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Abstract. This article explores some simple examples of L∞ algebras and the construction

of miniversal deformations of these structures. Among other things, it is shown that there are

two families of nonequivalent L∞ structures on a 1|1 dimensional vector space, two of which are
Lie algebra structures. The main purpose of this work is to provide a simple effective procedure

for constructing miniversal deformations, using the examples to illustrate the general technique.

The same method can be applied directly to construct versal deformations of Lie algebras.

1. Introduction. Global and local deformations of different algebraic objects are in

the center of current research. We just mention the Krichever-Novikov algebras as defor-

mations of the Virasoro algebra [12], string theory [1], as well as the recent application

of deformation theory to solve the problem of quantization of Poisson manifolds [11].

In this paper we consider local (formal) deformations. There is much confusion in

the literature if one wants to solve the deformation question completely — although

this is the main goal in deformation theory. We search for a “universal” object in the

category of deformations. Such an object usually does not exist, but there exist a so called

“versal” or “miniversal” element. Intuitively, this versal element induces all nonequivalent

deformations and is unique at the infinitesimal level.
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There are some known interesting results for constructing versal deformations of Lie

algebras (see [3], [6]). A natural generalization leads to strongly homotopy Lie algebras

(sometimes called L∞ algebras or sh Lie algebras) This appears for instance in closed

string field theory (see [22], or in the study on higher spin particles (see [3], but also

gives rise to cycles in the homology of graph complexes as described first by Kontsevich

(see [9]). Although sh Lie algebras arise in many different aspects, so far there were no

explicit examples, nor was their deformation theory studied.

In this article we shall explore some interesting simple examples of L∞ structures

on low dimensional Z2-graded vector spaces, and construct versal deformations of these

structures. A detailed explanation of the definitions of infinity algebras and their cohomol-

ogy theory can be obtained in [16, 17]. Infinity algebras were first described and applied

by James Stasheff (see [23, 24, 14, 13]), and have appeared recently in both mathematics

and mathematical physics (see [1, 2, 10, 15, 25, 20, 19, 18]). The essential details of the

theory of versal deformations of infinity algebras are outlined in [8], and are a generaliza-

tion of the results in [7] on versal deformations of Lie algebras (see also [4, 5, 6, 9, 21]). In

this article, our aim is to show how to construct a miniversal deformation through some

examples. For the proof of the miniversality of the deformations we will construct here,

we refer to [8]. For sake of completeness, we will present here the basic definitions of L∞

algebras and formal deformations.

2. Basic definitions

2.1. L∞ algebras. IfW is a Z2-graded vector space, then S(W ) denotes the symmetric

coalgebra of W . If we let T (W ) be the reduced tensor algebra T (W ) =
⊕∞

n=1W
⊗n, then

the reduced symmetric algebra S(W ) is the quotient of the tensor algebra by the graded

ideal generated by u ⊗ v − (−1)uvv ⊗ u for elements u, v ∈ W . The symmetric algebra

has a natural coalgebra structure, given by

∆(w1 . . . wn) =
n
∑

k=1

∑

σ∈Sh(k,n−k)

ǫ(σ)wσ(1) . . . wσ(k) ⊗ wσ(k+1) . . . wσ(n),

where we denote the product in S(W ) by juxtaposition, Sh(k, n−k) is the set of unshuffles

of type (k, n− k), and ǫ(σ) is a sign determined by σ (and w1 . . . wn) given by

wσ(1) . . . wσ(n) = ǫ(σ)w1 . . . wn.

A coderivation on S(W ) is a map δ : S(W ) → S(W ) satisfying

∆ ◦ δ = (δ ⊗ I + I ⊗ δ) ◦∆.

Let us suppose that the even part of W has basis e1 . . . em, and the odd part has basis

f1 . . . fn, so that W is an m|n dimensional space. Then a basis of S(W ) is given by all

vectors of the form ek1

1 . . . ekm

m f l1
1 . . . f ln

n , where ki is any nonnegative integer, and li ∈ Z2.

An L∞ structure on W is simply an odd codifferential on S(W ), that is to say, an

odd coderivation whose square is zero. The space Coder(W ) can be naturally identified

with Hom(S(W ),W ), and the Lie superalgebra structure on Coder(W ) determines a

Lie bracket on Hom(S(W ),W ) as follows. Denote Lm = Hom(Sm(W ),W ) so that L =

Hom(S(W ),W ) is the direct product of the spaces Li. If α ∈ Lm and β ∈ Ln, then [α, β]
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is the element in Lm+n−1 determined by

(1) [α, β](w1 . . . wm+n−1)

=
∑

σ∈Sh(n,m−1)

ǫ(σ)α(β(wσ(1) . . . wσ(n))wσ(n+1) . . . wσ(m+n−1))

− (−1)αβ
∑

σ∈Sh(m,n−1)

ǫ(σ)β(α(wσ(1) . . . wσ(m))wσ(m+1) . . . wσ(m+n−1)).

Another way to express this bracket is in the form

[α, β] = αβ̃ − (−1)αββα̃,

where for ϕ ∈ Hom(Sk(W ),W ), ϕ̃ is the associated coderivation, given by

ϕ̃(w1 . . . wn) =
∑

σ∈Sh(k,n−k)

ǫ(σ)ϕ(wσ(1) . . . wσ(k))wσ(k+1) . . . wσ(n).

In this article, formula (1) will be used extensively to make explicit computations of

brackets. In our computations, we shall also use the fact that there are
(

n
k

)

permutations

in Sh(k, n− k).

If W is completely odd, and d ∈ L2, then d determines an ordinary Lie algebra on

W , or rather on its parity reversion. The symmetric algebra on W looks like the exterior

algebra on W if we forget the grading. If we define [a, b] = d(ab) for a, b ∈ W , then the

bracket is antisymmetric because ba = −ab, and moreover

0 = [d, d](abc) =
1

2

∑

σ∈Sh(2,1)

ǫ(σ)d(d(σ(a)σ(b))σ(c)) = d((d(ab)c) + d(d(bc)a) − d(d(ac)b)

= [[a, b], c] + [[b, c], a]− [[a, c], b],

which is the Jacobi identity. When d ∈ L2 and W has a true grading, then the same

principle holds, except that one has to take into account a sign arising from the map

S2(W ) →
∧2(V ), where V is the parity reversion of W . Thus Z2-graded Lie algebras are

also examples of L∞ algebras. In addition, differential graded Lie algebras are examples

of L∞ algebras. In all these cases, the method of construction of miniversal deformations

we describe here applies. One simply considers only terms that come from L2 in the

codifferentials.

