H^{p} SPACES FOR SCHRÖDINGER OPERATORS

JACEK DZIUBAŃSKI and JACEK ZIENKIEWICZ
Institute of Mathematics, University of Wroclaw pl. Grunwaldzki 2/4, 50-384 Wroctaw, Poland
E-mail: jdziuban@math.uni.wroc.pl, zenek@math.uni.wroc.pl

1. Introduction. Let $k_{t}(x, y)$ be the integral kernels of the semigroup of linear operators $\left\{T_{t}\right\}_{t>0}$ generated by a Schrödinger operator $-A=\Delta-V$ on $\mathbb{R}^{d}, d \geq 3$.

Throughout this paper we assume that V is a nonnegative potential on \mathbb{R}^{d} that belongs to the reverse Hölder class $R H^{q}, q>\frac{d}{2}$, that is, there exists a constant $C>0$ such that

$$
\begin{equation*}
\left(\frac{1}{|B|} \int_{B} V(y)^{q} d y\right)^{1 / q} \leq \frac{C}{|B|} \int_{B} V(y) d y, \quad \text { for every ball } B \tag{1.1}
\end{equation*}
$$

Since V is nonnegative and belongs to $L_{\mathrm{loc}}^{q}\left(\mathbb{R}^{d}\right)$ the Feynman-Kac formula implies that

$$
\begin{equation*}
0 \leq k_{t}(x, y) \leq(4 \pi)^{-d / 2} e^{-|x-y|^{2} /(4 t)}=p_{t}(x-y) \tag{1.2}
\end{equation*}
$$

We say that f is an element of the space H_{A}^{p} if the maximal function

$$
\begin{equation*}
\mathcal{M} f(x)=\sup _{t>0}\left|T_{t} f(x)\right|=\sup _{t>0}\left|\int k_{t}(x, y) f(y) d y\right| \tag{1.3}
\end{equation*}
$$

belongs to $L^{p}\left(\mathbb{R}^{d}\right)$.
For $0<p \leq 1$ we define the quasi-norm $\|f\|_{H_{A}^{p}}^{p}$ by setting

$$
\begin{equation*}
\|f\|_{H_{A}^{p}}^{p}=\|\mathcal{M} f\|_{L^{p}}^{p} \tag{1.4}
\end{equation*}
$$

Our main result is about atomic decomposition of the elements of H_{A}^{p} for $p \leq 1$, p close to 1 . The notion of H_{A}^{p} atom is determined by the following auxiliary function $m(x, V)$ which is defined by

$$
\begin{equation*}
m(x, V)^{-1}=\rho(x)=\sup \left\{r>0: \frac{1}{r^{d-2}} \int_{B(x, r)} V(y) d y \leq 1\right\} \tag{1.5}
\end{equation*}
$$

2000 Mathematics Subject Classification: Primary 42B30, 35J10; Secondary 42B25.
Research partially supported by the European Commission via TMR network "Harmonic Analysis", by Polish Grants 2P03A05814, 2P03A04316 from KBN, and by the Foundation for Polish Sciences, Subsidy 3/99.

The paper is in final form and no version of it will be published elsewhere.

A function a is an atom of the space H_{m}^{p} associated with a ball $B\left(y_{0}, r\right)$ if

$$
\begin{gather*}
\text { supp } a \subset B\left(y_{0}, r\right), \tag{1.6}\\
\|a\|_{L^{\infty}} \leq\left|B\left(y_{0}, r\right)\right|^{-1 / p}, \tag{1.7}\\
r \leq \rho\left(y_{0}\right), \tag{1.8}\\
\text { if } r<2^{-2} \rho\left(y_{0}\right) \text { then } \int a(x) d x=0 . \tag{1.9}
\end{gather*}
$$

The atomic H_{m}^{p} quasi-norm is defined by

$$
\begin{equation*}
\|f\|_{H_{m}^{p}}^{p}=\inf \sum\left|\lambda_{j}\right|^{p}, \tag{1.10}
\end{equation*}
$$

where the infimum is taken over all decompositions $f=\sum_{j} \lambda_{j} a_{j}, a_{j}$ being H_{m}^{p} and λ_{j} being scalars.

Let $\delta=2-\frac{d}{q}$, and $\delta^{\prime}=\min \{1, \delta\}$. Our main result is the following
Theorem 1.11. Assume that $\frac{d}{d+\delta^{\prime}}<p \leq 1$. Then there exists a constant $C>0$ such that for every compactly supported function $f \in L^{1}\left(\mathbb{R}^{d}\right)$ we have

$$
\begin{equation*}
C^{-1}\|f\|_{H_{m}^{p}}^{p} \leq\|f\|_{H_{A}^{p}}^{p} \leq C\|f\|_{H_{m}^{p}}^{p} . \tag{1.12}
\end{equation*}
$$

In the case where $p=1$ and V satisfies (1.1) the space H_{A}^{1} was studied in [DZ2], where the atomic and Riesz transforms characterizations of the space were proved. Therefore in the present paper we shall consider the case where $\frac{d}{d+\delta^{\prime}}<p<1$.

