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Abstract. In this article we present a geometric norm equality for an irreducible homoge-

neous Siegel domain D that leads us to the equivalence between the commutativity of Berezin
transforms with the Laplace-Beltrami operator and the symmetry of D.

Introduction. Homogeneous Siegel domains, being holomorphically equivalent to

bounded domains, have attracted numerous researchers since the first Russian publica-

tion of Pjatetskii-Shapiro’s book [23] in 1961. This class of domains contains Hermitian

symmetric spaces, which immediately makes it an interesting problem to characterize

symmetric domains among homogeneous Siegel domains. Characterizations in terms of

the defining data of the domain are given by Satake’s book [26, Theorem V.3.5] and

a paper by Dorfmeister [6, Theorem 3.3]. A differential geometric criterion is found in

[5]. Commutativity of the algebra of invariant differential operators is also a distinctive

feature of symmetric Siegel domains by [4], in which paper several others are presented

issuing out of a detailed study of the isotropic representation. In this article we report

one another characterization obtained by the present author in [19], which states that

commutativity of Berezin transforms with the Laplace-Beltrami operator is equivalent to

the symmetry of the domain.

Let D be an irreducible homogeneous Siegel domain and G the split solvable Lie

group acting simply transitively on D. The group manifold G being diffeomorphic with

D, our analysis will be done on G rather than on D. The Lie algebra g of G has a

structure of normal j-algebra by [23]. Thus there is a linear form ω ∈ g
∗ such that

〈x | y 〉ω := 〈[Jx, y], ω〉 defines a real inner product on g, where J is the almost complex

structure attached to the normal j-algebra structure of g. The inner product 〈 · | · 〉ω
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defines a left invariant Riemannian structure on G, through which we have the Laplace-

Beltrami operator Lω on G. On the other hand, Berezin transforms Bλ, when transferred

to operators on L2(G), are convolution operators by functions aλ from the right (see

(2.2)). Let Ψ ∈ g be the element for which 〈X |Ψ 〉ω = tr (adX) holds for all X ∈ g. The

key formula to our study of the commutativity for Bλ and Lω is the following:

Lωaλ(g) = λaλ(g)
(
−λ ‖C(g · e)‖2ω + 〈Ψ, α〉

)
(g ∈ G),

where α is some linear form on g, C the Cayley transform introduced in [17] that is defined

through the Bergman kernel of D, and e ∈ D the reference point specified in (1.4) (see

Proposition 2.4 for the precise statement). From this formula we deduce that the Berezin

transforms Bλ commute with Lω if and only if

‖C(g · e)‖ω = ‖C(g−1 · e)‖ω

holds for any g ∈ G. Investigation of this norm equality is presented in section 3 of this

article. Actually the validity of this norm equality for any g ∈ G is equivalent to the

symmetry of D (and the reduction of ω essentially to the Koszul form). This is the main

theorem in [18]. The proof requires not only a lot of calculations but also the result due

to D’Atri and Dotti Miatello [5] concerning a characterization of quasisymmetric Siegel

domains and the above-mentioned works done by Satake and Dorfmeister.

1. Preliminaries

1.1. Normal j-algebras. Since every homogeneous Siegel domain is described by

means of normal j-algebra (see the book [23], the paper [25] or the lecture notes [24]),

we begin this article with the definition of normal j-algebra. A triple (g, J, ω) of a split

solvable Lie algebra g, a linear operator J on g with J2 = −I and a linear form ω ∈ g
∗

is called a normal j-algebra if the following two conditions are satisfied:

[Jx, Jy] = [x, y] + J [Jx, y] + J [x, Jy] (for all x, y ∈ g),(1.1)

〈x | y 〉ω := 〈[Jx, y], ω〉 defines a J-invariant inner product on g.(1.2)

Linear forms ω ∈ g
∗ satisfying (1.2) are said to be admissible. Throughout this article

we fix one admissible linear form. Let (g, J, ω) be a normal j-algebra. Let n := [g, g] be

the derived algebra of g, and a the orthogonal complement of n in g relative to the inner

product 〈 · | · 〉ω . We note that a is independent of the choice of the admissible linear form.