Suppose that g̃ : S(W ) → S(W ′) is a coalgebra morphism, that is a map satisfying

∆′ ◦ g̃ = (g̃ ⊗ g̃) ◦∆.

If d and d′ are L∞ algebra structures on W and W ′, resp., then g̃ is a homomorphism

between these structures if g̃ ◦d = d′ ◦ g̃. Two L∞ structures d and d′ onW are equivalent

when there is a coalgebra automorphism g̃ of S(W ) such that d′ = g̃−1◦d◦g̃. Furthermore,

if d = d′, then g̃ is said to be an automorphism of the L∞ algebra.

2.2. Deformations. We shall always assume that the ground field K of the graded

space W has characteristic zero. A local base is a Z2-graded commutative local algebra

A equipped with a fixed augmentation ǫ : A → K, with augmentation ideal m.

Definition 2.1. If d is a codifferential on S(W ), then a deformation of d with base A

is a codifferential dA on S(W )⊗A, which projects to d under the morphism of coalgebras
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I ⊗ ǫ : S(W )⊗A → S(W ). When A is a formal algebra (a complete local algebra), then

a deformation with base A will be called a formal deformation, and a deformation with

base A/mn+1 will be called an n-th order deformation. When n = 1, the deformation is

called infinitesimal.

Definition 2.2. A deformation dA with local base A is called versal or miniversal if

for any deformation d′A with base A′, there is a certain morphism of algebras λ : A → A′,

such that the induced codifferential λ∗(dA) on S(W )⊗A′ is equivalent to d′A.

In [8], it was shown that under some mild restrictions on the cohomology (it must be

of finite type), there is a miniversal deformation, Note that any coderivation of S(W )⊗A

lies in L⊗A, so that λ∗ is simply the natural map L⊗A → L⊗A′. Moreover, the notion

of equivalence of deformations with base A is given by the following. If d is a codifferential

on S(W ) and g̃ is a coalgebra automorphism of S(W ), then define g̃∗(d) = g̃−1 ◦ d ◦ g̃. If

d1A and d2A are two deformations of d with base A, then they are said to be equivalent if

there is a coalgebra automorphism g̃ of S(W )⊗A satisfying (I ⊗ ǫ) ◦ g̃ = I ⊗ ǫ such that

g̃∗(d1A) = d2A. The condition on g̃ means simply that g̃(w) = w (mod m), so that g̃ does

not act on the underlying coalgebra S(W ) (to avoid mixing the notion of automorphisms

of the L∞ algebra with that of the equivalences of deformations of the algebra).

The objective in this article is to compute versal deformations of some simple ex-

amples. To see how to do this in practice, we will give a concrete description of the

construction of a miniversal deformation of a codifferential d. Since d is a codifferential,

the map D : L → L given by D(ϕ) = [d, ϕ] satisfies D2 = 0. The homology of this map

is called the cohomology of the L∞ algebra. Let us assume that the space of cocycles

Z(L) has an increasing basis of the form 〈δi, βj〉, where the subspace spanned by the δi
projects isomorphically onto the cohomology of d, and βj is a basis of the coboundaries.

By basis, we mean (in the sense of [8]) that any element of Z(L) has a unique expression

as a power series in the elements of the basis, and increasing means that the orders of the

elements are nondecreasing. Here, order refers to the order of the element in L. In the

general case, an element in L is represented as a power series, since L is a direct product

of the spaces Ln. The order represents the least n such that the projection of the element

onto Ln is nonzero.

In order for there to be a good theory of deformations, the cohomology should be of

finite type, which means that there are only a finite number of elements in the basis δi
of order less than a given integer. In our examples, the condition will be satisfied, but

even in the simplest cases, as we shall see in the case of a one dimensional space, the

cohomology can be infinite dimensional.

To construct the universal infinitesimal deformation of a codifferential d, one formally

considers the infinitesimal base A = K ⊕ H where H = (Π(H(L)))∗ is the dual of the

parity reversion of the cohomology of L, and the multiplication in H is trivial. Then

the base of the miniversal deformation is A = K[[H]]/R, where R represents a set of

polynomial relations involving the generators of the space H.

If we let δi be a basis of a subspace of cocycles which projects isomorphically to the

cohomology, then choosing an appropriate dual basis ui of H, the universal infinitesimal

deformation d1 is given by



INFINITY ALGEBRAS AND DEFORMATIONS 31

d1 = d+ δiu
i.(2)

The parity of the element ui is opposite to the parity of δi, in order to preserve the

oddness of the codifferential. Let α1 = δiu
i. Then α1 is a cocycle. In order to extend the

bracket to a second order bracket, one simply computes

[d1, d1] = [d, d] + 2[d, α1] + [α1, α1] = [α1, α1](3)

which is a cocycle, because the bracket of two cocycles is always a cocycle. This cocycle

can be represented as a linear combination of the δi plus a coboundary term. Let us

express this in the form

[d1, d1] = −
1

2
D(α2) + δiR

i
2,(4)

where Ri
2 is a sum of products of the parameters of the form ukul, so lies in m

2, and

α2 ∈ L ⊗ m
2. We would like [d1, d1] to be a coboundary mod m

3, which means that we

must have Ri
2 = 0 mod m

3.