REmark 1. The atoms for the H_{A}^{p} spaces satisfy the same size conditions as the classical $H^{p}\left(\mathbb{R}^{d}\right)$ atoms. The main difference is that the mean-value zero condition for H_{A}^{p} atoms is required only for these that are supported on small balls. Therefore, the classical Hardy space $H^{p}\left(\mathbb{R}^{d}\right)$ is always a proper subspace of H_{A}^{p} for $\frac{d}{d+\delta^{\prime}}<p \leq 1$.

Remark 2. Let us recall that in the classical theory of Hardy spaces $H^{p}\left(\mathbb{R}^{d}\right)$ the condition $\int a=0$ is required for all atoms and higher order cancellation conditions are not needed provided $\frac{d}{d+1}<p \leq 1$. Therefore it is natural to ask if there is an atomic decomposition of the elements of the space H_{A}^{p} for $\frac{d}{d+1}<p \leq \frac{d}{d+\delta^{\prime}}$. The answer is yes, however, for these values of p 's different type cancellation conditions for atoms may occur. This will be studied in a forthcoming paper.

The function $m(x, V)$ appeared in [Sh] where fundamental solutions and boundedness of Riesz transforms associated with the operator A on L^{p} spaces, $p>1$, were investigated.
2. Useful estimates. In this section we state some result concerning properties of the function $m(x, V)$. Further we present a number of estimates of the kernels associated with the semigroup $\left\{T_{t}\right\}_{t>0}$.

Lemma 2.1. There exists a constant $C>0$ such that for every $0<r<R$ we have

$$
\frac{1}{r^{d-2}} \int_{B(x, r)} V(y) d y \leq C\left(\frac{r}{R}\right)^{\delta} \frac{1}{R^{d-2}} \int_{B(x, R)} V(y) d y
$$

Proof. See [Sh, Lemma 1.2].

Corollary 2.2. If $r<\rho(x)=m(x, V)^{-1}$ then

$$
\int_{B(x, r)} V(y) d y \leq C(r m(x, V))^{\delta} r^{d-2}
$$

Lemma 2.3. For every $C_{1}>0$ there exists a constant $C_{2}>0$ such that

$$
\begin{equation*}
C_{2}^{-1} \leq \frac{m(x, V)}{m(y, V)} \leq C_{2}, \quad \text { for } \quad|x-y| \leq \frac{C_{1}}{m(x, V)} \tag{2.4}
\end{equation*}
$$

Moreover, there exist constants $C>0, k_{0}>0$ such that

$$
\begin{align*}
m(y, V) & \leq C(1+|x-y| m(x, V))^{k_{0}} m(x, V) \tag{2.5}\\
m(y, V) & \geq \frac{m(x, V)}{C(1+|x-y| m(x, V))^{k_{0} /\left(1+k_{0}\right)}} \tag{2.6}
\end{align*}
$$

Proof. This is Lemma 1.4 of [Sh].
Lemma 2.7. There exists a constant $C>0$ such that if $r>\rho(x)=m(x, V)^{-1}$ then

$$
\int_{B(x, r)} V(y) d y \leq(r m(x, V))^{C} m(x, V)^{2-d}
$$

Proof. See [Sh, Lemma 1.8].
We say that a function ω defined on \mathbb{R}^{d} is rapidly decaying if for every $N>0$ there exists a constant C_{N} such that

$$
|\omega(x)| \leq C_{N}(1+|x|)^{-N}
$$

Corollary 2.8. If ω is a rapidly decaying nonnegative function, then there exists a constant $C>0$ such that

$$
\int V(y) \omega_{t}(x-y) d y \leq \begin{cases}\frac{C}{t}\left(m(x, V) t^{1 / 2}\right)^{\delta} & \text { for } t \leq m(x, V)^{-2} \\ C t^{-d / 2}(\sqrt{t} m(x, V))^{C} m(x, V)^{2-d} & \text { for } t>m(x, V)^{-2}\end{cases}
$$

where $\omega_{t}(x)=t^{-d / 2} \omega\left(t^{-1 / 2} x\right)$.
Proof. The estimate is a consequence of Corollary 2.2 and Lemma 2.7.
The corollary below follows from Lemma 2.3.
Corollary 2.9. For every rapidly decaying function ω there is a rapidly decaying function $\tilde{\omega}$ such that for every $N \geq 0$ we have

$$
\frac{\omega_{t}(x-y)}{(1+\sqrt{t} m(x, V))^{N}} \leq \frac{\tilde{\omega}_{t}(x-y)}{(1+\sqrt{t} m(x, V)+\sqrt{t} m(y, V))^{N}} .
$$

The Kato-Trotter formula asserts that

$$
\begin{equation*}
p_{t}(x-y)-k_{t}(x, y)=\int_{0}^{t} \int_{\mathbb{R}^{d}} p_{s}(x-z) V(z) k_{t-s}(z, y) d z d s=q_{t}(x, y) \tag{2.10}
\end{equation*}
$$

