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1. Introduction. The periodic one-dimensional evolution equation

(CH) ∂tu− ∂t∂
2
xu+ 3u∂xu− 2∂xu∂

2
xu− u∂3

xu = 0

was introduced independently by Camassa and Holm [CH] and by Fuchssteiner and Fokas

[FF]. It has since been the subject of extensive studies from algebraic, analytic and

geometric points of view. In certain respects the CH equation resembles the well-known

KdV equation. Like KdV it is bi-hamiltonian, admits soliton-type solutions and an infinite

collection of first integrals. All of these manifestations of so-called complete integrability

were already studied in [CH] and [CHH] but other approaches and further results can be

found in [FF], [BSS1], [BSS2], [CM] and [KM]. Furthermore, as shown in [M1] (see also

[Ko], [Mc2]) the CH equation can be derived as the equation for geodesics of a certain

right-invariant metric on the group of diffeomorphisms of the circle. The derivation in

[M1] follows a Lie-theoretic approach developed by V. Arnold [A], [AK] to study the Euler

equations of hydrodynamics. Another derivation using Riemannian variational formulas

is given in [M2] (see also [Mc2]) and will be recalled below. In fact, the equation that one

derives on the group of diffeomorphisms has the form

∂tu+ u∂xu+ ∂xΛ
−2

(

u2 +
1

2
(∂xu)

2

)

= 0,

where Λs = (1 − ∂2
x)

s/2. It turns out that written in this way the CH equation is much

more convenient to study.

On the other hand the Cauchy problem for CH is not globally well-posed since for

certain initial data the first derivative of the solution becomes unbounded in L∞ norm

in finite time (see again [CH] for a first result in this direction as well as the subsequent

papers [CE1], [Mc1]). In another contrast to KdV, local well-posedness for CH is known
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merely in the Sobolev space Hs with s > 3/2 (for a detailed proof of this see [M2] in the

periodic case and [LO] in the nonperiodic case).

In this note we revisit the local Cauchy problem. After recalling briefly the derivation

of CH on the diffeomorphism group of the circle T and reviewing what we know concerning

local well-posedness in Sobolev spaces we announce the following result:

Theorem 1.1. Let uo be a (real) analytic function on T. There exist an ǫ > 0 and a

unique solution u of the initial value problem

∂tu+ u∂xu+ ∂xΛ
−2

(

u2 +
1

2
(∂xu)

2

)

= 0,

u(0, x) = uo(x), x ∈ T

(1.1)

which is analytic on (−ǫ, ǫ)× T.

This result can be viewed as a Cauchy-Kowalewski type theorem for CH. We will

present an outline of the argument below. Our approach is inspired by the paper of

Baouendi and Goulaouic [BG2]. Detailed proof of Theorem 1.1 will appear in a separate

publication.

2. Derivation of the equation on Ds(T). In order to get started a certain number

of technical facts concerning Sobolev maps and diffeomorphisms should be established.

We will recall those needed below referring the interested reader to [P], [EM], [Om] or

[M2] for details.

Let Hs(T) be the space of Sobolev functions on T equipped with the norm ‖f‖Hs =

‖Λsf‖L2. Consider the set Hs(T,T) of maps from the circle into itself that are of Sobolev

class Hs in every chart on T. When s > 1/2 this set can be given a structure of an infinite

dimensional Hilbert manifold whose tangent space at f consists of Hs vector fields on

T pulled back by f . Let C1D be the group of all bijections of the circle that are C1

differentiable together with their inverses.

Let s > 3/2. Since C1D is an open subset of C1(T,T) using the Sobolev embedding

lemma we find that the set of orientation-preserving diffeomorphisms

Ds(T) = C1D ∩Hs(T,T)

is open in Hs(T,T). Furthermore, it becomes a topological group under composition of

diffeomorphisms. However, as is well known Ds(T) is not a Banach Lie group. In fact, it is

not difficult to see that while right translations Rξ(η) = η◦ξ are smooth, left translations

Lξ(η) = ξ ◦ η and the inversion map i(ξ) = ξ−1 are only continuous. It is nevertheless

convenient to use the Lie terminology when describing diffeomorphism groups.