We have g = a + n. We know that a is a commutative subalgebra of g such that ad(a)

consists of semisimple operators on g. We have a simultaneous eigenspace decomposition

g = a+
∑

α∈∆ nα, where

nα := {x ∈ n ; [h, x] = 〈h, α〉x for all h ∈ a},

and the finite set ∆ ⊂ a
∗ is described shortly. The dimension r := dim a is called the

rank of the normal j-algebra. One can choose a basis H1, . . . , Hr of a such that if we

set Ej := −JHj , then [Hj , Ek] = δjkEk. Let α1, . . . , αr be the basis of a
∗ dual to

H1, . . . , Hr. Then elements of ∆, which we call the roots of g, are of the following form
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(not all possibilities need occur):

1
2 (αm + αk) (1 ≦ k < m ≦ r), 1

2 (αm − αk) (1 ≦ k < m ≦ r),

1
2αk (1 ≦ k ≦ r), αk (1 ≦ k ≦ r).

Moreover we have nαk
= REk. Put

H := H1 + . . .+Hr, E := E1 + . . .+ Er.

With g(1/2) :=
∑r

1 nαi/2 and

g(0) := a⊕
∑

m>k

n(αm−αk)/2, g(1) :=

r∑

1

nαi
⊕

∑

m>k

n(αm+αk)/2,

we have the eigenspace decomposition g = g(0) + g(1/2) + g(1) of ad (H), which gives a

gradation [ g(i), g(j) ] ⊂ g(i + j), where we understand g(i) = 0 for i > 1. Furthermore

we have

Jn(αm−αk)/2 = n(αm+αk)/2 (m > k), Jnαi/2 = nαi/2 (1 ≦ i ≦ r),

so that Jg(0) = g(1) and Jg(1/2) = g(1/2). We remark here that

JT = −[T,E] (T ∈ g(0)), JTji = −[Tji, Ei] (Tji ∈ n(αj−αi)/2).

The following is a list of constants used in this article:

nmk := dimR n(αm−αk)/2 = dimR n(αm+αk)/2 (1 ≦ k < m ≦ r),

pj :=
∑

k>j

nkj , qj :=
∑

i<j

nji (1 ≦ j ≦ r),

bj :=
1

2
dimR nαj/2, dj := 1 +

1

2
(pj + qj) (1 ≦ j ≦ r),

ωk := 〈Ek, ω〉 = ‖Ek‖
2
ω > 0 (1 ≦ k ≦ r).

(1.3)

1.2. Homogeneous Siegel domains. Let (g, J, ω) be a normal j-algebra, and G = exp g

the corresponding connected and simply connected Lie group. We denote by G(0) the

subgroup exp g(0) of G. The group G(0) acts on V := g(1) by adjoint action. Let Ω :=

G(0)E, the G(0)-orbit through E. By [25, Theorem 4.15] Ω is a regular open convex cone

in V , and G(0) acts on Ω simply transitively. On the other hand, the subspace g(1/2) is

invariant under J , so that we consider it as a complex vector space U by means of −J .

We put W := VC, the complexification of V . The conjugation of W relative to the real

form V is written as w 7→ w∗. The real bilinear map Q defined by

Q(u, u′) :=
1

2

(
[Ju, u′]− i[u, u′]

)
(u, u′ ∈ g(1/2))

turns out to be a complex sesqui-linear (complex linear in the first variable and antilinear

in the second) Ω-positive Hermitian map U × U → W . The Siegel domain D = D(Ω, Q)

corresponding to these data is defined to be

D := {(u,w) ∈ U ×W ; w + w∗ −Q(u, u) ∈ Ω}.

Throughout this article, we assume that D is irreducible.

Consider the nilpotent Lie subalgebra nD := g(1) + g(1/2), and the corresponding

connected and simply connected nilpotent subgroup ND := exp nD of G. Elements of ND
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are written as n(a, b) (a ∈ g(1), b ∈ g(1/2)). The group operation is described as follows:

n(a, b)n(a′, b′) = n(a+ a′ − ImQ(b, b′), b + b′).