Theorem 2.11. There exists a rapidly decaying function $\omega \geq 0$ such that for every $N>0$ there exists a constant C_{N} such that

$$
k_{t}(x, y) \leq C_{N}(1+\sqrt{t} m(x, V)+\sqrt{t} m(y, V))^{-N} \omega_{t}(x-y)
$$

Proof. Let $G(x, y)$ denote the fundamental solution of the operator A. Theorem 2.7 of [Sh] asserts that for every $n \geq 0$ there exists a constant C_{n} such that

$$
\begin{equation*}
0 \leq G(x, y) \leq \frac{C_{n}}{(1+|x-y|(m(x, V)+m(y, V)))^{n}|x-y|^{d-2}} \tag{2.12}
\end{equation*}
$$

It is not difficult to check using (2.12) that for every positive integer l there exists a constant C_{l} such that

$$
\begin{equation*}
\left|m(x, V)^{2 l} A^{-l} f(x)\right| \leq C_{l} \mathbf{M}^{l} f(x) \tag{2.13}
\end{equation*}
$$

where \mathbf{M} is the classical Hardy-Littlewood maximal operator.
Since $\left\{T_{t}\right\}$ is a holomorphic semigroup on $L^{2}\left(\mathbb{R}^{d}\right)$ we have

$$
\begin{equation*}
\left\|\partial_{t}^{n} T_{t}\right\|_{L^{2} \rightarrow L^{2}} \leq C_{n} t^{-n} \tag{2.14}
\end{equation*}
$$

Now (1.2) combined with (2.14) leads to

$$
\left|\partial_{t}^{n} k_{t}(x, y)\right| \leq \frac{C_{n}}{t^{n+d / 2}}
$$

Applying (2.13) we get

$$
\begin{equation*}
\left|k_{t}(x, y)\right| \leq \frac{C_{n}}{t^{n+d / 2} m(x, V)^{2 n}} \tag{2.15}
\end{equation*}
$$

Finally Theorem 2.11 follows from (1.2), (2.15) and symmetry of the kernel $k_{t}(x, y)$.
Proposition 2.16. There exists a rapidly decaying function $\omega \geq 0$ such that

$$
q_{t}(x, y) \leq(\sqrt{t} m(x, V))^{\delta} \omega_{t}(x-y)
$$

Proof. By definition

$$
q_{t}(x, y)=\int_{0}^{t} \int p_{s}(x-z) V(z) k_{t-s}(z, y) d z d s=\int_{0}^{t / 2} \int+\int_{t / 2}^{t} \int=I_{1}+I_{2}
$$

Using Theorem 2.11, we have

$$
\begin{gathered}
I_{1} \leq \int_{0}^{t / 2} \int_{|z| \leq|x-y| / 2} p_{s}(z) V(z+x) \omega_{t}(x-y) d z d s \\
+\int_{0}^{t / 2} \int_{|z|>|x-y| / 2} s^{-d / 2} t^{-d / 2} e^{-c|x-y| / \sqrt{s}} e^{-c|z| / \sqrt{s}} V(z+x) d z d s
\end{gathered}
$$

Applying Corollary 2.8, we obtain

$$
I_{1} \leq \omega_{t}(x-y)(\sqrt{t} m(x, V))^{\delta}
$$

The estimates for I_{2} go in the same way by using Lemma 2.3.
Using the same arguments as in the proof of Proposition 2.16 and the fact that $q_{t}(x, y)=q_{t}(y, x)$ we can show the following

Proposition 2.17. For every $0<\delta^{\prime \prime}<\delta^{\prime}$ there exists a rapidly decaying function $\omega \geq 0$ such that for every $C>0$ there exists a constant C^{\prime} such that for every $h, x, y \in \mathbb{R}^{d}$, $|h| \leq|x-y| / 4,|h| \leq C \rho(y)$ we have

$$
\begin{equation*}
\left|q_{t}(x, y+h)-q_{t}(x, y)\right| \leq C^{\prime}\left(|h|(m(x, V))^{\delta^{\prime \prime}} \omega_{t}(x-y)\right. \tag{2.18}
\end{equation*}
$$

3. Scale of atomic H^{p} spaces. Fix $0<\varepsilon \leq 1$ We say that a is an atom for the space $H_{\varepsilon ; m}^{p}$ associated to a ball $B\left(y_{0}, r\right)$ if

$$
\begin{gather*}
\text { supp } a \subset B\left(y_{0}, r\right), \tag{3.1}\\
\|a\|_{L^{\infty}} \leq\left|B\left(y_{0}, r\right)\right|^{-1 / p}, \tag{3.2}\\
r \leq \varepsilon \rho\left(y_{0}\right), \tag{3.3}\\
\text { if } r<\frac{1}{4} \varepsilon \rho\left(y_{0}\right) \text { then } \int a(x) d x=0 . \tag{3.4}
\end{gather*}
$$

The atomic $H_{\varepsilon ; m}^{p}$ quasi-norm is defined by

$$
\begin{equation*}
\|f\|_{H_{\varepsilon ; m}^{p}}^{p}=\inf \sum\left|\lambda_{j}\right|^{p} \tag{3.5}
\end{equation*}
$$

where the infimum is taken over all decompositions $f=\sum_{j} \lambda_{j} a_{j}, a_{j}$ being $H_{\varepsilon ; m}^{p}$ atoms and λ_{j} being scalars. Let us note that $\|f\|_{H_{1, m}^{p}}^{p}=\|f\|_{H_{m}^{p}}^{p}$.

