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Abstract. On the non-abelian, non-compact simple rank 1 Lie group G = SL(2,R), we

consider Hardy spaces H2(GC
±) defined by L

2-boundary values of holomorphic functions on the

complex subsemigroups GC
± of G

C = SL(2,C). These Hardy spaces are associated to the two

parts of the discrete series of G, and give rise to equivariant projections E± and corresponding

Toeplitz operators T±(f), f ∈ C
0(G). We show that a stratification of boundary faces for GC

±

can be given, and, by a geometric construction, associate to these faces representations of the

C∗-algebra generated by the Toeplitz operators for the respective domain, thus achieving a step

2 composition series for this C∗-algebra.

1. Introduction. For a semi-simple Lie group G of Hermitian type, a major part of

harmonic analysis on G involves Hilbert spaces of holomorphic functions on the associated

Hermitian symmetric space G/K.

The basic example is the so-called holomorphic discrete series with can be realized

by (vector-valued) holomorphic functions on G/K admitting a reproducing kernel of

Bergman type.

This is the starting point of the Berezin quantization method, in which G/K is consid-

ered as a symplectic manifold (classical phase space), and to every C∞ function on G/K
one associates a Bergman type Toeplitz operator Tf on the corresponding Hilbert space.

The C∗-algebraic properties of these Toeplitz operators have been extensively studied,

cf. [Upm96].

In order to develop the Berezin–Toeplitz quantization procedure in a wider setting,

it is important to study more general phase spaces which admit a G-action but without
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the quite restrictive requirement of transitivity. The framework of general symplectic (or

Poisson) G-spaces maintains the close relation to harmonic analysis on G, but adds more

flexibility in the geometric setting, allowing foliations by symplectic G-orbits.
An important class of Poisson G-spaces can be realized as domains of holomorphy

in the complexification of G/G, for a suitable closed subgroup G. More precisely, G/G is

required to be a semi-simple (non-Riemannian) symmetric space, and we consider suitable

non-homogeneous domains in GC/GC. The symmetric space G/G plays the role of ‘Shilov

boundary’ since, as in the classical setting, we will study holomorphic functions and their

boundary values on G/G. The associated Hilbert spaces are known in the literature as

‘non-commutative’ Hardy and Bergman spaces, cf. [Nee00], [HN93], [BH00], [HÓØ91],

[KØ96], [KØ97], and play a crucial role in the well-known ‘Gelfand–Gindikin program’,

cf. [GG77].

Every semi-simple Lie group G can be realized as a (non-Riemannian) symmetric

space for G = G×G, endowed with the flip involution. In this case one studies domains

of holomorphy in GC and the structure of the corresponding non-commutative Hardy

spaces is well-established, cf. [Nee00], [HN93], [HÓØ91].

On the other hand, virtually nothing is known about the corresponding Toeplitz

operators and their C∗-algebraic properties. The main difficulty lies in the fact that the

underlying group G is neither commutative nor compact. In addition, new features such

as the existence of non-conjugate Cartan subgroups lead to profound new properties of

the Toeplitz C∗-algebras.

In this paper, the program outlined above is carried out in detail for the basic case

G = SL(2,R) which already exhibits the main features of non-Riemannian symmetric

spaces.

For SL(2,R), the (holomorphic) discrete series consists of the well-known Bergman

spaces on the upper half plane, which are the building blocks of the ‘non-commutative’

Hardy space over SL(2,R). Its reproducing kernel, leading to the definition of Toeplitz

operators, was already determined in [GG77], but it is still quite difficult to construct

(irreducible) representations of the associated C∗-algebra, since standard techniques, such

as groupoid realizations, are not available.

The main idea to overcome these problems is to realize the Toeplitz C∗-algebra via a

C∗-algebra ‘cocrossed product’ for a natural coaction of G = SL(2,R), an approach first

chosen by [Was84]. The fundamental facts concerning coactions and cocrossed products

are presented here in a general setting to allow for the generalizations mentioned above.

In the second part of the paper, we use the C∗-algebraic framework and a detailed

geometric study of the underlying domain in SL(2,C) and its symplectic foliation to con-

struct the irreducible representations of the Toeplitz C∗-algebra. The main new feature,

related to the existence of two non-conjugate Cartan subgroups, is a step 2 composition

series for the Toeplitz C∗-algebra over the rank 1 group SL(2,R).

2. Preliminaries

2.1. Conventions. To denote function spaces, we use the Bourbaki notations. So

K(X,Y ) denotes the space of continuous compactly supported functions X → Y , en-



TOEPLITZ OPERATORS ON SL(2,R) 175

dowed with the final topology w.r.t. the compact-open topology on compact subsets of

X . In fact, generically, we use KE to denote compactly supported elements of E when-

ever this makes sense. C0(X) shall be the space of continuous functions X → C vanishing

at ∞, with ‖·‖∞. E(X) denotes the space of smooth functions X → C, endowed with

the topology of uniform convergence of all derivatives on compact subsets of X . D(X)

is the space of compactly supported smooth functions X → C, endowed with the final

locally convex topology w.r.t. uniform convergence of all derivatives on compact sub-

sets of X . D′(X), its dual, is the space of distributions on X , usually endowed with the

σ(D′(X),D(X))-topology.

The space of linear maps E → F will be denoted L(E,F ). The algebra of bounded

operators on a Hilbert space H will be denoted L(H). Here, we usually use the norm

topology. However, we also use the weak, ultraweak (i.e. σ(L(H),L1(H))) and strong

topologies. We avoid using abbreviations for these topologies and always state their use

explicitly. The compact operators on a Hilbert space H will be denoted by LC(H).

We use C∗≺ · · · ≻ to denote the C∗-algebra generated by a specified sets of operators.

E.g.,

C∗≺ af | a ∈ A, f ∈ C0(G) ≻ ⊂ L(L2(G))

will denote the C∗-subalgebra of L(L2(G)) generated by the set of products af where

a ∈ A and f ∈ C0(G). If µ is a linear functional on the vector space E, we shall write

〈α : µ〉 = µ(α) for all α ∈ E.

XY will denote the set of maps Y → X . Finally, identity maps will always be written id,

and we use the symbol ⋄ to denote placeholders (i.e. anonymous variables).

2.2. Group (co-) algebras. Let G be a locally compact group, and consider a left Haar

measure dmG(g) = dg onG. The left regular representation of G on L2(G) will be denoted

g 7→ g#, so that we have µ∗ξ = µ#ξ for any bounded measure µ on G and any ξ ∈ L2(G).

Similarly, we denote right convolution by g# resp. µ#. Consequently, the reduced group

C∗-algebra, which is the C∗-algebra generated by L1(G) in the left regular representation,

will be denoted by C∗
#(G). We have C∗

#(G×G) = C∗
#(G) ⊗ C∗

#(G) where the tensor

product is spatial. The reduced group von Neumann algebra of G, which is the ultraweak

closure of C∗
#(G), will be denoted by W∗(G). If G is commutative, W∗(G) ∼= L∞(Ĝ).

If C∗(G) is the universal group C∗-algebra, that is the C∗-algebra generated by L1(G)

in the universal representation, it is known that the Banach dual B(G) = C∗(G)′ may

be considered as a subalgebra of Cb(G), and is a commutative unital Banach ∗-algebra in

the dual norm, the so-called Fourier–Stieltjes algebra of G, cf. [Val85], [Eym64]. The dual

B#(G) = C∗
#(G)

′ is a closed ∗-subalgebra of B(G), the so-called reduced Fourier–Stieltjes

algebra (a.k.a. Eymard algebra), and carries the induced norm. It is unital if and only

if G is amenable. The predual A(G) = W∗(G)∗ is a closed ∗-ideal of B(G), the Fourier

algebra of G. Hence W∗(G) is a B(G)-module in the natural way:

〈α : β · x〉 := 〈α · β : x〉 for all α ∈ A(G), β ∈ B(G), x ∈ W∗(G).

A(G) is precisely the closure of the elements of compact support in B#(G) (or, equiva-
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lently, B(G)). Furthermore, it coincides with the set

{η̄ ∗ ξ∨
∣∣ ξ, η ∈ L2(G)}.

If G is commutative, A(G) ∼= L1(Ĝ). We shall denote the set of elements of A(G) with

compact support by KA(G). Note that by a theorem of Leptin, A(G) has a bounded

approximate unit if and only if G is amenable. This is the main source of technical

difficulties in dealing with A(G), since factorization results such as Cohen’s theorem are

in general not applicable to A(G)-modules. However, since A(G) is Shilov-regular, this

may often be circumvented by using compactly supported functions in A(G).

Besides the norm and weak topologies, we need to consider the strict topology on B(G)

which is the weakest locally convex topology that makes multiplication by elements of

A(G) norm-continuous. This topology is also called the multiplier topology.

If A is a C∗-algebra, let M(A) denote its multiplier algebra.

Since the left regular representation g 7→ g# : G→ M(C∗
#(G)) is bounded and strictly

continuous, it may be considered as an element

WG ∈ M(C0(G)⊗ C∗
#(G)) = Cb(G,M(C∗

#(G))).

This is the so-called Kac–Takesaki fundamental unitary given by

WGξ(s, t) = ξ(s, s−1t) for all s, t ∈ G, ξ ∈ L2(G×G).

It gives rise to an injective normal ∗-morphism

δG : W∗(G) → W∗(G)⊗̄W∗(G) = W∗(G×G) : x 7→ Ad(WG)(x ⊗ 1)

satisfying the identity (δG⊗ id)◦δG = (id⊗δG)◦δG. Here, ⊗̄ denotes the W∗-tensor prod-

uct. Thus, (W∗(G), δG) is a Hopf–von Neumann algebra with coproduct δG, cf. [NT79],

[ES80]. δG is also the (normal extension of the) integrated version of the representation

g 7→ (g, g)# = g# ⊗ g# : G→ M(C∗
#(G)⊗ C∗

#(G)).

Furthermore, the multiplication of A(G) is dual to δG, i.e.

〈α · α′ : x〉 = 〈α ⊗ α′ : δG(x)〉 for all α, α′ ∈ A(G), x ∈ W∗(G).

In particular, the action of A(G) on W∗(G) is given by slice maps:

α · x = (id⊗α)(δG(x)) for all α ∈ A(G), x ∈ W∗(G).

When there is no danger of confusion, we often omit the subscript and simply write δ.

3. A convenient setting for Toeplitz C∗-algebras. In this section, G will denote

a locally compact group.

3.1. Coactions and modules over various subalgebras of B(G). In this subsection, we

introduce a notion of support for elements of A(G)-modules which we will use as a tool

of local analysis in the C∗-category.

Notation 3.1.1. If · : E × E′ → E′′ is bilinear, we denote by E · E′ the linear span

of the set of the e · e′, e ∈ E, e′ ∈ E′, in E′′.

Definition 3.1.2. If A and B are C∗-algebras and ϕ : A → M(B) is a ∗-morphism,

ϕ is called strict if it has a unital strictly continuous extension ϕ : M(A) → M(B) (the
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extension is unique since A is strictly dense in M(A)). Here, unital means that ϕ(1) = 1.

If ϕ : A → M(B) is a ∗-morphism such that ϕ(A) ·B = B, then ϕ is said to be non-

degenerate. A non-degenerate ϕ is strict by [LPRS87, lemma 1.1]. Clearly, if ϕ is injective,

then so is ϕ.

We introduce the following C∗-subalgebra of M(A ⊗B):

↼

M(A,B) := {m ∈ M(A⊗B)
∣∣m(C⊗B) ∪ (C⊗B)m ⊂ A⊗B}.

(We find this notation more suggestive than the usual M̃(A ⊗ B).) If δ is an injective,

non-degenerate ∗-morphism

δ : A→ M(A⊗ C∗
#(G)) such that δ(A) ⊂

↼

M(A,C∗
#(G))

and δ ⊗ id ◦ δ = id⊗δG ◦ δ, then δ or (A, δ,G) shall be called a (reduced)C∗-coaction of

G on A. We usually omit the terms ‘reduced’ and ‘C∗’. A coaction is said to be non-

degenerate (in the sense of Landstad) if for all ω ∈ A′ \ {0} there exists β ∈ B#(G) such

that ω ⊗ β ◦ δ 6= 0. Here, the overline denotes strict extension, cf. [Tay70, corollary 2.3].

Similarly, we define W∗-coactions, cf. [Qui92], [NT79].

Closely related to the notions of coaction are normed modules over certain subalgebras

of B(G).

Definition 3.1.3. Let E be a normedC-vector space which is a module over a normed

C-algebra J . Assume further that the map

J × E → E : (α, µ) 7→ α · µ
has norm ≤ 1. Then we shall call E a normed J -module. We call E non-degenerate if for

any µ 6= 0 there exists α ∈ J such that α · µ 6= 0.

The following proposition is folklore. The (more important) C∗-case follows from the

coaction identity, [LPRS87, 1.5 lemma] and the injectivity of δ.

Proposition 3.1.4.

(i) If (M, δ,G) is a W∗-coaction, then

α · µ := (id⊗α) ◦ δ(µ) for all α ∈ A(G), µ ∈M

defines on M the structure of a non-degenerate normed A(G)-module.

(ii) If (A, δ,G) is a C∗-coaction, then

β · a := (id⊗β) ◦ δ(a) for all β ∈ B#(G), a ∈ M(A)

defines on M(A) the structure of a non-degenerate normed B#(G)-module for which

A is a submodule.

Remark 3.1.5.

(i) The proposition has an obvious generalization to coactions of Hopf–von Neumann

resp. Hopf-C∗-algebras.

(ii) There are topological obstructions preventing the existence of a general converse to

the proposition.
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Definition 3.1.6. Let E be a normed A(G)-module. For any µ ∈ E, let

suppE µ := {g ∈ G
∣∣α · µ = 0 ⇒ α(g) = 0 for all α ∈ A(G)}.