The group ND acts on D by

n(a, b) · (u,w) =
(
u+ b, w + ia+ 1

2Q(b, b) +Q(u, b)
)

((u,w) ∈ D).

On the other hand, the adjoint action of G(0) on g(1/2) commutes with J , that is,

G(0) acts on U complex linearly. Moreover the adjoint action of G(0) on V = g(1)

extends complex linearly to W , so that G(0) acts on D complex linearly. In this way

G = ND ⋊G(0) acts on D simply transitively. As a base point of D we fix

e := (0, E).(1.4)

We have a surjective diffeomorphism ψ : G→ D by ψ(g) := g · e.

Let us put A := exp a and set for t = (t1, . . . , tr) ∈ Rr

at := exp(t1H1 + . . .+ trHr) ∈ A.

For every s = (s1, . . . , sr) ∈ Rr, let χ
s
be the one-dimensional representation of A de-

fined by χ
s
(at) = exp

(∑
k sktk

)
. We put n0 :=

∑
m>k n(αm−αk)/2. It is a nilpotent Lie

subalgebra of g(0), and we have n = n0 + nD. Let N0 := exp n0 and N := exp n. Clearly

G = N ⋊A and G(0) = N0 ⋊A. We extend χ
s
to a one-dimensional representation of G

by defining χ
s
(n) = 1 for n ∈ N . Let us define functions ∆s (s ∈ Rr) on Ω by

∆s(hE) = χs(h) (h ∈ G(0)).

Evidently it holds that ∆s(hx) = χs(h)∆s(x) (h ∈ G(0), x ∈ Ω). Further, we know that

∆s extends to a holomorphic function on the tube domain Ω + iV (cf. for example [13,

Corollary 2.5]).

For h ∈ G(0), let Adg(1)(h) := (Ad h)|g(1). Moreover let AdU (h) stand for the complex

linear operator on U defined by the adjoint action of h ∈ G(0) on g(1/2), and detAdU (h)

its determinant as a complex linear operator. Then, with d := (d1, . . . , dr) and b :=

(b1, . . . , br), we have for h ∈ G(0)

detAdg(1)(h) = χd(h), | detAdU (h) |
2 = χb(h).(1.5)

1.3. Weighted Bergman spaces. By [12, §5] or [26, §II.6], it is known that D has a

Bergman kernel κ. Using the known covariance property of κ together with the simply

transitive action of G on D, we see by (1.5) that

κ(z1, z2) = ∆−2d−b

(
w1 + w∗

2 −Q(u1, u2)
)

(zj = (uj, wj) ∈ D)

up to a positive number multiple. We put η := ∆−2d−b in what follows for simplicity.

Now we introduce an inner product 〈 · | · 〉η on V by

〈 v1 | v2 〉η := Dv1Dv2 log η(E) (v1, v2 ∈ V ),(1.6)

where Dv stands for the directional derivative in the direction v ∈ V : Dvf(x) =

(d/dt)f(x + tv)
∣∣
t=0

. We extend 〈 · | · 〉η to a complex bilinear form on W ×W , which we

still denote by the same symbol. Then we have a Hermitian inner product (w1 |w2)η :=

〈w1 |w
∗
2 〉η on W . On the other hand, it is easy to see that U has a Hermitian inner
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product (· | ·)η given by

(u1 |u2)η := 〈Q(u1, u2) |E 〉η (u1, u2 ∈ U).(1.7)

We denote by dm(w) and dm(u) the Euclidean measures normalized by these inner

products on W and on U respectively. By (1.5), the measure dµ defined by

dµ(u,w) := η(w + w∗ −Q(u, u)) dm(u)dm(w)(1.8)

is a G-invariant measure on D. Let us set for λ ∈ R

dµλ(u,w) := cλ · η(w + w∗ −Q(u, u))−λ+1 dm(u)dm(w),(1.9)

where cλ > 0 is determined shortly. The weighted Bergman space H2
λ(D) is the Hilbert

space of holomorphic functions on D which are square integrable relative to the measure

dµλ. We know by [25, Theorem 4.26] or [13, Theorem 4.8] that H2
λ(D) 6= {0} if and only

if

λ > λ0 := max
1≦k≦r

bk + dk + 1
2 pk

bk + 2dk
.