Obviously, there exists a constant C such that if $\varepsilon^{\prime} \leq \varepsilon$ then

$$
\begin{equation*}
\|f\|_{H_{\varepsilon^{\prime} ; m}^{p}}^{p} \leq C\|f\|_{H_{\varepsilon ; m}^{p}}^{p} \tag{3.6}
\end{equation*}
$$

Moreover if $\varepsilon^{\prime} \leq \varepsilon \leq 1$ then there exists a constant $C_{\varepsilon^{\prime}, \varepsilon}$ such that

$$
\begin{equation*}
\|f\|_{H_{\varepsilon ; m}^{p}}^{p} \leq C_{\varepsilon^{\prime}, \varepsilon}\|f\|_{H_{\varepsilon^{\prime} ; m}^{p}}^{p} \tag{3.7}
\end{equation*}
$$

For fixed $0<\varepsilon \leq 1$ we define the maximal operator $\mathcal{P}_{\varepsilon}^{*}$ by the formula

$$
\begin{equation*}
\mathcal{P}_{\varepsilon}^{*} f(x)=\sup _{0<t \leq \varepsilon^{2} \rho(x)^{2}}\left|f * p_{t}(x)\right| \tag{3.8}
\end{equation*}
$$

Proposition 3.9. For every $p \in\left(\frac{d}{d+\delta^{\prime}}, 1\right)$ there exists a constant $C>0$ independent of $\varepsilon \in(0,1]$ such that for every compactly supported function $f \in L^{1}\left(\mathbb{R}^{d}\right)$ we have

$$
\begin{equation*}
C^{-1}\left\|\mathcal{P}_{\varepsilon}^{*} f\right\|_{L^{p}}^{p} \leq\|f\|_{H_{\varepsilon ; m}^{p}}^{p} \leq C\left\|\mathcal{P}_{\varepsilon}^{*} f\right\|_{L^{p}}^{p} \tag{3.10}
\end{equation*}
$$

Proof. First we prove that there is a constant $C>0$ such that

$$
\begin{equation*}
\left\|\mathcal{P}_{\varepsilon}^{*} f\right\|_{L^{p}} \leq C\|f\|_{H_{\varepsilon ; m}^{p}} . \tag{3.11}
\end{equation*}
$$

Let a be a $H_{\varepsilon ; m}^{p}$ atom associated with a ball $B\left(y_{0}, r\right)$. If a has the cancellation condition $\int a=0$, then $\left\|\mathcal{P}_{\varepsilon}^{*} a\right\|_{L^{p}} \leq C$. If $\int a \neq 0$ then, by the definition, $\frac{1}{4} \varepsilon \rho\left(y_{0}\right) \leq r \leq \varepsilon \rho\left(y_{0}\right)$. Obviously $\left\|\mathcal{P}_{\varepsilon}^{*} a\right\|_{L^{p}\left(B\left(y_{0}, 4 r\right)\right)} \leq C$. If $x \notin B\left(y_{0}, 4 r\right)=B\left(y_{0}, r\right)^{*}$ then, by Lemma 2.3, $\rho(x) \leq C \max \left(\left|x-y_{0}\right|^{k_{0} /\left(k_{0}+1\right)} \rho\left(y_{0}\right)^{1 /\left(k_{0}+1\right)}, \rho\left(y_{0}\right)\right)$. Therefore for $0<t<(\varepsilon \rho(x))^{2}$, we have

$$
\begin{gathered}
\left|p_{t} * a(x)\right| \leq C\|a\|_{L^{1}} \varepsilon^{M-d} \rho\left(y_{0}\right)^{(M-d) /\left(1+k_{0}\right)}\left|x-y_{0}\right|^{-\left(M+d k_{0}\right) /\left(1+k_{0}\right)} \\
+C\|a\|_{L^{1}} \varepsilon^{M-d} \rho\left(y_{0}\right)^{M-d}\left|x-y_{0}\right|^{-M} .
\end{gathered}
$$

