T ∗
eN at points e ∈ N sufficiently close to s(B). Hence Π is a

horizontally nondegenerate on a tubular neighborhoodE of s(B) inN . By Theorem 2.1, Π

is a coupling tensor onE associated with geometric data (Γ,V = ΠV ,F). Here the intrinsic

connection Γ and the bivector fields ΠH , V are defined by (2.4) and (2.6) respectively.

Property (3.2) follows from s-compatibility assumption.

Remark 3.1. Each fiber Eb over b ∈ B inherits from Π a Poisson structure in a

neighborhood of s(b) called the transverse Poisson structure at the point b [We4]. By the

splitting theorem, transverse Poisson structure is independent of the choice of a point s(b)

up to local isomorphism. The vertical part ΠV in (3.1) gives rise to a fiberwise Poisson

structure which fit together local transverse Poisson structures.

Note that the maximal domain, where splitting (3.1) holds, consists of the points

e ∈ N such that ranke Π
#(Vert0) = dimB. A given s-compatible Poisson structure Π

with geometric data (Γ,ΠV ,F) possesses the following properties on E.

(i) The symplectic structure ω on s(B) is

ω = F
h
∣∣
s(B)

. (3.3)

The horizontal distribution Hor associated with Γ is tangent to s(B),

Tes(B) = Hore for e ∈ s(B). (3.4)

and hence

CurvΓ(u1, u2) = 0 on s(B). (3.5)

The projection π : E → B is a Poisson morphism if and only if the curvature of Γ is

zero, CurvΓ = 0 on E. In the flat case, the symplectic leaf s(B) is an integral leaf of the
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integrable horizontal distribution Hor ⊂ TE. Hence, there is the holonomy of s(B) (as a

leaf of the corresponding foliation), called the strict Poisson holonomy of the leaf [Fe].

(ii) For every f ∈ C∞(B) the Hamiltonian vector field of the pull back π∗f is hori-

zontal,

Π#(π∗df) =
∑

i

Π(π∗df, π∗dξi) hor(∂/∂ξi), (3.6)

where (ξi) are (local) coordinates on the base B. Let D = Ann(kerΠ#) be the charac-

teristic distribution of Π on E. Let Vfib
b ∈ χ2(Eb) be the Poisson tensor on the fiber Eb

generated by ΠV , and let Dfib
b be the characteristic distribution of Vfib

b . Then for every

e ∈ E we have De = Hore ⊕(Dfib
b )e. Hence the rank of the Poisson structure Π at e is

rankeΠ = dimB + ranke Vfib
b , b = π(e). If (S,Ω) is a symplectic leaf of (E,Π) with

symplectic structure Ω, then at every e ∈ E we have the decomposition

Ωe = (Fh)e ⊕ σe,

where σ is the symplectic form on the leaf of (Eπ(e),V
fib
π(e)) passing through the point e.

The Poisson tensor Π is of constant rank on E if and only if ΠV ≡ 0. In this case, Γ is

flat.

(iii) Let f : Ẽ → E be a fiber preserving diffeomorphism from an open neighborhood

Ẽ of s(B) onto E that descends to the identity map on s(B). Then f∗Π is an s-compatible

Poisson tensor on Ẽ with the intrinsic connection f∗Γ and the splitting f∗Π = (f∗Π)H+

(f∗Π)V = f∗(ΠH) + f∗(ΠV ).

As a direct consequence of Proposition 3.1, we get the fact: in a tubular neighborhood

of a closed symplectic leaf every Poisson structure is realized as a coupling tensor (see

Section 5). Thus, the problem on the neighborhood equivalence between Poisson struc-

tures near a common symplectic leaf is reduced to the investigation of coupling tensors

over a compatible cross-section.

3.2. Neighborhood equivalence. Let π : E → B be a fiber bundle over a connected

base. Suppose we have two coupling tensors Π and Π̃ on E associated with geometric

data (Γ,V ,F) and (Γ̃, Ṽ, F̃), respectively. Assume that Π and Π̃ are compatible with a

cross-section s : B → E and

F(u1, u2)
∣∣
s(B)

= F̃(u1, u2)
∣∣
s(B)

(3.7)

for u1, u2 ∈ X (B). Condition (3.7) means that the symplectic structures on s(B) with

respect to Poisson structures Π and Π̃ coincide.

We say that the geometric data (Γ,V ,Λ) and (Γ̃, Ṽ , Λ̃) are equivalent over s(B) if

there exist open neighborhoods E and Ẽ of s(B) in E and a pair (g, φ) consisting of

• a fiber preserving diffeomorphism g : E → Ẽ ( π ◦ g = π) such that g ◦ s = s;

• a base 1-form φ ∈ Ω1(B)⊗ C∞(E)

which satisfy the relations:

g∗Ṽ = V , (3.8)

g∗ = Γ− (V# dφ)h, (3.9)

g∗F̃ = −∂Γφ−
1

2
{φ ∧ φ}V . (3.10)
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Here V# dφ is an element of the space Ω1(B) ⊗ XHam
V (E) determined by (V# dφ)(u) =

V# dφ(u) and {φ1 ∧ φ2}V denotes an element of Ω2(B) ⊗ C∞(E) given by

1

2
{φ1 ∧ φ2}V(u1, , u2) := V

(
dφ1(u1), dφ2(u2)

)
− V

(
dφ1(u2), dφ2(u1)

)

for φ1, φ2 ∈ Ω1(B)⊗ C∞(E) and u1, u2 ∈ X (B).

Theorem 3.1. Let Π and Π̃ be two s-compatible coupling tensors satisfying condition

(3.7). If the corresponding geometric data (Γ,V ,F) and (Γ̃, Ṽ, F̃) are equivalent over s(B),

then there exist neighborhoods O and Õ of s(B) in E and a diffeomorphism f : O → Õ

such that

f ◦ s = s, (3.11)

f∗Π̃ = Π. (3.12)

Proof. We will use a contravariant analog of the homotopy method due to Moser [Mos]

and Weinstein [We1] (see also [GSt, LMr].