On the Lie algebra of Ds(T) consider the H1 inner product of vector fields u, v

〈u, v〉H1 =

∫

T

(u(x)v(x) + ∂xu(x)∂xv(x)) dx(2.1)

and using right translations define a corresponding inner product on each tangent space

at ξ ∈ Ds(T) by

〈X,Y 〉H1 =
〈

dξRξ−1X, dξRξ−1Y
〉

H1
,(2.2)

where X,Y ∈ TξD
s and dξRξ−1X = X ◦ ξ−1.
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Recall that geodesics of a given metric can be obtained as critical points of the energy

functional of that metric. Thus given ξ ∈ Ds(T) let γ̄ : (−δ, δ) × [0, 1] → Ds be a

one-parameter family of curves such that γ̄(s, 0) = id and γ̄(s, 1) = ξ and denote by

W (t) = ∂sγ̄t|s=0 the corresponding variation field along γ(t) = γ̄(0, t). Integrating by

parts, changing variables and using the fact that W (0) = W (1) = 0, we obtain

∂s
∣

∣

s=0

(

1

2

∫ 1

0

‖ ˙̄γt(s)‖
2
H1 dt

)

=

∫ 1

0

〈 ∂tγ ◦ γ−1, ∂s(∂tγ̄ ◦ γ̄−1)|s=0
〉H1 dt

= −

∫ 1

0

〈

∂t(γ̇ ◦ γ−1) + γ̇ ◦ γ−1∂x(γ̇ ◦ γ−1)

+ Λ−2 ∂x

(

(γ̇ ◦ γ−1)2 +
1

2

(

∂x(γ̇ ◦ γ−1)

)2)

, W ◦ γ−1

〉

H1

dt.

Observing now that the variation γ̄ was arbitrary we can pick a suitable variation field

W on γ to conclude that the derivative of the energy functional vanishes if and only if

the curve in the Lie algebra of vector fields on the circle u(t) = γ̇t ◦ γ
−1
t satisfies

∂tu+ u∂xu+ Λ−2∂x(u
2 +

1

2
(∂xu)

2) = 0.(2.3)

Thus, at least formally geodesics of the H1 right-invariant metric (2.2) correspond to

solutions of the CH equation1. That this correspondence can be made rigorous, in par-

ticular that given an arbitrary vector uo ∈ Hs(T) we can always find an Hs solution of

the corresponding initial value problem for CH follows from the well-posedness results to

which we turn next.

3. Local well-posedness in Hs. We collect results on well-posedness of the periodic

Cauchy problem in fractional Sobolev spaces in the following theorem.

Theorem 3.1. Consider the Cauchy problem (1.1).

1. If s > 3/2, then given any uo ∈ Hs(T) there exists a T > 0 and a unique solu-

tion u to (1.1) such that u ∈ C([0, T ), Hs) ∩ C1([0, T ), Hs−1) and which depends

continuously on the initial data uo.

2. If s < 3/2, then there exist two sequences of solutions u1
n, u

2
n ∈ C([0,∞), Hs) of

(1.1) such that for any t > 0

‖u2
n(0)− u1

n(0)‖Hs ≤ C1(s)
1

n
and ‖u2

n(t)− u1
n(t)‖Hs ≥ C2(s, t)n

2|s|+s,

where C1(s) and C2(s, t) are positive constants depending only on s and s, t respec-

tively.

3. Let s > 3/2 and u ∈ C([0, T ), Hs(T) be a solution of (1.1). Let K > 0 be a constant

such that ‖u(t)‖C1
∗

≤ K for all 0 ≤ t < T . Then there exists a T ′ > T such that u

can be extended beyond T in the space C([0, T ′), Hs(T).