This leads to $\int_{\left|x-y_{0}\right|>4 r}\left(\mathcal{P}_{\varepsilon}^{*} a(x)\right)^{p} d x \leq C$. Thus (3.11) is proved.
The proof of the second inequality in (3.10) is a combination of a number of lemmas.
Let $\varphi^{(\alpha)}$ be a family of C^{∞} functions on \mathbb{R}^{d} and $B_{\alpha}=B\left(y_{\alpha}, r_{\alpha}\right)$ be a family of balls such that there exists a constant $C>0$ such that

$$
\begin{equation*}
\operatorname{supp} \varphi_{\alpha} \subset B\left(y_{\alpha}, r_{\alpha}\right)=B_{\alpha}, \quad r_{\alpha}=\rho\left(y_{\alpha}\right), \tag{3.12}
\end{equation*}
$$

$$
\begin{gather*}
\#\left\{\alpha^{\prime}: B\left(y_{\alpha^{\prime}}, R r_{\alpha^{\prime}}\right) \cap B\left(y_{\alpha}, r_{\alpha}\right) \neq \emptyset\right\} \leq C R^{C} \text { for } R>2, \tag{3.13}\\
0 \leq \varphi_{\alpha} \leq 1, \quad\left\|\nabla \varphi_{\alpha}\right\|_{L^{\infty}} \leq C m\left(y_{\alpha}, V\right) \\
\sum_{\alpha} \varphi_{\alpha} \equiv 1
\end{gather*}
$$

Lemma 3.16. There is a family of constants $c(\varepsilon)>0, \lim _{\varepsilon \rightarrow 0} c(\varepsilon)=0$, such that

$$
\begin{equation*}
\left\|\sup _{0<t<\left(\varepsilon \max \left(\rho\left(y_{\alpha}\right), \rho(x)\right)\right)^{2}} \mid\left(f \varphi^{(\alpha)}\right) * p_{t}(x)\right\|\left\|_{L^{p}\left(B_{\alpha}^{* * c}\right)}^{p} \leq c(\varepsilon)\right\| f \varphi^{(\alpha)} \|_{H_{\varepsilon ; m}^{p}}^{p} \tag{3.17}
\end{equation*}
$$

Proof. It suffices to prove (3.17) if $f \varphi^{(\alpha)}$ is replaced by an $H_{\varepsilon ; m}^{p}$ atom a associated with a ball $B\left(y_{0}, r\right)$, where $B\left(y_{0}, r\right) \cap B_{\alpha}^{*} \neq \emptyset$. Let us note that for $x \in B_{\alpha}^{* * c}$, we have

$$
\max \left(\rho\left(y_{\alpha}\right), \rho(x)\right) \leq C\left|x-y_{0}\right|^{k_{0} /\left(1+k_{0}\right)} \rho\left(y_{0}\right)^{1 /\left(1+k_{0}\right)}
$$

Therefore, if the atom a does not satisfy the cancellation condition, then

$$
\left|a * p_{t}(x)\right| \leq C_{M} \varepsilon^{M-d}\|a\|_{L^{1} \rho} \rho\left(y_{0}\right)^{(M-d) /\left(1+k_{0}\right)}\left|x-y_{0}\right|^{-\left(M+d k_{0}\right) /\left(1+k_{0}\right)} .
$$

Consequently, the left hand side of (3.17) is estimated by $C_{M} \varepsilon^{M p-d}$.
If a satisfies the cancellation condition, then $r<\varepsilon \rho\left(y_{0}\right) / 4$ and

$$
\left|a * p_{t}(x)\right| \leq C r^{d+1-d / p}\left|x-y_{0}\right|^{-d-1} .
$$

Thus the left hand side of (3.17) is bounded by $C \varepsilon^{d p+p-d}$.
Corollary 3.18. There exists $0<\varepsilon_{0} \leq 1$ and a constant $C>0$ such that for every $0<\varepsilon \leq \varepsilon_{0}$ we have

$$
\begin{equation*}
\left\|f \varphi^{(\alpha)}\right\|_{H_{\varepsilon ; m}^{p}}^{p} \leq C\left\|\mathcal{P}_{\varepsilon}^{*}\left(f \varphi^{(\alpha)}\right)\right\|_{L^{p}}^{p} \tag{3.19}
\end{equation*}
$$

Proof. Since $f \varphi^{(\alpha)}$ is supported on $B\left(y_{\alpha}, \rho\left(y_{\alpha}\right)\right)$ the theory of local Hardy spaces (cf. [G]) asserts that

$$
\begin{gathered}
\left\|f \varphi^{(\alpha)}\right\|_{H_{\varepsilon ; m}^{p}}^{p} \leq C\left\|\sup _{0<t<\left(\varepsilon \rho\left(y_{\alpha}\right)\right)^{2}}\left|\left(f \varphi^{(\alpha)}\right) * p_{t}(x)\right|\right\|_{L^{p}}^{p} \\
\leq C\left\|\sup _{0<t<\left(\varepsilon \rho\left(y_{\alpha}\right)\right)^{2}}\left|\left(f \varphi^{(\alpha)}\right) * p_{t}(x)\right|\right\|_{L^{p}\left(B_{\alpha}^{* *}\right)}^{p}+C\left\|\sup _{0<t<\left(\varepsilon \rho\left(y_{\alpha}\right)\right)^{2}}\left|\left(f \varphi^{(\alpha)}\right) * p_{t}(x)\right|\right\|_{L^{p}\left(B_{\alpha}^{* * c}\right)}^{p} .
\end{gathered}
$$