Step 1. Homotopy between coupling tensors. By the property (iii) in section 3.1,

without loss of generality we can assume that the vertical parts of Π and Π̃ coincide,

Ṽ = V on E and g = id. By the s-compatibility assumption we deduce that rankV = 0

at s(B). It follows from this property and (3.7) that we can choose φ in (3.9), (3.10) so

that

φ(u)
∣∣
s(B)

= 0, for all u ∈ X (B). (3.13)

Consider the following t-parameter families of forms:

Γt = Γ− t(V#dφ)h ∈ Ω1(E)⊗XV (E), (3.14)

Ft = F− t∂Γφ−
t2

2
{φ ∧ φ}V ∈ Ω2(B)⊗ C∞(E). (3.15)

Then Γt is a time-dependent connection 1-form on E . By (3.13) and the nondegeneracy

of F, there is a neighborhood E0 of s(B) in E such that Ft is nondegenerate on E0 for

all t ∈ [0, 1]. This means that for every t ∈ [0, 1] and e ∈ E0 the horizontal lift ( Ft)
h

induces a nondegenerate bilinear form on the qoutient space TeE/V erte. Moreover, we

observe that the triple (Γt,V ,Ft) defines a geometric data on E0 satisfying conditions

(2.16)–(2.19) for every t ∈ [0, 1]. Thus the time-dependent coupling tensor Πt (t ∈ [0, 1])

associated to (Γt,V ,Ft) gives a homotopy from Π to Π̃, Πt

∣∣
t=0

= Π, Πt

∣∣
t=1

= Π̃.

Step 2. Homological equation. By the nondegeneracy of Ft on E0, there exists a unique

solution Xt ∈ X (B)⊗ C∞(E0) of the following equation

Xt⌋Ft = φ. (3.16)

Clearly

〈df,Xt〉
∣∣
s(B)

= 0 for every f ∈ C∞(B). (3.17)

One can associate to Xt the time-dependent horizontal vector field Xh
t ∈ XH(E0) defined

by

Xh
t (π

∗f) = 〈df,Xt〉 (3.18)
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for all f ∈ C∞(B). Property (3.17) implies

Xh
t

∣∣
s(B)

= 0. (3.19)

Lemma 3.1. Xh
t satisfies the equation

LXh
t
Πt +

∂

∂t
Πt = 0 (t ∈ [0, 1]). (3.20)

Here LXΠ is the Lie derivative of a bivector field Π along a vector field X , that is,

the Schouten bracket [[X,Π]]E . The proof of Lemma 3.1 is given in Appendix A.

Step 3. Let Φt be the flow of the time-dependent horizontal vector field Xh
t :

d
dtΦt =

Xh
t ◦ Φt, Φ0 = id. By (3.20) and the usual properties of the Lie derivative (see, for

example, [KM, LMr, Va]) we get Φ∗
tΠt = Π. Because of (3.19) for every e ∈ s(B), we

have Φt(e) = e for all t ∈ [0, 1]. Hence there exists a neighborhood O of s(B) in E0 that

lies in the domain of the flow Φt for t ∈ [0, 1]. Finally, the time 1 flow Φ1 of Xh
t generates

a diffeomorphism f : O → Õ satisfying (3.11), (3.12).

Remark 3.2. If s(B) is a regular symplectic leaf, then F = F̃ = 0 and V = 0.

Condition (3.9) means that the flat connections Γ̃ and Γ associated with corresponding

symplectic foliations over s(B), are gauge equivalent.

Now suppose we are given a triple (E
π
→ B,V , s) consisting of a fiber bundle over a

connected base, a vertical Poisson tensor V and a cross-section s : B → E. Assume that

rankV = 0 at s(B) and

H1
V (E ;V) = 0 (3.21)

for a certain open neighborhood E of s(B) in E. Assume also that there exists a C∞(B)-

linear map m : XHam
V (E) → C∞(E) such that

Z = V#(dm(Z)). (3.22)

for every Z ∈ XHam
V (E).

We say that a connection Γ on E is s-compatible if condition (3.4) holds. Denote

by C∞
B (E) the subspace of smooth funcions on E vanishing at s(B). Let Casim0

V(E) ≈

CasimV(E)/π∗C∞(B) be the subspace of Casimir funcions of (E ,V) vanishing at s(B).

From (3.21), (3.22) we deduce: if Γ and Γ̃ are two s-compatible Poisson connections

on E (condition (2.17) holds), then there exists φ0 ∈ Ω1(B) ⊗ C∞
B (E) such that

Γ− Γ̃ = (V#dφ0)
h. (3.23)

Note that φ0 in (3.23) is uniquely determined up to elements from the space Ω1(B) ⊗

Casim0
V(E).

Consider the C∞(B)-module Mk(E) = Ωk(B)⊗Casim0
V(E). Notice that the covariant

derivative ∂Γ associated to an s-compatible Poisson connection Γ on E sends the subspace

Mk(E) ⊂ Ωk(B)⊗ C∞(E) to subspace Mk+1(E) ⊂ Ωk+1(B)⊗ C∞(E). It follows from

(3.21) that there exists a unique operator ∂0 : Mk(E) → Mk+1(E) with the property: for

every s-compatible Poisson connection Γ on E the restriction of ∂Γ to Mk(E) coincides

with ∂0, ∂Γ |Mk(E)= ∂0. Moreover, ∂0 is coboundary operator, ∂0 ◦ ∂0 = 0.

We say that the germ of V at s(B) is trivial if there exists an open neighborhood E

of s(B) in E such that apart from conditions (3.21), (3.22) the second cohomology space
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of ∂0 is trivial,
ker(∂0 : M2(E) → M3(E))

im(∂0 : M1(E) → M2(E))
= 0. (3.24)

From Theorem 3.1 we derive the following Poisson analog of the relative Darboux

theorem due to [We1] .

Theorem 3.2. Assume that the germ of V at s(B) is trivial. Then every two s-

compatible Poisson tensors Π and Π̃ on E with the same symplectic structure on s(B)

(condition (3.7)) and the same vertical part

ΠV = Π̃V = V on E (3.25)

are isomorphic in the sense of (3.11), (3.12).

Proof. Let Π and Π̃ be two s-compatible Poisson tensors on E satisfying the above

hypotheses. Let (Γ,V ,F) and (Γ̃,V , F̃) be the geometric data associated with Π and Π̃,

respectavely. Thus, Poisson connections Γ and Γ̃ are s-compatible and hence (3.23) holds.

Pick a φ0 in (3.23) and define

C := F̃− F+∂Γφ0 +
1

2
{φ0 ∧ φ0}V . (3.26)

It follows from (3.23) and the curvature identity (2.19) for F and F̃ that C ∈ M2(E).

Using (2.18), we deduce: C is a 2-cocycle, ∂0C = 0 whose cohomology class does not

depend on the choice of φ0 in (3.26). If this class vanishes, then C = ∂0β for a β ∈
Ω1(B)⊗ Casim0

V(E) and F̃ and F satisfy (3.10) for φ = φ0 − β and g = id.