In view of (1.3), we have 0 < λ0 < 1. If λ > λ0, the Hilbert spaceH
2
λ(D) has a reproducing

kernel κλ (cf. [13, Proposition 4.6]). We choose the constant cλ in such a way that

κλ(z1, z2) = η(w1 + w∗
2 −Q(u1, u2))

λ (zj := (uj, wj) ∈ D).(1.10)

Explicit expression of cλ is not necessary in this article.

1.4. Pseudoinverse map. For every x ∈ Ω we define I(x) ∈ V ∗ by

〈v, I(x)〉 = −Dv log η(x) (v ∈ V ).

The map I is called the pseudoinverse map. By [7, §2], I is a bijection of Ω onto the dual

cone Ω∗ in V ∗, where

Ω∗ :=
{
ξ ∈ V ∗ ; 〈x, ξ〉 > 0 for all x ∈ Ω \ {0}

}
.

The group G(0) acts on V ∗ by the coadjoint action: h · ξ = ξ ◦ h−1, where h ∈ G(0)

and ξ ∈ V ∗. Moreover G(0) acts on Ω∗ simply transitively. It is easy to show that I is

G(0)-equivariant: I(hx) = h ·I(x) (h ∈ G(0), x ∈ Ω). In particular, I(λx) = λ−1I(x) for

all λ > 0. We know that the map I analytically continues to a birational map W →W ∗.

Furthermore I maps the tube domain Ω+ iV biholomorphically onto its image I(Ω+ iV )

(see [17, §2]). We note that in general I(Ω + iV ) * Ω∗ + iV ∗ (see [17, §5]).

1.5. Cayley transform. First we define E∗
1 , . . . , E

∗
r ∈ V ∗ by

〈 r∑

j=1

xjEj +
∑

m>k

Xmk, E
∗
i

〉
= xi (xj ∈ R, Xmk ∈ n(αm+αk)/2).

Elements of V ∗ are canonically considered as elements ofW ∗, the space of complex linear

forms on W . Then for every s = (s1, . . . , sr) ∈ Cr we set

E∗
s
:= s1E

∗
1 + . . .+ srE

∗
r ∈W ∗.

Now we define for w ∈W

C(w) := E∗
2d+b

− 2 I(w + E).
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We have C(w) ∈W ∗ for generic w. It is evident that C is a rational mapW →W ∗ which

is holomorphic on Ω + iV . Let U † denote the space of all antilinear forms on U . We set

for z = (u,w) ∈ U ×W

C(z) :=
(
2 〈Q(u, ·), I(w + E)〉, C(w)

)
.(1.11)

We have C(z) ∈ U † ×W ∗ for generic z. Clearly C is a rational map U ×W → U † ×W ∗.

It should be noted that if z = (u,w) ∈ D, then we have w ∈ Ω + iV , so that C(z)

is holomorphic on D. We shall call C a Cayley transform. This Cayley transform is

introduced in [17] as a slight modification of Penney’s [22]. We know by [17, §3] that the

image C(D) is bounded and that C is a birational map which sends D biholomorphically

onto C(D).

Remark 1.1. In a recent paper [20], the present author has introduced a family of

Cayley transforms Cs defined by the functions ∆−s with sj > 0 for all j = 1, . . . , r in

place of η = ∆−2d−b. The proof given in [20] for the boundedness of Cs(D) is independent

of Penney’s argument unlike the one presented in [17].

2. Berezin transforms

2.1. Berezin transforms as convolution operators. The weighted Bergman space

H2
λ(D) (λ > λ0) is a closed subspace of L2(D, dµλ) and has a reproducing kernel κλ.

Then, associated to H2
λ(D), we can define the Berezin transform BD

λ on the L2-space

over D relative to the measure dµ0(z) := κλ(z, z)dµλ(z) (cf. for example [16]). We note

that the formulas (1.8), (1.9) and (1.10) imply dµ0 = cλ dµ. The Berezin kernel Aλ

associated to H2
λ(D) is given by

Aλ(z1, z2) :=
|κλ(z1, z2)|

2

κλ(z1, z1)κλ(z2, z2)
(z1, z2 ∈ D).