Using Lemma 3.16 we obtain

$$
\left\|f \varphi^{(\alpha)}\right\|_{H_{\varepsilon ; m}^{p}}^{p} \leq C\left\|\mathcal{P}_{\varepsilon}^{*}\left(f \varphi^{(\alpha)}\right)\right\|_{L^{p}}^{p}+c(\varepsilon)\left\|f \varphi^{(\alpha)}\right\|_{H_{\varepsilon ; m}^{p}}^{p}
$$

This ends the proof of (3.19).
For $\varepsilon \in(0,1]$ we set

$$
\begin{equation*}
\mathcal{T}_{\varepsilon}^{*} f(x)=\sum_{\alpha} \sup _{0<t \leq \varepsilon^{2} \rho(x)^{2}}\left|\int\left(\varphi^{(\alpha)}(x)-\varphi^{(\alpha)}(y)\right) p_{t}(x-y) f(y) d y\right| \tag{3.20}
\end{equation*}
$$

Lemma 3.21. There exists a family of constants $c(\varepsilon)>0, \lim _{\varepsilon \rightarrow 0} c(\varepsilon)=0$ such that

$$
\begin{equation*}
\left\|\mathcal{T}_{\varepsilon}^{*} f\right\|_{L^{p}}^{p} \leq c(\varepsilon)\|f\|_{H_{\varepsilon ; m}^{p}}^{p} \tag{3.22}
\end{equation*}
$$

Proof. Since $0<p<1$ it suffices to show that

$$
\begin{equation*}
\sum_{\alpha} \int\left(\sup _{0<t<(\varepsilon \rho(x))^{2}}\left|\varphi^{(\alpha)}(x) P_{t} f(x)-P_{t}\left(\varphi^{(\alpha)} f\right)(x)\right|^{p}\right) d x \leq c(\varepsilon)\|f\|_{H_{\varepsilon ; m}^{p}}^{p} \tag{3.23}
\end{equation*}
$$

where $P_{t} f(x)=f * p_{t}(x)$.
Set

$$
\mathcal{J}_{\alpha, t} f(x)=\varphi^{(\alpha)}(x) P_{t} f(x)-P_{t}\left(\varphi^{(\alpha)} f\right)(x)=\int\left[\varphi^{(\alpha)}(x)-\varphi^{(\alpha)}(y)\right] p_{t}(x-y) f(y) d y
$$

Let a be an $H_{\varepsilon ; m}^{p}$ associated with a ball $B\left(y_{0}, r\right)$. Let $\mathcal{I}_{1}=\left\{\alpha: B\left(y_{0}, r\right) \cap B_{\alpha}^{* *}=\emptyset\right\}$, and $\mathcal{I}_{2}=\left\{\alpha: B\left(y_{0}, r\right) \cap B_{\alpha}^{* *} \neq \emptyset\right\}$. We note that the number of elements in \mathcal{I}_{2} is bounded by a constant independent of a. If $\alpha \in \mathcal{I}_{1}$, then $\mathcal{J}_{\alpha, t} a(x)=\int \varphi^{(\alpha)}(x) p_{t}(x-y) a(y) d y$. Thus, by the same arguments as in the proof of Lemma 3.16, we get

$$
\sum_{\alpha \in \mathcal{I}_{1}} \int_{0<t<(\varepsilon \rho(x))^{2}} \sup _{0}\left|\mathcal{J}_{\alpha, t} a(x)\right|^{p} d x \leq c(\varepsilon)
$$

Let us consider α being in \mathcal{I}_{2}. If $x \notin B\left(y_{0}, \rho\left(y_{0}\right)\right)^{*}$, then

$$
\mathcal{J}_{\alpha, t} a(x)=\int p_{t}(x-y) \varphi^{(\alpha)}(y) a(y) d y
$$

Since $\left\|\varphi^{(\alpha)} a\right\|_{H_{\varepsilon ; m}^{p}} \leq C$, where the constant C is independent of ε, a and α, the same arguments as in the proof of Lemma 3.16 can be applied to obtain

$$
\sum_{\alpha \in \mathcal{I}_{2}} \int_{B\left(y_{0}, \rho\left(y_{0}\right)\right)^{* c}} \sup _{0<t<(\varepsilon \rho(x))^{2}}\left|\mathcal{J}_{\alpha, t} a(x)\right|^{p} d x \leq c(\varepsilon)
$$