1One can similarly derive the CH equation on the one-dimensional universal central extension
of the group of diffeomorphisms of the circle (see [M1] or [KM]). This group, called the Bott-
Virasoro group, is also a suitable space to study the KdV equation (see [OK], [S] or [MR]).
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The first statement (1) in the theorem above was essentially known to Ebin and Marsden

[EM] who studied the Cauchy problem for the Euler equations. Their methods however

do not extend directly to the case when 3/2 < s < 2 is fractional. For the proof in this

case we refer to [M2]. First results on local well-posedness of CH in the periodic case were

published in [C], for uo in H4(T), and in [CE1] for uo in H3(T).

Statement (2) was proved in [HM1], using a method first introduced in [BPS]. An

outline of this proof is given below. This result seems to suggest that the Sobolev index

s = 3/2 may be sharp. We point out however that the statement in (2) disproves only the

uniform continuity of the data-to-solutions map. Furthermore, the critical case s = 3/2

has yet to be settled.

The last statement (3) is proved in [M2]. It strengthens somewhat earlier results of

this type given in [CE2].

Proof of Theorem 3.1(2). For any c > 0 the function (periodic 1−peakon)

uc(x, t) = c
∑

n∈Z

e−|x+2πn−ct|.

is a weak solution of the periodic CH equation (see for example [CE1] or [CM]) with

initial condition

uc(x, 0) = c
∑

n∈Z

e−|x+2πn|.

Computing the partial Fourier transform of uc with respect to x, at t = 0 gives

ûc(ξ, 0) =
c

2π

∫ 2π

0

e−ixξ
∑

n∈Z

e−|x+2πn| dx

=
c

2π

∑

n∈Z

∫ 2π(n+1)

2πn

e−i(x−2πn)ξ e−|x| dx =
c

π

1

1 + ξ2
.

Then for any t ≥ 0 we have

ûc(ξ, t) =
c

π

e−ictξ

1 + ξ2
.

Computing the norm at t = 0, we get

‖uc2(·, 0)− uc1(·, 0)‖
2
Hs =

1

π2
(c2 − c1)

2
∑

ξ∈Z

(

1 + ξ2
)s−2

.(3.1)

Observe that the sum in (3.1) is finite if and only if s < 3/2. On the other hand, for t > 0

a computation gives

(3.2) ‖uc2(·, t)− uc1(·, t)‖
2
Hs

=
1

π2
(c2 − c1)

2
∑

ξ∈Z

1

(1 + ξ2)2−s
+

2

π2
c1c2

∑

ξ∈Z

1− cos (c2 − c1)tξ

(1 + ξ2)2−s
.

If, for given n ∈ N, we choose

c1 = n2(1+|s|) and c2 = n2(1+|s|) +
π

n
,
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then we obtain

‖uc2(·, t)− uc1(·, t)‖
2
Hs ≥ ‖uc2(·, 0)− uc1(·, 0)‖

2
Hs +

2

π2
n4(1+|s|)

∑

ξ∈Z

1− cos tπξ
n

(1 + ξ2)2−s
(3.3)

while

‖uc2(·, 0)− uc1(·, 0)‖
2
Hs ≤

1

n2

∑

ξ∈Z

1

(1 + ξ2)2−s
.(3.4)

Thus (3.4) is fine with C1(s) =
∑

ξ∈Z

1
(1+ξ2)2−s

< ∞. Regarding the inequality in (3.3),

if 0 < t 6= 1/2, 3/2, . . . etc, then pick ξ = n. Otherwise, pick ξ = 2n. In either case we get

a lower bound by C2(s, t)n
4|s|+2s, which gives the desired result.

Remark 3.2. Observe that the solutions u1
n and u2

n although close to each other at

t = 0 have large norms. A natural question is whether one can find other sequences of

solutions that stay inside a fixed ball. This seems not to be possible using the 1−peakon

solutions. However it might be possible if one uses multipeakon solutions described in

[BSS2] by Beals, Sattinger and Szmigielski.