We omit the subscript whenever there is no danger of confusion. suppµ is obviously a

closed subset of G. We denote by KE resp. K̄E the set of all compactly supported µ ∈ E

resp. the norm-closure of this set. We have K̄E = A(G) ·E.

Remark 3.1.7.

(i) Clearly,

suppµ = hull(µ⊥) = SpA(G)/µ⊥,

where µ⊥ = {α ∈ A(G) |α · µ = 0}.
(ii) From [Eym64, (4.4) proposition], it is clear that for the usual A(G)-module structure

on W∗(G), the notion of support set forth in that article is the same as the one

introduced above. However, unlike Eymard, we need to consider degenerate module

structures.

(iii) In [Nak77a] and [Nak77b], cf. also [NT79], one finds a notion of support called the

local essential spectrum spδ(x) of δ near x for a coaction δ of G on a W∗-algebra

M . spδ(x) depends only on the A(G)-module structure induced by δ, and hence

coincides precisely with our suppM x.

This concept was extended to a coaction δ on a C∗-algebra A by Katayama [Kat81].

His definition of spδ(x) uses the B#(G)-module structure induced by δ instead of

its restriction to A(G). However, this is irrelevant: indeed, let g ∈ suppA x. Further,

let β ∈ B#(G) such that β · x = 0. Choose χ ∈ A(G) such that χ(g) = 1. Clearly,

χ ·β ·x = 0, so β(g) = χ(g) ·β(g) = 0. In particular, Katayama’s definition of spδ(x)

coincides with the one given in [Fan94].

The following proposition is mostly an adaptation of [Eym64, (4.8) proposition] to

our situation.

Proposition 3.1.8. Let A(G) ⊂ J ⊂ B(G) be a closed ∗-ideal and E be a normed

J -module. Let µ ∈ E.

(i) suppµ = ∅ implies that α · µ = 0 for all α ∈ A(G), in particular, if E is non-

degenerate as an A(G)-module, that µ = 0.

(ii) For any α ∈ J , we have suppα · µ ⊂ suppα ∩ suppµ.

(iii) For any α ∈ KA(G) vanishing on a neighbourhood of suppµ, we have α · µ = 0. In

fact, suppµ is the smallest closed subset of G with this property.

(iv) If there exists a closed J -invariant subspace F ⊂ W∗(G) such that E = W∗(G)/F

and suppW∗(G) µ̃ is compact for some representative µ̃ ∈ W∗(G) of µ, then for any

α ∈ J vanishing in a neighbourhood of suppE µ, we have α · µ = 0.

Proof. (i) It is easy to see that

µ⊥ = {α ∈ A(G)
∣∣α · µ = 0}

is a closed ideal in A(G). We have ∅ = suppµ = hull(µ⊥); hence for all g ∈ G, there

is α ∈ A(G), so that α(g) 6= 0 and α · µ = 0. By the Tauberian theorem [Eym64,

(3.38) corollaire], this implies µ⊥ = A(G), i.e. α · µ = 0 for all α ∈ A(G).
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(ii) If s 6∈ suppα, there exists a neighbourhood s ∈ U ⊂ G such that α|U = 0. Let

β ∈ A(G), suppβ ⊂ U , such that β(s) 6= 0. Then α · β = 0, so

β · (α · µ) = (α · β) · µ = 0 ;

but β(s) 6= 0, so s 6∈ suppα · µ. Now let s ∈ suppα · µ. Further, let β ∈ A(G), so that

β · µ = 0. In particular,

β · (α · µ) = α · (β · µ) = 0,

so we deduce β(s) = 0. Thus s ∈ suppµ, and the assertion follows.

(iii) Let χ ∈ KA(G) such that χ|suppα = 1 and suppχ ⊂ G \ suppE µ. Obviously,

α · µ = (α · χ) · µ. Since
∅ = suppχ ∩ suppµ ⊃ suppχ · µ,

we deduce ϕ · χ · µ = 0 for all ϕ ∈ A(G) by (i), in particular α · µ = 0.

Now let C ⊂ G be a closed set satisfying the hypotheses. Let g ∈ G \ C, and choose

α ∈ KA(G), suppα ⊂ G \ C, such that α(g) 6= 0. Now α · µ = 0, and hence g 6∈ suppµ.

(iv) Let χ ∈ KA(G) such that χ|C = 1 for some compact neighbourhood C ⊂ G of

supp µ̃. We have χ · µ̃ = µ̃, and since F is J -invariant, we deduce χ · µ = µ. Because

suppα ∩ suppE µ = ∅, we deduce by (i) and (ii): 0 = χ · α · µ = α · µ.
Proposition 3.1.9. Let δ be a coaction of G on the C∗-algebra A. Then δ is non-

degenerate if and only if A = A(G) · A, i.e., if and only if A is generated as a Banach

module by its compactly supported elements.

Proof. This is merely another way of stating [Kat85, theorem 5 (i),(iv)].

3.2. Generated submodule C∗-algebras. In this subsection, we collect some basic prop-

erties of submodule C∗-algebras. These C∗-algebras give rise to Toeplitz C∗-algebras if

they are generated by a single projection, as we shall see in the next subsection.

Definition 3.2.1. Let (A, δ,G) be a non-degenerate coaction which is a submodule

of a normed A(G)-module E. If E ⊂ E is such that A(G) · E ⊂ A, define

C∗
E(δ) := C∗≺ α · a |α ∈ A(G), a ∈ E ≻ ⊂ A,

the submodule C∗-algebra generated by E . For the special case δ = δG|A, we write

C∗
E(G) := C∗

E(δ). In particular, C∗
L1(G)(G) = C∗

#(G) and C∗
W∗(G)(G) = K̄W∗(G).

Proposition 3.2.2. Let (A, δ,G) be a non-degenerate coaction and E such that A(G)·
E ⊂ A. Then (C∗

E(δ), δ|C∗

E
(δ), G) is a non-degenerate coaction in each of the following

cases:

(i) C∗
E(δ) acts non-degenerately on the same Hilbert space H as A does.

(ii) δ is the restriction of a W∗-coaction.

Proof. Let ϕ, ψ ∈ KA(G), a ∈ E , b ∈ C∗
#(G). By [Kat85, lemma 3], we have

δ(ϕ · a)(1⊗ ψ∨#b) =

∫

G

(g ∗ ψ) · ϕ · a⊗ g#b dg ∈ C∗
E(δ)⊗ C∗

#(G),

since the integrand is contained in K(G,C∗
E (G)⊗C∗

#(G)). (We may assume a ∈ A since ϕ

has compact support.) In particular, δ(C∗
E(δ)) is contained in the closure of C∗

E(δ)⊗C∗
#(G)
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in the ultraweak topology. If condition (i) is satisfied, M(C∗
E (δ)⊗ C∗

#(G)) is the idealizer of

C∗
E(δ)⊗C∗

#(G) in its ultraweak closure as operators on H⊗L2(G) by [Bus68, 3.9 theorem]

and the von Neumann density theorem, so in this case

δ(C∗
E(δ)) ⊂

↼

M(C∗
E(δ),C

∗
#(G)).

If condition (ii) is satisfied, this statement follows as in [Qui92, proof of lemma 2.2, (1)].

So C∗
E(δ) is a closed B#(G)-submodule of A by proposition 3.1.4 (ii). Moreover,

C∗
E(δ) = A(G) · C∗

E(δ) since a ∈ C∗
E(G) can be approximated by elements of KC∗

E(G).

So δ is non-degenerate if it is a coaction.

If ϕ, ψ ∈ KA(G), a ∈ C∗
E(δ) and b ∈ C∗

#(G), we see (cf. [Qui92, lemma 2.3] or [Qui94,

lemma 1.3]) that

(ϕ · a)⊗ ψ#b =

∫

G

δ((ϕ ∗ g) · a)(1⊗ g#b) dg ∈ δ(C∗
E(δ))(C⊗ C∗

#(G)),

so that

δ(C∗
E(δ))(C⊗ C∗

#(G)) = C∗
E(δ)⊗ C∗

#(G).

Hence δ defines an injective non-degenerate ∗-morphism

δ : C∗
E(δ) → M(C∗

E (δ)⊗ C∗
#(G)).

Finally, δ satisfies the coaction identity by [LPRS87, lemma 4.4], so (C∗
E(δ), δ, G) is indeed

a non-degenerate coaction.

Corollary 3.2.3. Let E ⊂ W∗(G). Then (C∗
E(δG), δG|C∗

E
(δG), G) is a non-degenerate

coaction.

Proof. By [Kat85, lemma 3 and remark], we may choose A = K̄W∗(G) in proposi-

tion 3.2.2. Obviously, condition (ii) is satisfied, so the assertion follows.

The following proposition gives rise to a useful criterion for the irreducibility of

Toeplitz C∗-algebras, as we shall see in the next subsection.

Proposition 3.2.4. Let E ⊂ W∗(G).

(i) The C∗-algebra C∗
#(G) is an ideal of K̄W∗(G), i.e. C∗

#(G) · K̄W∗(G) ⊂ C∗
#(G).

That is, we have the inclusion K̄W∗(G) ⊂ M(C∗
#(G)).

(ii) If there is µ ∈ E such that suppµ = G and the set M of points where µ is not

locally contained in A(G) is a zero set, then C∗
#(G) ⊂ C∗

E(G) so that C∗
#(G) is a

closed ∗-ideal of C∗
E(G).

Here, by ‘µ is locally contained in A(G) at g’ we mean that for some neighbourhood U of

g, and any α ∈ KA(G) such that suppα ⊂ U , there exists ϕ ∈ KA(G) such that

〈α′ : α · µ〉 =
∫

G

α′(g)ϕ(g) dg for all α′ ∈ A(G).

Proof. (i) Clearly KW∗(G) is dense in K̄W∗(G) and KA(G) is dense in A(G). So,

consider µ ∈ W∗(G) with suppµ compact and α ∈ KA(G). By [Eym64, (3.17) proposi-

tion 3◦],

µ#α# = (µ ∗ α)# is convolution by µ ∗ α ∈ A(G).



TOEPLITZ OPERATORS ON SL(2,R) 181

Since µ ∗α has compact support, it is contained in KA(G) ⊂ L1(G), so we have µ#α# ∈
C∗

#(G).

As to the second statement, C∗
#(G) acts faithfully and non-degenerately on L2(G),

so M(C∗
#(G)) is faithfully represented as the idealizer of C∗

#(G) in its ultraweak closure

W∗(G) (von Neumann density theorem and [Bus68, 3.9 theorem]). What is more, we

clearly have K̄W∗(G) ⊂ W∗(G). Hence the assertion.

(ii) Let α ∈ KA(G), suppα ⊂ G \M . Let K ⊂ G \M be a compact neighbourhood

of suppα, and χ ∈ KA(G), χ|K = 1, suppχ ⊂ G \M . Then

f := χ · µ ∈ KA(G), and inf |f(K)| > 0,

so, since A(G) is a Shilov-regular Banach algebra, there exists ϕ ∈ KA(G) such that

(ϕ · f)|K = 1 (cf. [Eym64, proof of (4.4) proposition]). Then

α · ϕ · µ = α · ϕ · χ · µ = α · ϕ · f = α,

i.e. α ∈ C∗
E(G). Since M is a zero set, {α ∈ KA(G) | suppα ⊂ G \M} is dense in L1(G)

and hence in C∗
#(G). The assertion follows.

The above considerations allow us to define the following refinement of the notion of

singular support of a distribution. This is a local object better adapted to the C∗-context

than the former one, defined in the smooth category.

Definition 3.2.5. For µ ∈ W∗(G), let the singular set of µ be

sing µ := suppW∗(G)/C∗

#
(G)[µ] = {g ∈ G

∣∣α · µ ∈ C∗
#(G) ⇒ α(g) = 0 for all α ∈ A(G)}.

Its applications will become clear in the following sections.

3.3. Cocrossed products and Toeplitz C∗-algebras

Definition 3.3.1. Let p ∈ W∗(G) be an orthogonal projection. Define the Toeplitz

operator of symbol f ,

Tp(f) := pfp : L2(G) → L2(G) for all f ∈ C0(G).

We denote by

Tp(G) := C∗≺ Tp(f) | f ∈ C0(G) ≻
the Toeplitz C∗-algebra defined by p. We fix p for this subsection.

Typically, Toeplitz operators are hard to describe since they mix convolution and mul-

tiplication. However, convolution and multiplication can be separated via the description

of Toeplitz C∗-algebras as corners of cocrossed product C∗-algebras which we achieve in

the sequel.

Definition 3.3.2. Given a coaction (A, δ,G), a covariant pair of representations

(π, µ) in B is given by non-degenerate ∗-morphisms

π : A→ M(B) and µ : C0(G) → M(B)

such that π ⊗ id ◦ δ(a) = Ad(u)(π(a) ⊗ 1) for all a ∈ A. Here u = µ⊗ id(WG) denotes

the corepresentation u of G associated with µ, cf. [LPRS87, section 3], [Dei00, section 1].

The closed linear subspace

C∗(π, µ) := π(A)µ(C0(G)) ⊂ M(B)
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is a C∗-algebra. A covariant pair of representations in B clearly induces a covariant pair

of representations in C∗(π, µ), since due to the non-degeneracy of π and µ, the inclusion

of C∗(π, µ) ⊂ B ⊂ M(B) is non-degenerate.

In particular, since (δ, 1 ⊗ M) is covariant by the coaction identity, the cocrossed

product

A⊗δ C∗
#(G) := δ(A)(C ⊗ C0(G)) ⊂ M(A⊗ LC(L2(G)))

is a C∗-subalgebra. Here M is the action of C0(G) on L2(G) by multiplication operators.

The cocrossed product satisfies the following universal property (op. cit.): whenever (π, µ)

is a covariant pair of representations in B, there exists a non-degenerate ∗-morphism

ϕ : A⊗δ C∗
#(G) → M(B) (unique by construction of A⊗δ C∗

#(G)) such that

(ϕ ◦ δ, ϕ ◦ (1⊗M)) = (π, µ).

We write π ⊗δ µ = ϕ.