If $x \in B\left(y_{0}, \rho\left(y_{0}\right)\right)^{*}$, then $\rho(x) \sim \rho\left(y_{0}\right)$. Thus

$$
\left|\mathcal{J}_{\alpha, t} a(x)\right|=\left|\int \frac{\sqrt{t}}{\rho\left(y_{0}\right)} \Psi_{t}(x, y) a(y) d y\right| \leq C \varepsilon\left|\int \Psi_{t}(x, y) a(y) d y\right|
$$

where $\Psi_{t}(x, y)=\rho\left(y_{0}\right) t^{-1 / 2}\left(\varphi^{(\alpha)}(x)-\varphi^{(\alpha)}(y)\right) p_{t}(x-y)$. We note that $\mid \Psi_{t}(x, y) \leq \omega_{t}(x-y)$ and $\left|\nabla_{x} \Psi_{t}(x, y)\right| \leq t^{-1 / 2} \omega_{t}(x-y)$ for $0<t<C \rho\left(y_{0}\right)^{2}$. Therefore the standard methods can be used in order to show that

$$
\sum_{\alpha \in \mathcal{I}_{2}} \int_{B\left(y_{0}, \rho\left(y_{0}\right)\right)^{*}} \sup _{0<t<(\varepsilon \rho(x))^{2}}\left|J_{\alpha, t} a(x)\right|^{p} d x \leq c(\varepsilon)
$$

Now we are in a position to finish the proof of the second inequality in (3.10). By (3.15), Corollary 3.18, and Lemma 3.21, we obtain

$$
\begin{gathered}
\|f\|_{H_{\varepsilon ; m}^{p}}^{p} \leq C \sum_{\alpha}\left\|\varphi^{(\alpha)} f\right\|_{H_{\varepsilon ; m}^{p}}^{p} \\
\leq C \sum_{\alpha}\left\|\mathcal{P}_{\varepsilon}^{*}\left(\varphi^{(\alpha)} f\right)\right\|_{L^{p}}^{p} \\
\leq C\left\|\mathcal{P}_{\varepsilon}^{*} f\right\|_{L^{p}}^{p}+C\left\|\mathcal{T}_{\varepsilon}^{*} f\right\|_{L^{p}}^{p} \leq C\left\|\mathcal{P}_{\varepsilon}^{*} f\right\|_{L^{p}}^{p}+C c(\varepsilon)\|f\|_{H_{\varepsilon ; m}^{p}}^{p} .
\end{gathered}
$$

Taking ε_{0} sufficiently small we get

$$
\|f\|_{H_{\varepsilon ; m}^{p}} \leq C\left\|\mathcal{P}_{\varepsilon}^{*} f\right\|_{L^{p}}^{p}
$$

provided $0<\varepsilon \leq \varepsilon_{0}$. From (3.6) and (3.7) we conclude that (3.22) holds for $0<\varepsilon \leq 1$. This completes the proof of Proposition 3.9.

We define the maximal function

$$
\mathcal{Q}_{\varepsilon}^{*} f(x)=\sup _{0<t<\varepsilon^{2} \rho(x)^{2}}\left|\int q_{t}(x, y) f(y) d y\right|
$$

Proposition 3.24. Assume that $\frac{d}{d+\delta^{\prime}}<p \leq 1$. Then there exists a family of constants $\gamma_{\varepsilon}>0, \gamma_{\varepsilon} \rightarrow 0$ as $\varepsilon \rightarrow 0$, such that

$$
\left\|\mathcal{Q}_{\varepsilon}^{*} f\right\|_{L^{p}}^{p} \leq \gamma_{\varepsilon}\|f\|_{H_{\varepsilon} ; m}^{p}
$$

Proof. Let a be an $H_{\varepsilon ; m}^{p}$ atom associated with a ball $B\left(y_{0}, r\right)$. Applying Proposition 2.16, we get

$$
\mathcal{Q}_{\varepsilon}^{*} a(x) \leq C \varepsilon^{\delta}\left|B_{r}\right|^{1-\frac{1}{p}}
$$

Therefore

$$
\int_{B\left(y_{0}, 4 r\right)} \mathcal{Q}_{\varepsilon}^{*} a(x)^{p} d x \leq C \varepsilon^{p \delta}
$$

In order to estimate $\mathcal{Q}_{\varepsilon}^{*} a(x)$ outside the ball $B\left(y_{0}, 4 r\right)$ we need to consider two cases. If a satisfies the cancellation condition $\int a=0$, then, by Proposition 2.17,

$$
\begin{aligned}
& \left|\int q_{t}(x, y) a(y) d y\right|=\left|\int\left(q_{t}(x, y)-q_{t}\left(x, y_{0}\right)\right) a(y) d y\right| \\
& \quad \leq C(\sqrt{t} m(x, V))^{\delta^{\prime \prime}} t^{-\delta^{\prime \prime} / 2} \omega_{t}\left(x-y_{0}\right) r^{\delta^{\prime \prime}+d-d / p}
\end{aligned}
$$

Thus

$$
\mathcal{Q}_{\varepsilon}^{*} a(x) \leq C \varepsilon^{\delta^{\prime \prime}}\left|x-y_{0}\right|^{-d-\delta^{\prime \prime}} r^{\delta^{\prime \prime}+d-d / p}
$$

and, consequently,

$$
\int_{\left|x-y_{0}\right|>4 r}\left(\mathcal{Q}_{\varepsilon}^{*} a(x)\right)^{p} d x \leq C \varepsilon^{\delta^{\prime \prime} p}
$$