It is G-invariant:

Aλ(g · z1, g · z2) = Aλ(z1, z2) (g ∈ G).(2.1)

The Berezin transform BD
λ is an integral operator on L2(D, dµ0):

BD
λ f(z) =

∫

D

Aλ(z, w)f(w) dµ0(w) (f ∈ L2(D, dµ0)).

BD
λ is a bounded positive selfadjoint operator which is G-invariant by (2.1). Normalizing

the left Haar measure dx on G in such a way that
∫

G

f(x · e) dx =

∫

D

f(z) dµ(z) =
1

cλ

∫

D

f(z) dµ0(z),

we transfer the operator BD
λ to an operator Bλ on L2(G). Put

aλ(g) := Aλ(g · e, e) (g ∈ G).

By (2.1) it is evident that aλ(g) = aλ(g
−1), and the reproducing property of κλ shows

that aλ ∈ L1(G) provided λ > λ0. Then an easy computation leads us to

Bλf(x) = cλ

∫

G

f(y)aλ(y
−1x) dy = cλf ∗ aλ(x) (f ∈ L2(G)).(2.2)
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2.2. Laplace-Beltrami operators. If X ∈ g, we set

Xf(x) :=
d

dt
f
(
exp(−tX)x

)∣∣∣
t=0

, X̃f(x) :=
d

dt
f
(
x (exp tX)

)∣∣∣
t=0

,

where f ∈ C∞(G) and x ∈ G. These two actions of g on C∞(G) are extended to

the universal enveloping algebra U(g) of g by homomorphisms. Let 〈 · | · 〉ω be the inner

product on g that we are working with. This inner product induces a left invariant

Riemannian metric on G, and we have the corresponding Laplace-Beltrami operator Lω.

Though the following lemma holds for any connected Lie group [27, Theorem 1], we write

it down here in our situation.

Lemma 2.1. Take Ψ ∈ g such that 〈X |Ψ 〉ω = tr (adX) holds for all X ∈ g. Then

Lω = −Λ̃ + Ψ̃, where Λ := X2
1 + . . .+X2

2N ∈ U(g) (2N := dimR g) with an orthonormal

basis {Xj}
2N
j=1 of g relative to 〈 · | · 〉ω. Note that Λ remains the same under any change

of orthonormal basis of g.

With the constants in (1.3), it is not difficult to see that the element Ψ in Lemma 2.1

is given by

Ψ =

r∑

j=1

ω−1
j (qj + bj + 1)Hj ∈ a.

Let ϕ be a smooth function on G which is integrable with respect to the left Haar

measure. Consider the following convolution operator Tϕ:

Tϕf(x) :=

∫

G

f(g)ϕ(g−1x) dg = f ∗ ϕ(x).

A standard argument shows that Tϕ is a bounded operator on L2(G). Moreover Tϕ
commutes with left translations.

Proposition 2.2. The operator Tϕ commutes with Lω if and only if

(−Λ̃ + Ψ̃)ϕ = (−Λ +Ψ)ϕ.

This is a statement that generalizes Proposition 4.1 in [19] in an obvious manner, and

the proof given there works in a completely parallel way. If, moreover, ϕ is symmetric,

that is, ϕ(x) = ϕ(x−1) for any x ∈ G, then we get easily X̃ϕ(x) = Xϕ(x−1) for all

X ∈ U(g) and x ∈ G. Therefore

Proposition 2.3. The operator Tϕ with symmetric ϕ commutes with Lω if and only

if

(Λ −Ψ)ϕ(x−1) = (Λ−Ψ)ϕ(x) for any x ∈ G.