The second order deformation is given by d2 = d1 + α2. The bracket of this second

order codifferential with itself is

[d2, d2] = [d1, d1] + 2[d1, α2] + [α2, α2] = [d1, d1] + 2D(α2) + 2[α1, α2] + [α2, α2]

= δiR
i
2 + 2[α1, α2] + [α2, α2]

Note that the first and third terms in this bracket are zero mod m
3. We want this bracket

to be a coboundary mod m
3. Let us first show that at least it is a cocycle mod m

3. Now

D([d2, d2]) = 2[α1, D(α2)] + 2[D(α2), α2] = 2[α1,−2[α1, α1] + 2δiR
i
2] + 2[D(α2), α2]

= 4[α1, δiR
i
2] + 2[D(α2), α2],

which is equal to zero mod m
4. In general, let us suppose that we have shown that

[dn, dn] = 0 mod m
n+1. and that D([dn, dn]) = 0 mod m

n+2. Then we set

[dn, dn] = −
1

2
D(αn+1) + δiR

i
n+1

where αn+1 ∈ L⊗m
n+1, and Ri

n+1 = 0 mod m
n+2. Set dn+1 = dn + αn+1. Then

[dn+1, dn+1] = δiR
i
n+1 + 2[dn − d, αn+1] + [αn+2, αn+2].

Note that each term appearing in the bracket is equal to zero mod m
n+2. Next, we

compute

D[dn+1, dn+1] = 2[D(dn − d), αn+1]− 2[dn − d,Dαn+1] + 2[αn+1, αn+1]

= 2[D(dn − d− α1), αn+1]− 2[dn, Dαn+1] + 2[αn+1, αn+1]

= 2[D(dn − d− α1), αn+1]− 2[dn,−2[dn, dn] + 2δiR
i
n+1] + 2[αn+1, αn+1]

= 2[D(dn − d− α1), αn+1]− 2[dn, 2δiR
i
n+1,+]2[αn+1, αn+1]

= 2[D(dn − d− α1), αn+1]− 2[dn − d, 2δiR
i
n+1] + 2[αn+1, αn+1].

Each of the three remaining terms is equal to zero mod m
n+3, so one can continue the

process by adding an αn+2 term. Thus we see that it is possible to construct a formal

deformation d∞ =
∑∞

i=1 αi, which will satisfy [d∞, d∞] = 0. But what about the relations

Ri
n? It is easy to see that Ri

n+1 = Ri
n mod m

n+1. We obtain a series of relations Ri
∞,

which must hold on the base in order for the required bracket relation to hold.
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When it happens that [dn, dn] contains no coboundary terms for some n, then the n-th

order deformation is miniversal, and the n-th order relations hold to all orders. Thus, in

good cases, one may hope to calculate the miniversal deformation exactly. This is what

happens in the examples we shall study.

We shall only consider the simplest cases of L∞ algebras. It is interesting to note

that even for a 2 dimensional vector space, it can happen that there are infinitely many

nonequivalent L∞ structures. The main purpose of this article is to demonstrate how to

compute versal deformations in practice.

Note that in order to calculate a versal deformation, we need much more informa-

tion than the dimensions of the cohomology groups. Thus, calculations of cohomology of

Lie algebras which often appear in the literature are not concrete enough to do versal

deformations, because the bracket structure on the cohomology is essential for the calcu-

lations, because only the dimensions of the cohomology groups are computed. In fact in

the examples presented in this paper, we had to also compute brackets of cochains that

are not cocycles.

3. Deformations of a 0|1 dimensional space. Suppose that W = 〈f〉 is a 1

dimensional odd vector space. This situation corresponds by parity reversion to the case

of an ordinary even one dimensional space, on which there is obviously only the trivial Lie

algebra structure. Indeed, there is only one L∞ algebra structure d = 0 as well, so it does

not seem reasonable to expect any deformations of this trivial structure. Nevertheless,

this intuition is slightly wrong, because there is a infinitesimal differential on the space

W , and a differential graded space is an L∞ algebra. To see what is going on, note that

L1 = 〈ϕ〉, where ϕ(f) = f is the identity map on W , which is an even 1-cochain. The

map ϕ does not determine an L∞ structure, because it is even, but when multiplied by

the odd parameter θ, it becomes an odd codifferential on S(W ) =W . Thus d1 = ϕθ is an

infinitesimal deformation of the trivial deformation d = 0. Since ϕ is a cocycle, but not a

coboundary, this deformation is also a miniversal deformation. To determine any relations

on the base K[[θ]] = K ⊕ Kθ, one should compute [d1, d1], but this is automatically zero

since θ2 = 0. Thus, there are no relations other than the relation θ2 = 0, which is always

true for an odd parameter, and the base of the miniversal deformation is just A = K[θ].

4. Deformations of a 1|0 dimensional space. Let W = 〈e〉 be a one dimensional

even vector space. Then Sk(W ) = 〈ek〉, and Lk = 〈ϕk〉, where ϕk(e
l) = k!δlke. Now

[ϕk, ϕl] is the element of Lk+l−1, which we compute in detail, as an illustration of how

to perform the computation of brackets. Let n = k + l − 1. Then

[ϕk, ϕl](e
n) =

∑

σ∈Sh(l,n−l)

k!l!ϕk(ϕl(e
l), ek−1)− (−1)ϕkϕl

∑

σ∈Sh(k,l−k)

l!k!ϕk(ϕk(e
k), el−1)

=

(

k!l!

(

n

l

)

− k!l!

(

n

k

))

e = (k − l)n!e = (k − l)ϕn(e
n).

Since all the maps ϕk are even, the only codifferential on W is d = 0. This time, the

infinitesimal deformation d1 = ϕkθ
k has an infinite number of terms, and they are not

coboundaries. There are some nontrivial relations on the base, arising from the self bracket
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of d1. We have

1

2
[d1, d1] =

∞
∑

n=1

∑

k+l=n+1

[ϕkθ
k, ϕlθ

l] =

∞
∑

n=1

∑

k+l=n+1

(k − l)θkθlϕn,

from which we obtain an infinite set of relations of the form
∑

k+l=n+1(k− l)θ
kθl = 0, for

n = 1 . . .. Let us examine the first few terms. For n = 1, the relation is zero. For n = 2,

we obtain θ2θ1 − θ1θ2 = 0, i.e. θ1θ2 = 0. For n = 3, the relation reduces to θ1θ3 = 0. For

n = 4, we obtain 6θ1θ4 + 10θ2θ3 = 0. If we let R = 〈
∑

k+l=n+1(k − l)θkθl = 0〉 be the

ideal generated by these relations in K[[θ1 . . .]], then the base of the miniversal deforma-

tion is just A = K[[θ1 . . .]]/R. The miniversal deformation coincides with the universal

infinitesimal deformation, except that the base A of the miniversal deformation is not

infinitesimal, but is a somewhat complicated infinite dimensional graded commutative

algebra.