Similarly, we define W∗-cocrossed products, cf. [NT79].

Remark 3.3.3. Let E ⊂ W∗(G). The non-degenerate ∗-morphism

id⊗δM : C∗
E(G) ⊗δ C0(G) → L(L2(G)) : δG(a)(1 ⊗ f) 7→ af

given by the universal property of the cocrossed product is injective since it is the re-

striction of the ∗-isomorphism

W∗(G)⊗̄δL∞(G) ∼= L(L2(G))

given by the Takesaki duality theorem (cf. [NT79]) applied to the trivial action of G on

the von Neumann algebra C. (It easy to check that the dual coaction of this action is

δG.) In other words, C∗(id,M) is a cocrossed product for the coaction (C∗
E (G), δG, G).

We can now state our main result for this subsection.

Theorem 3.3.4. Considering C∗
p(G) ⊗δ C0(G) ⊂ L(L2(G)), we have

Tp(G) = p(C∗
p(G)⊗δ C0(G))p.

The proof of this theorem requires several lemmata.

Lemma 3.3.5. The coproduct ∆ defined by ∆β(s, t) := β(st) is a norm 1 linear map

∆ : B#(G) → B#(G×G) satisfying (∆⊗ id) ◦∆ = (id⊗∆) ◦∆.
Proof. Consider multiplication m : C∗

#(G×G) = C∗
#(G) ⊗ C∗

#(G) → C∗
#(G) which

has norm 1. (Recall that ⊗ is the spatial tensor product!) Define ∆ = m′. Then, obviously,

∆ : B#(G) → B#(G×G) has norm 1

and satisfies coassociativity. Clearly, for any β ∈ B#(G), f, g ∈ L1(G),

〈∆β : f# ⊗ g#〉 =
∫

G×G

β(st)f(s)g(t) ds dt,

so ∆β(s, t) = β(st) for a.e. (s, t), and, by continuity, everywhere.

Remark 3.3.6. Note that the same procedure applied to the universal group C∗-

algebra C∗(G) gives an extension of ∆ to B(G) = C∗(G)′ whose image, however, will in

general not be contained in B(G×G) for non-amenable G.
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Corollary 3.3.7. For any η ∈ L2(G), ξ ∈ KA(G), ϕ ∈ B(G) and a, b ∈ W∗(G),

(η | aϕbξ) =
∫

G

η(t0)〈(t1, t2) 7→ ϕ(t−1
1 t0)ξ(t

−1
2 t−1

1 t0) : a⊗ b〉 dt0

if either ϕ or a has compact support.

Proof. Note that the action of W∗(G) leaves A(G) ∩ L2(G) invariant by [Eym64,

(3.17) proposition 3◦]. We may assume hat ϕ has compact support (otherwise chose

χ ∈ KA(G) with χ · a = a). By lemma 3.3.5, the function

(t1, t2) 7→ ϕ(t−1
1 t0)ξ(t

−1
2 t−1

1 t0)

lies in B#(G×G) for any t0. Since it has compact support, it lies in KA(G ×G) (cf.

[Eym64]). So we may apply [Eym64, (3.17) proposition 2◦] to prove the equation along

the lines of the usual Fubini theorem for distributions.

The following lemma is a sharpened version of [HU98, lemma 5.1], valid for any locally

compact group.

Lemma 3.3.8. Let n ∈ N and a1, . . . , an ∈ W∗(G). Further, choose sequences F ,F ′

of finite subsets of B(G)
n+1

resp. B(G)
2n
. Assume further that

(i) The aj have compact supports or

(ii) for all k ∈ N, (ϕ0, . . . , ϕn) ∈ F(k) and (α1, . . . , αn, ψ1, . . . , ψn) ∈ F ′(k), ϕ1, . . . , ϕn
have compact support, and for all 1 ≤ j ≤ n − 1, either αj or ψj have compact

support.

If f, f ′ are such that

(t0, . . . , tn) 7→ f(t0, t
−1
1 , . . . , t−1

n . . . t−1
1 t0)

lies in A(Gn+1), further

f = limk

∑

(ϕ0,...,ϕn)∈F(k)

ϕ0 ⊗ · · · ⊗ ϕn

in the norm topology on B(Gn+1) and

f ′ = limk

∑

(α1,...,αn,ψ1,...,ψn)∈F ′(k)

α1 ⊗ · · · ⊗ αn ⊗ ψ1 ⊗ · · · ⊗ ψn

in the norm topology on B(G2n), such that

f(t0, . . . , t
−1
n · · · t−1

1 t0) = f ′(t1, . . . , tn, t
−1
1 t0, . . . , t

−1
n · · · t−1

1 t0)

for all (t0, . . . , tn) ∈ Gn+1, then we have the existence in norm and equality of the limits

limk

∑

(ϕ0,...,ϕn)∈F(k)

ϕ0a1 · · ·ϕn−1anϕn = limk

∑

(α1,...,ψn)∈F ′(k)

(α1 · a1)ψ1 · · · (αn · an)ψn.

Proof. Because of the compactness assumptions, we may assume w.l.o.g. that the func-

tions ϕj , αj , ψj all have compact support, in particular, that the sequences above converge

in the Fourier algebra (which carries the induced norm). Applying corollary 3.3.7, it is

easy to see that

(η | ϕ0a1ϕ1 · · · anϕnξ) =
∫

G

η(t0)〈(t1, . . . , tn) 7→ ϕ0(t0) · · · (ϕnξ)(t−1
n · · · t−1

1 t0) : ⊗a〉dt0
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for all η ∈ L2(G), ξ ∈ KA(G), ϕ0, . . . , ϕn ∈ KA(G), where we use the shorthand

⊗a = a1 ⊗ · · · ⊗ an.

From the two convergence assumptions and the continuity of the B(G)-module structure

onW∗(G), the action of B(G) by multiplication operators and multiplication in L(L2(G)),

the limits (LHS) and (RHS) exist.

The indicated transformations on the variables t0, . . . , tn define continuous maps on

the level of the reduced Fourier–Stieltjes algebras. Again applying compactness and the

assumption on f , the sequences and their limits live in the Fourier algebra.

So we have

(LHS) =

∫

G

η(t0)〈(t1, . . . , tn) 7→ f(t0, . . . , t
−1
n · · · t−1

1 t0)ξ(t
−1
n · · · t−1

1 t0) : ⊗a〉dt0

=

∫

G

η(t0)〈(t1, . . . , tn) 7→ f ′(t1, . . . , t
−1
n · · · t−1

1 t0)ξ(t
−1
n · · · t−1

1 t0) : ⊗a〉dt0
= (RHS),

proving the assertion.

Lemma 3.3.9.

(i) Let n ≥ 1 and (αj)1≤j≤n, (ψj)1≤j≤n ⊂ KA(G). Set f ′ = α1⊗· · ·⊗ψn. There exists

a sequence F of finite subsets of KA(G)n+1 such that

f = limk

∑

(ϕ0,...,ϕn)∈F(k)

ϕ0 ⊗ · · · ⊗ ϕn exists in A(Gn+1)

and

f(t0, . . . , t
−1
n · · · t−1

1 t0) = f ′(t1, . . . , tn, t
−1
1 t0, . . . , t

−1
n · · · t−1

1 t0)

for all (t0, . . . , tn) ∈ Gn+1. Furthermore,

f ′′ : (t0, . . . , tn) 7→ f(t0, . . . , t
−1
n · · · t−1

1 t0)

lies in A(Gn+1).

(ii) Let n ≥ 1 and ϕ0, ϕn, (ϕ
i
j)1≤j≤n−1,i=1,2 ⊂ KA(G). Set

f = ϕ0 ⊗ ϕ1
1 · ϕ2

1 ⊗ · · · ⊗ ϕ1
n−1 · ϕ2

n−1 ⊗ ϕn.

There exists a sequence F ′ of finite subsets of KA(G)2n such that

f ′ = limk

∑

(α1,...,αn,ψ1,...,ψn)∈F ′(k)

α1 ⊗ · · · ⊗ αn ⊗ ψ1 ⊗ · · · ⊗ ψn exists in A(G2n)

and

f(t0, . . . , t
−1
n · · · t−1

1 t0) = f ′(t1, . . . , tn, t
−1
1 t0, . . . , t

−1
n · · · t−1

1 t0)

for all (t0, . . . , tn) ∈ Gn+1. Furthermore,

f ′′ : (t0, . . . , tn) 7→ f(t0, . . . , t
−1
n · · · t−1

1 t0)

lies in A(Gn+1).
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Proof. (i) By lemma 3.3.5, the function f defined by

f(t0, . . . , tn) :=

n∏

j=1

αj(tj−1t
−1
j )ψj(tj)

lies in B#(G
n+1). Since it has compact support, it lies in KA(Gn+1). So there exists a

sequence F of finite subsets of KA(G)n+1 such that

f = limk

∑

(ϕ0,...,ϕn)∈F(k)

ϕ0 ⊗ · · · ⊗ ϕn exists in A(Gn+1).

Clearly, f satisfies the second equation. Since f ′ has compact support, so does f ′′. Hence

f ′′ ∈ A(Gn+1) by lemma 3.3.5.

(ii) Again applying lemma 3.3.5, the function f ′ defined by

f ′(s1, . . . , tn) := ϕ0(s1t1)

[ n−1∏

j=1

ϕ(tj)ϕ
2
j(sj+1tj+1)

]
ϕn(tn)

lies in KA(G2n), so there exists F ′ as required. For the remaining assertion, we proceed

as in (i).

Proof of theorem 3.3.4. Since KA(G) ⊂ C0(G) is dense andA·A = A for any C∗-algebra

A, the set of products

pϕ0pϕ
1
1ϕ

2
1 · · ·ϕ1

n−1ϕ
2
n−1pϕnp with n ≥ 2, ϕ0, ϕn, (ϕ

i
j) ⊂ KA(G)

is total in Tp(G). By lemma 3.3.9 and lemma 3.3.8, ϕ0pϕ
1
1ϕ

2
1 · · ·ϕnp ∈ C∗

p(G) ⊗δ C0(G).

Hence, we have the first inclusion. Also, the set of products

(α1 · p)ϕ1 · · · (αn · p)ϕn with n ≥ 1, (αj), (ϕj) ⊂ KA(G)

is total in C∗
p(G)⊗δ C0(G), since products

(α1 · p) · · · (αn · p) with (αj) ⊂ KA(G)

can be approximated in this way by lemma 3.3.9 and lemma 3.3.8. These two lemmata

also show that p(α1 · p)ϕ1 · · · (αn · p)ϕnp ∈ Tp(G), so we are done.

Remark 3.3.10. In the proof of theorem 3.3.4, we have also shown that

C∗
p(G)⊗δ C0(G) = C∗≺ δ(α · p)(1⊗ f) |α ∈ A(G), f ∈ C0(G) ≻ .

From the theorem, we deduce the following criterion for the irreducibility of Tp(G).
Proposition 3.3.11. Let p be such that C∗

#(G) ⊂ C∗
p(G). Then

(i) LC(L2(G)) ⊂ C∗
p(G) ⊗δ C0(G), in particular, the latter acts irreducibly on L2(G).

(ii) LC(pL2(G)) ⊂ Tp(G), so the latter acts irreducibly on pL2(G). In particular, the

multiplier algebra M(Tp(G)) is the idealizer in pL(L2(G))p of Tp(G) acting on

L2(G), that is, the largest C∗-subalgebra containing Tp(G) as a closed ideal.

The condition is satisfied if p has full support and is a.e. locally contained in A(G), in

particular if p has full support, G is a Lie group and sing supp p has zero measure.

Proof. (i) LC(L2(G)) = C∗
#(G)⊗δ C0(G) by Takesaki’s duality theorem. So the asser-

tion follows from Schur’s lemma.
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(ii) We have LC(pL2(G)) = pLC(L2(G))p, so we may apply theorem 3.3.4. The state-

ment about the multiplier algebra follows from [Bus68, 3.9 theorem].

That the condition is satisfied under the given assumption follows from proposi-

tion 3.2.4, (ii). For the special case of a Lie group G, D(G) ⊂ A(G) is dense and the

induced topology is weaker than the Schwartz topology by [Eym64, (3.26) proposition],

so W∗(G) ⊂ D′(G). That sing supp p has zero measure means that p is a.e. locally con-

tained in D(G) ⊂ A(G), whence the assertion.

We also note the following proposition which will prove useful later on.

Proposition 3.3.12. If a, b ∈ C∗
p(G)⊗δ C0(G), then apb ∈ C∗

p(G) ⊗δ C0(G).

Proof. It suffices to prove that

(α1 · p)ψ1p(α2 · p)ψ2 ∈ C∗
p(G)⊗δ C0(G) for α1, α2, ψ1, ψ2 ∈ KA(G).

So, by lemmata 3.3.9 and 3.3.8, it suffices to prove that ϕ0pϕ1pϕ2pϕ3 lies in the cocrossed

product for any ϕ0, . . . , ϕ3 ∈ KA(G). But this follows from the same lemmata.

4. Behaviour of W∗(G) at ∞ and representations of Toeplitz C∗-algebras.

In this section, let G be any locally compact group and let Ḡ ❁ G be a closed subgroup.

4.1. Restriction to subgroups. Although the universal group von Neumann algebra

of a locally compact group manifestly behaves cofunctorially under continuous group

homomorphisms, the behaviour of the reduced group von Neumann algebra W∗(G) is far

from clear, since the corresponding L2 spaces are not easily related. Also, it is known

that positive definite functions living on subgroups Ḡ usually do not extend as positive

definite functions, cf. [Eym64].

At the other extreme, for G a Lie group, smooth functions of compact support on Ḡ

are easily seen to extend smoothly, with compact support contained in any tubular neigh-

bourhood of the subgroup. Hence distributions whose (locally finite) order in directions

transversal to Ḡ vanishes have preimages on Ḡ (in fact, these properties are equivalent).

