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Introduction. In this paper we classify and describe real rank one simple Lie algebras

g with an approach based on the analysis of an Iwasawa nilpotent subalgebra n of g. Our

approach is based on the observation of A. Korányi that there is an inner product on

n which satisfies the compatibility conditions with the Lie product of n characteristic

of the so called generalized Heisenberg algebras. Korányi, M. Cowling, A. Dooley, and

F. Ricci used this fact to classify real rank one simple Lie algebras establishing that

the generalized Heisenberg algebras which are Iwasawa satisfy the J2-condition, and

determining the generalized Heisenberg algebras with this property.

Here is an outline of the paper. In Section 1 after some generalities on real simple

Lie algebras and generalized Heisenberg algebras, we give a more detailed account of the

contents of the paper. In Section 2 we describe the subalgebra m and its action on the root

spaces, obtaining a new and easier proof of the J2-condition. In Section 3 and Section 4

we provide a uniform construction of real rank one simple Lie algebras starting from a

representation of a Clifford algebra. In Section 5 we give some more informations on the

structure of m, proving that m coincides with the algebra of skew-symmetric derivations

of n. In Appendix 1 we classify generalized Heisenberg algebras with the J2-property

using Clifford algebras, and avoiding to use division algebras as done by Korányi and

collaborators. Finally, in Appendix 2 we show how our approach can be used to make

explicit computations in g in the case of sp(1, n). The results of Section 2 and Appendix 1

will be also published in Proceedings of the American Mathematical Society [C2].

1. Generalities. Let g be a real semi-simple Lie algebra with Killing form B. A Car-

tan involution θ of g is an involutive automorphism such that the symmetric bilinear form

(1.1) 〈X,Y 〉 = −cB (X, θY ) , c > 0,
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is positive definite. Let

g = k⊕ p

be the decomposition of g into eigenspaces of θ, where

k = {X ∈ g : θX = X} and p = {X ∈ g : θX = −X} .

We denote by ad : g → End (g) the adjoint representation of g, defined by

(adX) Y = [X,Y ] , X, Y ∈ g.

If X lies in p the operator adX is symmetric with respect to 〈·, ·〉 and hence diagonal-

izable. We fix and diagonalize a maximal subalgebra a contained in p (a is necessarily

abelian). The dimension of a is an invariant of g and is called the real rank of g. A linear

non-zero form α on a is called a restricted root, or just a root, relative to the pair (g, a)

if the linear space

gα = {X ∈ g : (adH)X = α (H)X}

is non-trivial. In this case gα is called the root space of α. Denote by Σ the set of restricted

roots. If α is a root, then −α is also a root and g−α = θgα. Moreover, if α, β ∈ Σ, the

linear space

[gα, gβ ] = span {[X,Y ] : X ∈ gα, Y ∈ gβ}

is trivial when α+β /∈ Σ, and is a subset of gα+β when α+β ∈ Σ. From now on g is a simple

Lie algebra of real rank one. Hence, Σ is either equal to {±α}, or {±α,±2α}. The set Σ is

called A1 in the first case and BC1 in the second case. One thus obtains the decomposition

(1.2) g = θn⊕ g0 ⊕ n,

where n = gα for Σ = A1, and n = gα ⊕ g2α for Σ = BC1. The subspace n is a nilpotent

subalgebra of g.

In this paper we are specially interested in discussing the structure of n. For this task

we shall use the following notion introduced by A. Kaplan in 1980.

1.1. Definition [K]. A nilpotent Lie algebra n = v⊕z endowed with an inner product

〈·, ·〉, with centre z and z⊥ = v, is a generalized Heisenberg algebra if the linear map JZ
defined for Z ∈ z by

〈JZX,Y 〉 = 〈Z, [X,Y ]〉 for all X,Y ∈ v,

satisfies

(1.3) J2
Z = JZ ◦ JZ = −‖Z‖2 I for all Z ∈ z.

From (1.3) it follows by polarization that for Z,Z ′ ∈ z

(1.4) JZJZ′ + JZ′JZ = −2 〈Z,Z ′〉 I.

Thus, J : z → End (v) extends to a representation of the Clifford algebra C (0, d2α) (see

for instance [P]). From the definition it also follows easily that ([K])

(1.5) [X, JZX ] = ‖X‖2Z for X ∈ v and Z ∈ z.

The group of linear orthogonal automorphisms of a generalized Heisenberg algebra

has been extensively studied by C. Riehm ([R], see also [S]). The object of interest now is
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the Lie algebra of this group, that is, the space D (n) of the skew-symmetric derivations

of n. If D ∈ D (n), then D, being a derivation, maps z into itself, and since D is skew-

symmetric it also maps v into itself. The following result was partially proved in [C,

Proposition 3.3] (see also [S]).

1.1. Proposition. (1) A skew-symmetric endomorphism D of the linear space n

mapping z into itself is a derivation of n if and only if

(1.6) DJZ − JZD = JDZ for all Z in z.

In particular, the subalgebra D0 of D (n) consisting of the derivations which are trivial on

z can be identified with the algebra of skew-symmetric linear endomorphisms of v wich

commute with the action of C (0, d2α).

(2) The linear endomorphism DZZ′ of n defined for each pair (Z,Z ′) of orthogonal

vectors of z by

DZZ′X = JZJZ′X for X ∈ v and

DZZ′Z ′′ = 2 〈Z,Z ′′〉Z ′ − 2 〈Z ′, Z ′′〉Z for Z ′′ ∈ z,

is a derivation of n. The space

Dz = span {DZZ′ : Z,Z ′ ∈ z, 〈Z,Z ′〉 = 0}

is a Lie algebra isomorphic to so (d2α), the Lie algebra of all skew-symmetric linear

endomorphisms of Rd2α (≃ z), and

D (n) = D0 ⊕Dz.

In particular, the action of D0 commutes with the action of Dz.

Proof. (1) Let D ∈ D (n). Since D is skew-symmetric

〈DJZX,Y 〉 = −〈JZX,DY 〉 = −〈Z, [X,DY ]〉

for Z ∈ z and X,Y ∈ v. This relation yields, recalling that D is a derivation and using

the definition of J ,

〈DJZX,Y 〉 = −〈Z,D [X,Y ]〉+ 〈Z, [DX,Y ]〉

= 〈DZ, [X,Y ]〉+ 〈JZDX,Y 〉

= 〈JDZX,Y 〉+ 〈JZDX,Y 〉 ,

showing (1.6). These computations read in the opposite direction also prove the converse.

The rest of (1) is clear.

(2) By (1.6) DZZ′ is a derivation. Notice that so (d2α) is isomorphic to Dz. If D

belongs to D (n), D|z is a skew-symmetric linear transformation of z, and therefore is

the restriction to z of an element D′ of Dz. Since D −D′ ∈ D0 and Dz ∩ D0 = {0}, the

assertion follows.

The first application of the generalized Heisenberg algebras in the study of real semi-

simple Lie algebras is due to A. Korányi [Ko], who in 1985 noticed that if c in (1.1) is

chosen in such a way that (α | α) = 1/2, setting

(1.7) JZX = [Z, θX ] , Z ∈ g2α, X ∈ gα,
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JZ satisfies (1.3), and therefore (n, 〈·, ·〉) is a generalized Heisenberg algebra. After that,

he discovered in collaboration with M. Cowling, A. Dooley, and F. Ricci the following

property that characterizes in the class of generalized Heisenberg algebras those which

derive from the decomposition (1.2) of a real simple Lie algebra (see [CDKR 1], [CDKR

2], and [C2]).

1.2. Definition [CDKR 1]. Let n = v ⊕ z be a generalized Heisenberg algebra with

centre z. One says that n satisfies the J2-condition if for all X ∈ v and all orthogonal

pairs (Z,Z ′) in z, there exists Z ′′ in z, (possibly depending on X , Z, and Z ′), satisfying

JZJZ′X = JZ′′X.

This condition is trivially satisfied if n is degenerate, i.e. z = {0}, or if dim z = 1. It is

equivalent to requiring that JZ preserves the subspace

RX ⊕ JzX = {aX + JZ′X : a ∈ R, Z ′ ∈ z}

for anyX in v and any Z in z, or that the irreducible C (0, d2α)-module to whichX belongs

is equal to RX⊕JzX . From now on we fix c in such a way that (α | α) = 1/2. In this paper

we present a new proof of the result of Cowling, Dooley, Korányi, and Ricci (Theorem 2.3)

and of its main consequence that d2α = dim g2α ∈ {0, 1, 3, 7} (Corollary 2.5).