5. Deformations of a 2|0 dimensional space. Let W = 〈e1, e2〉 be a completely

even dimensional space. Then Sk(W ) = 〈ek1 , e
k−1
1 e2, · · · , e

k
2〉 has dimension k+ 1, so that

Lk has dimension 2(k + 1). It will simplify the notation if we introduce multi-indices

of nonnegative integers I = (i1, i2). Define |I| = i1 + i2, I! = i1!i2!, δ
I
J = δi1j1δ

i2
j2

and

eI = ei11 e
i2
2 . Then Ln = 〈ϕI,i : |I| = n, i ∈ {1, 2}〉, where

ϕI,i(e
J) = I!δJI ei.

Note that because W is totally even, the maps ϕI,i are all even, so that d = 0 is the only

L∞ structure on W and

d1 = ϕI,iθ
I,i

is the universal infinitesimal deformation as well as a miniversal deformation, but in the

latter case, we need to compute the relations on the base. To that end, let us compute

[ϕI,k, ϕJ,l], which lies in L|I|+|J|−1. Define I + J = (i1 + j1, i2 + j2) and

I − k =

{

(i1 − 1, i2) if k = 1 and i1 > 0

(i1, i2 − 1) if k = 2 and i2 > 0

Then

[ϕI,k, ϕJ,l] = ilϕJ+(I−l),k − jkϕI+(J−k),l,

where terms such that I− l or J −k are not defined are omitted. From this we determine

that the relations are given by
∑

J+(I−j)=M

ijθ
I,mθJ,j = 0,

for each multi-index M and m ∈ {1, 2}. This follows from the requirement that [d1, d1] =

0. Computing this bracket, we obtain,

1

2
[d1, d1] = (ilϕJ+(I−l),k − jkϕI+(J−k),l)θ

I,kθJ,l

=
∑

J+(I−l)=M
k=m

ilϕM,mθ
I,mθJ,j −

∑

I+(J−l)=M
l=m

jkϕM,mθ
I,kθJ,m.
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The second term is the same as the first after interchanging the dummy indices and using

the fact that the θ’s are odd.

6. Deformations of a 0|2 dimensional space. Let W = 〈f1, f2〉 be a completely

odd two dimensional space. Then S2(W ) = 〈f1f2〉, and S(W ) = W + S2(W ). We have

L1 = 〈ϕi
j〉, where ϕ

i
j(fk) = δikfj, and L2 = 〈ψi〉, where ψi(f1f2) = fi. Note that L1

consists of even elements, while L2 is odd. This time, in addition to the trivial L∞

structure d = 0, any element of L2 also determines an L∞ algebra structure. All of these

structures are actually Lie algebra structures, with d = 0 giving the abelian Lie algebra

structure, while the nonzero elements of L2 give rise to equivalent structures, so we need

only consider the case d = ψ1.

As an aid to the construction, we first compute the brackets of all the basis elements.

First,

[ϕi
j , ϕ

k
l ](fm) = ϕi

j(ϕ
k
l (fm))− ϕk

l (ϕ
i
j(fm)) = δilδ

k
mfj − δkj δ

i
mfl,

while

[ϕi
j , ψk](f1f2) = ϕi

j(ψk(f1f2))− ψk(ϕ
i
j(f1)f2) + ψk(ϕ

i
j(f2)f1)

= ϕi
j(fk)− ψk(δ

i
1fjf2) + ψk(δ

i
2fjf1) = δikfj − δi1δ

1
j fk − δi2δ

2
j fk,

so that the brackets are given by

[ϕi
j , ϕ

k
l ] = δilϕ

k
j − δkj ϕ

i
l

[ϕi
j , ψk] = δikψj − δijψk

[ψi, ψj ] = 0.

We give a more detailed table of the brackets below, which is useful in determining the

cocycles and coboundaries.

[ϕ1
1, ϕ

1
1] = 0

[ϕ1
1, ϕ

1
2] = −ϕ1

2

[ϕ1
1, ϕ

2
1] = ϕ2

1 [ϕ1
2, ϕ

2
1] = ϕ2

2 − ϕ1
1

[ϕ1
1, ϕ

2
2] = 0 [ϕ1

2, ϕ
2
2] = −ϕ1

2 [ϕ2
1, ϕ

2
2] = ϕ2

1

[ϕ1
1, ψ1] = 0 [ϕ1

2, ψ1] = ψ2 [ϕ2
1, ψ1] = 0 [ϕ2

2, ψ1] = −ψ1

[ϕ1
1, ψ2] = −ψ2 [ϕ1

2, ψ2] = 0 [ϕ2
1, ψ2] = ψ1 [ϕ2

2, ψ2] = 0

6.1. Case d = 0. For the trivial codifferential d = 0, every cochain is a cocycle, and

therefore, the universal infinitesimal deformation of d is

d1 = ϕi
jθ

j
i + ψkt

k,

where as usual θji are odd parameters and tk are even parameters. Computing the bracket

of this derivation with itself, one obtains

1

2
[d1, d1] = −(δikψj + δijψk)θ

j
i t

k + (δinϕ
m
j − δnj ϕ

i
m)θji θ

m
n .

Since this bracket must vanish for d1 to be a codifferential, we obtain some relations on

the parameters. These are more easily seen by examining the detailed table, and looking

for which terms contribute to which output cochains. For example, the cochain ψ1 only



INFINITY ALGEBRAS AND DEFORMATIONS 35

arises from the brackets [ϕ2
2, ψ1] and [ϕ2

1, ψ2], and therefore, θ22t
1−θ21t

2 = 0. The complete

set of relations is given by

R = {θ11θ
2
11 + θ21θ

2
2, θ

1
1θ

1
2 + θ12θ

2
2 , θ

1
2θ

2
1 , θ

1
1t

2 − θ21t
1, θ22t

1 − θ21t
2},

and thus the base of the miniversal deformation is A = K[[θij , tk]]/R.