Since it is known that the finitely supported elements of W∗(G) have order 0 ([Eym64,

(4.9) théorème]), it is therefore reasonable to suspect that a similar statement holds for

W∗(G) in place of the space of distributions of transversal order zero.

Indeed, this fact is recorded in the literature. We state it as the following theorem,

which is a combination of [Her73, theorem A and theorem 1] and [TT72, theorem 3].

Theorem 4.1.1.

(i) The restriction map resḠ : A(G) → A(Ḡ) : α 7→ α|Ḡ is an extremal epimorphism

of Banach spaces, i.e.

A(Ḡ) ∼= A(G)/ ker resḠ

as Banach spaces.

(ii) The dual map of resḠ coincides with the extension by zero on the set of bounded

measures on Ḡ. It is an isometry W∗(Ḡ) → W∗(G), whose image is precisely the

set

W∗
Ḡ(G) := {µ ∈ W∗(G)

∣∣ suppµ ⊂ Ḡ} ;
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in particular, this set is an ultraweakly closed unital ∗-subalgebra of W∗(G) isomet-

rically isomorphic to W∗(Ḡ).

In particular, for all µ ∈ W∗
Ḡ
(G), there exists a unique µḠ ∈ W∗(Ḡ) such that

〈α|Ḡ : µḠ〉 = 〈α : µ〉 for all α ∈ A(Ḡ),(4.1.1)

and the ∗-algebra isomorphism W∗(Ḡ) ∼= W∗
Ḡ
(G) is a homeomorphism for the respective

ultraweak topologies.

Remark 4.1.2. The maps in the above theorem are both module maps and algebra

morphisms. Indeed, resḠ is obviously multiplicative. From this we deduce (α · µ)Ḡ =

α|Ḡ · µ
Ḡ
. On the other hand, for h ∈ Ḡ, we have by [Eym64, (3.17) proposition 2◦]

(µα∨)(h) = 〈α(h−1⋄ ) : µ〉 = 〈α(h−1⋄ )|Ḡ : µ
Ḡ
〉 = µ

Ḡ
α∨|Ḡ(h),

i.e. (µα)|Ḡ = µ
Ḡ
α|Ḡ since ⋄∨ is an automorphism of the Fourier algebras.

By [Eym64, (3.16)], ⋄∨ on W∗(G) is the dual map of ⋄∨ on A(G), so, since the

latter commutes with resḠ, the former commutes with µ 7→ µḠ. Hence, by [Eym64,

(3.16) définition], we see that

〈α|Ḡ : (µµ′)
Ḡ
〉 = 〈α : µµ′〉 = 〈µ∨α : µ′〉
= 〈(µ∨α)|Ḡ : µ′

Ḡ
〉 = 〈µ∨

Ḡ
α|Ḡ : µ′

Ḡ
〉 = 〈α|Ḡ : µ

Ḡ
µ′
Ḡ
〉,

thus (µµ′)Ḡ = µḠ µ
′
Ḡ
since resḠ is surjective.

4.2. Passage to subsequential limits. It is a well-known fact that a sequence in a

compact metric space converges if and only if all its convergent subsequences possess the

same limit. In probability theory, this fact is exploited to prove convergence assertions,

cf. Prohorov’s lemma on the convergence of tight sequences of random variables. We shall

proceed in the same fashion. For the convenience of the reader, we include the necessary

propositions.

Notation 4.2.1. For a normed vector space E, let B(E) denote the closed unit ball.

If Λ is a directed set, we write γ ≺ Λ if γ is a cofinal subset.

The following proposition is contained in [Mia99, proof of theorem 3.7].

Proposition 4.2.2. If G is countable at infinity, then B(W∗(G)) is a compact metriz-

able space in the σ(W∗(G),A(G))-topology. In particular, it is sequentially compact.

Proof. The unit ball B(W∗(G)) is a σ(W∗(G),A(G))-compact subset of W∗(G) by

the Alaoğlu theorem. Since G is countable at infinity, L2(G) contains a dense countably-

dimensional subspace and is hence ‖·‖2-separable. By [Eym64, (3.25) théorème] A(G)

consists of the elements ξ̄ ∗ η∨ with ξ, η ∈ L2(G), and we have

‖ξ̄ ∗ η∨‖A(G) ≤ ‖ξ‖2 · ‖η‖2
by [Eym64, (3.1) lemme]. We conclude that A(G) is ‖·‖A(G)-separable. Now, on norm

bounded subsets of W∗(G), σ(W∗(G),A(G)) coincides with the σ-topology induced by

taking any ‖·‖A(G)-dense subset of A(G) in place of all of A(G); hence B(W∗(G)) has

countable neighbourhood bases and is thereby metrizable. This means that all accumu-

lation points are limits of convergent subsequences.



188 A. ALLDRIDGE AND H. UPMEIER

Corollary 4.2.3. Let G be countable at infinity, and let µ, (µℓ) ⊂ B(W∗(G)). For

(µℓ) to converge to µ in σ(W∗(G),A(G)), it is necessary and sufficient that µ be the limit

of all σ(W∗(G),A(G))-convergent subsequences.

Proof. Necessity is obvious. For the proof of sufficiency, let all convergent subsequences

of (µℓ) have µ as limit. Assume that (µℓ) does not converge to µ. Then there exist

α ∈ A(G), ε > 0 and a subsequence γ ≺ N such that

|〈α : µγ(ℓ) − µ〉| ≥ ε > 0 for all ℓ ∈ N,

i.e., no subsequence of (µγ(ℓ)) converges to µ. But by proposition 4.2.2, B(W∗(G)) is se-

quentially compact in σ(W∗(G),A(G)), so there exist convergent subsequences of (µγ(ℓ)).

By assumption, they must converge to µ, a contradiction.

4.3. Changing the order of limits. We shall have to exchange limit order several times

in the sequel. Grothendieck’s remarkable Double Limit Criterion gives fairly general con-

ditions under which such operations are possible. We develop an exchange theorem well-

adapted to our purposes.

Notation 4.3.1. If E is a normed vector space, let S(E) denote its unit sphere. If

E is the dual of some normed ∗-algebra, let S(E)+ denote the positive part of the unit

sphere.

Remark 4.3.2. Recall that the ultraweak topology on a von Neumann algebra M on

some Hilbert space coincides with the σ(M,M∗)-topology.

Proposition 4.3.3. Let K ⊂ G be compact and denote

AK(G) := {α ∈ A(G)
∣∣ suppα ⊂ K}.

If (µj) ⊂ B(W∗(G)) and (αi) ⊂ S(AK(G))+ are sequences, then

limi limj〈αi : µj〉 = limj limi〈αi : µj〉
whenever the double limits exist.

Proof. The set E := B(W∗(G)), endowed with the σ(W∗(G),A(G))-topology, is a

compact Hausdorff space. So, by [Gro52, corollaire 2 de théorème 2], it suffices to prove

that A := S(AK(G))+ is a relatively compact subset of C(E), endowed with the topology

of simple convergence.

To this end, first note that since the elements of A are linear, simple convergence on

points of E is equivalent to point-wise convergence on all of W∗(G). Furthermore, since

the set L(W∗(G),C) of linear forms is closed in CW∗(G), limits of nets in A will always

be linear. Note also that due to Tychonov’s theorem, B(C)E is compact, so that A is

relatively compact in CE .

So it remains to be shown that the closure of A in CE lies in C(E). So let (uα) ⊂ A

be a net converging point-wise on E to u ∈ B(C)E ∩ L(W∗(G),C). Since (uα) is norm

bounded in A(G), and the ‖·‖A(G)-norm coincides on A(G) with the dual norm of W∗(G)

because ‖·‖W∗(G) is the dual norm of A(G) by [Eym64, (3.10) théorème], we may apply the

Banach–Steinhaus theorem [Tre67, corollary to theorem 33.1] to conclude that u is norm-

continuous on W∗(G). In particular, u|C∗

#
(G) is norm-continuous, so u ∈ B#(G) ⊂ B(G).
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Now, G ⊂ E (i.e. the ball contains the point evaluations), so for any choice of finite

sequences (zi) ⊂ C and (gi) ⊂ G, we have

n∑

i,j=0

z̄izju(g
−1
i gj) = limα

n∑

i,j=0

z̄izjuα(g
−1
i gj) ≥ 0.

Thus u is of positive type. Also, ‖u‖B(G) = u(e) = limα uα(e) = 1, hence u ∈ S(B(G))+.

Since, on bounded subsets, the σ(B(G),C∗(G))-topology is weaker than the topology of

point-wise convergence, and AK(G) is σ(B(G),C∗(G))-closed by [GL81, proof of theo-

rem B1], we conclude u ∈ A = S(AK(G))+. This proves the assertion.

Remark 4.3.4. Note that although for G countable at infinity, B(W∗(G)) is metriz-

able by proposition 4.2.2, even in this case the proof of relative compactness in the above

lemma cannot rely on the Arzelà–Ascoli theorem, since this gives relative compactness in

the compact-open topology (topology of uniform convergence), and relative compactness

is not in general hereditary to weaker topologies, although this is the case for compactness.

Lemma 4.3.5. The set of compactly supported functions of positive type KA(G)+ is

‖·‖A(G)-total in A(G).

Proof. In fact, for ϕ, ψ ∈ K(G), we have the following polarisation:

4 · ϕ̄ ∗ ψ∨ = (ϕ+ ψ) ∗ (ϕ+ ψ)∨ − (ϕ− ψ) ∗ (ϕ− ψ)∨

+i(ϕ− iψ) ∗ (ϕ− iψ)∨ − i(ϕ+ iψ) ∗ (ϕ+ iψ)∨

where all summands are of positive type and have compact supports. Since, by [Eym64,

(3.4) proposition], the set of the ϕ̄ ∗ ψ∨, ϕ, ψ ∈ K(G), is total in A(G), the assertion

follows.

Corollary 4.3.6. Let µ ∈ W∗(G) and (ϕk), (ψl) ⊂ A(G) such that the following

conditions are satisfied:

(i) There exists µ̄ ∈ W∗
Ḡ
(G) such that limk ϕk · µ = µ̄ in σ(W∗(G),A(G)).

(ii) There exist ϕ̄, ψ̄ ∈ B(Ḡ) such that limk ϕk|Ḡ = ϕ̄ and liml ψl|Ḡ = ψ̄ in the strict

topology.

(iii) Either (ϕk) ⊂ S(A(G))+ and (ψl) is bounded in A(G) or vice versa.

Then, for any ultraweak limit ¯̺∈ W∗
Ḡ
(G) of a subsequence of (ψl · µ), we have

ψ̄ · µ̄Ḡ = ϕ̄ · ¯̺Ḡ.
Proof. W.l.o.g. we may assume ψl 6= 0 for some l. Let γ ≺ N such that ¯̺ = liml ψγ(l)·µ.

For all α ∈ A(G) we have by assumption

〈α|Ḡ : ϕ̄ · ¯̺Ḡ〉 = limk〈α · ϕγ(k) : ¯̺〉 = limk liml〈α : ϕγ(k) · ψγ(l) · µ〉.
On the other hand, for all α ∈ A(G),

〈α|Ḡ : ψ̄ · ¯̺Ḡ〉 = liml〈α · ψγ(l) : µ̄〉 = liml limk〈α : ϕγ(k) · ψγ(l) · µ〉.
Now, let α ∈ KA(G)+, α 6= 0. Then

αk := ‖α‖−1 · α · ϕγ(k) ∈ S(Asuppα(G))+ for all k
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since

‖αk‖ · ‖α‖ = αk(e) = α(e) · ϕγ(k)(e) = ‖α‖,
and

µl := (‖µ‖ · supl ‖ψl‖)−1 · ψl · µ ∈ B(W∗(G)) for all l.

So, by proposition 4.3.3,

〈α|Ḡ : ψ̄ · µ̄Ḡ〉 = 〈α|Ḡ : ϕ̄ · ¯̺Ḡ〉.
By lemma 4.3.5, this equality holds for any α ∈ A(G), and since resḠ is surjective by

theorem 4.1.1, the assertion follows.

Remark 4.3.7. Note that corollary 4.3.6 requires the existence of a convergent sub-

sequence of (ψl · µ), so that its applications will be primarily in the case that the unit

ball of W∗(G) is metrizable in the ultraweak operator topology, e.g. when G is countable

at infinity.

4.4. Information at ∞ and the singular set. The following propositions give some

indication that all relevant information ‘at ∞’ concerning Tp(G) should be contained in

sing p. In the second part of the paper, there is even more evidence for this intuition in

the special case of T±(SL(2,R)).

Proposition 4.4.1. Let G be countable at infinity, and let (βj) ⊂ B#(G) be bounded

such that limj βj = 0 a.e. on G. Then, for any µ ∈ W∗(G) and any σ(W∗(G),A(G))-

accumulation point µ̄ of (βj · µ), we have that

supp µ̄ ⊂ sing µ.

Proof. First, note that by the Lebesgue dominated convergence theorem, for any

f ∈ L1(G),

limj〈βj : f〉 = limj

∫

G

βj(g)f(g) dg = 0.

Since (βj) is bounded in B#(G) and L1(G) is dense in C∗
#(G), we find that βj

j−→ 0

in σ(B#(G),C∗
#(G)). So, if µ̄ = limj βγ(j) · µ (sufficient to consider subsequences by

proposition 4.2.2), then for any ϕ ∈ KA(G) such that ϕ · µ ∈ C∗
#(G), we have

〈ψ : ϕ · µ̄〉 = limj〈βγ(j) : ψ · ϕ · µ〉 = 0 for all ψ ∈ A(G).

Thus ϕ · µ̄ = 0, and hence ϕ|supp µ̄ = 0, whence the conclusion.

Proposition 4.4.2. Let (βj) ⊂ B(G), and define

supp∞(βj) :=
⋂

{E ⊂ G closed
∣∣ ∀α ∈ KA(G) : suppα ⊂ G \ E ⇒ limj ‖α · βj‖ = 0}.

If µ ∈ W∗(G), then for any σ(W∗(G),A(G))-limit µ̄ of a subsequence of (βj · µ),
supp µ̄ ⊂ supp∞(βj).