It remains to analyse the subalgebra g0. It is clear from the definition that

a = g0 ∩ p.

In our case a is one dimensional, and

a = R [V, θV ] with V in gα \ {0} or in g2α \ {0}.

In general a does not exhaust g0. We set

m = g0 ∩ k,

so that

g0 = a⊕m.

Then (1.2) gives the Bruhat decomposition of g

g = θn⊕ a⊕m⊕ n.

It is easy to see that m is a subalgebra and that (see [C1])

(1.8) m = span {[X, θY ] : X,Y ∈ gβ with β ∈ {α, 2α} and 〈X,Y 〉 = 0} .

Set also

(1.8′) m2α = span {[Z, θZ ′] : Z,Z ′ ∈ g2α and 〈Z,Z ′〉 = 0}

and

(1.8′′) mα = span {[X, θY ] : X,Y ∈ gα and 〈X,Y 〉 = 0} .

If g(2α) denotes the subalgebra of g generated by the root spaces g2α and g−2α, then

m2α = m ∩ g(2α).

The next result holds in a wider context and was proved in [C1] as Corollary 5.2. We

present the proof here in an attempt to make the paper self-contained.
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1.2. Proposition. Take a unit vector X in gα and two vectors Z1, Z2 in g2α. Then

(1.9) [[Z1, θZ2] , X ] = J1J2X,

where J1X and J2X stand for JZ1
X and JZ2

X, respectively. Hence, the action of m2α

on gα coincides with the action of the even subalgebra C+ (d2α) of C (0, d2α). Moreover,

(1.10) [Z1, θZ2] = [θX, J1J2X ] + [J1X, θJ2X ] .

In particular,

m2α ⊂ mα and m = mα.

Proof. Formula (1.9) follows from the Jacobi identity and (1.7). Formula (1.10) is also

obtained by Jacobi plugging Z2 = [X, J2X ] in the left hand side and using (1.7) and

(1.9). Finally, from (1.8′), (1.8′′), and (1.10) one deduces the last formulæ.

In Proposition 2.1, using only the Jacobi identity and the property of m of being fixed

by θ, we prove the following formula holding for X,Y,W ∈ gα,

[[X, θY ] ,W ] =
1

2
〈W,X〉Y −

1

2
〈W,Y 〉X −

1

2
〈X,Y 〉W(1.11)

+
1

2
J[X,Y ]W +

1

2
J[X,W ]Y +

1

2
J[W,Y ]X.

This formula yields the action of m on the linear space gα ⊕ g−α, and will be the main

tool in our proof of the J2-property of n (Theorem 2.3).

We denote by m⊥

2α the orthogonal complement of m2α in m, i.e.

(1.12) m⊥

2α = {M ∈ m : 〈M,M ′〉 = 0 for all M ′ ∈ m2α } ,

obtaining the decomposition

(1.13) m = m2α ⊕m⊥

2α.

1.3. Proposition. The subspaces m2α and m⊥

2α are ideals of m, and
[

m2α,m
⊥

2α

]

⊂ m2α ∩m⊥

2α = 0.

Hence, m⊥

2α is the algebra of all skew-symmetric linear endomorphisms of gα which com-

mute with the action of C+ (d2α).

Proof. It follows from the Jacobi identity that m2α is an ideal in m. Thus, m⊥

2α is also

an ideal, and m2α ∩ m⊥

2α is an ideal in both m2α and m⊥

2α. Hence, m2α ∩ m⊥

2α which is

trivial, contains [m2α,m
⊥

2α]. The last part of the assertion follows now by (1.9).

Remark. We shall see in Corollary 2.6 that m⊥

2α is actually the algebra of skew-

symmetric linear transformations of n commuting with the action of the full algebra

C (0, d2α).

We close the section with the following result, holding in a wider context than real

rank one simple Lie algebras, which yields another evidence for Clifford algebras in real

semi-simple Lie algebras.

1.4. Proposition. Fix an orthonormal basis {Z1, . . . , Zd2α
} of g2α.

(1) The set of endomorphisms of the linear space gα ⊕ g−α defined by

Ki = adZi − ad θZi for i ∈ {1, . . . , d2α}, Kd2α+1 = ad [θZ1, Z1] , Kd2α+2 = θ,
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provides a representation of the Clifford algebra C (d2α + 2, 0), i.e.

KiKj +KjKi = 2δij I for i, j ∈ {1, . . . , d2α + 2}.

(2) The linear transformations

Li = KiKd2α+1 = Ki ad [θZ1, Z1] = adZi + ad θZi for i ∈ {1, . . . , d2α},

yield a representation of the Clifford algebra C (0, d2α) on gα ⊕ g−α, i.e.

LiLj + LjLi = −2δij I for i, j ∈ {1, . . . , d2α}.

They satisfy for i, j ∈ {1, . . . , d2α} and i 6= j

KiLi = −LiKi, KiLj = LjKi,

Kd2α+1Li = −LiKd2α+1, and Kd2α+2Li = LiKd2α+2.

(3) If Z ∈ g2α is non-zero,

gα = ker (LZ +KZ) and g−α = ker (LZ −KZ) .

(4) Finally, for Z ∈ g2α,

JZ =
1

2
(KZ + LZ) Kd2α+2 =

1

2
(KZ + LZ) θ =

1

2
θ (LZ −KZ) .

Proof. We only sketch the proof. Since adZi|gα
= 0 and (ad θZi)

2
= 0, it follows for

i ∈ {1, . . . , d2α} and X ∈ gα that

K2
i X = [Zi − θZi, [Zi − θZi, X ]] = − [Zi − θZi, [θZi, X ]] = − [Zi, [θZi, X ]] ,

which by Jacobi, as (α | α) = 1/2, yields

K2
i X = − [X, [θZi, Zi]] = (2α | α) ‖Zi‖

2 X = X.

For Y ∈ g−α one proceeds similarly. The rest of (1) is immediate. The assertion in

(2) follows from (1) by straightforward calculations, (3) is obvious, and (4) is Korányi’s

formula (1.7).

Remark.We see in particular from the above proposition that the action of p∩g(2α)

on gα ⊕ g−α extends to a representation of C (d2α + 1, 0).

The above proposition and Formula (1.11) provide the main instruments in our con-

struction of real rank one simple Lie algebras starting in Section 3. Indeed, in that section

we build, according to Proposition 1.4, a Lie algebra gu of endomorphisms of the linear

space gα⊕g−α from a representation of C (d2α + 2, 0). Then we prove that gu is isomorphic

to so (d2α + 1, 1) (Theorem 3.2). The algebra gu yields g(2α). Finally, using Formula (4)

in Proposition 1.4 we introduce a structure of generalized Heisenberg Lie algebra on

n = gα ⊕ g2α and θn = g−α ⊕ g−2α (Theorem 3.4).

In Section 4, we complete the definition of our algebra introducing the bracket of a

vector of gα and a vector of g−α by means of (1.11). The linear span of these brackets

is by definition a ⊕ m. In Proposition 4.1 we show that if n satisfies the J2-condition

m consists of derivations of n. From this result the proof that we have obtained a Lie

algebra will follow easily (Theorem 4.5). Indeed, Proposition 4.1 is the crucial step in our

construction, the actual converse of Theorem 2.3. In fact, one can associate using (1.11)
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a space of linear endomorphisms of g−α ⊕ gα to any generalized Heisenberg algebra n

with v = gα, but only if n satisfies the J2-condition these are derivations of n.

Finally, in Section 5 we discuss the way in which a skew-symmetric derivation of n,

or θn, can be expressed as a linear combination of elements of m, proving that the space

of these derivations coincides with m. We also determine how m depending on d2α splits

into the orthogonal sum of m2α and m⊥

2α.

2. The action of m. The following proposition provides a formula describing the

action of m on gα.

2.1. Proposition. For X,Y,W ∈ gα, one has

[[X, θY ] ,W ] =
1

2
〈W,X〉Y −

1

2
〈W,Y 〉X −

1

2
〈X,Y 〉W(2.1)

+
1

2
[[X,Y ] , θW ] +

1

2
[[X,W ] , θY ] +

1

2
[[W,Y ] , θX ] .

