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It is well known that the theory of multiple trigonometric series developed under

the strong influence of Zygmund’s and Marcinkiewicz’s ideas. I’d like to dwell on one

of the most interesting problems of this theory which, in my opinion, is convergence of

these series. In general I would say that some theorems for multiple Fourier series are

easily obtained from the corresponding one-dimensional theorems by induction, or we

can establish them by virtually transferring the proofs but slightly complicating them. It

stands to reason that theorems of this kind can be of use for constructing the theory but

they do not provoke any particular interest. Thus, in considering convergence of multiple

Fourier series such theorems make but a small portion. Why it is so will be made clear

in what follows.

So, suppose that a function of m variables (m ≥ 2) f(x) ∈ L(Tm) (T = [−π, π)),

2π-periodic in each variable, is expanded in a multiple Fourier series

∑

n∈Zm

an(f)einx, (1)

where nx = n1x1 + n2x2 + . . . + nmxm.

If 1 ≤ p < ∞ and f ∈ Lp(Tm) then we define

‖f‖p =
1

(2π)
m

(
∫

Tm

|f(x)|
p
dx

)
1

p

.

If f ∈ L∞(Tm) ≡ C(Tm), then

‖f‖∞ = max
x∈Tm

|f(x)|.
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Further, if k is a natural number, then the k-th difference of f at x with step t is

∆k(f,x, t) =

k
∑

r=0

(−1)
r
Cr

kf(x + rt)

and the modulus of smoothness of order k in the space Lp(Tm) is

ωk(f, δ)p = sup
t∈Rm:|t|≤δ

‖∆k(f,x, t)‖p.

Speaking of the convergence of series (1) we should first of all answer two questions.

1. The first question is: in what metric (or in any other sense) the convergence is

considered.

2. The second one is: the convergence of what partial sums is meant.

The former question naturally arises in the one-dimensional case, whereas the latter

refers entirely to the multidimensional situation. I shall limit myself to examining con-

vergence in the metrics of the Lp(Tm)-spaces (1 ≤ p ≤ ∞, L∞ ≡ C) and convergence

almost everywhere. As for the form of partial sums, it is common knowledge that most

widely used are the rectangular ones:

SN(x) =
∑

|k1|≤N1

. . .
∑

|km|≤Nm

ake
ikx,

where N ∈ Zm ∩ [0,+∞)m; (if N = (r, . . . , r), then we shall call such sums cubic) and

also spherical:

SR(x) =
∑

|k|≤R

ake
ikx.

Accordingly, if there exist

lim
min1≤j≤m Nj→∞

SN(x) = α, lim
r→∞

S(r,...,r)(x) = α, lim
R→∞

SR(x) = α,

then we say that series (1) converges at x to α over rectangles (in the Pringsheim sense),

over cubes and over spheres respectively. We can also give analogous definitions for the

convergence in Lp(Tm)-spaces.

In what follows we shall make it clear that rectangular and spherical partial sums be-

have quite differently with respect to convergence. Actually there are other ways of defin-

ing convergence of multiple series such as convergence over polyhedrons, over hyperbolic

crosses, etc. Therefore the definition of convergence including all the above mentioned

types seems to be of considerable interest. Note that in all definitions of convergence,

the sets over which the sums are taken are symmetric with respect to all coordinate hy-

perplanes, and they contain, together with every point, an integer parallelepiped whose

vertices are at this point and at the origin. Here it seems relevant to give the following

definitions.

Definition 1. Let U ⊂ Zm be a bounded set. Then we say that U ∈ A if from the

fact that k ∈ U it follows that
m
∏

j=1

[−|kj |, |kj |] ∩ Zm ⊆ U.
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Definition 2. We say that the numerical series
∑

n∈Zm

cn

u-converges to the number α if for any ε > 0 there exists a number M such that for every

U ∈ A for which {n ∈ Zm : |n| ≤ M} ⊆ U , we have
∣

∣

∣

∑

n∈U

cn − α
∣

∣

∣
< ε.

It is evident that if the series is u-convergent, then it is convergent in the Pringsheim

sense, over spheres, over hyperbolic crosses, etc. The definition of such convergence was

originally used by F. G. Arutyunyan [1], [2] when representing functions of several vari-

ables by multiple trigonometric series.

As is known, the study of convergence of the trigonometric Fourier series in the Lp-

metric is simpler than that of convergence almost everywhere. For rectangular sums the

results are best possible.

Theorem A (K. Sokó l-Soko lowski [3]). If 1 < p < ∞ and f ∈ Lp(Tm), then the

Fourier series of f converges to f in the Pringsheim sense in the Lp-metric.