Proof. Let α ∈ A(G) such that limj ‖α · βj‖ = 0. Then

‖α · µ̄‖ = limj ‖α · βγ(j) · µ‖ ≤ ‖µ‖ · limj ‖α · βγ(j)‖ = 0,

so α · µ̄ = 0. The assertion follows from proposition 3.1.8 (iii).
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4.5. Representations of Toeplitz C∗-algebras via convergence of Fourier coefficients.

In this subsection, we show how natural representations of Toeplitz C∗-algebras can be

constructed from limits of Fourier coefficients and the formalism of cocrossed products.

To this end, we fix some notation.

Notation 4.5.1. Let Ḡ ❁ G be a closed subgroup. We assume that G and Ḡ are sep-

arable and of type I, so that their L2 spaces have a Plancherel decomposition by [DM76].

Let p ∈ W∗(G) and p̄ ∈ W∗(Ḡ) be orthogonal projections. For a unitary representation

π weakly contained in the left regular representation #, and for a ∈ W∗(G), we define

a#π = π(a∗), so, in particular, a∗ = a##. We call a#π the πth Fourier coefficient of a.

Note ‖a#π ‖ ≤ ‖a‖. Also, we write 〈G 〉π for the space of the representation π, so that a#π
is a bounded operator on 〈G 〉π . Finally, for all π̄ weakly contained in #Ḡ, we choose

sequences (πℓ(π̄)) of unitary representations weakly contained in #G and isometries

jℓ(π̄) : 〈 Ḡ 〉π̄ →֒ 〈G 〉πℓ(π̄).

We assume that for all π̄, the sequence (πℓ(π̄)) is eventually contained in the complement

of every quasi-compact subset of Ĝ, so that ((jℓ(π̄) ξ | πℓ(π̄) jℓ(π̄) η)) is a zero sequence

in the σ(B#(G),C
∗
#(G))-topology for any choice of ξ, η ∈ 〈 Ḡ 〉π̄ by [Dix69, 18.2.4].

We shall consider the following condition for α ∈ A(G):

(α|Ḡ · p̄)#π̄ = limℓAd(jℓ(π̄)
∗)[(α · p)#πℓ(π̄)

] strongly in L(〈G 〉π̄).(4.5.1)

We will write πℓ = πℓ(π̄) and jℓ = jℓ(π̄) whenever π̄ is fixed.

Lemma 4.5.2. If (4.5.1) is satisfied for all α ∈ A(G), then

limℓ ‖(1− jℓ j
∗
ℓ )(α · p)#πℓ

jℓ ξ‖ = 0 for all ξ ∈ 〈G 〉π̄, α ∈ A(G).

Proof. p#πℓ⊗# is an orthogonal projection on 〈G 〉πℓ
⊗L2(G) and jℓ j

∗
ℓ is an orthogonal

projection on 〈G 〉πℓ
. Set

Aℓ := Ad(j∗ℓ ⊗ 1)[p#πℓ⊗#] and Cℓ := ((1 − jℓ j
∗
ℓ )⊗ 1)p#πℓ⊗#(jℓ ⊗ 1).

Thus we have the relation

A2
ℓ + C∗

ℓCℓ = (j∗ℓ ⊗ 1)p#πℓ⊗#(jℓ j
∗
ℓ ⊗ 1)p#πℓ⊗#(jℓ ⊗ 1)

+ (j∗ℓ ⊗ 1)p#πℓ⊗#((1 − jℓ j
∗
ℓ )⊗ 1)p#πℓ⊗#(jℓ ⊗ 1)

= (j∗ℓ ⊗ 1)p#πℓ⊗#(jℓ ⊗ 1) = Aℓ.

Further, for all ξ, η ∈ 〈G 〉π̄ and χ, ζ ∈ L2(G)

limℓ(ξ ⊗ χ | Aℓ η ⊗ ζ) = limℓ(jℓξ ⊗ χ | p#πℓ⊗# jℓη ⊗ ζ) = limℓ(jℓξ | (ζ̄ ∗ χ∨ · p)#πℓ
jℓη)

= (ξ | (ζ̄ ∗ χ∨|Ḡ · p̄)#π̄ η) = (ξ ⊗ χ | p̄#π̄⊗# η ⊗ ζ),

so (Aℓ) converges strongly, and its limit is a projection. Since multiplication of operators

is strongly continuous, C∗
ℓCℓ = Aℓ − A2

ℓ
ℓ−→ 0 strongly. Since, for all α = ζ̄ ∗ χ∨ ∈ A(G)

and ξ, η ∈ 〈G 〉π̄ ,
|(ξ | (1 − jℓ j

∗
ℓ )(α · p)#πℓ

jℓ η)| = |(ξ ⊗ χ | Cℓζ ⊗ η)| ≤ ‖ξ‖ · ‖χ‖ · ‖Cℓζ ⊗ η‖,

we have ‖(1− jℓ j
∗
ℓ )(α · p)#πℓ

jℓ η‖ ≤ ‖χ‖ · ‖Cℓζ ⊗ η‖ ℓ−→ 0.
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Lemma 4.5.3. If (4.5.1) is satisfied for all α ∈ A(G), then for all finite sequences

(αk) ⊂ A(G), we have

limℓAd(j
∗
ℓ )
[∏

k

(αk · p)#πℓ

]
=

∏

k

(αk|Ḡ · p̄)#π̄ strongly in L(〈 Ḡ 〉π̄).

Proof. For all k, the sequences (j∗ℓ (αk · p)#πℓ
jℓ ) are bounded and strongly convergent.

In particular, their product converges. By lemma 4.5.2,

limℓ j
∗
ℓ (α1 · p)#πℓ

(1− jℓ j
∗
ℓ )(α2 · p)#πℓ

jℓ = 0,

so we deduce

limℓ

∏

k

j∗ℓ (αk · p)#πℓ
jℓ =limℓ j

∗
ℓ (α1 · p)#πℓ

[jℓ j
∗
ℓ + (1− jℓ j

∗
ℓ )](α2 · p)#πℓ

jℓ
∏

k>2

j∗ℓ (αk · p)#πℓ
jℓ

=(α1|Ḡ · p̄)#π̄ limℓ j
∗
ℓ (α2 · p)#πℓ

jℓ
∏

k>2

j∗ℓ (αk · p)#πℓ
jℓ .

Inductively, the assertion follows.

Lemma 4.5.4. Let H, G be Hilbert spaces, Tj : H → G isometries, let E ⊂ L(G), and
let F ⊂ E be ‖·‖-dense. If ϕ : E → L(H) is a contractive linear map and

ϕ(a) = limj T
∗
j aTj strongly for all a ∈ F,

then

ϕ(a) = limj T
∗
j aTj strongly for all a ∈ E.

Proof. Take a ∈ E and (ak) ⊂ F such that a = limk ak. Let ξ ∈ H \ {0} and ε > 0.

Choose k ∈ N such that

‖a− ak‖ ≤ ε

3‖ξ‖ .

Then, if n ∈ N is such that

‖ϕ(ak)ξ − T ∗
j akTj ξ‖ ≤ ε

3
for all j ≥ n,

we have

‖ϕ(a)ξ − T ∗
j aTj ξ‖ ≤ ‖ϕ(a)− ϕ(ak)‖ · ‖ξ‖

+‖ϕ(ak)ξ − T ∗
j akTj ξ‖+ ‖Tj‖2 · ‖ak − a‖ · ‖ξ‖ ≤ ε

for all j ≥ n.

Proposition 4.5.5. Let M be a co-zero set in supp#Ḡ, such that for all π̄ ∈M and

α ∈ A(G), the condition (4.5.1) is satisfied. Then

πḠ(a)
#
π̄ = limℓAd(jℓ(π̄)

∗)[a#πℓ(π̄)
] strongly in L(〈 Ḡ 〉π̄) for all π̄ ∈M,a ∈ C∗

p(G),

and this defines a surjective ∗-morphism

πḠ : C∗
p(G) → C∗

p̄(Ḡ) : α · p 7→ α|Ḡ · p̄.
Proof. Let A ⊂ C∗

p(G) be the dense ∗-algebra generated by {α · p |α ∈ A(G)}. Since
p∗ = p, this is the linear span of

(α1 · p) · · · (αn · p) where n ∈ N, (αj) ⊂ A(G).
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Define πḠ((α1 · p) · · · (αn · p)) := (α1|Ḡ · p̄) · · · (αn|Ḡ · p̄) and extend linearly. We need to

see that this is well-defined. Indeed, let
∑

k
(α1,k · p) · · · (αnk,k · p) =

∑
k
(α′

1,k · p) · · · (α′
mk,k · p).

By lemma 4.5.3, for π̄ ∈M

∑
k

nk∏

j=1

(αnk−j,k|Ḡ · p̄)#π̄ = limℓ jℓ(π̄)
∗
∑

k

nk∏

j=1

(αnk−j,k · p)#πℓ(π̄)
jℓ(π̄)

= limℓ jℓ(π̄)
∗
∑

k

mk∏

j=1

(α′
mk−j,k · p)

#
πℓ(π̄)

jℓ(π̄)

=
∑

k

mk∏

j=1

(α′
mk−j,k

|Ḡ · p̄)#π̄ .

So πḠ is well-defined, and in fact a ∗-morphism. (Note that the reversed order is due to

the ∗ in the definition of Fourier coefficients.) Moreover, for all a ∈ A and π̄ ∈ M , we

have by uniform boundedness

‖ πḠ(a)#π̄ ‖ ≤ supℓ ‖ a#ℓ ‖ ≤ ‖a‖,
so

‖πḠ(a)‖ = ess supπ̄ ‖ πḠ(a)#π̄ ‖ ≤ ‖a‖,
cf. [Tak76]. Hence πḠ extends by continuity to a ∗-morphism of C∗

p(G). Clearly, πḠ is

surjective. By lemma 4.5.4, πḠ is given by limits as stated.

Remark 4.5.6. The corepresentation W associated with resḠ (cf. definition 3.3.2) is

clearly given by

Wξ(s, t) = ξ(s, s−1t) for all s ∈ Ḡ, t ∈ G, ξ ∈ L2(Ḡ×G).

Recalling extG = res′
Ḡ
from theorem 4.1.1, (id⊗ extG)(WḠ) =W .

Proposition 4.5.7. Let the conditions of proposition 4.5.5 be satisfied and assume

further that p̄ has full support and is a.e. locally contained in A(Ḡ). Then (πḠ, resḠ) is a

covariant pair of non-degenerate representations on L2(Ḡ) for the coaction (C∗
p(G), δ, G).

Remark 4.5.8. Note that πḠ is surjective onto C∗
p̄(Ḡ) and in particular non-degene-

rate as a ∗-morphism into M(C∗
p̄(Ḡ)). However, the definition of a covariant pair (π, µ)

requires that π and µ be non-degenerate as ∗-morphisms into the multiplier algebra of

the same C∗-algebra B. Hence, in proposition 4.5.7, it is necessary to assume that C∗
p̄(Ḡ)

acts non-degenerately on L2(Ḡ) !

Proof of proposition 4.5.7. By proposition 3.2.4 (ii), πḠ is a non-degenerate represen-

tation on L2(Ḡ). Let π̄ ∈M , α ∈ A(G), a ∈ C∗
p(G) and b ∈ C∗

#(G). Then, writing π = πḠ
and omitting π̄ where possible,

[(π ⊗ id)(a⊗ b)π ⊗ id ◦ δ(α · p)]#π̄ = (π ⊗ id)[(a⊗ b)δ(α · p)]#π̄⊗#

= limℓAd(j
∗
ℓ ⊗ 1)[δ(α · p)#πℓ⊗#(a

#
πℓ

⊗ b∗)].
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Now,

( ξ ⊗ χ
∣∣ δ(a)#πℓ⊗# η ⊗ ζ ) = 〈(πℓ η | ξ)⊗ ζ̄ ∗ χ∨ : δ(a)〉

= 〈(πℓ η | ξ) : ζ̄ ∗ χ∨ · a〉 = (ξ | (ζ̄ ∗ χ∨ · a)#πℓ
η),

so

( ξ ⊗ χ
∣∣ Ad(j∗ℓ ⊗ 1)[δ(α · p)#πℓ⊗#(a

#
πℓ

⊗ b∗)] η ⊗ ζ )

= (ξ | Ad(j∗ℓ )[( b∗ζ ∗ χ∨ · α · p)#πℓ
a#πℓ

] η)
ℓ→ ( ξ

∣∣ (b∗ζ ∗ χ∨|Ḡ · α|Ḡ · p̄)#π̄ π(a)#π̄ η )
= 〈( π̄ π(a)#π̄ η

∣∣ ξ )⊗ b∗ζ ∗ χ∨|Ḡ : δḠ(α|Ḡ · p̄)〉
= 〈( π̄ π(a)#π̄ η

∣∣ ξ )⊗ b∗ζ ∗ χ∨ : Ad(W )(α|Ḡ · p̄⊗ 1)〉
= ( ξ ⊗ χ|[(π(a) ⊗ b)Ad(W )(α|Ḡ · p̄⊗ 1)]#π̄⊗# η ⊗ ζ ),

where W is the corepresentation corresponding to resḠ. By non-degeneracy of πḠ, we

deduce

πḠ ⊗ id ◦ δ(α · p) = Ad(W )[α|Ḡ · p̄⊗ 1],

and hence the assertion.

Remark 4.5.9. It is easy to see that for any covariant pair (π, µ) of representations

for the coaction (A, δ,G),

a 7→ Ad(W )(a⊗ 1) : C∗(π, µ) → M(C∗(π, µ)⊗ C∗
#(G)),

whereW is the corepresentation corresponding to µ, defines a coaction on C∗(π, µ) which

restricts to a coaction of π(A), cf. [Dei00, remark 2.2 (iv)]. Furthermore, it is straightfor-

ward to check that π, and in fact the strict extension π, is B#(G)-linear for the induced

module structure.