2.3. Berezin transforms and Laplace-Beltrami operators. By (2.2) we know that the

Berezin transforms Bλ are of the form Tϕ with symmetric ϕ. In view of Proposition 2.3,

we are led to calculating (Λ − Ψ)aλ. In order to perform the calculation, we note that

(1.10) shows

aλ(nh) := 4|c|λ χ2d+b(h)
λ
∣∣η
(
πW (nh · e) + E

)∣∣2λ (n ∈ ND, h ∈ G(0)),

where πW stands for the projection U ×W →W . To present the formula for (Λ−Ψ)aλ,

we recall the Cayley transform C defined in (1.11), and introduce a norm in U †×W ∗, the
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ambient vector space of the bounded domain C(D). Let ψ : G→ D be the diffeomorphism

ψ(g) = g · e. Its differential dψ : g → U +W at the identity is described as

dψ(T + u+ x) = u+ (−JT + ix) (T ∈ g(0), u ∈ g(1/2), x ∈ g(1)).

Let us regard g as a complex vector space by means of −J . Then, as is easily verified,

dψ is complex linear, that is, dψ(−JX) = i · dψ(X) for all X ∈ g. We equip the complex

vector space (g,−J) with a Hermitian inner product (· | ·)ω defined by

(X |Y )ω := 〈[JX, Y ], ω〉 − i〈[X,Y ], ω〉.

We then transport it to U+W by dψ and get a Hermitian inner product (· | ·)ω on U+W .

Identifying U † +W ∗ with U +W through (· | ·)ω , we get an inner product on U † +W ∗,

which we still denote by (· | ·)ω .

Proposition 2.4 ([19]). With c := 2d+ b = (c1, . . . , cr) one has

(Λ−Ψ)aλ(g) = λaλ(g)
[
λ‖C(g · e)‖2ω − 〈Ψ, αc〉

]
(g ∈ G),

where αc :=
∑

j cjαj ∈ a
∗.

Consequently we arrive at

Proposition 2.5. The Berezin transform Bλ (λ > λ0) commutes with Lω if and only

if ‖C(g · e)‖ω = ‖C(g−1 · e)‖ω holds for any g ∈ G.

3. Symmetry characterization

3.1. Norm equality. Let β ∈ g
∗ be the Koszul form given by

〈x, β〉 := tr (ad (Jx) − J (adx)) (x ∈ g).

It is known by [15, Théorème 1] that 〈[Jx, y], β〉 is the real part of the Hermitian inner

product on g induced by the Bergman metric of D up to a positive multiple. In particular,

β is admissible. By virtue of [18, Lemma 5.2] we know that β|g(1) = E∗
2d+b

. We recall

that the domain D is said to be symmetric if for every z ∈ D, there exists an involutive

holomorphic automorphism σz of D such that z is an isolated fixed point of σz .

Theorem 3.1 ([18]). One has ‖C(g · e)‖ω = ‖C(g−1 · e)‖ω for all g ∈ G if and only if

the following two conditions are satisfied:

(1) D is symmetric,

(2) ω|n is equal to a positive number multiple of β|n.

Since C : D → D := C(D) is biholomorphic with C(e) = 0, the previous theorem can

be rephrased as follows.

Theorem 3.2. One has ‖h · 0‖ω = ‖h−1 · 0‖ω for all h ∈ C ◦G ◦ C−1 if and only if D

is symmetric and ω|n is equal to a positive number multiple of β|n.

Theorem 3.1 together with Proposition 2.5 immediately yields

Theorem 3.3 ([19]). Let λ > λ0 be fixed. Then, Bλ commutes with Lω if and only if

D is symmetric and ω|n is equal to a positive number multiple of β|n.
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3.2. Outline of the proof. The proof of the “only if” part of Theorem 3.1 requires

quite a good deal of computations as well as results due to Satake, Dorfmeister, D’Atri

and Dotti Miatello. We would like to present here its outline. Suppose that we have the

following norm equality for all g ∈ G:

‖C(g · e)‖ω = ‖C(g−1 · e)‖ω.(3.1)

Supposing further that the rank r of our normal j-algebra satisfies r ≧ 2 and that i < j,

we first try to extract informations from (3.1) for

g = exp(T ) exp(tiHi + tjHj) (ti, tj ∈ R, T ∈ n(αj−αi)/2).(3.2)

Since g ∈ G(0), we have g · e = (0, gE), so that (1.11) yields C(g · e) = (0, C(gE)).