Theorem B (L. V. Zhizhiashvili [4]). If f ∈ C(Tm) (f ∈ L(Tm)) and

ω(f ; δ)∞ = o

((

ln
1

δ

)−m) (

ω(f ; δ)1 = o

((

ln
1

δ

)−m))

(2)

as δ → +0, then the Fourier series of f uniformly (in the L-metric) converges to f in the

Pringsheim sense. Moreover, if in condition (2) we replace o by O, then the assertion is

no longer be true even for convergence over cubes.

Similar theorems have been established by L. V. Zhizhiashvili in terms of partial and

mixed moduli of continuity.

For the spherical partial sums of the Fourier series of f ∈ Lp(Tm) L. Schwartz ([5],

for p 6∈ ( 2m
m+1 ,

2m
m−1 )) and Ch. Fefferman ([6], for p 6= 2) have established that, generally

speaking, they are divergent in this metric. Further, V. A. Ilyin [7] has found that the

condition ω(f ; δ)∞ = o(δ
m−1

2 ) as δ → +0 is sufficient for the Fourier series of f ∈ C(Tm)

to uniformly converge to f over spheres. Here the exponent m−1
2 cannot be replaced by

m−1
2 − ε with ε > 0.

In addition, for the two-dimensional case we have V. A. Yudin’s result [8] on the norm

of the operator of spherical partial sums which implies the following result:

Theorem C (V. A. Yudin). a) If m = 2, p ∈ [ 43 , 4], p 6= 2, f ∈ Lp(T 2) and ω(f ; δ)p =

o((ln 1
δ )

−5|1//2−1//p|
) as δ → +0, then the Fourier series of f is convergent to f over

spheres in the Lp-metric.

b) If m = 2, p ∈ [1, 43 ), f ∈ Lp(T 2) and ω(f ; δ)p = o(δ2//p−3//2(ln 1
δ )

−5(1−1//p)
) as

δ → +0, then the Fourier series of f is convergent to f over spheres in the Lp-metric.

c) If m = 2, p ∈ (4,∞), f ∈ Lp(T 2) and ω(f ; δ)p = o(δ1//2−2//p(ln 1
δ )

−5//p
) as

δ → +0, then the Fourier series of f is convergent to f over spheres in the Lp-metric.
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The questions whether this theorem is best possible and whether it can be extended

to higher dimensional spaces are still open. These problems present considerable interest

but they seem to be extremely hard to solve.

It is interesting to compare the theorems by V. A. Ilyin and V. A. Yudin with the

following results on u-convergence (M. I. Dyachenko [9]). As a preliminary, we shall quote

the definition of S. M. Nikolski’s classes.

Definition 3. Let 1 ≤ p ≤ ∞ and α > 0. Then we define Hα
p (Tm) = {f ∈ Lp(Tm) :

for all k > α we have ωk(f, δ)p = O(δα) when δ → +0}. If here O is changed to o then

we denote the corresponding class by hα
p (Tm).

Theorem D (M. I. Dyachenko). If m ≥ 2, 1 ≤ p ≤ ∞, p 6= 2 and the function

f ∈ h
(m−1)|1//2−1//p|
p (Tm), then the Fourier series of f u-converges in Lp(Tm)-metric.

Theorem E (M. I. Dyachenko). If m ≥ 2 and 1 ≤ p ≤ ∞, p 6= 2 then there exists a

function f ∈ H
(m−1)|1//2−1//p|
p (Tm) whose Fourier series u-diverges in Lp(Tm)-metric.

Moreover, for p = ∞ the Fourier series in the corresponding example u-diverges every-

where.

Hence, in particular, it follows that in the uniform metric, convergence over spheres is

one of the worst from the point of view of the width of the class for which it takes place.

Now we proceed to the discussion of convergence almost everywhere. The remarkable

results by L. Carleson [10], R. Hunt [11] and P. Sjölin [12] on the a.e. convergence of

one-dimensional Fourier series have been generalized to the case of cubic partial sums

(N. R. Tevzhadse [13], Ch. Fefferman [14], P. Sjölin [15]). At present the optimal positive

result here belongs to N. A. Antonov [16].

Theorem F (N. A. Antonov). If f ∈ L(ln+L)
m

ln+ln+ln+L(Tm), then the Fourier

series of f a.e. converges to f over cubes.

On the other hand, S. V. Konyagin [17] (1989) has shown that if a function ϕ(t)

satisfies some conditions of regularity (for instance, ϕ(t) happens to be the product of

powers of iterations of logarithm) and

∞
∫

2

ϕ(t)

t2(ln t)
m d t < ∞,

then there exists a function f ∈ ϕ(L)(Tm) whose cubic partial sums of the Fourier series

unboundedly diverge almost everywhere.

So the “gap” between positive and negative results here approximately amounts to

a logarithm. Until recently this was the situation in the one-dimensional case, too, but

recently S. V. Konyagin [18] has obtained the following theorem.

Theorem G (S. V. Konyagin). For every convex function ϕ(t) = o(t
√
ln t√

ln ln t
) as t → ∞

one can find a function f ∈ ϕ(L)(T ) with everywhere diverging trigonometric Fourier

series.