It remains to note: for the equivalence of two individual s-compatible Poisson tensors

Π and Π̃ instead of (3.24) we can assume that the cohomology class of the relative

2-cocycle (3.26) is trivial.

4. Poisson structures from Lie algebroids. Our goal is to describe a class of

connection-dependent coupling tensors on the dual of the isotropy of a transitive Lie

algebroid over a symplectic base.

To begin, we recall some definitions and facts in the theory of Lie algebroids (for more

detail see [Mz, Ku, Va, IKV, CWe] and references given there).

A Lie algebroid over a manifold B is a vector bundle A → B together with a bundle

map ρ : A → TB, called the anchor, and a Lie algebra structure { , }A on the space

Γ(A) of smooth sections of A such that

1. For any a1, a2 ∈ Γ(A),

ρ({a1, a2}A) = [ρ(a1), ρ(a2)]. (4.1)

2. For any a1, a2 ∈ Γ(A) and f ∈ C∞(B),

{a1, fa2}A = f{a1, a2}A + (Lρ(a1)f)a2. (4.2)

The kernel of the anchor ρ is called isotropy.

If A and Ã are two Lie algebroids over the same base manifold B, then a morphism of

Lie algebroids over B is a vector bundle morphism ı : A → Ã over B such that ρ̃ ◦ ı = ρ

and such that ı({a1, a2}A) = {ı(a1), ı(a2)}Ã for all a1, a2 ∈ Γ(A). If ı is a vector bundle

isomorphism we say that A and Ã are isomorphic.
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A Lie algebroid is called transitive if the anchor is a fiberwise surjection.

Let (A, ρ, [ , ]A) be a transitive Lie algebroid over a connected base B. Then there is

an exact sequence of vector bundles

ker ρ → A
ρ
→ TB. (4.3)

It follows from the Lie algebroid axioms that the restriction of the bracket { , }A to

Γ(ker ρ) defines a fiberwise Lie algebra structure on ker ρ which will be denoted by [ , ].

Further, (ker ρ, [ , ]) is a locally trivial Lie algebra bundle with a typical fiber g, that is,

the structure group of ker ρ reduces from GL(g) to the automorphism group Aut(g) of

the Lie algebra g (see [Mz]).

A connection on the transitive Lie algebroid A due to Mackenzie [Mz], is defined as

a right splitting of the exact sequence of vector bundles (4.3), that is, a vector bundle

morphism γ : TB → A such that ρ ◦ γ = id. Thus γ induces A = γ(TB) ⊕ ker ρ. The

curvature of γ is the vector valued 2-form Rγ ∈ Ω2(B) ⊗ Γ(ker ρ) defined by

Rγ(u1, u2) := {γ(u1), γ(u2)}A − γ([u1, u2]) (4.4)

for u1, u2 ∈ X (B).

Given a connection γ on A, there is a linear Koszul connection ∇γ : Γ(ker ρ) →

Γ(T ∗B⊗ker ρ) on the vector bundle kerρ, called an adjoint connection [Mz], and defined

by

∇γ
uη = {γ(u), η}A (u ∈ X (B), η ∈ Γ(ker ρ)). (4.5)

This connection preserves the fiberwise Lie structure on ker ρ,

∇γ([η1, η2]) = [∇γη1, η2] + [η1,∇
γη2] (4.6)

for η1, η2 ∈ Γ(ker ρ). The curvature form Curv∇
γ

: TB ⊕ TB → End(ker ρ) is given by

Curv∇
γ

(u1, u2) := [∇u1
,∇u2

]−∇[u1,u2]

and related to the curvature of γ by the adjoint representation

Curv∇
γ

= ad ◦Rγ . (4.7)

Here we use the notation ad ◦η = [η, ·] for η ∈ Γ(ker ρ). Furthermore, one can show that

Rγ satisfies the Bianchi identity:

S
(u0,u1,u2)

(
∇γ

u0
Rγ(u1, u2) +Rγ(u0, [u1, u2])

)
= 0 (4.8)

for any u,u1, u2 ∈ X (B). Identity (4.8) means that the ∇γ-covariant derivative of Rγ

vanishes, ∂∇γ

Rγ = 0.

Example 4.1. An important class of transitive Lie algebriods comes from principle

bundles. If we have a G-principle bundle P
τ

−→ B, then there is an exact sequence of of

vector bundles
ad(P ) = P ×G g → TP/G → TB

called the Atiyah sequence. Here g is the Lie algebra of G, TP/G is the quotient manifold

with respect to the (right) lifted action to the cotangent bundle and ad(P ) is the bundle

over B associated with P via the adjoint action of G on g. The natural isomorphism

between smooth sections of TP/G and the space of right invariant vector fields on P

induces the Lie bracket on Γ(TP/G). Thus, A = TP/G becomes a transitive Lie algebriod
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over B whose isotropy is the adjoint bundle ad(P ) (see [Mz, Ku]). A given principle

connection ϑ : TB → TP with G-invariant horizontal subbundle ϑ(TB) induces the

connection γ : TB → TP/G on the Lie algebroid A. The g-valued curvature form Kϑ ∈

Ω2(B; g) of ϑ is related with the curvature Rγ : TB ⊕ TB → P ×G g by the formula

Rγ = pr ◦τ∗Kϑ. Here τ∗Kϑ : TP ⊕ TP → P × g is the pull back via the projection

τ and pr : P × g → P ×G g is the natural projection. As is known [AM] there are

”nonintegrable” Lie algebriods, which are transitive and can not be realized as the Lie

algebroids of principle bundles (also see [Mz, Ku]).

4.1. Connection-dependent coupling tensors. Let ν : N → B be a vector bundle over

a connected symplectic base (B,ω). Suppose we are given

• a transitive Lie algebroid (A, ρ, { , }A) over B such that the isotropy of A coincides

with the dual of N

N ∗ → A → TB, N ∗ = kerρ; (4.9)

• a connection γ : TB → A.

Recall that N ∗ is a Lie algebra bundle with fiberwise Lie algebra structure [, ] and

typical fiber g. Hence N can be viewed as a bundle of Lie–Poisson manifolds with typical

fiber g∗.

Denote by C∞
lin(N ) the space of fiberwise linear functions on N . Then we have the

natural identification

ℓ : Γ(N ∗) → C∞
lin(N ) (4.10)

given by ℓ(η)(x) = 〈η(ν(x)), x〉 for x ∈ N and η ∈ Γ(N ∗).