Proof. If one of X , Y , and W is zero (2.1) is trivially true. Assume that X , Y , and

W are not trivial. By Jacobi one obtains

(2.2) [[X, θY ] ,W ] = [[W, θY ] , X ] + [[X,W ] , θY ] .

Plugging

W =
〈W,Y 〉

‖Y ‖2
Y +

(

W −
〈W,Y 〉

‖Y ‖2
Y

)

,

in the first bracket on the right hand side of (2.2), we decompose [W, θY ] into the sum

of a term lying in a and a term lying in m which is therefore fixed by θ. Hence,

[[X, θY ] ,W ] = −
1

2
〈W,Y 〉X +

[[

θW −
〈W,Y 〉

‖Y ‖2
θY, Y

]

, X

]

+ [[X,W ] , θY ] .

From this it follows that

[[X, θY ] ,W ] = −〈W,Y 〉X + [[θW, Y ] , X ] + [[X,W ] , θY ] ,

and, using again the Jacobi identity,

[[X, θY ] ,W ] = −〈W,Y 〉X + [[θW,X ] , Y ] + [[X,Y ] , θW ] + [[X,W ] , θY ] .

Now plug

W =
〈W,X〉

‖X‖2
X +

(

W −
〈W,X〉

‖X‖2
X

)

in the first bracket on the right hand side, obtaining

[[X, θY ] ,W ] = −〈W,Y 〉X +
1

2
〈W,X〉Y +

[[

W −
〈W,X〉

‖X‖2
X, θX

]

, Y

]

+ [[X,Y ] , θW ] + [[X,W ] , θY ] ,

which yields

[[X, θY ] ,W ] = 〈W,X〉Y − 〈W,Y 〉X + [[W, θX ] , Y ] + [[X,Y ] , θW ] + [[X,W ] , θY ] .
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The Jacobi identity gives

[[X, θY ] ,W ] = 〈W,X〉Y − 〈W,Y 〉X + [[Y, θX ] ,W ]

+ [[W,Y ] , θX ] + [[X,Y ] , θW ] + [[X,W ] , θY ] .

Plugging in this formula

Y =
〈Y,X〉

‖X‖2
X +

(

Y −
〈Y,X〉

‖X‖2
X

)

,

one obtains

[[X, θY ] ,W ] = 〈W,X〉Y − 〈W,Y 〉X −
1

2
〈X,Y 〉W +

[[

θY −
〈Y,X〉

‖X‖2
θX,X

]

,W

]

+ [[W,Y ] , θX ] + [[X,Y ] , θW ] + [[X,W ] , θY ] ,

which implies

[[X, θY ] ,W ] = 〈W,X〉Y − 〈W,Y 〉X − 〈X,Y 〉W − [[X, θY ] ,W ]

+ [[W,Y ] , θX ] + [[X,Y ] , θW ] + [[X,W ] , θY ] ,

providing the statement.

When 2α is not a root the last three terms in (2.1) vanish yielding the usual formula

which decribes the action of so (dα) on Rdα .

(2.3) [[X, θY ] ,W ] =
1

2
〈W,X〉Y −

1

2
〈W,Y 〉X +

1

2
〈X,Y 〉W.

When 2α is a root, (2.1) provides by (1.7) Formula (1.11)

[[X, θY ] ,W ] =
1

2
〈W,X〉Y −

1

2
〈W,Y 〉X +

1

2
〈X,Y 〉W(2.4)

+
1

2
J[X,Y ]W +

1

2
J[X,W ]Y +

1

2
J[W,Y ]X.

From (2.3) and (2.4) it follows in particular that [X, θY ] = 0 only if X = 0 or Y = 0.

2.2. Lemma. Suppose n = v ⊕ z is a generalized Heisenberg algebra satisfying the

J2-condition. If Z, Z ′ are orthogonal vectors in z and X is a unit vector in v, then

(2.5) J[X,JZJZ′X]X = J[JZX,JZ′X]X = JZJZ′X.

Proof. If one of Z and Z ′ is zero (2.5) is trivial. Assume ‖Z‖ = ‖Z ′‖ = 1 and let

Z ′′ ∈ z satisfy JZJZ′X = JZ′′X . Then,

J[X,JZJZ′X]X = J[X,JZ′′X]X = JZ′′X = JZJZ′X,

by (1.5), proving the first equality. Since Z ′′ is orthogonal to Z we find

JZ′X = −JZ
2JZ′X = −JZJZ′′X = JZ′′JZX,

from which by (1.5) it follows that

J[JZX,JZ′X]X = J[JZX,JZ′′JZX]X = JZ′′X = JZJZ′X,

completing the proof.
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The following result was stated and proved in [CDKR 1] (see also [CDKR 2]). Here

we recall the easier proof given in [C2] which is based through Lemma 2.4 on (2.4) and

(1.10).

2.3. Theorem. If a generalized Heisenberg Lie algebra n appears in the Bruhat de-

composition of a simple real rank one Lie algebra g, then n satisfies the J2-condition (see

Definition 1.2).

2.4. Lemma. Suppose α, 2α ∈ Σ. Take a unit vector X in gα and two orthogonal

vectors Z1, Z2 in g2α. Then

(2.6) J1J2X = J[J1X,J2X]X = J[X,J1J2X]X.

Proof. We prove the following formula

(2.7) J1J2X =
1

3
J[J1X,J2X]X +

2

3
J[X,J1J2X]X,

from which one sees that the J2-condition holds in gα ⊕ g2α. Then the assertion follows

by Lemma 2.2. From (2.4) and (1.4) one has

(2.8) [[X, θJ1X ] , J2X ] =
1

2
J1J2X +

1

2
J2J1X +

1

2
J[J2X,J1X]X =

1

2
J[J2X,J1X]X.

On the other hand, by Jacobi and (1.5) one obtains

[[X, θJ1X ] , J2X ] = [[J2X, θJ1X ] , X ] + [[X, J2X ] , θJ1X ]

= [[J2X, θJ1X ] , X ] + J2J1X.

Using (1.10) replace in the last formula [J2X, θJ1X ] with [Z2, θZ1] − [X, θJ2J1X ], ob-

taining by (1.9)

[[X, θJ1X ] , J2X ] = [[Z2, θZ1]− [X, θJ2J1X ] , X ] + J2J1X(2.9)

= 2J2J1X − [[X, θJ2J1X ] , X ] .

The last term can be computed with (2.4) that provides

[[X, θJ2J1X ] , X ] =
1

2
J2J1X + J[X,J2J1X]X,

which plugged in (2.9) yields

[[X, θJ1X ] , J2X ] =
3

2
J2J1X − J[X,J2J1X]X.

Now, (2.7) follows by comparison of this relation and (2.8).

2.5. Corollary. d2α belongs to {0, 1, 3, 7}.

Proof. The statement follows from the classification of generalized Heisenberg algebras

satisfying the J2-condition (Theorem 1.1 in [CDKR 1]), or alternatively from Proposi-

tion A.1.1 in Appendix A.1.

2.6. Corollary. m⊥

2α is the algebra of all linear endomorphisms which commute with

the action of C (0, d) on gα.

Proof. The assertion follows from Proposition 1.3 and Formula (2.6).
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2.7. Proposition. Suppose d2α = 3. Let {Z1, Z2, Z3} be an orthonormal basis of g2α
and set ǫ = JZ1

JZ2
JZ3

. Then either

ǫ = I, or ǫ = −I,

i.e. the irreducible C(0, 3)-modules in which gα splits are isotypic.

Proof. Suppose that X,Y ∈ gα satisfy

ǫX = X and ǫY = −Y.

Assume to fix ideas X 6= 0. Since tǫ = ǫ and ǫJZ = JZǫ for all Z in z+ it follows that

〈X,Y 〉 = 〈JZX,Y 〉 = 0 for all Z ∈ g2α,

which implies by Jacobi that ad [X, θY ] is trivial on g2α, and thus

JZ ◦ ad [X, θY ] = ad [X, θY ] ◦ JZ for all Z ∈ g2α.

Hence,

ǫ ◦ ad [X, θY ] = ad [X, θY ] ◦ ǫ.

Therefore,

ǫ [[X, θY ] , X ] =
1

2
ǫY = −

1

2
Y

is equal to

[[X, θY ] , ǫX ] = [[X, θY ] , X ] =
1

2
Y,

which yields Y = 0 and provides the statement.