If $\int a \neq 0$, then $r \sim \rho\left(y_{0}\right)$. Since $t<\varepsilon^{2} \rho(x)^{2}$, applying Proposition 2.16 and Lemma 2.3, we get

$$
\begin{gathered}
\left|\int q_{t}(x, y) a(y) d y\right| \leq(\sqrt{t} m(x, V))^{\delta} \int|a(y)| \omega_{t}(x-y) d y \\
\leq C_{n} \frac{(\sqrt{t} m(x, V))^{\delta} r^{d-d / p}}{m\left(y_{0}, V\right)^{n}\left|x-y_{0}\right|^{d+n}}
\end{gathered}
$$

Therefore

$$
\int_{\left|x-y_{0}\right|>4 r}\left(\mathcal{Q}_{\varepsilon}^{*} a(x)\right)^{p} d x \leq C \varepsilon^{\delta p}
$$

4. Proof of Theorem 1.11. First we prove the first inequality in (1.12), that is,

$$
\begin{equation*}
\|f\|_{H_{m}^{p}}^{p} \leq C\|f\|_{H_{A}^{p}}^{p} \tag{4.1}
\end{equation*}
$$

By (3.6) and (3.7) it suffices to show that there is $\varepsilon>0$ such that

$$
\begin{equation*}
\|f\|_{H_{\varepsilon ; m}^{p}}^{p} \leq C\|f\|_{H_{A}^{p}}^{p} \tag{4.2}
\end{equation*}
$$

Applying Proposition 3.9 we have that there exists a constant C_{1} independent of ε such that

$$
\begin{gathered}
\|f\|_{H_{\varepsilon ; m}^{p}}^{p} \leq \sum_{\alpha}\left\|\varphi_{\alpha} f\right\|_{H_{\varepsilon ; m}^{p}}^{p} \leq C_{1} \sum_{\alpha}\left\|\mathcal{P}_{\varepsilon}^{*}\left(\varphi_{\alpha} f\right)\right\|_{L^{p}}^{p} \\
\quad \leq C_{1}\left\|\mathcal{T}_{\varepsilon}^{*} f\right\|_{L^{p}}^{p}+C_{1} \sum_{\alpha}\left\|\varphi_{\alpha}\left(\mathcal{P}_{\varepsilon}^{*} f\right)\right\|_{L^{p}}^{p}
\end{gathered}
$$

By Lemma 3.21, we obtain

$$
\begin{gathered}
\|f\|_{H_{\varepsilon ; m}^{p}}^{p} \leq C_{1} c(\varepsilon)\|f\|_{H_{\varepsilon ; m}^{p}}^{p}+C_{1} \sum_{\alpha}\left\|\varphi_{\alpha}\left(\mathcal{P}_{\varepsilon}^{*} f\right)\right\|_{L^{p}}^{p} \\
\leq C_{1} c(\varepsilon)\|f\|_{H_{\varepsilon ; m}^{p}}^{p}+C_{1} \sum_{\alpha}\left\|\varphi_{\alpha}\left(\mathcal{Q}_{\varepsilon}^{*} f\right)\right\|_{L^{p}}^{p}+C_{1} \sum_{\alpha}\left\|\varphi_{\alpha}(\mathcal{M} f)\right\|_{L^{p}}^{p}
\end{gathered}
$$

Finally, taking ε sufficiently small using (3.12)-(3.15) and Proposition 3.24, we obtain (4.2).

For proving the converse inequality it suffices to show that

$$
\|\mathcal{M} a\|_{L^{p}} \leq C
$$

for every a being an H_{m}^{p} atom. So, let a be such an atom associated with a ball $B\left(y_{0}, r\right)$. Obviously it follows from (1.2) that

$$
\|\mathcal{M} a\|_{L^{p}\left(B\left(y_{0}, 4 r\right)\right)}^{p} \leq C .
$$

In order to estimate $\mathcal{M} a(x)$ for $x \notin B\left(y_{0}, 4 r\right)$ we use (2.10) combined with Proposition 2.17 if a satisfies the cancellation condition, and with Proposition 2.16 otherwise.

References

[DZ1] J. Dziubański and J. Zienkiewicz, Hardy spaces associated with some Schrödinger operators, Studia Math. 126 (1998), 149-160.
[DZ2] J. Dziubański and J. Zienkiewicz, Hardy space H^{1} associated to Schrödinger operator with potential satisfying reverse Hölder inequality, Revista Mat. Iberoamericana 15.2 (1999), 279-296.
[G] D. Goldberg, The local version of real Hardy spaces, Duke Math. J. 46 (1979), 137-193.
[Sh] Z. Shen, L^{p} estimates for Schrödinger operators with certain potentials, Ann. Inst. Fourier (Grenoble) 45 (1995), 513-546.