We say that an Ehresmann connection on the vector bundle N is homogeneous if the

horizontal lift of every base vector field (as a differential operator) preserves the space

C∞
lin(N ). Equivalently, the horizontal subbundle is invariant with respect to dilations λt :

N → N (λt(x) = t · x, x ∈ N , t ∈ R). Notice that there is a bijective correspondence

between homogeneous Ehresmann connections on N and linear connections (covariant

derivatives) in the sense of Koszul [GHV].

Now let us assign to the pair (A, γ) a triple (ΓA,γ ,Λ,FA,γ) consisting of

• the homogeneous Ehresmann connection ΓA,γ on N whose horizontal lift is defined

by

Lhor(u)ϕ = ℓ({γ(u), ℓ−1(ϕ)}A) (4.11)

for u ∈ X (B), ϕ ∈ C∞
lin(N );

• the fiberwise linear vertical Poisson tensor Λ ∈ χ2
V (N ) given by

Λ(dϕ1, dϕ2) = ℓ([ℓ−1(ϕ1), ℓ
−1(ϕ2)]) (4.12)

for ϕ1, ϕ2 ∈ C∞
lin(N );

• the base 2-form F
A,γ ∈ Ω2(B)⊗ C∞

aff(N ):

F
A,γ = ω ⊗ 1− ℓ ◦ Rγ . (4.13)

For the second term in (4.13) we have ℓ ◦ Rγ(u1, u2)(e) = 〈Rγ(u1(b), u2(b)), e〉 for

u1, u2 ∈ X (B) and e ∈ N , here b = ν(e). Thus, the homogeneous Ehresmann connection

ΓA,γ is generated by the linear connection on N which is conjugate to the adjoint con-
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nection ∇γ in (4.5). The bivector field Λ defines the fiberwise Lie–Poisson structure on

the bundle g∗ → N
ν
→ B. The 2-form F

A,γ takes values in the space of fiberwise affine

functions C∞
aff(N ) ≈ C∞(B) ⊕ C∞

lin(N ) and includes the base symplectic 2-form ω and

the curvature form Rγ : TB ⊕ TB → N ∗ in (4.4).

Now we observe that properties (4.6), (4.8) and (4.7) imply relations (2.17)–(2.19)

for (ΓA,γ ,Λ,FA,γ). Moreover, since ℓ ◦ Rγ ∈ Ω2(B) ⊗ C∞
lin(N ), there is a neighborhood

E of the zero section B →֒ N , where the 2-form F
A,γ is nondegenerate. So applying

Theorem 2.1, we arrive at the following assertion.

Theorem 4.1. In a neighborhood E of the zero section B →֒ N the transitive Lie

algebroid A with a connection γ induces a coupling tensor ΠA,γ associated with the geo-

metric data (ΓA,γ ,Λ,FA,γ) in (4.11)–(4.13). If the kernel kerRγ ⊂ TB of the curvature

2-form Rγ is a coisotropic distribution with respect to the base symplectic form ω, then

the coupling tensor ΠA,γ is well-defined on the entire total space N .

To justify the second part of Theorem 4.1, let us consider the coordinate representation

for ΠA,γ .

Let (ξ, x) = (ξ1, . . . , ξ2k;x1, . . . , xr) be a (local) coordinate system on N , where (ξi)

are coordinates on the base B and (xσ) are coordinates on the fibers of N associated

with a basis of local sections (Xσ). Then we have

• the symplectic form on the base: ω = 1
2

∑
i,j ωij(ξ) dξ

i ∧ dξj , ωisωsj = δij ;

• the curvature form: Rγ = 1
2

∑
i,j,σ Rijσ(ξ)dξ

i ∧ dξj ⊗ dxσ;

• the connection form: ΓA,γ =
∑

i,σ Γ
σ
i dξ

i ⊗ ∂
∂xσ , Γσ

i = Γσ
iσ′(ξ)xσ′

;

• the base 2-form (4.13): FA,γ = 1
2

∑
i,j dξ

i ∧ dξj ⊗ Fij , where

Fij = ωij −
∑

σ

Rijσx
σ. (4.14)

Let (ησ) be the dual basis of local sectons of N ∗, 〈ησ, Xσ′ 〉 = δσ
σ′ . Then with respect

to the induced basis of local sections (Ξi = γ( ∂
∂ξi ), η

σ) of A the Lie algebroid structure

takes the form:

{Ξi,Ξj}A =
∑

ν

Rijση
ν , {Ξi, η

σ}A = −
∑

ν

Γσ
iνη

ν , {ησ, ησ
′

}A =
∑

ν

λσσ
ν ην .

Consider the open domain containing the zero section B = {x1 = 0, . . ., xr = 0}:

E = {(ξ, x) ∈ N | det((ωij −
∑

σ

Rijσx
σ)) 6= 0}. (4.15)

Then the coupling tensor ΠA,γ is well-defined on E and has the representation

ΠA,γ =
1

2

∑

i,j

Hij(ξ, x) hor(∂i) ∧ hor(∂j) +
1

2

∑

σσ′

Λσσ′

(ξ, x)
∂

∂xσ
∧

∂

∂xσ′
. (4.16)

Here hor(∂i) = ∂/∂ξi −
∑

σ Γ
σ
i ∂/∂x

σ and the matrix functions ((Hij)) and ((Λσσ′

)) are

defined by ∑

s

HisFsj = −δij, Λσσ′

=
∑

ν

λσσ′

ν (ξ)xν , (4.17)

where λσσ′

ν (ξ) are the structure constants of the Lie algebra Nξ ≈ g.
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The Poisson brackets of the coupling tensor ΠA,γ on the domain (4.15) take the form:

{ξi, ξj} = Hij = (−ωij + ωii′Ri′j′σω
j′jxσ) +O2,

{ξi, xσ} = −HisΓσ
s = ωisΓσ

sσ′xσ′

+O2, (4.18)

{xσ, xσ′

} = Λσσ′

+HijΓσ
i Γ

σ′

j = (λσσ′

ν xν − ωijΓσ
iνΓ

σ′

jν′xνxν′

) +O3.

Here the summation is taken with respect to repeated indices and Ok denotes a term

having zero of order k at every point in B.

Finally, using standard facts from linear symplectic geometry, it is easy to show that

under the coisotropic hypothesis for kerRγ , the matrix ((F ij)) in (4.14) is totally nonde-

generate and hence domain (4.15) coincides with the total space N .

Remark 4.1. In the case when A is the coadjoint bundle of a principle bundle, con-

nection dependent Poisson structures of type ΠA,γ were studied in [MoMR, Mo].