2.8. Proposition. If d2α = 7, then dα = 8.

Proof. When dα = 8, m = m2α ≃ so(7) since by Corollary 2.6 m⊥

2α is contained in

the commutator of C(7) ≃ R(8)⊕R(8). If dα = 8k, with k > 1, there are two non-trivial

vectors X,Y ∈ gα satisfying

〈JZX,Y 〉 = 〈JZJZ′X,Y 〉 = 0 for all Z,Z ′ ∈ g2α.

This gives

[JZX,Y ] = 0 for all Z ∈ g2α,

which implies by (1.7) and Jacobi

(2.10) [[θX, Y ] , Z] = 0 for all Z ∈ g2α.

This yields a contradiction since [X, θY ] lies in m2α and the action of m2α on g2α is

faithful by (2.1).

For future reference in the next theorem we summarize some of the results of this

section.

2.9. Theorem. The possible values of (d2α, dα) are: (0, n), (1, 2n), (3, 4n), and (7, 8),

with n ∈ N.

We recall that by (1.13) m = m2α ⊕m⊥

2α.
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2.10. Theorem. With the notations of Theorem 2.9,

m2α = {0}, m⊥

2α ≃ so(n) for d2α = 0,

m2α ≃ so(2) ≃ u(1), m⊥

2α ≃ su(n) for d2α = 1,

m2α ≃ so(3) ≃ sp(1), m⊥

2α ≃ sp(n) for d2α = 3,

m2α ≃ so(7), m⊥
2α = {0} for d2α = 7.

Proof. The assertion is immediate for d2α = 0, and it is a corollary of the proof of

Proposition 2.8 for d2α = 7. For the other cases, by Corollary 2.6 the action of m⊥
2α

commutes with the action of C (0, d2α). When d2α = d ∈ {1, 3}, m⊥

2α is the algebra of all

skew-symmetric linear endomorphisms of gα commuting with the complex (for d = 1), or

quaternionic (for d = 3) structure {J1, . . . , Jd}. The assertion follows from the definitions

of su (n) and sp (n).

3. Clifford structures in real simple Lie algebras. In this section we assume

that g2α is non-trivial. The construction presented here is inspired by Proposition 1.4,

but it is useful in contexts wider than real rank one simple Lie algebras.

Fix a positive integer d. Take a module w of the Clifford algebra C(d + 2, 0) and let

{γ1, . . . , γd+2} be a set of linear endomorphisms of w satisfying

γaγb + γbγa = 2δabI for a, b = 1, . . . , d+ 2,

where I is the identity on w. There is a euclidean inner product 〈·, ·〉 on w with respect to

which all the γa’s are orthogonal. With respect to this inner product each γa is symmetric.

Let

θ = γd+2, σ = γd+1, Qi = γi and Pi = γiσ for i = 1, . . . , d.

Then σ and θ are anticommuting involutive endomorphisms of w, i.e.

σ2 = θ2 = I and σ θ + θ σ = 0.

Moreover,

PiPj + PjPi = −2δij and QiQj +QjQi = 2δij ,

that is, {P1, . . . , Pd} provides a representation of the Clifford algebra C(0, d) and {Q1, . . . ,

Qd} a representation of the Clifford algebra C(d, 0). They satisfy the following commu-

tation relations

PiQi +QiPi = 0 and PiQj −QjPi = 0 for i, j = 1, . . . , d and i 6= j,

and

σQi = −Qiσ, θQi = −Qiθ, Piσ = −σPi, Piθ = θPi for i = 1, . . . , d.

Take a d-dimensional real linear space u endowed with the canonical inner product 〈·, ·〉.

Consider the cartesian product u× {+,−}. Set

z+ = u× {+} , z− = u× {−} ,

and write

u× {+,−} = z+ ⊕ z−,

Z+ = (Z,+) and Z− = (Z,−) for Z ∈ u.
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Fix an orthonormal basis {Z1, . . . , Zd} of u and define a linear map θz of z+ ⊕ z− onto

itself by

θzZ
+
i = Z−

i and θzZ
−

i = Z+
i .

Set also for Z =
∑n

i=1 ζiZ
+
i ∈ z+, ζi ∈ R,

QZ =
n
∑

i=1

ζiQi and PZ =
n
∑

i=1

ζiPi,

and extend the definition of QZ and PZ to z+ ⊕ z− by

(3.1) PθzZ = PZ and QθzZ = −QZ.

Since σ2 = I and tσ = σ, σ has two eigenvalues ±1. Let

w = v+ ⊕ v−

be the decomposition of w into the eigenspaces of σ, where

v+ = {X ∈ w : σX = X} and v− = {X ∈ w : σX = −X} = θv+.

Let gu be the subalgebra of the Lie algebra of all linear endorphisms of w (consisting of

the linear space End (w) equipped with the ordinary commutator [·, ·]) generated by

{PZ +QZ , PZ −QZ : Z ∈ u} .

We shall prove that gu is isomorphic to so (d+ 1, 1).

3.1. Lemma. For Z,Z ′ ∈ z+:

(1) ker (PZ +QZ) = v+ and ker (PZ −QZ) = v−.

(2) (PZ +QZ) (PZ′ +QZ′) = (PZ −QZ) (PZ′ −QZ′) = 0.

(3) [PZ +QZ , PZ′ −QZ′ ] = 2 (QZQZ′ −QZ′QZ)− 2 (QZPZ′ +QZ′PZ) .0.

(4) QZQZ′ (PZ′ +QZ′) = PZ +QZ and QZQZ′ (PZ′ −QZ′) = PZ −QZ .

Proof. (1) is obvious. By linearity it is enough to prove the remaining identities for

Z = Z+
i and Z ′ = Z+

j . To prove the first in (2) observe that

(Pi +Qi) (Pj +Qj) = QiQj (I − σ) (I + σ) = 0,

since σ anti-commutes with Qi and σ2 = I. These properties of σ also yield

(Pi +Qi) (Pj −Qj) = QiQj (I − σ)2 = 2Qi (Qj − Pj)

and

(Pi −Qi) (Pj +Qj) = QiQj (I + σ)
2
= 2Qi (Qj + Pj) ,

which give (3). The first identity in (4) follows from

QiQj (Qj + Pj) = Qi (I + σ) = Qi + Pi,

the second one can be proved similarly.

3.2. Theorem. gu is isomorphic to so (1 + d, 1). The restriction to gu of the linear

map Θ defined by

Θ
(

QZ1
. . . QZq

PZq+1
. . . PZq+p

)

= QθzZ1
. . .QθzZq

PθzZq+1
. . . PθzZq+p
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is a Cartan involution. The map gu × w → w defined by (S,X) 7→ S X yields an action

of gu on w.

Proof. By (3.1)

Θ (PZ +QZ) = PZ −QZ and Θ (PZ −QZ) = PZ +QZ .

In particular, θu is involutive.

We show that if (PZ +QZ)X = 0 for all X ∈ w, then Z = 0, and similarly that if

(PZ −QZ)X = 0 for all X ∈ w, then Z = 0. We prove the first assertion. For any X in

v+,

0 = (PZ +QZ)X = QZ (σ + 1)X = 2QZX,

which implies

0 = Q2
ZX = ‖Z‖2X,

and hence Z = 0.

Now by (3) in Lemma 3.1,

[Pi −Qi, Pi +Qi] = 4QiPi = 4σ,

and for i 6= j

[Pi −Qi, Pj +Qj ] = [Pi +Qi, Pj −Qj ] = 4QjQi.

It follows that Θ is an automorphism of the Lie algebra gu. From the definition of Θ, being

σ = QiPi, it follows that Θσ = −σ. Perform the diagonalization of σ. Using Lemma 3.1

one obtains from the above relations

gu = gu−1 ⊕ gu0 ⊕ gu1,

where

gu1 = span

{

1

2
(PZ +QZ) : Z ∈ z+

}

,

gu−1 = span

{

1

2
(PZ −QZ) : Z ∈ z+

}

= Θgu1,

and

(3.2) gu0 = Rσ ⊕mu = Rσ ⊕ span {QZQZ′ : Z,Z ′ ∈ z+ and 〈Z,Z ′〉 = 0} .

This proves the first part of the statement. The second half is clear.