4. Analytic regularity: an outline of the proof of Theorem 1.1. In this section

we turn to the proof of Theorem 1.1 on analyticity in time and space variables of solutions

to (1.1). We shall only give an outline of the proof here. Detailed arguments will appear

elsewhere. The method is based on a contraction type argument in a suitably chosen scale

of Banach spaces. Such an approach to analytic regularity of solutions to initial value

problems was initiated by Ovsiannikov [O1], [O2] and later further developed in [Nr],

[Ns] and and in the papers of Baouendi and Goulaouic [BG1], [BG2], who used it, among

other things, to prove analyticity of solutions to Euler equations of hydrodynamics.

We begin by describing the spaces we need. For any s > 0, we set

Es =

{

u ∈ C∞(T) : |||u|||s = sup
k≥0

‖∂k
xu‖H2sk

k!/(k + 1)2
< ∞

}

.

It is not difficult to check that Es equipped with the norm ||| · |||s is a Banach space and

that, for any 0 < s′ < s, Es is continuously included in Es′ with

|||u|||s′ ≤ |||u|||s.

Another simple consequence of the definitions is that any u ∈ Es is a real analytic function

on T. Less obvious, but crucial for our purposes, is the fact that each Es forms an algebra

(a Schauder ring) under pointwise multiplication of functions.

Lemma 4.1. Let 0 < s < 1. There is a constant c > 0 such that for any u and v in

Es we have

|||uv|||s ≤ c|||u|||s|||v|||s.(4.1)

Proof. The proof of this lemma is technical and we omit it. It essentially follows from

a Leibniz rule and a corresponding well-known algebra property for H2 Sobolev functions

on the circle

‖fg‖H2 . ‖f‖H2‖g‖H1 + ‖g‖H2‖f‖H1 ,

for all f, g in H2(T).
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Once again it will be most useful for our purposes to consider the CH equation in

its ”geodesic” form (2.3) in which it was derived on the diffeomorphism group Ds(T) in

Section 2

∂tu+ u∂xu+ ∂xΛ
−2

(

u2 +
1

2
(∂xu)

2

)

= 0.

In the next step we will rewrite it further as a system of equations. First however, we

introduce some convenient notation

f(x) = x2, P1u = −∂xu, and P2u = −((1− ∂2
x)

−1∂x)u,

with the help of which (2.3) becomes

∂tu =

(

1

2
P1 + P2

)

f(u) +
1

2
P2f(P1u).(4.2)

To transform this equation into a system, let

u1 = u, and u2 = P1u = −∂xu1

so that

∂tu1 = (
1

2
P1 + P2)f(u1) +

1

2
P2f(u2)

.
= F1(u1, u2)

∂tu2 = P1(∂tu) =
1

2
P 2
1 f(u1) + P1P2f(u1) +

1

2
P1P2f(u2)

= −
1

2
P1∂x(u

2
1) + P1P2f(u1) +

1

2
P1P2f(u2)

= P1(u1u2) + P1P2f(u1) +
1

2
P1P2f(u2)

.
= F2(u1, u2)

(4.3)

with the initial conditions

u1(x, 0) = u(x, 0) = u0(x)

u2(x, 0) = ∂xu1(x, 0) = ∂xu0(x).

Let F = (F1, F2) denote the vector consisting of the right-hand sides of the system (4.3).

The key step in the proof of Theorem 1.1 is establishing the following inequality.

Proposition 4.2. Let R > 0. There is a constant C > 0 such that given arbitrary

0 < s′ < s ≤ 1, we have

|||F (u1, u2)− F (v1, v2)|||s′ ≤
C

s− s′
|||(u1, u2)− (v1, v2)|||s,

for any uj and vj in the ball B(0, R) ⊂ Es.

The meaning of the ||| · |||s norm in the above statement is clear from the context.