Furthermore, by remark 4.5.6, if we take (π, µ) = (πḠ, resḠ), then the A(G)-module

structure defined by the corepresentation W corresponding to resḠ coincides on C∗
p̄(Ḡ)

with the one induced from W∗(Ḡ), i.e.

id⊗α(Ad(W )(a⊗ 1)) = α|Ḡ · a for all a ∈ C∗
p̄(Ḡ), α ∈ A(G).

Corollary 4.5.10. Under the conditions of proposition 4.5.7, if

sing a ∩
⋃

π̄∈M,ξ,η∈〈 Ḡ 〉π̄

supp∞[(jℓ(π̄)ξ | πℓ(π̄) jℓ(π̄)η)] = ∅,

then a ∈ kerπḠ. In particular, if p has full support and is a.e. locally contained in A(G),

then C∗
#(G) ⊂ kerπḠ.

Proof. Fix π̄ and ξ, η ∈ 〈 Ḡ 〉π̄. Let a ∈ C∗
p(G) be such that

sing a ∩ supp∞[(jℓξ | πℓ jℓη)] = ∅.
We have for all α ∈ A(G)

〈α|Ḡ : (π̄ η | ξ) · πḠ(a)〉 = ( ξ
∣∣ πḠ(α · a)#π̄ η )

= limℓ(jℓξ | (α · a)#πℓ
jℓη) = limℓ〈α : (πℓ jℓη | jℓξ) · a〉,

so

(π̄η | ξ) · πḠ(a) = limℓ(πℓ jℓη | jℓξ) · a in σ(W∗(G),A(G))
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where we consider W∗(Ḡ) ⊂ W∗(G). By proposition 4.4.1 and proposition 4.4.2,

supp(π̄η | ξ) · πḠ(a) = ∅.
Since C∗

p̄(Ḡ) is a non-degenerate A(G)-module, by proposition 3.1.8 (i), we find that

(π̄η | ξ) · πḠ(a) = 0, and hence πḠ(α · a)#π̄ = 0 for all α ∈ A(G). Since M is co-zero, we

have

α|Ḡ · πḠ(a) = πḠ(α · a) = 0 for all α ∈ A(G),

so πḠ(a) = 0, again by the non-degeneracy of the A(G)-module C∗
p̄(Ḡ).

The second assertion follows from proposition 3.2.4 (ii) and the fact that sing a = ∅
for all a ∈ C∗

#(G).

Theorem 4.5.11. Let the conditions of proposition 4.5.7 be satisfied. Further, assume

that p has full support and is a.e. locally contained in A(G). Then

̺Ḡ(pap) := p̄(πḠ ⊗δ resḠ)(a)p̄ for all a ∈ C∗
p(G)⊗δ C∗

#(G)

defines an irreducible ∗-representation of Tp(G) on p̄L2(Ḡ) with LC(pL2(G)) ⊂ ker ̺Ḡ.

Furthermore, ̺Ḡ satisfies the equation

̺Ḡ(Tp(f)) = Tp̄(f |Ḡ) for all f ∈ C0(G).

Proof. Abbreviate ν = πḠ ⊗δ resḠ. Let a, b, c ∈ C∗
p(G) ⊗δ C0(G) such that pap = 0.

By proposition 3.3.12 and its proof, bpc ∈ C∗
p(G)⊗C0(G) and ν(bpc) = ν(b)p̄ν(c). Hence,

take a1, a2 ∈ C∗
p(G)⊗ C0(G) such that a = a1 · a2. We have

ν(b)p̄ν(a)p̄ν(c) = ν(b)p̄ν(a1)ν(a2)p̄ν(c) = ν(bpa1)ν(a2pc) = ν(bpapc) = 0.

Since ν is non-degenerate, p̄ν(a)p̄ = 0. Thus we have shown that ̺Ḡ is well-defined.

Clearly, ̺Ḡ is linear and involutive. Furthermore, for a, b ∈ C∗
p(G) ⊗δ C0(G),

̺Ḡ(papbp) = p̄ν(apb)p̄ = p̄ν(a)p̄ν(b)p̄ = ̺Ḡ(pap)̺Ḡ(pbp),

so ̺Ḡ is a ∗-morphism. Now, for f ∈ C0(G), clearly ̺Ḡ(Tp(f)) = Tp̄(f |Ḡ), so ̺Ḡ is

surjective onto Tp̄(Ḡ) which acts irreducibly on p̄L2(Ḡ) by proposition 3.3.11.

The statement about the kernel follows from corollary 4.5.10, proposition 3.3.11 and

its proof.

Remark 4.5.12. Let p be central, i.e. Ad(G)(p) = p. Then C∗
p(G) is Ad(G)-invariant.

What is more, if we set

d(g,g′) := Ad((g, g)#(e, g′)#) for all g, g′ ∈ G,

then d : G×G→ Aut(C∗
p(G)⊗δ C0(G)) is an action of G×G on C∗

p(G)⊗δ C0(G).

If (π, µ) is a covariant pair of representations for (C∗
p(G), δ, G) and g, g

′ ∈ G, then

π⊗δ µ◦d−1
(g,g′)(δ(a)(1⊗f)) = π(Ad(g−1#)(a))µ(g ∗f ∗g′) for all a ∈ C∗

p(G), f ∈ C0(G),

since δ ◦Ad(g#) = (g, g)# ◦ δ. Here, g ∗ f ∗ g′(t) = f(g−1tg′). Moreover,

(π ◦Ad(g−1#), f 7→ µ(g ∗ f ∗ g′)) = (π′, µ′)

is a covariant pair of representations such that π′ ⊗δ µ′ = (π ⊗δ µ) ◦ d−1
(g,g′), cf. [LPRS87,

5.4 lemma]. Thus, G×G acts naturally on RepC∗
p(G)⊗δ C∗

#(G).

With this in mind, the proof of the following corollary is straightforward.
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Corollary 4.5.13. Let the conditions of theorem 4.5.11 be satisfied and assume fur-

ther that p is central. Let g, g′ ∈ G and set

πgḠg−1 := πḠ ◦Ad(g−1#) and µgḠg′−1 : f 7→ (g ∗ f ∗ g′)|Ḡ.
Then

̺gḠg′−1(pap) := p̄(πgḠg−1 ⊗δ µgḠg′−1 (a))p̄ for all a ∈ C∗
p(G)⊗δ C0(G)

defines an irreducible ∗-representation of Tp(G) on p̄L2(Ḡ) with LC(pL2(G)) ⊂ ker ̺Ḡ.

Furthermore, ̺Ḡ satisfies the equation

̺gḠg′−1 (Tp(f)) = Tp̄(g ∗ f ∗ g′|Ḡ) for all f ∈ C0(G).

5. The Hardy–Toeplitz C∗-algebras T±(SL(2,R)). In this section, we let G =

SL(2,R) and GC = SL(2,C). We also adopt the convention of denoting the Lie algebra

of a Lie group by the corresponding lower case Fraktur letter.

5.1. The Olshanskii domains GC
±. The Lie algebra g = sl(2,R) has the convenient

basis

Z =

(
0 1

−1 0

)
, Y =

(
1 0

0 −1

)
, X+ =

(
0 1

0 0

)
.

of infinitesimal generators for the respective 1-parameter subgroups

kϑ =

(
cosϑ sinϑ

− sinϑ cosϑ

)
, het =

(
et 0

0 e−t

)
, nx =

(
1 x

0 1

)

also denoted K (= SO(2)), A and N . KAN is an Iwasawa decomposition of G. M =

{±1} ⊂ K is the centre of G. MAN , the normalizer of N , is the set of upper triangular

matrices in G. GC has the Iwasawa decomposition SU(2) ·A ·NC where NC = (10
C

1 ).

In the following we choose a fixed sign σ ∈ {+,−} in order to treat the holomorphic

and anti-holomorphic discrete series simultaneously.

Definition 5.1.1. We introduce the (forward resp. backward) light cone

Λσ :=

{(
y x+ z

x− z −y

) ∣∣∣∣ σx > σ
√
z2 − x2 − y2

}
.

Also, we set Λ = Λ+ ∪ Λ−. Λσ ⊂ g is an open convex Ad(G)-invariant cone. For such

cones and g with trivial centre (orGC simply connected), Lawson’s theorem on Olshanskii

semigroups ensures that G ·exp iΛσ is a closed involutive subsemigroup of GC (a so-called

complex Olshanskii semigroup), such that the polar decomposition

G× Λσ → G · exp iΛσ ⊂ GC : (g, v) 7→ g · exp iv
is a homeomorphism. Furthermore, the interior G · exp iΛσ (which we call an Olshanskii

domain) is a G×G-invariant domain in GC, cf. [Nee00].

The following proposition is easy to check with Iwasawa decomposition.

Proposition 5.1.2. The open cone Λσ decomposes as the set of orbits

Ωσλ2 =

{(
y x+ z

x− z −y

) ∣∣∣∣σx > σ
√
z2 − x2 − y2 = λ

}
= Ad(G).λZ.
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where σλ > 0. Its boundary ∂Λσ decomposes into {0} and the orbit

Ωσ0 =

{(
y x+ z

x− z −y

) ∣∣∣∣σx >
√
z2 − x2 − y2 = 0

}
= Ad(G).σX+.

Moreover, if Π = G/K denotes the upper half plane (with base point i), the map

Φ : Λσ → σΠ : v =

(
y x+ z

x− z −y

)
7→ 1

v21
(v11 − i

√
det v) =

y − i
√
z2 − x2 − y2

x− z

is a G-equivariant foliation. Here, the action of G on σΠ is given by fractional linear

transformations
(
a b

c d

)
.w :=

aw + b

cw + d
for all

(
a b

c d

)
∈ G,w ∈ σΠ.

Remark 5.1.3. The map Φ is a useful tool for the explicit evaluation of the moment

map for the highest weight representations of G, as we shall see below.

Corresponding to the decomposition of Λσ in proposition 5.1.2, the Olshanskii do-

mains G · exp iΛσ have the following decomposition.

Theorem 5.1.4. Consider the action of G×G on GC given by

(G×G)×GC → GC : ((s, t), γ) 7→ sγt−1

Then we have the following decomposition as a disjoint union of G×G-fibre bundles

GC
σ = G ∪ (∂GC

σ \G) ∪GC
σ

= (G×G)×diag(G) {e} ∪ (G×G)×diag(MA)·N×N NC
σ ∪ (G×G)×G×G G

C
σ .

Here, NC
σ = N · exp inσ is the Olshanskii domain in NC corresponding to the cone

nσ = Λσ ∩ n \ {0} = {λ ·X+ |σλ > 0}.
Proof. The first equality is clear. Also, we clearly have G = (G×G)×diag(G) {e}, since

G×G/ diag(G) ∼= G as G×G-spaces. Also, GC
σ is G×G-invariant, so

GC

σ = (G×G)×G×G G
C

σ .

By Lawson’s theorem and proposition 5.1.2,

∂GC

σ \G = G · exp(i∂Λσ \ {0}) = G · exp(iΩσ0 ) = G exp(inσ)G.

Now, NC
σ = N · exp(inσ) =

(
1
0
σΠ
1

)
, so since

hλnx

(
1 w

0 1

)
n−xh1/λ =

(
1 λ2w

0 1

)
for all λ > 0, x ∈ R, w ∈ C

and M is central in G, the domain NC
σ is diag(MA) ·N ×N -invariant.

It remains to be shown that

(s, t).NC

σ ∩NC

σ 6= ∅ ⇒ (s, t) ∈ diag(MA) ·N ×N.

To this end, let s
(
1
0
z
1

)
=

(
1
0
w
1

)
t for some s, t ∈ G and z, w ∈ σΠ. In particular,

(−s11t21 Im z s11t11 Im z

−s21t21 Im z −s21t11 Im z

)
= Im s

(
1 z

0 1

)
t−1 = Im

(
1 w

0 1

)
=

(
0 Imw

0 0

)
.
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We deduce s11t11 6= 0, so from s11t21 = s21t11 = 0 we have s21 = t21 = 0. Hence s, t

are upper triangular, i.e. s, t ∈ MAN . Since NC
σ is invariant under conjugation by this

group, there exists w′ ∈ σΠ such that

s

(
1 z

0 1

)
= t

(
1 w′

0 1

)
.

By uniqueness of Iwasawa decomposition in GC, we conclude that s and t have the same

MA-component.

5.2. The Hardy spaces H2(GC
±)

Remark 5.2.1. The space of holomorphic functions

H2(GC

σ ) =

{
f ∈ O(GC

σ )

∣∣∣∣ sup
γ∈GC

σ

∫

G

|f(γ∗g)|2 dg <∞
}

endowed with the norm given by the square root of the integral in its definition, is called

the Hardy space of GC
σ . It can be considered as a closed subspace of L2(G) via the

isometry

j : H2(GC

σ ) → L2(G), jf(g) = limGC
σ ∋γ→e f(γ

∗g).

Its topology is weaker than the topology of convergence on compact subsets, so it is

a reproducing kernel Hilbert space whose kernel Eσ(z, w), the so-called Cauchy–Szegö

kernel , is holomorphic in z and anti-holomorphic in w. Moreover, it is given by a single

function as Eσ(zw
∗). Eσ(z, w) can be extended continuously in one variable to G, cf.

[Nee00], [HN93], [HÓØ91].

The map j∗ : L2(G) → H2(GC) ⊂ O(GC
σ ) is the integral operator with kernel Eσ, so

jj∗ has distribution kernel Eσ. Since, furthermore, the Hardy space H2(GC
σ ) is G × G-

invariant, its associated orthogonal projection jj∗ is a central element of W∗(G), so we

consider Eσ ∈ W∗(G).

Remark 5.2.2. We recall the definition of the discrete series representations of G, cf.