We identify the linear span of the sets {PZ +QZ : Z ∈ u} and {PZ −QZ : Z ∈ u}

respectively with z+ and z−, writing for Z,Z ′ ∈ z+ and W ∈ w

(3.3) (adZ)W = [Z,W ] = (PZ +QZ)W, (ad θzZ)W = [θzZ,W ] = (PZ −QZ)W,

and ad ([Z, θzZ
′]) = [PZ +QZ ,Θ(PZ′ +QZ′)] = [PZ +QZ , PZ′ −QZ′ ] .

For Z ∈ z+, we define, according to Proposition 1.4,

(3.4) JZ =
1

2
(QZ − PZ) θ.

3.3. Lemma. Let Z ∈ z+ and Z ′ ∈ z−. Then,

(1) JZ |v+
= QZ θ, JZ |v−

= 0 and JθzZ′ |v−
= −QZ′ θz, JθZ′ |v+

= 0.
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Moreover,

(2) σ JZ = JZσ and JZ θ + θ JZ = 0.

The operators

J+
Z = JZ |v+

, Z ∈ z+, and J−

Z′ = JθzZ′ |v−
, Z ′ ∈ z−,

satisfy, for Z1, Z2 ∈ z+ and Z ′

1, Z
′

2 ∈ z−,

J+
Z1
J+
Z2

+ J+
Z2
J+
Z1

= −2 〈Z1, Z2〉 Iv+
and J−

Z′

1

J−

Z′

2

+ J−

Z′

2

J−

Z′

1

= −2 〈Z ′

1, Z
′

2〉 Iv−
.

Hence, J+ : z+ → End (v+) and J− : z− → End (v−) extend to representations of

the Clifford algebra C (0, d). Finally, J+
Z and J−

Z′ are skew-symmetric with respect to the

restrictions of 〈·, ·〉 to v+ and v−, respectively.

Proof. Formulæ (1) and (2) follow directly from (3.4) and from

JθzZ′ =
1

2

(

QθzZ′ − PθzZ′

)

θ = −
1

2
(QZ′ + PZ′) θ = −

1

2
QZ′ θ (1− σ) ,

which holds for Z ′ ∈ z− (recall that by definition QθzZ = −QZ and PθzZ = PZ). The

rest of the assertion is now an immediate consequence.

From this lemma the following theorem immediately follows.

3.4. Theorem. The brackets defined on the linear spaces

n+ = v+ ⊕ z+ and n− = v− ⊕ z−,

for Z+, Z
′

+ ∈ z+ and Z−, Z
′

−
∈ z−, by

[Z+, Z
′

+] = [Z−, Z
′

−] = 0,

and for X+, Y+ ∈ v+ and X−, Y− ∈ v−, by

〈Z+, [X+, Y+]〉 = 〈J+
Z+

X+, Y+〉 and 〈Z−, [X−, Y−]〉 = 〈J−

Z−

X−, Y−〉

for all Z+ ∈ z+ and Z− ∈ z−, provide on n+ and n− a structure of H-type Lie algebra.

We have introduced a bracket on the linear spaces gu, n+, and n−. These spaces by

construction are Lie algebras. Furthermore, we have defined the brackets of a vector lying

in gu with a vector lying in w by (3.3). It remains to define the bracket of a vector in v+

with a vector in v− = θv+. This will be done in the next section.

4. Construction of real rank one simple Lie algebras. Assume according to

Theorem 2.3 that n, which is equal to gα for Σ = {±α} and to gα⊕g2α for Σ = {±α,±2α},

satisfies the J2-condition. Let d denote the multiplicity of 2α. By Corollary 2.5 it follows

that d ∈ {0, 1, 3, 7}, with d = 0 for Σ = A1.

Let X,Y ∈ v+. We distinguish the cases Σ = A1 and Σ = BC1, and define the bracket

of X and θY by (2.3) and (2.4). For Σ = A1, let ΦXY ∈ End (v+) be defined by

(4.1) ΦXY W =
1

2
〈W,X〉Y −

1

2
〈W,Y 〉X −

1

2
〈X,Y 〉W.

For Σ = BC1, let ΦXY ∈ End (v+) be defined by

ΦXY W =
1

2
〈W,X〉Y −

1

2
〈W,Y 〉X −

1

2
〈X,Y 〉W(4.2)
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+
1

2
J[X,Y ]W +

1

2
J[X,W ]Y +

1

2
J[W,Y ]X.

To extend ΦXY to w we require that

(4.3) ΦXY θ = θΦXY .

Observe that ΦXX is proportional to σ and that for all orthogonal vectors X,Y in v+

(4.4) ΦXY σ = σΦXY .

By means of the following result we shall extend ΦXY to a derivation of the Lie algebras

n+ and n−.

4.1. Proposition. (1) Let Z ∈ g2α and X,Y ∈ gα. Then,

(4.5) ΦXY JZ − JZ ΦXY =

{

0 if Y = λX, with λ ∈ R ,
J[JZY,X] if 〈X,Y 〉 = 0 .

(2) The linear map ΞXY defined by

(4.6) ΞXY W =

{

ΦXY W if W ∈ w ,
[JWY,X ] if W ∈ z+ ,

is a derivation of the generalized Heisenberg algebra n+.

(3) Let also X ′, Y ′ ∈ gα. Then,

(ΞXY ΞX′Y ′ − ΞX′Y ′ ΞXY ) JZ − JZ (ΞXY ΞX′Y ′ − ΞX′Y ′ ΞXY )

= J[
J[JZY ′,X′]Y,X

] − J[
J[JZY ,X]Y

′,X′

].

Remark 1. Here and in the sequel we state results holding for n+ and n− only for n+.

Remark 2. This proposition is the actual converse of Theorem 2.3. Indeed, as we

shall see, it is the property of ΞXY of being a derivation of n+ which guarantees that the

Jacobi identity holds. But ΞXY , which may be defined for any generalized Heisenberg

algebra n+ by (4.2), is a derivation of it only if n+ satisfies the J2-property (this is

essentially the content of Theorem 2.3).

4.2. Lemma. Let A ∈ End (v+) and Z be a unit vector in z. Then

(4.7) [A, JZ ] JZ = −JZ [A, JZ ] .

Proof. Indeed,

[A, JZ ] JZ = A (JZ)
2
− JZ AJZ = −A− JZ AJZ

= (JZ)
2
A− JZ AJZ = −JZ [A, JZ ] .

Proof of Proposition 4.1. We start by proving (1). If d = 0 the statement is trivial. It

is not restrictive to assume that X , Y , and Z are normalized. In the course of the proof

{Z1, . . . , Zk} will always denote an orthonormal set of vectors in g2α. If Y = λX the

assertion follows from (3.4) since ΦXX is proportional to σ. Hence, assume that X and

Y are orthogonal. We first suppose that X and Y lie in distinct modules of C(0, d), that

implies 〈X,Y 〉 = 〈JZX,Y 〉 = 0 for all Z ∈ g2α. By Proposition 2.7 we assume d ≤ 3. We

have by (4.2)

ΦXY J1X =
1

2
J1Y and J1ΦXY X =

1

2
J1Y.
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Hence,

(4.8) [ΦXY , J1]X = (ΦXY J1 − J1ΦXY )X = 0,

which by (4.7) also yields

[ΦXY , J1] J1X = 0,

proving in particular (4.5) for d = 1. If d ≥ 3, suppose first W = J2X . Using Lemma 2.2

to express J1J2X as J[X,J1J2X]X and (4.8), one finds

ΦXY J1J2X =
1

2
J1J2Y and J1ΦXY J2X =

1

2
J1J2Y,

which, as required, provides

[ΦXY , J1] J2X = 0.

Similarly, one proves that

[ΦXY , J1] JZY = 0 for any Z ∈ g2α.

Moreover, if 〈X,W 〉 = 〈JZX,W 〉 = 〈Y,W 〉 = 〈JZY,W 〉 = 0 for all Z ∈ g2α, the identity

[ΦXY , J1]W = 0 is trivial

Suppose now Y = J1X . We shall show that

(4.9) [ΦXJ1X , J1] = 0,

and that

(4.9′) [ΦXJ1X , J2] = −J3,

where Z3 is uniquely determined by

(4.10) J1J2J3X = X,

proving (4.5).

We start by discussing the case in which W is orthogonal to RX ⊕ JzX . Then

ΦXJ1XJZW =
1

2
J1JZW and JZΦXJ1XW =

1

2
JZJ1W.

Therefore,

[ΦXJ1X , JZ ]W = J1JZW + 〈Z,Z1〉W,

which implies (4.9) and (4.9′) (for W orthogonal to RX ⊕ JzX).