For example, one may simply take |||F |||s := |||F1|||s + |||F2|||s. The proof of Proposition

4.2 requires the following lemma, which provides suitable bounds in the Es norms on the

pseudodifferential operators P1 and P2 introduced above. Its proof is omitted.

Lemma 4.3. There is a constant c > 0 such that for any 0 < s′ < s < 1, we have

|||P1u|||s′ ≤
c

s− s′
|||u|||s,(4.4)

and

|||P2u|||s ≤ |||u|||s.(4.5)
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Proof of Proposition 4.2. Observe that the nonlinear terms can be easily handled with

the help of the algebra property in Lemma 4.1, since for any s > 0 we easily have

|||f(u)− f(v)|||s ≤ c|||u2 − v2|||s ≤ c|||u+ v|||s |||u− v|||s.

Using this together with Lemma 4.3 we can now estimate

|||F (u1, u2)− F (v1, v2)|||s′ = |||F1(u1, u2)− F1(v1, v2)|||s′ + |||F2(u1, u2)− F2(v1, v2)|||s′

≤
1

2
|||P1(f(u1)− f(v1))|||s′ + |||P2(f(u1)− f(v1))|||s′ +

1

2
|||P2(f(u2)− f(v2))|||s′

+ |||P1(u1u2 − v1v2)|||s′ + |||P1P2(f(u1)− f(v1))|||s′ +
1

2
|||P1P2(f(u2)− f(v2))|||s

≤
1

2

c

s− s′
|||f(u1)− f(v1)|||s + |||f(u1)− f(v1)|||s′ +

1

2
|||f(u2)− f(v2)|||s′

+
c

s− s′
(|||u2(u1 − v1)|||s + |||v1(u2 − v2)|||s)

+
c

s− s′

(

|||f(u1)− f(v1)|||s +
1

2
|||f(u2)− f(v2)|||s

)

≤
1

2

c

s− s′
|||u1 + v1|||s|||u1 − v1|||s +

1

2
c|||u2 + v2|||s′ |||u2 − v2|||s′

+
c

s− s′
(|||u2|||s|||u1 − v1|||s + |||v1|||s|||u2 − v2|||s)

+
c

s− s′

(

|||u1 + v1|||s|||u1 − v1|||s +
1

2
|||u2 + v2|||s|||u2 − v2|||s

)

,

from which the desired inequality follows by picking for example C = 600cR.

Our main Theorem 1.1 is now a straightforward consequence of the following result,

whose different variants and extensions can be found in the papers mentioned in the

beginning of this section. The version below comes from [BG1].

Theorem 4.4. Let {Xs}0<s<1 be a scale of decreasing Banach spaces, so that for any

s′ < s we have Xs ⊂ Xs′ and ||| · |||s′ ≤ ||| · |||s. Consider the Cauchy problem
{

du

dt
= F (t, u(t))

u(0) = 0.
(4.6)

Let T,R and C be positive numbers and suppose that F satisfies the following conditions

1.) If for 0 < s′ < s < 1 the function t 7−→ u(t) is holomorphic in |t| < T and continuous

on |t| ≤ T with values in Xs and

sup
|t|≤T

|||u(t)|||s < R,

then t 7−→ F (t, u(t)) is a holomorphic function on |t| < T with values in Xs′ .

2.) For any 0 < s′ < s ≤ 1 and any u, v ∈ Xs with |||u|||s < R, |||v|||s < R,

sup
|t|≤T

|||F (t, u)− F (t, v)|||s′ ≤
C

s− s′
|||u− v|||s.
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3.) There exists M > 0 such that for, any 0 < s < 1,

sup
|t|≤T

|||F (t, 0)||| ≤
M

1− s
.

Then there exists a T0 ∈ (0, T ) and a unique function u(t), which for every s ∈ (0, 1) is

holomorphic in |t| < (1 − s)T0 with values in Xs, and is a solution to the initial value

problem (4.6).

The conditions (1) through (3) above are now easily verified and Theorem 1.1 fol-

lows.
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