6.2. Case d = ψ1. This second case is the first nontrivial codifferential that we have

encountered. From the table of brackets, we see that {ϕ1
1, ϕ

2
1, ψ1, ψ2} is a basis of the space

of cocycles, with {ψ1, ψ2} being a basis of the coboundaries. Thus {ϕ1
1, ϕ

2
1} projects to

a basis of the cohomology of d, which is two dimensional. The universal infinitesimal

deformation of d is given by d1 = ψ1 + ϕ1
1θ

1
1 + ϕ2

1θ
1
2 . Since [d1, d1] = 2ϕ2

1θ
1
1θ

1
2, we obtain

only one relation, R = {θ11θ
1
2}, so that the infinitesimal deformation is miniversal, and

A = K[θ11 , θ
1
2]/R = K+Kθ11+Kθ12 is the base of the versal deformation. This completes the

description of the miniversal deformation; its formula coincides with that of the universal

infinitesimal deformation. We would like to explore this example a bit further.

We will consider a different infinitesimal deformation, which we will extend to a formal

deformation. Since the infinitesimal deformation we have already given is universal, we

start by adding some coboundary terms to our original deformation. We begin with

d′1 = ψ1 + ϕ1
1θ

1
1 + ϕ2

1θ
1
2 + ψ1t

1 + ψ2t
2,

and proceed to construct a formal deformation out of this infinitesimal deformation of d.

Since we added merely a coboundary term, this deformation is equivalent in some sense

to the original one, but note that the base of this infinitesimal deformation is different,

since there are more parameters.

We first carry out the construction of a formal deformation from the above infinites-

imal one, and then show how to construct the homomorphism from the base of the

miniversal deformation to the base of the formal deformation we are about to construct.

Then we will explicitly determine the equivalence between the push out of d given by

the homomorphism of the bases and the formal deformation d′∞ which is obtained by

extending the infinitesimal d′1 to a formal one. The authors found this construction in-

triguing, because the obvious homomorphism between the bases does not turn out to

be the correct one. In addition, this example illustrates how to extend a deformation to

higher order by adding higher order terms to eliminate coboundary terms arising in the

computation of the self-bracket of the codifferential. Up to now, all of the terms arising

in these computations have been coboundary free, so that they generate only relations,

which means that the associated formal deformations are really infinitesimal ones and

thus don’t provide a good illustration of the theory of formal deformations.

Let us first compute the bracket [d′1, d
′
1] of the infinitesimal deformation. We have

1

2
[d′1, d

′
1] = [ϕ1

1, ϕ
2
1]θ

1
1θ

1
2 − [ϕ1

1, ψ2]θ
1
1t

2 − [ϕ2
1, ψ2]θ

1
2t

2 = ϕ2
1θ

1
1θ

1
2 + ψ2θ

1
1t

2 − ψ1θ
1
2t

2

= ϕ2
1θ

1
1θ

1
2 −D(ϕ1

2)θ
1
1t

2 −D(ϕ2
2)θ

1
2t

2.

The second order deformation is given by extending d′1 to

d′2 = ψ1 + ϕ1
1θ

1
1 + ϕ2

1θ
1
2 + ψ1t

1 + ψ2t
2 + ϕ1

2θ
1
1t

2 + ϕ2
2θ

1
2t

2.
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There is one necessary relation on the parameters: θ11θ
1
2 = 0. Note that formally speaking,

this relation should be interpreted as being only up to order 2, so that in the formal

deformation, the relation that corresponds to this one could, a priori, pick up some

higher order terms.

One could continue in the same manner to compute a third order deformation, but

note that if the expression above is bracketed with itself, since ψ2 kills ϕ1
2 and ϕ2

2, and

ψ1 takes ϕ1
2 to ψ2 and ϕ2

2 to ψ1, we will end up only adding more terms involving ϕ1
2

and ϕ2
2. Examining the terms in the bracket which involve ϕ1

1 and ϕ2
1 one determines

that the same relation θ11θ
1
2 = 0 holds (up to third order) and no additional relations are

necessary. Thus it is reasonable to expect that one can write the formal deformation in

the form

d′∞ = ψ1(1 + t1) + ϕ1
1θ

1
1 + ϕ2

1θ
1
2 + ψ2t

2 + ϕ1
2θ

1
1t

2c1 + ϕ2
2θ

1
2t

2c2,

and solve for the constants c1, c2 and the relations on the parameters necessary so that

[d′∞, d
′
∞] = 0. The solution is given by c1 = c2 = 1

1+t1
, which should be considered as a for-

mal power series in t1. The base of this formal deformation is A′ = K[[θ12 , θ
1
1, t

1, t2]]/(θ11θ
1
2).

Since the deformation d1 is miniversal, there must be some morphism λ : A → A′,

such that λ∗(d1) ∼= d′∞. This means that there is some automorphism g̃ of S(W ) such that

d′∞ = g̃−1λ∗(d1)g̃. Suppose that g̃ is determined by an isomorphism g : W⊗A′ →W ⊗A′

of the form g = I + u1ϕ
1
2 + u2ϕ

2
2, for some constants u1 and u2. First we show that this

is indeed an invertible map, by constructing its inverse g−1 = I + v1ϕ
1
2 + v2ϕ

2
2. It is

easily checked that v1 = −u1

1+u2

, v2 = −u2

1+u2

determine the inverse map. Next, note that

g̃ = g+ g⊙ g, where g⊙ g : S2(W ) → S2(W ) is the map given by (g⊙ g)(ab) = g(a)g(b).

In our case, we compute

(g ⊙ g)(f1f2) = g(f1)g(f2) = (f1 + u1f2)(f2 + u2f2) = (1 + u2)(f1f2),

so that g ⊙ g = (1 + u2)I ⊙ I. Let us denote λ(θ11) by θ̃11 and λ(θ12) by θ̃12, so that

λ∗(d1) = ψ1 + ϕ1
1θ̃

1
1 + ϕ2

1θ̃
1
2 . Then

λ∗(d1)g̃ = (1 + u2)ψ1 + ϕ1
1(θ̃

1
1 + u1θ̃

1
2) + ϕ2

1(1 + u2)θ̃
1
2 .

Finally, we compute that

g−1λ∗(d1)g̃ = (1 + u2)ψ1 + ϕ1
1(θ̃

1
1 + u1θ̃

1
2) + ϕ2

1(1 + u2)θ̃
1
2

+ v1(1 + u2)ψ2 + ϕ1
2v1(θ̃

1
1 + u1θ̃

1
2) + ϕ2

2v1(1 + u2)θ̃
1
2 .