We prove (4.9) and (4.9′) for W ∈ RX ⊕ JzX . For the first, we have, for W = X ,

ΦXJ1XJ1X =
1

2
J1X and J1ΦXJ1XX =

1

2
J1X,

which imply [ΦXJ1X , J1]X = 0. Then by (4.7) we also obtain [ΦXJ1X , J1]J1X = 0. Now

consider W = J2X ,

ΦXJ1XJ1J2X =
1

2
J1J1J2X +

1

2
[X, J3X ]J1X +

1

2
J[J1J2X,J1X]X =

1

2
J2X,

by (4.10) and (1.7), and

J1ΦXJ1XJ2X =
1

2
J1J1J2X +

1

2
J1J2J1X +

1

2
J1J[J2X,J1X]X =

1

2
J2X,

where we used (1.5) and J1J[J2X,J1X]X = J1J[J2X,J3J2X]X = J1J3X = J2X . Hence,

[ΦXJ1X , J1] J2X = 0, concluding the proof of (4.9).
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Consider now the relation (4.9′). We have, for W = X ,

ΦXJ1XJ2X =
1

2
J1J2X +

1

2
J2J1X +

1

2
J[J2X,J1X]X =

1

2
J3X,

by (4.10) and (1.7), and

J2ΦXJ1XX =
1

2
J2J1X +

1

2
J2J[X,J1X]X +

1

2
J2J[X,J1X]X =

3

2
J3X,

which yields

[ΦXJ1X , J2]X = −J3X.

It also follows from (4.7) that

[ΦXJ1X , J2] J2X = −J3J2X = −J1X.

Then consider W = J3X ,

ΦXJ1XJ2J3X = −ΦXJ1XJ1X =
3

2
X,

and

J2ΦXJ1XJ3X =
1

2
J2J1J3X +

1

2
J2J3J1X +

1

2
J2J[J3X,J1X]X =

1

2
X.

These relations yield

[ΦXJ1X , J2] J3X = X = −J3J3X,

which by (4.7) implies

[ΦXJ1X , J2]J1X = − [ΦXJ1X , J2]J2J3X = −J3J1X,

completing the discussion of the case d ≤ 3.

For d = 7, we show that

[ΦXJ1X , J2] J4X = −J3J4X.

Let Z5 ∈ g2α be given by J2J4X = J5X , then, using (1.7),

ΦXJ1XJ2J4X = ΦXJ1XJ5X =
1

2
J1J5X +

1

2
J5J1X +

1

2
J[J5X,J1X]X =

1

2
J6X,

where Z6 satisfies J5X = J1J6X . On the other hand, by Lemma 2.2,

J2ΦXJ1XJ4X =
1

2
J2J1J4X +

1

2
J2J4J1X +

1

2
J2J[J4X,J1X]X

=
1

2
J2J4J1X =

1

2
J1J5X = −

1

2
J6X.

Thus
[ΦXJ1X , J2]J4X = J6X = −J1J5X = J4J1J5J4X = −J4J1J2X

= J4J3X = −J3J4X,

as required. Then (2) follows from (1) by Proposition 1.1.

The proof of (3) is an easy and straightforward computation. By (4.5) it follows that

ΞXY ΞX′Y ′ JZ = ΞXY

(

JZ ΞX′Y ′ + J[JZY ′,X′]

)

=
(

JZ ΞXY + J[JZY ,X]

)

ΞX′Y ′ + ΞXY J[JZY ′,X′]

= JZ ΞXY ΞX′Y ′ + J[JZY ,X] ΞX′Y ′ + ΞXY J[JZY ′,X′],
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from which, since

J[JZY ,X] ΞX′Y ′ + ΞXY J[JZY ′,X′] − J[JZY ′,X′] ΞXY − ΞX′Y ′ J[JZY ,X]

= J[J[JZY ′,X′]Y,X] − J[J[JZY ,X]Y
′,X′],

one obtains the result.

4.3. Corollary. If 〈X,Y 〉 = 0,

ΦXY (QZ ± PZ)− (QZ ± PZ) ΦXY = Q[JZY,X] ± P[JZY,X].

Proof. The assertion follows from Proposition 4.1 by (3.4).

Let m be the Lie algebra generated in End (w) by the set

(4.11) {ΞXY : X,Y ∈ v+, 〈X,Y 〉 = 0} .

From Proposition 4.1 (3) it follows that m consists of skew-symmetric derivations of n+,

or n−. In the next section we shall prove that m is actually the linear span of the set

described by (4.11). Define for Σ = A1 and Σ = BC1

ad [X, θY ] = − ad [θY,X ] = ΞXY ,

by

[[X, θY ] , V ] = − [V, [X, θY ]] = ΞXY V for V ∈ w and

[[X, θY ] , V ] = − [V, [X, θY ]] = ΞXY V − V ΞXY for V ∈ gu +m.

Abusing notations we shall denote by m also the space spanned by the brackets [X, θY ].

Recalling (3.3) with these notations Corollary 4.3 may be restated as

(4.12) [[X, θY ] , Z] = [JZY,X ] and [[X, θY ] , θZ] = θ [JZY,X ] ,

the second relation follows from the first by (4.3). If 〈X,Y 〉 = 0, since ΞXY = −ΞYX ,

[X, θY ] = [θX, Y ] .

We therefore extend Θ to gu +m setting

Θ [X, θY ] = [X, θY ] .

Set

g = w⊕ (gu +m) = w⊕ gu ⊕m⊥,

and extend θ to a linear map, also denoted θ, on g putting

θ|gu+m = Θ.

Now g is endowed with a skew-symmetric product [·, ·]. We shall see shortly that g with

the bracket introduced in this and the previous section is a simple Lie algebra, but first

we say something more about m.

4.4. Proposition. Let Z1, Z2 be orthogonal unit vectors in z+. Then for all unit X

in v+,

(4.13) ad [Z1, θZ2] = ΞXJ1J2X + ΞJ1XJ2X = −ΞXJ3X + ΞJ1XJ2X ,

where Z3 in z+ satisfies J1J2J3X = X. In particular, mu (defined by (3.2)) is a subalgebra

of m.



REAL RANK ONE SIMPLE LIE ALGEBRAS 245

Proof. The proof is an easy and straightforward calculation which makes use of

Lemma 2.2.

By (4.13) Formula (1.10) holds in g.

Let m⊥ be the orthogonal complement of mu with respect to the trace (of a linear

endomorphism of w) in m. It is easy to see that m⊥ is the algebra of the skew-symmetric

linear endomorphisms of w which commute with the action of C (d+ 2, 0). In general, m⊥

is not trivial. In particular, this is the case when w is a reducible module of C (d+ 2, 0).

Indeed, let

(4.14) w = w1 ⊕ . . .⊕wn,

where w1,w2, . . . ,wn are irreducible modules of C (d+ 2, 0). Then for any pair (a, b) of

distinct elements of {1, . . . , n}, if Xa ∈ wa and Xb ∈ wb, ΞXaXb
lies in m⊥ by (4.6) since

[Xa, JZXb] = 0 for all Z ∈ z+. Put

(4.15) m0 = span {ΞXaXb
: a, b ∈ {1, . . . , n} and a 6= b} .

It is easy to see that m0 is isomorphic to so (n), the Lie algebra of all skew-symmetric

linear endomorphisms of Rn.

4.5. Theorem. To any pair (d, k) in {(0, n), (1, 2n), (3, 4n), (7, 8) : n ∈ N} there cor-

responds exactly one simple Lie algebra g with dim g2α = d and dim gα = k.

Proof. We prove that g is a Lie algebra showing that the Jacobi identity is satisfied,

i.e. that

(4.16) [[V1, V2] , V3] = [[V1, V3] , V2] + [V1, [V2, V3]] holds for all V1, V2, V3 in g.

This is implicit in the discussions made in this and the previous section. In fact, gu +m,

n+, and n− are Lie algebras by Theorem 3.2 and Theorem 3.4. Since w is a representation

space for the Lie algebra gu+m, (4.16) with V1, V2 in gu+m and V3 in w is automatically

true. Since by Proposition 4.1 m is a space of derivations of n+ and n−, (4.16) holds for

V3 in m and V1, V2 in v+, or V1, V2 in v−. Finally, (4.16) with V1, V3 in v+ (or V1, V3 in

v−) and V2 in v− (V2 in v+), is equivalent to

ΦV1V2
V3 +ΦV2V3

V1 = 0,

for Σ = A1, and to

ΦV1V2
V3 + J[V3,V1]V2 +ΦV2V3

V1 = 0,

for Σ = BC1. Both these identities follow from (4.1) and (4.2) with straightforward

computations.