Example 4.2. Suppose we are given a vector bundle ν : L → Q equipped with

• a fiberwise Lie algebra structure [ησ, ησ
′

]L =
∑

ν λ
σσ′

ν (q)ην ,

• a linear connection ∇∂/∂qiη
σ = −

∑
σ′ θσiσ′ (q)ησ

′

.

Here (ησ) is a basis of local sections of L and q = (qi) are local coordinates on the

base Q. Assume that

(i) ∇ preserves [ , ]L (condition (4.6));

(ii) there exists a vector bundle morphism R : TQ× TQ → L

R

(
∂

∂qi
,

∂

∂qj

)
=

∑

ν

Rijν (q)η
ν

which is related to the curvature 2-form Curv∇ on Q by formula (4.7);

(iii) R satisfies the modified Bianchi identity (4.8).

Then the triple (∇,R, [, ]L) defines the transitive Lie algebroid on A = TQ ⊕ L

([Mz]) such that pr1 : TQ ⊕ L →TQ is the anchor, L is the isotropy, ∇ and R is the

adjoint connection and the curvature of the connection γ0 : TQ → TQ ⊕ L (canonical

injection). Consider the pull back Ã → T ∗Q of A via the natural projection T ∗Q → Q.

Denote also by (∇̃, R̃[, ]
L̃
) the cotangent pull back of the original triple (∇,R, [, ]L) and by

L̃ → TQ the pull back of the bundle L →Q. Consider the canonical symplectic structure

ω =
∑

i dp
i ∧ dqi = dp∧ dq on T ∗Q . Then the triple (∇̃, R̃, [, ]

L̃
) induces a transitive Lie

algebroid on Ã over the symplectic base (B = T ∗Q,ω = dp∧dq) (this is an inverse-image

algebroid [Mz, Ku]). Moreover, L̃ is the isotropy of Ã and the pull back γ̃0 : T (T ∗Q) → Ã

is the connection on Ã whose curvature is just R̃. Thus, the kernel of R̃ is a Lagrangian

distribution on T ∗Q with respect to the form dp∧dq. Hence the coupling tensor associated

with the pair (Ã, γ̃0) is well defined on the entire total space of the dual L̃∗ and the Poisson

bracket in (4.18) takes the following coordinate form

{pi, pj} = Rijν (q)x
ν , {pi, qj} = δij , {qi, qj} = 0,

{pi, xσ} = −θσiσ′(q)xσ′

, {pi, xσ} = {qi, xσ} = 0,

{xσ, xσ′

} = λσσ′

ν (q)xν .
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On the other hand, it is of interest to note: this Poisson structure coincides with the

Courant structure [Co] on the dual A∗ = TQ∗ ⊕ L∗ of the Lie algebroid A. Notice also

that such a type of Poisson structures arises from the study of Hamiltonian structures

for Wong’s equations [MoMR, Mo, La].

4.2. Varying the connection and the Lie algebroid structure. Let us address the fol-

lowing question: how does the coupling tensor ΠA,γ defined in Theorem 4.1 depend on

the choice of the connection γ and the Lie algebroid structure on A? We will investigate

this issue in two steps. Let A be a transitive Lie algebroid over a connected symplectic

base (B,ω). Let L be the isotropy of A and let N = L∗ be the dual. The fiberwise Lie

structure on L will be denoted by [ , ]L.

I. Suppose that we have two connections on A:

γ : TB → A and γ̃ : TB → A.

Consider adjoint connections and curvature forms ∇γ ,Rγ and ∇γ̃ ,Rγ̃ associated to γ

and γ̃ respectively. There is a vector bundle map µ : TB → L such that

γ̃(u) = γ(u) + µ(u) for u ∈ X (B).

We can think of µ as an L-valued 1-form on B, µ ∈ Ω1(B)⊗ Γ(L). Then we have [Mz]:

∇γ̃
u = ∇γ

u + ad ◦µ(u), u ∈ X (B), (4.19)

Rγ̃ = Rγ + ∂∇γµ+
1

2
[µ ∧ µ]L. (4.20)

Here ∂∇γ : Ωk(B)⊗Γ(L) → Ωk+1(B)⊗Γ(L) is the covariant exterior derivative associated

with the linear connection ∇γ , and in the last term in (4.20) we use the standard bracket

on the graded algebra of L-valued forms on B generated by the fiberwise Lie algebra

structure [ , ]L. Now let us consider the geometric data (ΓA,γ ,Λ,FA,γ) and (ΓA,γ̃ ,Λ,FA,γ̃)

defined in (4.11)–(4.13).

It follows from (4.19), (4.20) that ΓA,γ̃ ,ΓA,γ and F
A,γ̃ ,FA,γ satisfy relations (3.9),

(3.10) for g = id, V = Λ, and

φ = ℓ ◦ µ ∈ Ω1(B) ⊗ C∞
lin(N ). (4.21)

Thus the geometric data (ΓA,γ ,Λ,FA,γ) and (ΓA,γ̃ ,Λ,FA,γ̃) are equivalent. Consider the

corresponding coupling tensors ΠA,γ , ΠA,γ̃ on N . Then the zero section B →֒ N with a

given symplectic form ω is a common symplectic leaf of ΠA,γ and ΠA,γ̃ . So, we can apply

to ΠA,γ and ΠA,γ̃ the neighborhood equivalence Theorem 3.1.

Proposition 4.1. Coupling tensors ΠA,γ and ΠA,γ̃ associated with arbitrary connec-

tions γ and γ̃ on A are isomorphic over B, that is, there are open neighborhoods O, Õ

of the zero section B →֒ N and a diffeomorphism f : O → Õ identical on B such that

f∗ΠA,γ̃ = ΠA,γ.

The equivalence class of isomorphic Poisson structures ΠA,γ will be called an ω-

coupling structure of a transitive Lie algebroid A.