[War72], [Lan75], [Tay86]. The Bergman spaces

O2
m(σΠ) :=

{
f ∈ O(σΠ)

∣∣∣∣
∫

σΠ

|f(x+ iy)|2 |y|m−2 dx dy <∞
}
,

defined forN ∋ m ≥ 2, and endowed with the corresponding L2 norm, are the reproducing

kernel Hilbert spaces associated to the kernel functions

Km,σ
w (z) = Km,σ(z, w) =

m!

π
·
(

2iσ

z − w̄

)m
.

We also introduce the normalized kernel functions

km,σw (z) =
Km,σ(z, w)

Km,σ(w,w)1/2
.

By the reproducing property, the km,σw are indeed unit vectors in O2
m(σΠ). The action of

G on O2
m(σΠ) is given by

gπ
σ
m .f(z) = ∂g−1(z)m/2 · f(g−1.z)
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where the action of G on σΠ was introduced in proposition 5.1.2. πσm is an irreducible con-

tinuous unitary representation of G. In fact, it is a discrete series (i.e., square-integrable)

representation.

It is well-known that the Hardy spaces H2(GC
±) are associated with the discrete series

of G in the following way.

Proposition 5.2.3. We have the following G-equivariant isomorphism
∑

m≥2

O2
m(σΠ)⊗O2

m(σΠ) ∼= H2(GC

σ ) : (ξm ⊗ η̄m) 7→
∑

m≥2

d1/2m (πσm ηm | ξm)

where dm denotes formal dimension and H2(GC
σ ) is considered as a subspace of L2(G).

5.3. The Hardy–Toeplitz C∗-algebras T±(G) and their irreducibility

Notation 5.3.1. We use the notation Tσ(G) = TEσ (G) for the Hardy–Toeplitz C∗-

algebra.

In order to get more information on Tσ(G), we need to analyse Eσ in greater detail.

Remark 5.3.2. It can be shown by elementary considerations (cf. [GG77]) that every

γ ∈ GC
σ has an eigenvalue q(γ) of modulus > 1. Moreover, q : GC

σ → C is holomorphic,

and

Eσ =
q2

(q − 1)3(q + 1)
,

cf. [GG77], [Ols95].

Proposition 5.3.3. The function q has a smooth extension qσ to

Greg = { g ∈ G
∣∣ tr g − 4 6= 0},

the set of g ∈ G where g has distinct eigenvalues. Moreover, writing

NK =
⋃

k∈K

kNk−1,

we have G \Greg =M ·NK .

Furthermore, (qσ + 1)−1 is locally integrable near mNK , m = (−1
0

0
−1 ). Hence

sing suppEσ ⊂M ·NK and singEσ ⊂ NK .

Proof. The first part follows by considering the quadratic equation defining q and

noting that tr g − 4 is the discriminant of the characteristic polynomial χg. The local

integrability of (qσ + 1)−1 is seen by explicit integration. The remaining assertions now

follow from remark 5.3.2.

Corollary 5.3.4. The Hardy–Toeplitz C∗-algebra T±(G) contains LC(H2(GC
±)), and

hence acts irreducibly on H2(GC
±).

Proof. Clearly, suppEσ = G. Moreover, sing suppEσ ⊂ M ·NK is negligible. So the

assertion follows from theorem 3.3.11.

So far, we have established the irreducibility of the ‘identity’ representation of T±(G)
on H2(GC

±), associated with the interior GC
σ of GC

σ .
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6. The representation theory of T±(SL(2,R)). In this section G = SL(2,R), and

we use the notation from section 5.

Following the general procedure outlined at the end of the previous section, we con-

struct representations of T±(G) corresponding to the boundary faces of GC
± given by

theorem 5.1.4. They correspond to information ‘at ∞’ (in Ĝ), and consequently vanish

on LC(H2(GC
±)).

Again, we fix a sign σ ∈ {+,−}.

6.1. A class of pure states. In this subsection, we define functions of positive type

∆v for v ∈ Λ contained in an ‘integral orbit’ Ωσm2 . Of course, this can be considered as

a pure state of C∗
#(G), indeed of C∗

Eσ
(G). It also proves useful to consider this function

as an element of both A(G) and H2(GC
−σ). What is more, as we shall see, although all v

contained in the same orbit define the same representation of G via the GNS construction,

different ‘directions’ in which we consider limits to infinity in Λσ give rise to different

representations of C∗
Eσ

(G).

Definition 6.1.1. Let N ∋ m ≥ 2 and v ∈ Ωσm2 . For all s ∈ G, set

∆v(s) = (km,σΦ(v)

∣∣∣ sπ
σ
m .km,σΦ(v)).

Remark 6.1.2.

(i) We have −Ωσm2 = Ω−σ
m2 and ∆v = ∆−v, so ∆v ∈ H2(GC

−σ) by proposition 5.2.3.

(ii) πσm is square-integrable; so by Schur orthogonality [War72, corollary 4.5.9.4], it is

easy to see that ∆v ∈ A(G). Indeed,

∆v = (km,σΦ(v)

∣∣∣ km,σΦ(v)) ·∆v = dπσ
m
·∆v ∗∆v ∈ A(G).

We shall consider the asymptotic behaviour of ∆v for certain sequences of vs.

Notation 6.1.3. Let ν̄ ∈ R \ {0} and m ≥ 2. Define

βe(σ,m) := σmZ =

(
0 σm

−σm 0

)
and βN (ν̄,m) := ν̄X− +

m2

ν̄
X+ =

(
0 m2/ν̄

−ν̄ 0

)

where X− = −Xt
+. Thus βe(σ,m) ∈ Ωσm2 and βN (ν̄,m) ∈ Ωsgn ν̄

m2 .

Proposition 6.1.4. For all m ≥ 2, let vm ∈ n⊕ n̄ ∩ Ωσm2 , so that

vm =

(
0 ∗

−xm 0

)
for some σxm > 0.

Then

∆vm(t) =

(
2

t11 + t22 + i(xm

m t12 − m
xm
t21)

)m
.

In particular,

∆βe(σ,m)(t) =

(
2

t11 + t22 + iσ(t12 − t21)

)m
(6.1.1)

∆βN (ν̄,m)(t) =

(
2

t11 + t22 + i(t12ν̄/m− t21m/ν̄)

)m
(6.1.2)
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Proof. Since ∆−v = ∆v, w.l.o.g. we may assume σ = +. We have Φ(vm) = i mxm
, hence

∆vm(t) = (km,+im/xm
| tπ+

m .kmim/xm
) = Km,+(i

m

xm
, i
m

xm
) · [tπ+

m .km,+im/xm
](im/xm)

=

(
m

xm

)m
(∂t−1)m/2(im/xm)

(
2i

(t−1.im/xm) + im/xm

)m

=

(
m

xm

)m(
t11 − i

m

xm
t21

)−m

·
(

2i

(t−1.im/xm) + im/xm

)m

=

(
m

xm

)m(
2i

it22m/xm − t12 + im/xm · (t11 − it21m/xm)

)m

=

(
2

t11 + t22 + i(xm

m t12 − m
xm
t21)

)m
.

The other equations follow immediately.

Remark 6.1.5. Since the kernel of O2
m(Π) at i = Φ(βe(+,m)) is K-invariant (be-

cause i is the base point of Π = G/K), it is easy see to that the ∆βe(σ,m) are highest

weight vectors of the lowest K-type in πm. So, in a sense, taking the whole orbit picture

generalizes the highest weight theory.

Notation 6.1.6. For ε ≥ 0, define

Kε := {s ∈ G
∣∣ |s11 − s22|2 + |s12 + s21|2 ≤ 4ε},

and

(MAN)ε := {s ∈ G
∣∣ |s21| ≤ ε}.

Lemma 6.1.7.

(i) For all ε > 0, Kε is a neighbourhood of K. Furthermore,
⋂

ε>0

Kε = K0 = K.(6.1.3)

(ii) For all ε > 0, (MAN)ε is a neighbourhood of MAN . Furthermore,
⋂

ε>0

(MAN)ε = (MAN)0 =MAN.(6.1.4)

Proof. (i) Let s ∈ G. Manifestly, s ∈ K0 if and only if

s11 = s22 und s21 = −s12,
i.e. s = ( a−b

b
a ) for some a, b ∈ R. Hence K0 = K.

On the other hand, the family of sets (Kε)ε∈[0,∞[ is increasing. From this, (6.1.3) is

easily deduced. The first assertion now follows from

K = K0 ⊂ Kε/2 ⊂ {s ∈ G
∣∣ |s11 − s22|2 + |s12 + s21|2 < 4ε} ⊂ K◦

ε .

(ii) Let s ∈ G. s is an upper triangular matrix if and only if s21 = 0, i.e. s ∈ (MAN)0.

Thus MAN = (MAN)0.

Trivially, the family (MAN)ε∈[0,∞[ is increasing, so the equation (6.1.4) follows. As

in (i), we see that (MAN)ε is a neighbourhood of MAN for ε > 0.
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Proposition 6.1.8. Let ε > 0 and ν̄ 6= 0.

(i) Let t ∈ G \Kε. We have

|∆βe(σ,m)(t)| ≤ (1 + ε)−m/2 ;(6.1.5)

in particular, ∆βe(σ,m) converges to 0 for m → ∞ uniformly on G \Kε and point-

wise on G \K.

(ii) Let L ⊂ G \ (MAN)ε be a compact subset. There exists C > 0 such that for large

m, and all t ∈ L

|∆βN (ν̄,m)(t)| ≤
(
εm

2|ν̄| − C

)−m

,(6.1.6)

in particular, ∆βN (ν̄,m) converges to 0 for m→ ∞ uniformly on compact subsets of

G \ (MAN)ε and point-wise on G \MAN .

Proof. (i) We have

|t11 + t22+iσ(t12 − t21)|2 − |t11 − t22 + iσ(t12 + t21)|2

= (t11 + t22)
2 − (t11 − t22)

2 + (t12 − t21)
2 − (t12 + t21)

2 = 4det t = 4.

So, applying (6.1.1) from proposition 6.1.4 (i), we get

|∆βe(σ,m)(t)|−2/m = 1 + 1
4 ((t11 − t22)

2 + (t12 + t21)
2) > 1 + ε,

and hence the estimate (6.1.5). The first convergence assertion is immediate, and the

second one follows from (6.1.3) in lemma 6.1.7 (i).

(ii) For all m ≥ 2 and t ∈ G, we have

1

2

∣∣∣∣t11 + t22 + it12
ν̄

m

∣∣∣∣ ≤
1

2
|t11 + t22|+ |t12|

|ν̄|
2m

;

by compactness of L, the right hand side is bounded for all m ≥ 2 and t ∈ L by some

C > 0. Furthermore, since |t21| > ε, there exists 2 ≤ k ∈ N such that for m ≥ k and

t ∈ L,

|t21|
m

2|ν̄| − C ≥ 0.

Hence for all m ≥ k, t ∈ L, we have

|∆βN (ν̄,m)(t)|−1/m =

∣∣∣∣
t11 + t22

2
+ it12

ν̄

2m
− it21

m

2ν̄

∣∣∣∣ ≥ |t21|
m

2|ν̄| − C ≥ εm

2|ν̄| − C,

where (6.1.2) from proposition 6.1.4 (ii) and the inverse triangular inequality were applied.

The estimate and the first convergence assertion follow. The point-wise convergence now

follows from (6.1.4) in lemma 6.1.7 (ii).

Notation 6.1.9. In the following lemma, we define for γ ∈ N3 the left-invariant

differential operators

Dγ := Xγ1
+ Y γ2Zγ3 on G = SL(2,R).

Moreover, we consider for α ∈ N4 the monomial

tα = tα1

11 t
α2

12 t
α3

21 t
α4

22 in t =

(
t11 t12
t21 t22

)
∈ G.
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Lemma 6.1.10. Choose for all m ≥ 2 elements vm ∈ n⊕ n̄ ∩ Ωσm2 such that

vm =

(
0 ∗
xm 0

)
, 0 < r ≤ |xm| ≤ R <∞,

where r and R are fixed. Then, for all γ ∈ N3, there are polynomials (pm) ⊂ C[t11, . . . , t22]

and p ∈ R[x], the latter independent of m, such that

deg pm ≤ |γ|, deg p ≤ 2|γ|, pm(t) =
∑

|α|≤|γ|

cmα · tα, |cmα | ≤ |p(m)|

and

Dγ∆vm = ∆vm · pm

q
|γ|+1
m

where qm(t) = t11 + t22 + i

(
xm
m

· t12 −
m

xm
· t22

)
.(6.1.7)

Proof. First, note that for α ∈ N4

X+t
α = α2 · tα+(−1,1,0,0) + α4 · tα+(0,0,−1,1),

Y tα = (α1 − α2 + α3 − α4) · tα,
Ztα = −α1 · tα+(−1,1,0,0) + α2 · tα+(1,−1,0,0) − α3 · tα+(0,0,−1,1) + α4 · tα+(0,0,1,−1).

So, if V ∈ {X+, Y, Z} and

q(t) =
∑

|α|≤n

cαt
α, then V q(t) =

∑

|α|≤n

dαt
α

where maxα |dα| ≤ (1+2n)·maxα |cα|. Furthermore, if we denote by rV,m ∈ C[t11, . . . , t22]

the polynomial such that

(V∆vm)(t) = ∆vm(t) · rV,m(t)

qm(t)
for all t ∈ G,

then deg rV,m = 1 and its coefficients are bounded by max(1r , R) ·m2. So, let m ∈ N, and

let pm and p satisfy the assertions of the lemma with |γ| replaced by k. Then, applying

the product and quotient rules, we get

V

[
∆vm · pm

qkm

]
(t) = ∆vm(t) · rV,m(t) · pm(t) + V pm(t) · qm(t)− k · pm(t) · V qm(t)

qm(t)k+1
.

The numerator of the fraction on the right hand side is a polynomial in C[t11, . . . , t22] of

degree ≤ k + 1. Its coefficients are bounded by

[max(1r , R) ·m2 + (1 + 2k) ·max(1r , R) ·m+ 5k ·max(1r , R)] · |p(m)|
since the coefficients of qm are bounded by max(1r , R) ·m. This proves the assertion.