The construction we have outlined uniquely determines [·, ·]. Therefore, any given sim-

ple Lie algebra of real rank one coincides with one of our algebras (g, [·, ·]) by Theorem 2.3,

Proposition 1.4, and Proposition 2.1.

To prove that g is simple, let h be a non-trivial ideal in g. If σ lies in h, g ⊂ [σ, g] ⊂ h

proving the assertion. If there is a non-trivial V in h which lies in one of the subspaces

z+, z−, v+, or v−, then [θV, V ] is proportional to σ which thus belongs to h, and h ⊂ g

by the previous observation. Otherwise, take a non-trivial U in h. If Σ = A1, for any
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non-zero X in v+ there is an integer k such that

V = (adX)
k
U 6= 0 and (adX)

k+1
U = 0.

Thus, V lies in v+ and h implying the assertion. Similarly, if Σ = BC1, for any non-zero

Z in z+ there is an integer k such that

V = (adZ)
k
U 6= 0 and (adZ)

k+1
U = 0.

Therefore, V belongs to n+ = v+⊕ z+. When V lies in z+, or in v+, the assertion follows.

Otherwise, V = X + Z ′ with X ∈ v+ and Z ′ ∈ z+ both non-trivial. We have

h ∋ [[θZ, Z] , V ] = ‖Z‖2 (2Z ′ +X) .

Hence, ‖Z‖2Z ′ = [[θZ, Z] , V ]− ‖Z‖2V ∈ h \ {0}, and the proof continues as above.

In the decomposition of g in spaces of restricted roots with respect to a = Rσ, z+ and

z− correspond to the root spaces g2α and g−2α, respectively, and v+ and v− to gα and

g−α. Moreover, g0 = Rσ ⊕m.

5. Derivations of n+. In this section we give some further details on the construction

of simple Lie algebras of real rank one with the task of proving that m is the algebra of

skew-symmetric derivations of n+ and n−. We shall obtain this result discussing the way

in which m splits into the direct sum of mu and m⊥.

Recall that d is the multiplicity of g2α and that a real Clifford algebra has, up to

equivalences, one irreducible module, or two irreducible modules of the same dimension.

We shall indicate the real linear space supporting the irreducible modules of C (d+ 2, 0)

with w′.

5.1. d = 0. Since C(2, 0) ≃ R(2), the algebra of 2 × 2 real matrices, w′ = R2 and

w = R2n. Being d = 0, z+ and z− are trivial. Therefore, gu reduces to Rσ and m to

m⊥. Furthermore, since the algebra of linear endomorphisms of w′ that commute with

the action of C (2, 0) is R (≃ C (0, 0)), m⊥ = m coincides with m0 which, as already noted

after (4.15), is isomorphic to so(n). Hence,

g = w⊕ Rσ ⊕m0.

To handle the case d > 0 we keep in mind the following formulæ holding for X ∈ v+

and Z ∈ z+

J+
Z X = JZX = (PZ +QZ) θX = [Z, θX ](5.1)

J−

θZθX = JθZθX = (PZ −QZ) θX = θ (PZ +QZ) X = θ [Z, θX ] .

We first consider the case w = w′, in which for any non-zero X in v+

(5.2) v+ == RX ⊕ {JZX : Z ∈ z+} .

5.2. d = 1. Since C(3, 0) ≃ C(2), the algebra of 2× 2 complex matrices, w′ = R
4. Fix

a unit vector Z in z+, then z+ = RZ and z− = RθZ. Since dim v+ = 2, picking a unit

vector X in v+, one obtains

v+ = span {X, JZX} and v− = span {θX, θJZX} .
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The algebra of linear endomorphisms of w′ commuting with the action of C (3, 0) is

C ≃ C (0, 1). A generator of this algebra is given by λ = −γ1 γ2 γ3. Hence, m
⊥ = Rλ.

Since X ∈ v+ from Lemma 3.3 (1) it follows that

λX = QZ θ σX = QZ θX = JZX.

The relations

(5.3) ad [X, θJZX ] = − ad [θJZX,X ] =
3

2
JZ =

3

2
λ

follow easily from (4.5) and (4.2).

5.3. d = 3. Since C(5, 0) ≃ H(2) ⊕ H(2), where H(2) is the algebra of 2 × 2 matrices

with quaternionic entries, w′ = R8. Fix an orthonormal basis {Z1, Z2, Z3} of z+. Then

{θZ1, θZ2, θZ3} is an orthonormal basis of z−. Since J1J2J3 is symmetric and (J1J2J2)
2 =

I, J1J2J3 has eigenvalues ±1. By formulæ (2) in Lemma 3.3 J1J2J3 commutes with σ and

anti-commutes with θ. Therefore, without loss of generality we can assume that J1J2J3
restricted to v+ is the identity and restricted to v− minus the identity. Pick a unit vector

X in v+. Since dim v+ = 4 one obtains

v+ = span {X, J1X, J2X, J3X} and v− = span {θX, θJ1X, θJ2X, θJ3X} .

The algebra m⊥ of skew-symmetric linear endomorphisms of w′ commuting with C (5, 0)

is H ≃ C (0, 2). Let {λ1, λ2} ⊂ End (w′) be defined by

(5.4) λi θ = θ λi, λi X = JiX, and

λi JkX = Jk JiX for i = 1, 2 and k = 1, 2, 3.

Then {λ1, λ2} is a set of generators of m⊥ which satisfy

λa λb + λb λa = −δabI and λa γi = γi λa a, b = 1, 2 and i = 1, . . . , 5.

Set also λ3 = λ1λ2, then

(5.5) λ3X = λ1λ2X = λ1J2X = J2J1X = J3X,

and m⊥ = span {λ1, λ2, λ3} ≃ C(0, 2) ≃ H. From (4.2) (see Appendix A.2) one obtains

ad [X, θJiX ] = − ad [θJiX,X ](5.6)

=
1

2

(

λi −
1

2

3
∑

j,k=1

ǫijk ad [Zj , θZk]

)

i = 1, 2, 3,

where ǫijk is defined in Appendix A.2, and, using also (4.13),

ad [JiX, θJkX ] = − ad [θJiX, JkX ](5.6′)

=
1

2

(

ad [Zi, θZk] +

3
∑

l=1

ǫikl λl

)

i, k = 1, 2, 3.

Using the second of the (A.2.2)’s to find λi from (5.6′) and summing the result to (5.6)

one obtains

(5.7) λi = [X, θJiX ] +
1

2

3
∑

j,k=1

ǫijk [JjX, θJkX ] .
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5.4. d = 7. Since C(9, 0) ≃ R(16) ⊕ R(16), w′ = R16. The algebra m⊥ of skew-

symmetric linear endomorphisms of w′ commuting with the action of C(9, 0) is trivial.

Therefore m = mu, according to Theorem 2.10. Hence,

g = w′ ⊕ gu.

Fix a unit vector X in v+ and a unit vector Z1 in z+. We shall write [X, θJ1X ] as a

linear combination of elements of mu. There is an orthonormal basis {Z1, . . . , Z7} of z+
such that

(5.8) J1J2J3X = J1J4J5X = J1J6J7X = X,

which implies

J1 . . . J7X = −X.

Let

M1 = [X, θJ1X ] + [J2X, θJ3X ] .

From (5.8) one obtains

M1 = − [X, θJ2J3X ] + [J2X, θJ3X ] ,

and from (4.13)

(5.9) M1 = [Z2, θZ3] + 2 [X, θJ1X ] = − [Z2, θZ3] + 2 [J2X, θJ3X ] .

By (5.8) it follows from (4.12) and Proposition 4.1, or alternatively using the Jacobi

identity (which holds in g by Theorem 4.5), that

[M1, Zi] = 0 for i = 1, 2, 3,

and that

[M1, Z4] = −2Z5, [M1, Z5] = 2Z4, [M1, Z6] = −2Z7, [M1, Z7] = 2Z6.