The pattern of proving Theorem G also allows us to establish a similar result in terms

of integral moduli of continuity.
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It is most probable that Theorem G can be modified for the multidimensional case,

too, but all the same a “gap” between positive and negative results remains, and the

problem of its elimination seems to be the greatest challenge.

Concerning the convergence in the sense of Pringsheim, in the first place we should

mention the result of Ch. Fefferman [19] who established that there exists a continuous

function of two variables whose Fourier series diverges everywhere in Pringsheim sense.

Later M. Bahbuh and E. M. Nikishin [20] specified the statement by establishing that

if we limit ourselves to considering divergence over a set of positive measure, then the

modulus of continuity of such a function can be of the order of O((ln 1//δ)
−1

) as δ → +0.

These conclusions were continued by the following results.

Theorem H (L. V. Zhizhiashvili [21]). If f ∈ L2(Tm) and for some ε > 0

ω(f ; δ)2 = O

((

ln
1

δ

)−m//2−ε)

as δ → +0, then the Fourier series of f converges almost everywhere to f in the Pring-

sheim sense.

Theorem I (A. N. Bakhvalov [22]). If m = 2k, k ∈ N, then there exists a function

f ∈ C(Tm) with ω(f ; δ)∞ = O((ln 1
δ )

−m//2
) as δ → +0 whose Fourier series everywhere

diverges in the Pringsheim sense.

Hence we conclude that in the spaces of even dimension the “gap” between positive

and negative results in the logarithmic scale is nonexistent, while in the spaces of odd

dimension ≥ 3 it is equal to
√

ln 1
δ . Here naturally arises the problem of improving the

available results (though this problem for the spaces of even dimension has not yet been

completely solved). Also the following K. I. Oskolkov two-dimensional result [23] so far

has had no multidimensional analogues.

Theorem J (K. I. Oskolkov). If f ∈ C(T 2) and ω(f ; δ)∞ = o((ln 1
δ )

−1
(ln ln ln 1

δ )
−1

)

as δ → +0, then the Fourier series of f converges a.e. in the Pringsheim sense.

The study of these problems is closely connected with that of Weyl multipliers for

convergence almost everywhere. I cannot discuss it here in greater detail. I can only say

that at present the only final result available is for m = 2 (P. Sjölin [15], E. M. Nikishin

[24]). It boils down to the following: the sequence {ln2(min(|n1|, |n2|) + 2)}n1,n2∈Z is a

sharp Weyl multiplier for the Pringsheim convergence almost everywhere.

Of great interest are also the results on sufficient smoothness conditions for almost

everywhere Pringsheim convergence of Fourier series of integrable functions.

Theorem K (L. V. Zhizhiashvili [21], A. M. Stokolos [25]). If f ∈ L(Tm) and

1
∫

0

ω(f ; t)1
(

ln 1
t

)m−1

t
dt < ∞,

then the Fourier series of f converges almost everywhere in the Pringsheim sense. In

particular, it is so if ω(f ; δ)1 = O((ln 1
δ )

−m−ε
) as δ → +0, where ε > 0.
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Theorem L (S. V. Konyagin [26]). If

ω(t)

(

ln
1

t

)m−1

ln ln
1

t
→ ∞

as t → +0, then there exists a function f ∈ Hω
1 (Tm) whose Fourier series cubically

diverges almost everywhere.

The final theorems here as well as in the one-dimensional case are as yet unknown.

Moreover, of interest is the question if it is possible, in terms of moduli of continuity

in L, to tell the difference between the behavior of rectangular and cubic partial sums

of Fourier series. Then it is interesting to establish the specific conditions for almost

everywhere Pringsheim convergence in Lp-spaces, p 6= 1, 2.

One of the unsolved major problems of multidimensional harmonic analysis is this:

must the Fourier series of a function f ∈ L2(T
m), m ≥ 2 spherically converge almost

everywhere? Here the best result yet known belongs to B. I. Golubov [27].

Theorem M (B. I. Golubov). If f ∈ L2(Tm) and for some ε > 0, ω(f ; δ)2 =

O((ln 1
δ )

−1−ε
) as δ → +0, then the Fourier series of f spherically converges to f a.e.

Similar results in Lp-spaces, p 6= 2 are so far unknown.

Sufficient smoothness conditions of u-convergence a.e., sharp in the power scale, have

been established by M. Dyachenko [28] in L(T 2) and L2(T 2)-spaces. Multidimensional

analogues are yet unknown. Here I formulate only one of these statements.

Theorem N (M. I. Dyachenko). If f ∈ L2(T 2) and

1
∫

0

(ω(f, t)2)
2

t2
dt < ∞,

then the Fourier series of f u-converges almost everywhere.

That this statement is best possible in the power scale follows from Theorem E.
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