Corollary 6.1.11. Let ν̄ 6= 0.

(i) We have ∆βe(σ,m)|G\K
m−→ 0 in E(G \K), i.e. supp∞(∆βe(σ,m)) ⊂ K.

(ii) We have ∆βN (ν̄,m)|G\MAN
m−→ 0 in E(G \MAN), i.e. supp∞(∆βN (ν̄,m)) ⊂MAN .

Proof. (i) The topology of E(G \K) is the topology of uniform convergence of all

derivatives on compact subsets. Since G is locally generated by its Lie algebra g, it suffices

to restrict attention to left invariant differential operators. By the Poincaré–Birkhoff–Witt

theorem, a basis for these is given by the ordered monomials in the basis X+, Y, Z. Set

vm = βe(σ,m).
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Let γ ∈ N3. By (6.1.7) in lemma 6.1.10, there exist (pm) ⊂ C[t11, . . . , t22] and p ∈ R[x]

such that deg pm ≤ |γ|, deg p ≤ 2|γ|, the coefficients of pm are bounded by p(m), and

(Dγ∆vm)(t) = ∆vm(t) · pm(t)

qm(t)|γ|+1
for all t ∈ G,m ≥ 2.

Let L ⊂ G \K be a compact subset, ε > 0 such that L ⊂ G \Kε and M ≥ 1 such that

maxk,l=1,2 |tkl| ≤M for all t ∈ L. Then
∣∣∣∣

1

qm(s)

∣∣∣∣ = |∆βe(σ,m)|1/m ≤ 1,

and for all m ≥ 2 and t ∈ L, by (6.1.5) from proposition 6.1.8 (i), we have

|(Dγ∆vm)(t)| ≤M |γ| · |p(m)| · (1 + ε)−m/2
m−→ 0,

proving the assertion.

(ii) The proof is analogous to that of (i), using (6.1.6) from proposition 6.1.8 (i).

6.2. Convergence of states defined by the 0-dimensional faces. In this section, we shall

study the behaviour of ∆vm ·Eσ at infinity, where

vm = βe(σ
′,m) =

(
0 σ′m

−σ′m 0

)
.

Here, σ′ ∈ {+,−} is a sign possibly distinct from σ.

These sequences are precisely the points of intersection of k with the ‘integral orbits’

Ωσ
′

m2 . As we shall see, in the limit, they give rise the to Fourier transform of the projection

of C = L2({e}) onto the Hardy space C = H2({e}).
Notation 6.2.1. For the sake of brevity, let us write ∆σ′

m := ∆βe(σ′,m).

Theorem 6.2.2. For all α ∈ A(G),

limm(km,−σ
′

Φ(βe(−σ′,m)) | (α ·Eσ)#
π−σ′

m

km,−σ
′

Φ(βe(−σ′,m))) = δσ′,σ · α(e) = δσ′,σ · (α|{e} · δe)#1 .

Proof. By corollary 4.2.3, let µ be a subsequential limit of (∆σ′

m · Eσ). By proposi-

tion 5.3.3, corollary 6.1.11 (i), proposition 4.4.1 and proposition 4.4.2,

suppµ ⊂ singEσ ∩ supp∞(∆σ′

m) ⊂ NK ∩K = {e}.
So, by [Eym64, (4.9) théorème],

µ = ζ · δe for some ζ ∈ C.

Thus

ζ = ζ ·∆σ′

2 (e) = limm〈∆σ′

2 ·∆σ′

γ(m) : Eσ〉 = limmE
#
σ (∆σ′

2 ·∆σ′

γ(m))
∨(e) = δσ′,σ,

proving the assertion.

Corollary 6.2.3. For every g ∈ G,

̺g : T±(G) → C : T±(f) 7→ f(g)

defines a non-trivial character vanishing on LC(H2(GC
±)).

Proof. This follows by applying corollary 4.5.13 to theorem 6.2.2.
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In the proof of theorem 6.2.2, all that was needed to identify the limit of (∆σ′

m · Eσ)
were Eymard’s version of Beurling’s theorem and the decomposition of the Hardy space.

As we shall see, the situation for the 1-dimensional faces is more involved.

6.3. Convergence of states defined by the 1-dimensional faces. In this section, we shall

study the behaviour of ∆vm ·Eσ at infinity, where

vm = βN (ν̄,m) =

(
0 m2/ν̄

−ν̄ 0

)
.

These sequences are precisely the points of intersection of the parallel translations of n

by ν̄ ·X− with the ‘integral orbits’ Ωsgn ν̄
m2 . As we shall see, they give rise exactly to the

Fourier coefficients (Ēσ)
#
ν̄ of the distribution Ēσ ∈ W∗(N) defining the projection of

L2(N) onto the Hardy space H2(NC
σ ) localized at the character e−iν̄/2·⋄ of N .

Notation 6.3.1. For the sake of brevity, we write ∆ν̄
m := ∆βN (ν̄,m). Also, we use the

notation acc(µj) for the set of σ(W∗(G),A(G))-accumulation points of (µj) ⊂ W∗(G).

The proof of our convergence result requires some preparation.

Proposition 6.3.2. Let ν̄ 6= 0. If µν̄,σ ∈ acc(∆ν̄
m ·Eσ) then

〈α : µν̄,σ〉 = δσ,sgn ν̄ · α(e) for any α∨ ∈ A(G) ∩H2(GC

sgn ν̄).

In particular, this is true for α = ∆v where v ∈ Ωsgn ν̄
m2 for some N ∋ m ≥ 2.

Proof. Choose a subsequence γ ≺ N associated to µν̄,σ. We have

〈α : µν̄,σ〉 = limm〈α ·∆ν̄
γ(m) : Eσ〉 = limmE

#
σ (α ·∆ν̄

γ(m))
∨(e)

= δσ,ν̄ · α(e) · limm∆ν̄
γ(m)(e) = δσ,ν̄ · α(e),

since (α ·∆ν̄
γ(m))

∨ ∈ H2(GC
sgn ν̄), and E

#
σ is the orthogonal projection onto H2(GC

σ ).

Proposition 6.3.3. Let y, (ym) ⊂ R\{0} such that y = limm ym and vm ∈ Ωσm2∩n⊕n̄

such that pr
n̄
vm = ym. (In particular, σ · y > 0, σ · ym > 0.)

(i) For all x ∈ R, we have limm ‖nπ
σ
m
x km,σΦ(vm) − e−iyx/2km,σΦ(vm)‖O2

m(σΠ) = 0.

(ii) For all x ∈ R, we have limm ‖∆vm(nx⋄)− e−iyx/2∆vm‖A(G) = 0.

(iii) We have e−iy/2·⋄ = limm∆vm |N strictly in B(N).

Proof. (i) Since πσm is a unitary representation of G, we obviously have

‖nπ
σ
m
x km,σΦ(vm) − e−iyx/2km,σΦ(vm)‖2O2

m(σΠ) = 2− 2Re eiyx/2(km,σΦ(vm) |n
πσ
m
x km,σΦ(vm))

= 2− 2Re eiyx/2∆vm(nx).

The assertion (i) follows since Φ(vm) = i mym , so we have

∆vm(nx) =

(
1 +

iymx

2m

)−m
m−→ e−iyx/2.

(ii) Since A(G) carries the norm induced by B(G) and

∆vm(nxs)− e−iyx/2∆vm(s) = (n
πσ
m

−xk
m,σ
Φ(vm) − eiyx/2km,σΦ(vm) | sπ

σ
mkm,σΦ(vm)),

we have, by [Eym64, (2.14) lemme],

‖∆vm(nx⋄)− e−iyx/2∆vm‖A(G) ≤ ‖nπ
σ
m

−xk
m,σ
Φ(vm) − eiyx/2km,σΦ(vm)‖O2

m(σΠ)
m−→ 0.
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(iii) From the proof of (i) we have point-wise convergence on N . Since e−iy/2·⋄ is a

unitary character of N , it is contained in S(B(N))+. By theorem 4.1.1 (i), (∆vm |N ) ⊂
A(N). Since the inclusion N →֒ G is a homomorphism, these functions are of positive

type. Evaluation at the neutral element e shows their norm is 1. On norm bounded subsets

of B(N), convergence a.e. coincides with convergence in σ(B(N),L1(N)) which in turn

coincides with σ(B(N),C∗(N)) on bounded subsets since L1(N) ⊂ C∗(N) is dense. By

[GL81, theorem B2], the latter topology coincides with the strict topology on the unit

sphere, whence the assertion.

Lemma 6.3.4.

(i) Let m ∈ N and w ∈ σΠ. For any g ∈ G, there is uσg,w ∈ U(1) such that

gπ
σ
mkm,σw = uσg,w · km,σg.w .(6.3.1)

If g ∈MAN , we even have uσg,w = 1.

(ii) Let v ∈ Λ. We have

∆v ◦ Int(g) = ∆Ad(g−1)v for all g ∈ G(6.3.2)

where Int(g)(t) = gtg−1 for all t ∈ G.

Proof. (i) For all z ∈ σΠ, we have

gπ
σ
mKm,σ

w (z) = (∂g−1)m/2(z) ·Km,σ(g−1z, w)

= [(∂g−1)m/2(w)]−1 ·Km,σ(z, g.w) = [(∂g−1)m/2(w)]−1 ·Km,σ
g.w (z),

hence gπ
σ
mkm,σw = C · km,σg.w for some constant C ∈ C. Since gπ

σ
m is unitary and the ks are

unit vectors, C has modulus 1.

Finally, for g ∈ MAN , one easily sees that (∂g)m/2(w) is a positive number, so that

C is also a positive number, and hence equals 1.

(ii) Let m ∈ N, such that v ∈ Ωσm2 . Then, by (6.3.1)

∆v(Int(g
−1)t) = (gπ

σ
mkm,σΦ(v) | tπ

σ
mgπ

σ
mkm,σΦ(v)) = (km,σg.Φ(v) | tπ

σ
mkm,σg.Φ(v)) = ∆Ad(g)v(t)

for all g, t ∈ G since g ◦ Φ = Φ ◦Ad(g) by proposition 5.1.2.

Now we are ready to prove the following theorem.

Theorem 6.3.5. Let ν̄ 6= 0 and σ′ := sgn ν̄. Denote by Ēσ ∈ W∗(N) the orthogonal

projection of L2(N) onto the Hardy space H2(NC
σ ). Then

limm(km,−σ
′

Φ(βN (−ν̄,m)) | (α · Eσ)#
π−σ′

m

km,−σ
′

Φ(βN (−ν̄,m))) = (α|N · Ēσ)#eiν̄/2·⋄ for all α ∈ A(G).

Proof. Let µν̄,σ ∈ acc(∆ν̄
γ(m) · Eσ) and choose a corresponding subsequence γ ≺ N

by proposition 4.2.3. By proposition 5.3.3, corollary 6.1.11 (ii), proposition 4.4.1 and

proposition 4.4.2,

suppµν̄,σ ⊂ singEσ ∩ supp∞(∆ν̄
m) ⊂ NK ∩MAN = N.

Set µ := eiν̄/2·⋄ · µν̄,σN ∈ W∗(N). First, assume σ′ = σ. By proposition 6.3.3,

〈∆ν̄
2 : µν̄,σ〉 = limm〈∆ν̄

2 ·∆ν̄
γ(m) : Eσ〉 = 1,
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so ‖µ‖ = ‖µν̄,σ‖ = 1. Hence there exists a unique class f ∈ L∞(R) such that

µ = (n⋄)◦(F−1)′(f).

Here F is the Fourier transform and ◦ denotes image measure.

We have f ≥ 0 a.e. and ‖f‖∞ = 1. In fact, f is a.e. constant on rays. Indeed, for all

λ > 0, we have ∆ν̄
m ◦ Int(hλ) = ∆

ν̄/λ2

m . By lemma 6.3.4 (ii) and centrality of Eσ,

Int(hλ)◦µ
ν̄,σ = limm∆

ν̄/λ2

γ(m) ·Eσ.
Applying corollary 4.3.6, we get

e−iν̄/2·⋄ · Int(hλ)◦µν̄,σN = e−iν̄/(2λ
2)·⋄ · µν̄,σN ,

i.e. Int(hλ)◦(µ) = µ. Since, for all ϕ ∈ A(N), we have

〈ϕ : Int(hλ)◦µ〉 =
1

2π

∫

R

f(y)

∫

R

e2πixyϕ(nλ2x) dx dy =
1

2π

∫

R

f(λ2y)

∫

R

e2πixyϕ(nx) dx dy,

the function f is a.e. constant on rays.

Now, since suppF−1(∆ν̄
2 ◦ n⋄) = σ′R+ (cf. [Bil79, exercises 20.23 and (26.8)]) and

‖f‖∞ = 1, we deduce f = 1σ′R+
a.e., i.e. µ = Ēσ.

Now, let σ′ 6= σ. By the first part of the proof,

eiν̄/2·⋄ · Ēσ = limm∆−ν̄
m ·Eσ in σ(W∗(G),A(G)).

By corollary 4.3.6,

µ = eiν̄/2·⋄ · µν̄,σN = e−iν̄/2·⋄ · eiν̄/2·⋄ · Ēσ = Ēσ.

The theorem is proven.

Corollary 6.3.6. For any k, k′ ∈ K,

̺kNk′−1 : T±(G) → T±(N) : T±(f) 7→ T±(k ∗ f ∗ k′|N )

defines an irreducible ∗-representation of T±(G) on H2(NC
± ) vanishing on LC(H2(GC

±)).

Proof. This follows by applying corollary 4.5.13 to theorem 6.2.2.
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Amer. J. Math. 74 (1952), 168–186.

[HU98] U. Hagenbach and H. Upmeier, Toeplitz C∗-algebras over non-convex cones and

pseudo-symmetric spaces, Contemporary Math. 212 (1998), 109–131.

[HN93] J. Hilgert and K.-H. Neeb, Lie Semigroups and their Applications, Lecture Notes in

Math. 1552, Springer, Berlin, 1993.
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