Lemma 3.4. Let cj be as in Proposition 2.4. For g in (3.2) one has

C(gE) =
aE∗

i + bE∗
j − φ

8 cosh(ti/2) cosh(tj/2) + ω−1
j e(ti−tj)/2‖T ‖2ω

,

where a, b ∈ R and φ ∈ n
∗
(αj+αi)/2

are given as follows:

a := 8 ci sinh
ti
2

cosh
tj
2
+ ω−1

j e(ti−tj)/2
ci sinh(ti/2)− cj e

ti/2

cosh(ti/2)
‖T ‖2ω,

b := cj

(
8 cosh

ti
2

sinh
tj
2
+ ω−1

j e(ti−tj)/2‖T ‖2ω

)
,

φ := 4 cj e
(ti−tj)/2 ad∗(T )E∗

j ◦ Pji

with Pji the orthogonal projection operator V → n(αj+αi)/2 .

Computing the norm ‖C(gE)‖2ω, we deduce

Lemma 3.5. If nji 6= 0, then one has 2di + bi = 2dj + bj and ωi = ωj.

Since we are supposing that our Siegel domain is irreducible, the cone Ω is also

irreducible ([14, Theorem 6.3]). Thus we can make use of [1, Theorem 4], which states as

follows: putting nkl := nlk when k < l, we can find, for any pair i < j, a finite sequence

{iλ}
m
λ=0 (i0 = j, im = i) such that niλ−1iλ 6= 0 for any λ. See [5, p. 536] for the translation

of normal j-algebra language into Vinberg’s T -algebra language. In consequence we get

Lemma 3.6. Both 2di + bi and ωi are independent of i.

We put ω0 := ωi (independent of i) in what follows. To see that nji (i < j) is

independent of i, j, we take (under the assumption that r ≧ 3 and i < j < k)

g = exp(Tki) exp(Tkj) exp(t(Hi +Hj +Hk)) ∈ G(0),

where t ∈ R, Tki ∈ n(αk−αi)/2 and Tkj ∈ n(αk−αj)/2. We can calculate C(gE) and

‖C(gE)‖2ω explicitly for this g and obtain from (3.1) the following lemma.

Lemma 3.7. If nkj 6= 0, then one has nji = nki.

Keeping to i < j < k, we next take

g = exp(Tki + Tji) exp(t(Hi +Hj +Hk)) ∈ G(0),

where t ∈ R, Tki ∈ n(αk−αi)/2 and Tji ∈ n(αj−αi)/2. In a way analogous to the preceding

two cases, though the computations are much harder, we get
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Lemma 3.8. If nji 6= 0, then for all Tki ∈ n(αk−αi)/2 and Tji ∈ n(αj−αi)/2 one has

‖[JTji, Tki]‖
2
ω =

1

2ω0
‖Tji‖

2
ω‖Tki‖

2
ω.

In particular, nkj ≧ nki provided nji 6= 0.

Remark 3.9. In general, we only have the inequality

‖[JTji, Tki]‖
2
ω ≦

1

2ωj
‖Tji‖

2
ω‖Tki‖

2
ω,

because nkj can be equal to 0 even if nki > 0 and nji > 0. See [18, Lemma 4.6].

Using Lemmas 3.6, 3.7 and 3.8, we arrive at

Proposition 3.10. The dimensions nji (i < j) of the root spaces n(αj+αi)/2 are

constant, and bk = dim nαk/2 (k = 1, . . . , r) are independent of k.

By [5, Proposition 3], Proposition 3.10 implies that our Siegel domain is quasisym-

metric, that is, the cone Ω is selfdual with respect to the inner product (1.6). Then

our normal j-algebra turns out to be comprised of a Euclidean Jordan algebra and a

∗-representation of its complexified Jordan algebra. Let us explain this more precisely.

We introduce a (non-associative) product in V by the formula

〈x1x2 |x3 〉η = −
1

2
Dx1

Dx2
Dx3

(log η)(E) (xj ∈ V ; j = 1, 2, 3).