II. Let A and Ã be two transitive Lie algebroids over the same connected base (B,ω).

Assume that A and Ã are isomorphic and ı : Ã → A is a Lie algebroid isomorphism.
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Without loss of generality, we can also assume that

A = TB ⊕ L, (4.22)

Ã = TB ⊕ L̃, (4.23)

and the corresponding anchors ρ : A → TB, ρ̃ : Ã → TB coincide with the canonical

projections ρ = pr1, ρ̃ = p̃r1. It is clear that the restriction

g = ı
∣∣
L̃
: L̃ → L (4.24)

is a vector bundle isomorphism preserving the fiberwise Lie algebra structure on L and

L̃. We observe that ı takes an element u ⊕ η in Ã into the element ı(u ⊕ η) in A of the

form

ı(u⊕ η) = u⊕ (g(η) + µ(u)), (4.25)

where µ : TB → L is a vector bundle morphism. Thus, ı is characterized by the pair

(g, µ). Define connections γ0 on A and γ̃0 on Ã as the canonical injections:

u 7→ γ0(u) = u⊕ 0 ∈ TB ⊕ L, (4.26)

u 7→ γ̃0(u) = u⊕ 0 ∈ TB ⊕ L̃. (4.27)

Then we get

g([a1, a2]L) = [g(a1), g(a2)]L̃ (a1, a2 ∈ Γ(L)), (4.28)

g ◦ ∇γ̃0

u ◦ g−1 = ∇u + ad ◦µ(u) (u ∈ X (B)), (4.29)

g ◦ Rγ̃0 = Rγ0 + ∂∇γ0
µ+

1

2
[µ ∧ µ]L. (4.30)

Relations (4.28)–(4.30) lead to the equivalence relations (3.8)–(3.10) for geometric data

(Γγ0 ,Λ,FA,γ0) and (Γγ̃0 , Λ̃,FÃ,γ̃0) associated to pairs (A, γ0) and (Ã, γ̃0), respectively. As

a consequence of Theorem 3.1, we get the proposition.

Proposition 4.2. There is the neighborhood equivalence between coupling tensors

ΠA,γ0 and ΠÃ,γ̃0 .

Finally, combining Proposition 4.1 with Proposition 4.2, we obtain the main result.

Theorem 4.2. Let A and Ã be two transitive Lie algebroids over the same connected

symplectic base (B,ω), and let γ : TB → A, γ̃ : TB → Ã be two connections. Consider

coupling tensors ΠA,γ and ΠÃ,γ̃ associated to (A, γ) and (Ã, γ̃), respectively.

(i) Assume that A is isomorphic to Ã. Then under the arbitrary choice of connections

γ, γ̃, there exists a diffeomorphism f ; O → Õ from a neighborhood O of the zero section

B →֒ N = L∗(L is the isotropy of A) onto a neighborhood Õ of the zero section B →֒

Ñ = L̃∗(L̃ is the isotropy of Ã) such that f
∣∣
B
= idB and

f∗ΠÃ,γ̃ = ΠA,γ and f
∣∣
B
= idB . (4.31)

(ii) Conversely, the equivalence between coupling tensors ΠA,γ and ΠÃ,γ̃ (in the sense

of (4.31)) implies the isomorphism between the corresponding Lie algebroids A and Ã.

Now suppose we start with some data (L, [ , ]L, g), where (L, [ , ]L) is locally trivial

bundle of Lie algebras over a connected symplectic base (B,ω), g is the typical fiber.
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Let ∇ be a linear connection in L preserving the fiberwise Lie algebra structure [ , ]L
(condition (4.6)) and R ∈Ω2(B) ⊗ Γ(L) be a vector valued 2-form which is compatible

with (∇, [ , ]L) by means of (4.7) and (4.8). In this case, we say that the pair (∇,R) is

admissible for [ , ]L. Accoding to [Mz] the pair (∇,R) induces a unique transitive Lie

algebroid structure { , }∇,R on A = TB⊕L such that the anchor is the natural projection,

(L, [ , ]L) is the isotropy,∇ is the adjoint connection associated with connection γ0 in

(4.26) and R is the curvature of γ0. The coupling tensor on L associated to { , }∇,R and

γ0 will be denoted by Π∇,R. Consider the subbundle Cent(L) ⊂ L whose typical fiber is

the center of the Lie algebra g. Then Cent(L) is invariant with respect to the connection

∇ and the restriction ∇0 = ∇ |Cent(L)is a flat connection which does not depend on the

choice of ∇ in the class of adjoint connections of the Lie algebroid ( see [IKV]). Thus

the covariant derivative ∂0 : Ωk(B; Cent(L)) → Ωk+1(B; Cent(L)) associated with ∇0 is

a coboundary operator, ∂0 ◦ ∂0 = 0. Notice that the comology of ∂0 coincides with the

cohomology of the abelian Lie subalgebroid A0 = TB ⊕ Cent(L) in (A, {, }∇,R).

Let (∇̃, R̃) be a second admissible pair for [ , ]L and (A, { , }
∇̃,R̃

) be the corresponding

Lie algebroid. Assume that connection ∇̃ and ∇ on L are related by (4.19) for a certain

µ ∈ Ω1(B)⊗Γ(L). This condition means that the structures of abelian Lie algebroids on

A0 coming from the brackets { , }∇,R and { , }
∇̃,R̃

coincide. It follows from (4.8) and

(4.19) that

C := R̃ − R− ∂∇µ−
1

2
[µ ∧ µ]L. (4.32)

is a 2-cocyle C ∈Ω2(B) ⊗ Cent(L), ∂0C = 0 whose cohomology class does not depend on

the choice of µ in (4.19). Moreover we observe: the Lie algebroid structures { , }∇,R and

{ , }
∇̃,R̃

are isomorphic if and only if [C] = 0. Then as a consequence of Theorem 4.2,

we get the following ”linear” analog of Theorem 3.2.

Proposition 4.3. Under assuption (4.19) the coupling tensors Π∇,R and Π∇̃,R̃ are

isomorphic over B if and only if the cohomology class of the relative 2-cocycle C in (4.32)

is zero. In particular, this is true in the case when the second cohomology space of the

abelian Lie algebroid A0 is trivial.

Remark 4.2. Assume that the typical fiber g is reductive, that is, g = Cent(g)⊕[g, g],

where [g, g] is a semisimple Lie algebra. Then vanishing of the second cohomology of A0

leads to the same property for the second cohomology of the transitive Lie algebroid

A, H2(A) = 0[IKV]. This condition appears also under the study of the formal Poisson

equivalence [IKV].