To get the correct image we must have θ11 = θ̃11 + u1θ̃
1
2, θ

1
2 = (1 + u2)θ̃

1
2 , u2 = t1 and

u1 = −t2 (which finally justifies our tacit assumption that 1 + u2 is invertible in A′).

Thus the map λ is given by

λ(θ12) =
1

1 + t1
θ12 , λ(θ11) = θ11 +

t2

1 + t1
θ12 .

Note that this map is not even polynomial!

We computed the morphism λ from A to the formal algebra A′, but the same ideas

can be used to compute the morphism to the algebra associated with the n-th order

deformation. In particular, one can compute the infinitesimal morphism. But all of these

morphisms are just the mod m
k reductions of the morphism λ given above.
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Even though our claim that any nonzero linear combination of the cochains ψ1 and

ψ2 is equivalent as an L∞ algebra structure to d = ψ1, is just a classical fact about

Lie algebras, it can be demonstrated easily using our methodology involving a coalgebra

morphism g = I + u1ϕ
1
2 + u2ϕ

2
2. If we compute g−1 ◦ d ◦ g̃ as before, we obtain simply

g∗(d) = (1 + u2)ψ1 − u2ψ2, which means that any combination for which the coefficient

of ψ1 is nonzero can be obtained (recall that 1+u2 needs to be invertible). It is also easy

to see that if we take g = ϕ1
2 + ϕ2

1, then g
−1 = g, g̃ = g + I ⊙ I, and g∗(ψ1) = ψ2.

7. Deformations of a 1|1 dimensional space. If W = 〈e, f〉 is a 1|1 dimen-

sional space, then Sk(W ) = 〈ek, ek−1f〉 is a 1|1 dimensional space as well, and Lk =

〈ϕk
e , ϕ

k
f , ψ

k
eψ

k
f , 〉 is a 2|2 dimensional space, where

ϕk
e(e

k) = k!e ψk
e (e

k−1f) = (k − 1)!e

ϕk
f (e

k−1f) = (k − 1)!f ψk
f (e

k) = k!f.

The bracket structure is given by the table below.

[ϕm
e , ϕ

n
e ] = (m− n)ϕm+n−1

e [ϕm
e , ϕ

n
f ] = (1− n)ϕm+n−1

f

[ϕm
f , ϕ

n
f ] = 0

[ϕm
e , ψ

n
e ] = (m− n+ 1)ψm+n−1

e [ϕm
f , ψ

n
e ] = −ψm+n−1

e

[ϕm
e , ψ

n
f ] = −nψm+n−1

f [ϕm
f , ψ

n
f ] = ψm+n−1

f

[ψm
e , ψ

n
f ] = ϕm+n−1

e + nϕm+n−1
f

[ψn
e , ψ

n
e ] = 0 [ψn

f , ψ
n
f ] = 0

Let us first take care of the simple case when d = 0. Since every cochain is a cocycle and

there are no coboundaries, the universal infinitesimal extension is given by

d1 = ϕn
e θ

e
n + ϕn

f θ
f
n + ψn

e t
e
n + ψn

f t
f
n.(5)

This is also the formula for a miniversal deformation, but then the following relations on

the base are necessary.
∑

k+l=n+1(k − l)θekθ
e
l + tekt

f
l = 0

∑

k+l=n+1 −(k − l + 1)θekt
e
l + θfk t

e
l = 0

∑

k+1=n+1 −(l − 1)θekθ
f
l + ltekt

f
l = 0

∑

k+l=n+1 θ
e
kt

f
l − θfk t

f
l = 0

Having disposed of the trivial codifferential, we now consider the general case d =

rnψ
n
e + snψ

n
f for some constants rn, sn ∈ K. Then a computation of [d, d] yields

1

2
[d, d] =

∞
∑

n=1

∑

k+l=n+1

rksl(ϕ
n
e + lϕn

f ),

from which it follows that
∑

k+l=n+1 rksl = 0 for all n. Let M be the least integer such

that not both rM and sM vanish. If rM 6= 0, then it is easy to see that this forces

sl = 0 for all l. A similar result holds if sM 6= 0. Thus the only possibilities for nontrivial

codifferentials are of the form d = rkψ
k
e and d = skψ

k
f .

Let us consider the case d = rkψ
k
e first. Let L be the least coefficient such that rL 6= 0,

and for simplicity, assume that rL = 1. Let dL = ψk
L. Note that ψ

L+k
e = [dL, ϕk+1

f ], so that

d = dL + [dL,
∑∞

k=1 rk+Lψ
k+1
f ]. This resembles the case of an infinitesimal deformation,
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suggesting that d is equivalent to dL. Let ϕ̃k
f represent the coderivation associated to ϕk

f

(recall that ϕk
f ∈ Hom(S(W ),W )). Then the bracket is given by [dL, ϕk

f ] = dL ◦ ϕ̃k
f . This

is because dL vanishes on terms that do not contain an f , but outputs no f , while ϕk
f

requires an input of an f . So in the decomposition of the bracket, only one of the terms

survives.

Let λ̃ =
∑∞

k=1 rk+Lϕ̃
k+1
f . Then λ̃ is a coderivation of S(W ), so that

∆ ◦ λ̃ = (λ̃⊗ I + I ⊗ λ̃) ◦∆.

Let g̃ = I + λ̃. Then we claim that g̃ is an automorphism of S(W ). For that to be true,

the identity that needs to be satisfied is

∆ ◦ λ̃ = (λ̃⊗ I + I ⊗ λ̃+ λ̃⊗ λ̃) ◦∆,

but this holds since (λ̃⊗ λ̃)◦∆ = 0. To see this fact, note that λ̃ vanishes on an element in

S(W ) not containing an f , while only one of the two terms output by ∆ could contain an

f , since f2 = 0. If λ̃ was an infinitesimal derivation, then g̃−1 would simply be I− λ̃. This

is not true here. Nevertheless, we can compute g̃−1 exactly. For simplicity, first consider

the case L = 1 and λ̃ = ϕ̃2
f . Now,

λ̃ϕk
f (e

nf) = (k − 1)!