The proof of [5, Proposition 3] says that this is a Jordan algebra product, by which V

is a Euclidean Jordan algebra in the sense of [11]. Thus W = VC is a complex Jordan

algebra. Moreover, using the Hermitian inner product (1.7) on U , we define, for every

w ∈W , a complex linear operator ϕ(w) on U by

(ϕ(w)u |u′)η = 〈Q(u, u′) |w 〉η (u, u′ ∈ U).

A result due to Dorfmeister [6, Theorem 2.1 (6)] (see also [17, Section 4]) tells us that

w 7→ ϕ(w) is a ∗-representation of the complex Jordan algebra W .

Now we define f̃ ∈ W for f ∈ W ∗ and F̃ ∈ U for F ∈ U † by

〈w, f〉 = 〈w | f̃ 〉η (∀w ∈ W ), 〈u, F 〉 = (F̃ |u)η (∀u ∈ U).

We note here that any element in Ω + iV is invertible in the Jordan algebra W .

Proposition 3.11. (1) For w ∈ Ω+ iV one has I(w)˜ = w−1.

(2) When z = (u,w) ∈ D, one has

C(z)˜ =
(
2ϕ

(
(w + E)−1

)
u, (w − E)(w + E)−1

)
.

Finally we consider the elements

g = n(0, uk)n(0, uj) ∈ ND (j < k)

in (3.1), where uj ∈ nαj/2 and uk ∈ nαk/2. The result that we obtain is:

Proposition 3.12. For every pair j < k, one has

ϕ
(
Q(uk, uj)

)
uk = 0, ϕ

(
Q(uj , uk)

)
uj = 0,

where uj ∈ nαj/2 and uk ∈ nαk/2 are arbitrary.



SYMMETRY CHARACTERIZATION 333

Since one can show that ϕ(Ei) is the orthogonal projection operator U → nαi/2 for

each i, Dorfmeister’s theorem in [3, Corollary 1] guarantees that our Siegel domain is

symmetric.

3.3. The case of symmetric domains. We conclude this article by indicating the proof

of the “if part” of Theorem 3.1. Suppose that D is symmetric. We have the inner product

(· | ·)β on U +W , through which we define ιβ(f) ∈ W for f ∈ W ∗ and ιβ(F ) ∈ U for

F ∈ U † by

(ιβ(f) |w)β = 〈w∗, f〉 (w ∈ W ), (ιβ(F ) |u)β = 〈u, F 〉 (u ∈ U).

We set Cβ := ιβ ◦ C and Dβ := Cβ(D). We can show that the bounded symmetric domain

Dβ is circular and that the derivative C′
β(e) at the base point e is a scalar operator. In

particular, Dβ can be considered as the Harish-Chandra model of a bounded symmetric

domain. The group Hol(Dβ) of the holomorphic automorphisms of Dβ is a semisimple

Lie group, and we denote by G its connected component of the identity. Let K be the

stabilizer in G at the origin 0 = Cβ(e). Then K is a maximal compact subgroup of G. Put

A := Cβ ◦A ◦ C−1
β . We have a Cartan decomposition G = KAK. Every element h ∈ G may

be written as h = k1atk2, where k1, k2 ∈ K and at := Cβ ◦ at ◦ C−1
β ∈ A (t ∈ Rr). The

only thing to be noted is that K is a closed subgroup of the unitary group. Therefore

‖h · 0‖β = ‖h−1 · 0‖β if and only if ‖at · 0‖β is invariant under t 7→ −t. But this is clear

from the fact that

at · 0 =
r∑

j=1

(
tanh

tj
2

)
Ej .
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[11] J. Faraut and A. Korányi, Analysis on Symmetric Cones, Clarendon Press, Oxford, 1994.

[12] S. G. Gindikin, Analysis in homogeneous domains, Russian Math. Surveys 19-4 (1964),

1–89.

[13] H. Ishi, Representations of the affine transformation groups acting simply transitively on

Siegel domains, J. Funct. Anal. 167 (1999), 425–462.

[14] S. Kaneyuki, On the automorphism groups of homogeneous bounded domains, J. Fac. Sci.

Univ. Tokyo 14 (1967), 89–130.

[15] J. L. Koszul, Sur la forme hermitienne canonique des espaces homogènes complexes,
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