Therefore,

M1 = − [Z4, θZ5]− [Z6, θZ7] ,

from which we deduce by (5.9)

[X, θJ1X ] = −
1

2
[Z2, θZ3]−

1

2
[Z4, θZ5]−

1

2
[Z6, θZ7] ,

and also

[J2X, θJ3X ] =
1

2
[Z2, θZ3]−

1

2
[Z4, θZ5]−

1

2
[Z6, θZ7] .

We now discuss the algebras in which w is a reducible module of C(d+ 2, 0) and d is

not zero. According to Theorem 2.10 we assume d = 1, 3. The following result describes

the action of m on w.

5.1. Proposition. Consider the decomposition (4.14) of w and let Xa be a unit vector

in wa. If a 6= b,

(5.10) [[Xa, θXb] , JZXc] = JZ [[Xa, θXb] , Xc] =
1

2
δacJZXb −

1

2
δbcJZXa.



REAL RANK ONE SIMPLE LIE ALGEBRAS 249

Proof. The assertion follows from Proposition 4.1 since [Xa, JZXb] = 0 for all Z

in g2α.

In the next theorem we prove that in real rank one simple Lie algebras the subalgebra

m coincides with the space of skew-symmetric derivations of the generalized Heisenberg

algebra n+, a result which is far from being true in higher rank (see [C1] and [CC]).

5.2. Theorem. m coincides with D (n+) = D+, the algebra of all skew-symmetric

derivations of n+.

Proof. By Proposition 4.1 ΞXY is a derivation of n+ for any pair (X,Y ) of orthogonal

vectors in v+. Clearly, if X and Y are orthogonal ΞXY is skew-symmetric and thus lies

in D+.

For the converse, observe that Dz+ , the algebra of skew-symmetric derivations which

are non-trivial on z+, is equal to mu by Proposition 1.1 (2). Let D ∈ D+. By Proposi-

tion 1.1 there is a derivation D′ in Dz+ such that D −D′ ∈ D0. Pick a unit vector X in

v+, then

D′X = JZ̄X + Y,

for some Z̄ ∈ z+ and some Y ∈ v+ orthogonal to X and JZX for all Z ∈ z+, by (5.2).

Clearly, [X, θY ] belongs to the subalgebra m0 defined by (4.15). Moreover,

(D′ − 2 ad [X, θY ])X = JZ̄X and (D′ − 2 ad [X, θY ])JZX = JZJZ̄X

for Z ∈ z+. Hence, denoting by D′′ the restriction of D′ − 2 ad [X, θY ] to RX ⊕ JzX , D′′

is a linear map of RX ⊕ JzX into itself commuting with the action of C (0, d). Therefore,

D′′ is a linear combination of the λi’s. It follows from (5.3), (5.6), and (5.7) that D′′ lies

in m (actually, D′′ ∈ m⊥), proving the statement.

From this theorem and Proposition 4.1 (3) one immediately obtains the following

result.

5.3. Corollary.

m = span {ΞXY : X,Y ∈ v+, 〈X,Y 〉 = 0} .

A.1. Appendix. In this appendix we are concerned with a generalized Heisenberg

algebra n = v⊕ z with inner product 〈·, ·〉, centre z of dimension d, and v = z⊥.

A.1.1. Proposition. If n satisfies the J2-condition, then d belongs to {0, 1, 3, 7}.

Proof. Observe that by the J2-condition if X is a vector in v and Z1, Z2 are orthogonal

unit vectors in z such that

〈JZX, J1J2X〉 = 0 for all Z in z,

then X = 0. We prove the proposition showing by the following two lemmas that this

property (which is trivial for d = 0, 1) does not hold if d is not in {0, 1, 3, 7}.

A.1.2. Lemma. Let d ∈ {2, 4, 5, 11} and let {Z1, . . . , Zd} be an orthonormal basis of

z. Then there is a unit vector X ∈ v satisfying

(A.1.1) 〈J1J2X, JZX〉 = 0 for all Z ∈ z.
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Proof. For d = 2, if Z = aZ1 + bZ2, we have

〈Z, [X, J1J2X ]〉 = 〈JZX, J1J2X〉 = a 〈X, J2X〉 − b 〈X, J1X〉 = 0.

For d = 4, let

ǫ = J1J2J3J4.

Then ǫ is symmetric and ǫ2 = I. Therefore, there is a unit X ∈ v such that ǫX = ±X .

Assume to fix ideas that ǫX = X . Since ǫ anticommutes with JZ for any Z 6= 0 in z, we

have

ǫJiX = −JiX and ǫJiJkX = JiJkX for i, k ∈ {1, 2, 3, 4},

from which it follows

〈JiJkX, JlX〉 = 0,

yielding (A.1.1).

For d = 5, let

φ = J1J2J3J4 and η = J2J4J5.

Then φ and η are symmetric, commute, and φ2 = η2 = I. Hence, there is a unit vector

X in v such that φX = ηX = X . As in the previous case it follows that

〈J1J2X, JiX〉 = 0 for i ∈ {1, . . . , 4}.

Moreover, since ηJ1J2X = −J1J2X and ηJ5X = J5X , we also have

〈J1J2X, J5X〉 = 0.

For d = 11, let

µ = J1J3J5J7 and ν = J2J4J6J8.

Note that µ and ν are symmetric, commute, and µ2 = ν2 = I. Hence, there is a unit

vector X in v satisfying

µX = νX = X.

Call L, M , and N the linear spans of {Z9, Z10, Z11}, {Z1, Z3, Z5, Z7}, and {Z2, Z4, Z6,

Z8}, respectively. We have

(A.1.2) µJ1J2X = −J1J2X and νJ1J2X = −J1J2X.

Therefore, since Z ∈ L yields

µJZX = JZµX = JZX,

one obtains by (A.1.2)

〈JZX, J1J2X〉 = 0 for all Z ∈ z.

Similarly, since Z ∈ M implies

νJZX = JZνX = JZX,

it follows from (A.1.2) that JZX is orthogonal to J1J2X . Finally, the same argument with

µ in place of ν shows that JZX is orthogonal to J1J2X for Z in N yielding (A.1.1).

A.1.3. Lemma. Let d = m+ 4, m ≥ 2. If

〈J1J2X, JiX〉 = 0 for all i ∈ {1, . . . ,m},
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then

〈J1J2X, JiX〉 = 0 for all i ∈ {1, . . . ,m+ 4}.

Proof. Set

χ = Jm+1Jm+2Jm+3Jm+4.

It is clear that χ is symmetric and that χ2 = I. As before there is a unit vector X ∈ v

satisfying χX = X . Since

Jiχ = χJi for i ∈ {1, . . . ,m},

it follows that

χJ1J2X = J1J2X,

from which, as

Jiχ = −χJi for i ∈ {m+ 1, . . . ,m+ 4},

one obtains

〈J1J2X, JiX〉 = 0 for i ∈ {1, . . . ,m+ 4}.

A.2. Appendix. We compute the brackets in n+ for d = 3. Let {Z1, Z2, Z3} be an

orthonormal basis of z and X ∈ v a unit vector satisfying

(A.2.1) J1J2J3X = X.

To get compact formulæ, it is useful to introduce the tensor ǫijk which is by definition

invariant under circular permutations of the indexes and satisfies ǫ123 = −ǫ213 = 1,

ǫiij = 0, i, j ∈ {1, 2, 3}. The symbol ǫijk satisfies the identities

(A.2.2)

3
∑

m=1

ǫijm ǫmkl = δik δjl − δil δjk. and

3
∑

l,m=1

ǫilm ǫlmj = 2δij .

Now, using the first of the (A.2.2)’s, it is easy to see that

(A.2.3) JiX = −
1

2

3
∑

m=1

ǫimn JmJnX and JiJkX = −δik X −

3
∑

m=1

ǫikm JmX,

from which it follows

(A.2.4) JiJkJlX = δil JkX − δki JlX − δkl JiX + ǫikl X.

From (A.2.3) one obtains

(A.2.5) [X, JlJkX ] = −

3
∑

i=1

ǫilk Zi l, k ∈ {1, 2, 3}.

Moreover, since

〈Zl, [JiX, JkX ]〉 = 〈JlJiX, JkX〉 = −〈JkJlJiX,X〉 = −ǫkli,

it follows that

(A.2.6) [JiX, JkX ] = −

3
∑

l=1

ǫikl Zl l, k ∈ {1, 2, 3},

which, according to Lemma 2.2, is equal to [X, JiJkX ].
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