(

n

k − 1

)

en−kf,

so g̃(enf) = enf +
(

n
1

)

en−1f . It follows that

ϕk
f (e

nf +

(

n

1

)

en−1) = (k − 1)!

(

n

k − 1

)

en−kf + (k − 1)!

(

n− 1

k − 1

)(

n

1

)

en−k−1f.

Since k!
(

n
k

)

= (k−1)!
(

n−1
k−1

)(

n
1

)

, it is easily seen that g̃−1 = I−
∑∞

k=2(−1)iϕk
f . For arbitrary

L and λ̃, we can express g̃−1 = I +
∑∞

k=2 ckϕ
k
f , for some constants ck.

From the consideration given above on how ϕk
f interacts dL, we see that d = g̃−1◦dL◦g̃;

in other words, d and dL determine equivalent L∞ structures.

A similar argument applies to the case of skψ
k
f , except that in this case, one sees that

ψk
f ◦ ϕ̃l

f = 0, because ϕl
f always inputs an f and outputs one, while ψk

f inputs no f and

outputs one, so the composition is zero. Thus the bracket should be computed in the

form d = g̃ ◦ ψL
f ◦ g̃−1 for an appropriate choice of g̃.

The L∞ structures determined by ψk
e and ψl

f can never be equivalent. To see this,

note that if we extend these maps to coderivations, then we have

ψ̃k
f (e

n) =
(

n
k

)

en−kf ψ̃k
f (e

nf) = 0

ψ̃k
e (e

nf) =
(

n
k−1

)

en−k+2 ψ̃k
e (e

n) = 0

Suppose that ψ̃l
f = g̃−1 ◦ ψ̃k

e ◦ g̃. Then g̃ ◦ ψ̃l
f = ψ̃k

e ◦ g̃. Since g̃ ◦ ψ̃l
f (e

nf) = 0, it follows

that g̃(enf) must lie in the kernel of ψ̃k
e . But this implies that g̃(enf) would be even.

This is impossible since an automorphism is an even map, and enf is odd. Thus no such

equivalence is possible.

Next, we will compute the cohomology H(dk) for dk = ϕk
e , and show that it has

dimension 2L− 2. From this, it follows immediately that if k 6= l, then dk is not equiv-

alent to dl. A similar result holds for dk = ϕk
f . Thus there are two infinite families of
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nonequivalent L∞ structures on W . It is very interesting that such a simple space gives

rise to so many distinct L∞ structures.

7.1. Case dL = ψL
e . First, note that DL(ψ

k
e ) = 0, so ψk

e is a cocycle for all k. No

element of order less than L can be a coboundary, because the bracket of anything with

dL has order at least L. Since DL(ϕ
k
f ) = ψm+L−1

f , ψk
e is a coboundary if k ≥ L. Since ψk

f

is never a cocycle, it is clear that the odd cocycles are spanned by ψk
e , and the dimension

of the odd part of the cohomology of dL is L− 1.

Let hk = ϕk
e+(k−L+1)ϕk

f . Then DL(h
k) = 0, and moreoverDL(ψ

k−L+1
f ) = hk, when

k ≥ L, so hk is a coboundary precisely when k ≥ L. Assume that ϕ = rkϕ
k
e + skϕ

k
f is an

arbitrary even cocycle. Then ϕ− rkh
k = (sk − rk(k−L+1))ϕk

f , so because DL(ϕ
k
f ) 6= 0,

it follows that sk = rk(k − L + 1) for all k, and thus ϕ = rkh
k. The cocycles hk form a

basis of the even cocycles, so the dimension of the even part of the cohomology of dL is

also L− 1. Thus dim(H(dL)) = 2L− 2.

If we consider dL = ψL
f instead of ψL

e , then the odd cocycles would be given by ψk
f ,

with those where k ≥ L being coboundaries, while the even cocycles would be given by

hk = ϕk
e +Lϕ

k
f , DL(ψ

k−L+1
e ) = hk for k ≥ L. Thus we obtain the same dimension 2L− 2

for the cohomology determined by ψL
f .

Now let us work with the case dL = ψL
e and calculate a miniversal deformation for

some small values of L. It will prove useful to have a table of some brackets of hk with

certain cochains.

[hk, hl] = (k − l)hk+l−1 [hk, ψl
e] = (L− l)ψk+l−1

e

[hk, ϕl
f ] = (1− l)ϕk+l−1

f [hk, ψl
f ] = (k − l − L+ 1)ψk+l−1

f

7.2. Case d = ψ1
e . If L = 1, then since H(d1) = 0, the miniversal deformation is just

d1. This corresponds to the fact that W has a differential equipping it with the structure

of a differential graded vector space, and this differential is essentially unique.

7.3. Case d = ψ2
e . If L = 2, then the universal infinitesimal deformation of d1 is d11 =

ψ2
e+h

1θ1+ψ
1
et1, and [d11, d

1
1] = −ψ1

eθ1t1. Thus the infinitesimal deformation is miniversal,

with the relation θ1t1 = 0. Note that in this case, ψ2
e determines a nontrivial Z2-graded

Lie algebra structure on the parity reversion of W , and ψ1
e corresponds to the fact that

the differential on W is a derivation of this Lie algebra structure. Thus the miniversal

deformation gives a deformation of the Lie algebra structure into an L∞ algebra by

recording the graded derivations of the Lie algebra structure. The part contributed by

h1 corresponds to a Z2-graded antiderivation of the Lie algebra, which becomes a true

derivation only when it is multiplied by an odd parameter.

7.4. Case d = ψ3
e . For L = 3 the universal infinitesimal deformation of d3 is

d31 = ψ3
e + h1θ1 + h2θ2 + ψ1

e t1 + ψ2
e t2.

From
1

2
[d31, d

3
1] = −h2θ1θ2 − 2ψ1

eθ1t1 − ψ2
e(θ1t2 + 2θ2t1)− ψ3

eθ2t2

we obtain the mod m
3 relations R − 2 = {θ1θ2, θ1t1, θ1t2 + 2θ2t1} corresponding to the

coefficients of the h2, ψ1
e and ψ2

e terms. Since ψ3
e is a coboundary, it does not give a
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relation, but means that we need to add a second order term to the codifferential. In this

example the miniversal deformation is not given by the same formula as the universal

infinitesimal deformation. The second order deformation d32 is given by the formula

d32 = ψ3
e + h1θ1 + h2θ2 + ψ1

e t1 + ψ2
e t2 + ϕ1

fθ2t2.