5. Linearized Poisson models over a single symplectic leaf. In this section we

will show that for every Poisson manifolds with a given closed symplectic leaf B there is

a well defined notion of a linearized Poisson structure at B. This linearized structure is

defined as an equivalence class of isomorphic Poisson structures which live naturally on

the normal bundle to the symplectic leaf B. In the zero-dimensional case (dimB = 0),

our definition coincides with the notion of a linear approximation of a Poisson structure

at a point of rank 0 arising in the context of the linearization problem [We4].
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5.1. First approximations. Let (M,Ψ) be a Poisson manifolds equipped with a Pois-

son bracket

{F,G} = Ψ(dF, dG). (5.1)

Suppose that we are given a closed (embedded) symplectic leaf (B,ω) of M with sym-

plectic structure ω. Consider the normal bundle to the symplectic leaf B:

N = TBM/TB. (5.2)

The well known fact is that the original Poisson structure on M induces a fiberwise

Lie–Poisson structure on the normal bundle N which is given by the vertical Poisson

bivector field Λ ∈ χ2(N ) called a linearized transverse Poisson structure of the leaf B

[We4]. At each fiber Nb over b ∈ B the Lie–Poisson structure Λb ∈ χ2(Nb)) can be defined

as the linearization of the transverse Poisson structure at b due to the splitting theorem.

To compare the original Poisson tensor Ψ with Λ, it is natural to consider a pull back of

Ψ onto N via an exponential map.

By an exponential map, we mean a diffeomorphism f : N → M from the normal

bundle N onto a tubular neighborhood of the leaf B in M such that

(i) f is compatible with the zero section s0 : B →֒ N , that is, f ◦ s0 = s0; and

(ii) the composite map

Nb →֒ Tb(N ) dbf−−→TbM
νb→ Nb

is the identity. Here the last mapping is the canonical projection ν : TBM → TBM/TB.

It follows from the tubular neighborhood theorem that an exponential map always

exists [LMr]. By Proposition 3.1 we deduce the following statement.

Proposition 5.1. Let f∗Ψ ∈ χ2(N ) be the pull back of the Poisson tensor Ψ via an

exponential map f . Then the zero section B →֒ N is a closed symplectic leaf of f∗Ψ with

symplectic structure ω. Moreover, there exists an open neighborhood E of B in N such

that f∗Ψ is a coupling tensor on E. For the vertical tensor (f∗Ψ)V defined in (3.1), we

have

(f∗Ψ)V = Λ+O2 on E, (5.3)

that is, the linearized transverse Poisson structure Λ gives a linear approximation to the

vertical part of f∗Ψ.

Definition 5.1. A 0-section compatible Poisson tensor Π defined (as a coupling ten-

sor) on an open (tubular) neighborhood E of B in N is said to be a first approximation

to Ψ at the leaf B if

(i) the intrinsic Ehresmann connection Γ (2.4) of Π is homogeneous on E;

(ii) the vertical part ΠV in (3.1) coincides with the linearized transverse Poisson

structure Λ of B,

ΠV = Λ on E; (5.4)

(iii) there exists an exponential map f : N → M such that

f∗Ψ = Π+ O2 on E. (5.5)
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Theorem 5.1. Let (M,Ψ, B, ω) be a Poisson manifold with a closed symplectic leaf

(B,ω). Then for a given exponential map f there exists a unique first approximation Πf

to Ψ at B satisfying (5.5). The Poisson bivector field Πf does not depend on the choice

of f up to 0-section neighborhood isomorphism.

Definition 5.2. The equivalence class of isomorphic Poisson tensors Πf is said to be

the linearized Poisson structure of the leaf B.

Remark 5.1. If the symplectic leaf B is not closed, then in the definition of the

exponential map we can require f to be a smooth immersion. In this case, the notion

of the linearized Poisson structure is still well defined. But the pull back f∗Ψ does not

isomorphic to the original Poisson structure Ψ in general.

To prove Theorem 5.1, we will use results obtained in Section 4.

5.2. The transitive Lie algebroid of a symplectic leaf. As is well known, the Poisson

bracket (5.1) on M admits the natural extension to the bracket for 1-forms on M :

{α, β}T∗M = Ψ#(α)⌋dβ −Ψ#(β)⌋dα − d〈α,Ψ#(β)〉. (5.6)

This structure makes the cotangent bundle T ∗M a Lie algebroid:
(
T ∗M, { , }T∗M , ρ = Ψ#

)
(5.7)

which is called the Lie algebroid of the Poisson manifold (M,Ψ) [We5]. Notice that if M

is not regular, then the Lie algebroid (5.7) is not transitive.

Given a symplectic leaf (B,ω) of M , one can restrict the bracket { , }T∗M to a bracket

{ , }T∗

B
M on smooth sections of the restricted cotangent bundle T ∗

BM . The result is the

transitive Lie algebroid [IKV] (also see [Ku] for general criteria of Lie subalgebroids):
(
T ∗
BM, { , }T∗

B
M , ρ = ρB

)
(5.8)

with anchor

ρB : T ∗
BM → T ∗B

−(ω♭)−1

−−−−−→TB, (5.9)

where the first morphism is induced by the inclusion TB →֒ TBM and ω♭ : TB → T ∗B is

the bundle map associated with the symplectic structure ω (ω♭(u) = u yω) The isotropy

of this Lie algebroid coincides with the annihilator TB0 = kerB Ψ# of TB in TBM . We

will call (5.8) the transitive Lie algebroid of the symplectic leaf B.

Let N be the normal bundle to the leaf B and f : N → M be an exponential map.

Then the differential

dBf : TBN = TB ⊕N → TBM

is identical on TB and takes the subbundle N to the complementary subbundle S =

dBf(N ) to TB. Let S0 be the annihilator of S in TBM . The natural splitting

T ∗
BM = S0 ⊕ TB0 (5.10)

defines the connection γf : TB → T ∗
BM in the Lie algebroid (5.8). On the other hand,

the exact sequence of vector bundles TB → TBM
ν
→ N induces the dual exact sequence

N ∗ ν∗

→ T ∗
BM → T ∗B. (5.11)
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Using (5.10) and (5.11), we define the vector bundle isomorphism

ιf = γf ⊕ ν∗ : TB ⊕N ∗ → T ∗
BM (5.12)

which induces the Lie algebroid structure on A = TB ⊕N ∗:

{ a1, a2}A = ι−1
f

({ιf (a1), ιf (a2)}T∗

B
M ).

Thus, we get the transitive Lie algebroid over B with distinguished connection:

(A = TB ⊕N ∗, { , }A, ρ = pr1, γ0). (5.13)

Here the anchor is the projection onto the first factor, the conormal bundle N ∗ is the

isotropy and the connection γ0 is the canonical injection (4.26) whose pull back via ιf
coincides with the f -dependent connection, γf = ιf ◦ γ0.

Now we can proceed to the proof of Theorem 5.1. Given an exponential map f , we

define the coupling tensor ΠA,γ0 on the normal bundle N associated with the transitive

Lie algebroid A in (5.13) and connection γ0. Clearly ΠA,γ0 is equivalent to the coupling

tensor associated with the transitive Lie algebroid of B (5.8) and the connection γf .