Finally, we compute

1

2
[d32, d

3
2] = −h2θ1θ2 − ψ1

e(2θ1t1 − θ2t1t2)− ψ2
e(θ1t2 + 2θ2t1 − θ2t

2
2).

This time no coboundary terms arise in the bracket, so that the miniversal deformation

is given by d32, subject to the relations

R3 = {θ1θ2, 2θ1t1 − θ2t1t2, θ1t2 + 2θ2t1 − θ2t
2
2}.

Notice that the relations come from the mod m
4 relations, but that they are modified by

picking up third order terms . This point was misstated in [7], where it was declared that

any relations discovered at n-th order remain relations at all orders. What really happens

is that if you reduce the relations in the formal algebra mod m
n+1, then they become the

n-th order relations.

7.5. Case d = ψ4
e . For L = 4 the universal infinitesimal deformation of d4 is

d41 = ψ4
e + h1θ1 + h2θ2 + h3θ3 + ψ1

e t1 + ψ2
e t2 + ψ3

e t3.

Then
1

2
[d41, d

4
1] = − h2θ1θ2 − 2h3θ1θ3 − h4θ2θ3 − 3ψ1

eθ1t1 − ψ2
e(2θ1t2 + 3θ2t1)

− ψ3
e(θ1t3 + 2θ2t2 + 3θ3t1)− ψ4

e(θ2t3 + 2θ3t2)− ψ5
eθ3t3.

The coefficients of hk and ψk
e for k = 1, 2, 3 yield 5 mod m

3 relations:

R2 = {θ1θ2, θ1θ3, θ1t1, 2θ1t2 + 3θ2t1, θ1t3 + 2θ2t2 + 3θ3t1.}

There are also 3 coboundary terms, so that after adding terms to cancel them we arrive

at the following formula for the second order deformation.

d42 = d41 + ψ1
fθ2θ3 + ϕ1

f (θ2t3 + 2θ3t2) + ϕ2
fθ3t3.

The bracket relation [ψk
e , ψ

l
f ] = hk+l−1 + (L − k)ϕk+l−1

f , which is easy to verify, will be

used in the calculations below.
1

2
[d42, d

4
2] = h1θ2θ3t1 + h2(−θ1θ2 + θ2θ3t2) + h3(−2θ1θ3 + θ2θ3t3)

+ ψ1
e(−3θ1t1 + θ2t1t3 + 2θ3t1t2)

+ ψ2
e(−2θ1t2 − 3θ2t1 + θ2t2t3 + 2θ3t

2
2 + θ3t1t3)

+ ψ3
e(−θ1t3 − 2θ2t2 − 3θ3t1 + θ2t

2
3 + 3θ3t2t3)

+ 3ϕ1
fθ2θ3t1 + ϕ2

f (2θ2θ3t2 − θ1θ3t3) + ψ4
eθ3t

2
3

The mod m
4 relations are the coefficients of the hk and ψk

e terms for k = 1, 2, 3, so there

are six of them. But what about the terms that involve ϕ1
f and ϕ2

f? These cochains are not

even cocycles, so what are they doing in the expression at all? But if you check carefully,

the mod m
4 relations show that the coefficients are zero (mod m

4). Thus these terms do

not contribute to the bracket at this level. Finally, there is one coboundary term left, so
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it is necessary to add another term, and we have

d43 = d42 − ϕ1
fθ3t

2
3.

After computing the boundary, the relations given by the coefficients of ψ1
e , ψ

2
e and ψ3

e are

modified by adding the fourth order term −θ3tit
2
3 to the coefficient of ψi

e. The coefficients

of the cocycles which are not coboundaries determine six relations on the base which is

of the form A = K[[θ1, θ2, θ3, t1, t2, t3]]/R. The coefficient of ϕ1
f is one of the relations, so

it is clearly zero. It is also easy to show that the coefficient of ϕ2
f is equal to zero mod

m
4, but since we are claiming that the deformation is miniversal, the coefficient must be

exactly equal to zero. Multiplying the coefficient of ψ3
f by θ3 yields

θ1θ3t3 + 2θ2θ3t2 − θ2θ3t
2
3 = θ1θ3t3 + 2θ2θ3t2 − 2θ1θ3t3 = 2θ2θ3t2 − θ1θ3t3,

where we used the relation θ2θ3t3 = 2θ1θ3 in the second step. This is precisely the

coefficient of ϕ2
f , so the coefficient of this term is zero. (Of course, it is really not necessary

to show that these coefficients are zero, because it follows from the general theory that

this must be the case.) Thus d4 gives a miniversal deformation. Note that all terms in the

relations have odd parameters in them. These computations illustrate the importance of

introducing odd parameters, because otherwise d1 would be a miniversal deformation.

It is not obvious how to write down the formula for the miniversal deformation of

dL in general, but there are some things which can be easily shown in the general case.

First, there will be 2L−2 relations, (when L ≥ 4). Secondly, by studying the examples so

far, it can be seen that the (L− 1)-th order deformation is miniversal. Thus only a finite

number of computations is necessary in order to compute the miniversal deformation.

8. Conclusions. In the examples we have studied, we have given explicit construc-

tions of miniversal deformations. Previous works have only computed the base of a

miniversal deformation. The main complication in these constructions is the require-

ment of exact knowledge of the bracket structure on the space of cochains. Since most

of the examples in the literature where cohomology of Lie algebras is studied do not

contain this information, the computation of versal deformations of these structures will

require more information than is currently easily available. We have just touched on the

beginning of the subject.

In a future work, the authors plan to investigate versal deformations of L∞ algebras

with invariant inner products, which is related to the cyclic cohomology of these algebras.

In the case of ordinary Lie algebras, only reductive algebras have invariant inner products,

so such a deformation theory only applies to these cases.We note that among these, simple

Lie algebras have no deformations, even as L∞ algebras. For super Lie algebras – and

L∞ algebras in general – the picture is not so restricted.
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