Finally, we observe that ΠA,γ0 is just the first approximation to Ψ at B generated by the

exponential map f ,

Πf = ΠA,γ0 . (5.14)

Here we use the following equivalent reformulation of Definition 5.1: a coupling tensor

Π with an exponential map f defines a first approximation to Ψ at B if the geometric

data of Π are obtained from the geometric data of f∗Ψ by means of the linearization at

B. The independence of Πf of the choice of f (up to a neighborhood equivalence) follows

from Theorem 4.2.

We can conclude: the linearized Poisson structure of Ψ at a closed symplectic leaf

(B,ω) coincides with the ω-coupling structure of the transitive Lie algebroid of the leaf.

Now it is natural to say that a Poisson stucture Ψ is linearizable at a closed symplectic

leaf (B,ω) if there exists an exponential map f such that the pull back f∗Ψ and the first

approximation Πf are isomorphic over the zero section B →֒ N . This definition does not

depend on the choice of f .

Remark 5.2. If Λ = 0, then one can try to introduce second approximations to Ψ at

B, using, for example, results [Du].

To end this section, as a consequence of the above results, we give an affirmative

answer to the question on the Poisson realization of transitive Lie algebroids.

Theorem 5.2. Every transitive Lie algebroid A over a connected symplectic base

(B,ω) can be realized as the transitive Lie algebroid of the symplectic leaf (B,ω) of a

certain Poisson manifold.

5.3. Homotopy invariants. The notion of the reduced linear Poisson holonomy of a

symplectic leaf B, introduced in [GiGo] (also see [Fe]), can be defined as a homotopy

invariant of the transitive Lie algebroid of B (5.8). To see that, pick two coonections

γ and γ̃ in the Lie algebroid T ∗
BM and consider the corresponding adjoint connections

∇γ and ∇γ̃ on the isotropy L = TB0. Fix a point b0 ∈ B and consider a smooth path
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[0,1] ∋ t 7→ σ(t) ∈ B starting at b0, σ(0) = b0. Denote by Pt : Lb0 → Lσ(t) and

P̃t : Lb0 → Lσ(t) parallel transport operators associated with linear connections ∇γ and

∇γ̃ , respectively. Define a time dependent field of linear operators on the fiber Lb0 as

follows:

Ξt := P−1
t ◦

(
ad ◦µ

(
dσ(t)

dt

))
◦ Pt, (5.15)

where µ is an L-valued 1-form on B, defined in (4.19). It follows from (4.6) that Ξt ∈

ad(Lb0) ≈ ad(g)( the adjoint algebra of the typical fiber g) for all t ∈ [0, 1]. Consider the

evolution operator Tt ∈ Ad(Lb0) ≈ Ad(g):

dTt

dt
= −Ξt ◦ Tt, T0 = id . (5.16)

Then we get the following relationship between parallel transports of two adjoint con-

nections [KV1]: P̃t = Pt ◦ Tt. This implies that for every loop σ ∈ Ω(B; b0) based at b0,

the corresponding elements of holonomy groups P̃σ ∈ Hol∇
γ̃

b0
⊂ Aut(g) and Pσ ∈ Hol∇

γ

b0
⊂

Aut(g) are related by P̃σ = Pσ ◦Tσ, where Tσ ∈ Inn(Lb0) ≈ Inn(g) (the normal subgroup

of inner automorphisms of g, see [GiGo]). Thus, there is a well defined homomorphism

Ω(B; b0) → Aut(g)/ Inn(g), which does not depend on the choice of an adjoint connec-

tion. If we consider the conjugate homomorphism Ω(B; b0) → Aut(g∗)/ Inn(g∗), then its

cotangent lift coincides with the definition of the reduced linear Poisson holonomy of B

given in [GiGo, Fe].

A. Appendix: the proof of Lemma 3.1. First, remark that if Γ is an Ehresmann

connection on a fiber bundle π : E → B, then the horizontal lift and the covariant

exterior derivative (2.14) satisfy the modified Cartan formula

Lhor(u) = ıu ◦ ∂Γ + ∂Γ ◦ ıu, u ∈ X (B). (A.1)

Here ıu is the interior product. Moreover, the commutator of the horizontal lift hor(u)

with an arbitrary vertical vector field is again a vertical vector field,

[hor(u),XV (E)] ∈ XV (E). (A.2)

Let Πt be the time-dependent coupling tensor associated with geometric data

(Γt,V ,Ft) in (3.14), (3.15), and let Xh
t ∈ XH(E0) be an arbitrary time-dependent horizon-

tal vector field. Using properties (A.1), (A.2) and the standard properties of the Schouten

bracket, from relations (2.16)–(2.19) for (Γt,V ,Ft) we deduce the key formula

LXh
t
Πt = −

1

2
Hii′Hjj′ (∂Γt(Xt⌋Ft))i′j′ hort(∂i) ∧ hort(∂j)

+His(V#dFt(Xt, ∂s))
σ∂σ ∧ hort(∂i). (A.3)

Here hort is the horizontal lift associated with Γt and we use the local representations

Πt =
1

2
Hij hort(∂i) ∧ hort(∂j) +

1

2
Vσσ′

∂σ ∧ ∂σ′ ,

where ∂i = ∂/∂ξi, ∂σ = ∂/∂xσ, (ξi) and (xσ) are local coordinates on the base and the

fiber of π, respectively. Let Ft =
1
2Fijdξ

i ∧ dξj . Taking into account HisFsj = −δi
′

j and

relations (3.14), (3.15), we get also
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∂

∂t
Πt = −

1

2
Hii′Hjj′ ∂

∂t
Fi′j′ hort(∂i) ∧ hort(∂j)

−His(V#dφ(∂s))
σ∂σ ∧ hort(∂i). (A.4)

Now a direct consequence of (A.3) and (A.4) is that a time-dependent horizontal

vector fieldXh
t is a solution of the homological equation (3.20) if and only if the associated

element Xt ∈ X (B) ⊗ C∞(E0) satisfies the following two equations

∂Γt(Xt⌋Ft) +
∂

∂t
Ft = 0, (A.5)

Xt⌋Ft = φ+ c, (A.6)

where c ∈ Ω1(B)⊗CasimV(E0) is arbitrary. Taking c = 0 and Xt as the solution of (3.16),

we reduce (A.5) to the identity

∂Γtφ = ∂Γφ+ t{φ ∧ φ}V , t ∈ [0, 1],

which holds because of the assumption (3.9). This completes the proof.
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