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Rajchman, Zygmund, and Marcinkiewicz all made important contributions to the

theory of sets of uniqueness and sets of multiplicity. We shall meet these results in the

course of the history of the subject, which spans more than 140 years, from the work of

Riemann and Cantor to recent results.

1. The prehistory: Riemann and Cantor. Riemann’s habilitation thesis, “Über

die Darstellbarkeit einer Funktion durch eine trigonometrische Reihe,” was submitted

in Göttingen in 1854, but it was published only in 1867, a year after Riemann’s death,

by Richard Dedekind. It became famous immediately, mainly because it introduced the

Riemann integral. However, the main part of the thesis deals with the following prob-

lem: to investigate and characterize functions f that are sums of everywhere-convergent

trigonometric series,

f(x) =
1

2
a0 +

∞
∑

n=1

(an cosnx+ bn sinnx) =
∞
∑

n=0

An(x).

The Fourier formulas an = 1
π

∫ π

−π
f(x) cosnxdx and bn = 1

π

∫ π

−π
f(x) sinnxdx are of no

use in general, since f need not be integrable in the sense of Riemann. The Fatou example

(1906),

f(x) =
∞
∑

n=2

sinnx

logn
,

shows that f need not be integrable in the sense of Lebesgue either [13]. Only the second

totalization of Denjoy (1921) allows one to compute the coefficients an and bn by using

the Fourier formulas [12].

Riemann’s idea was to use the “second integral” of f , specifically, the continuous

function

2000 Mathematics Subject Classification: Primary 42-02, 42A63.
The paper is in final form and no version of it will be published elsewhere.

[55]



56 J.-P. KAHANE

f (−2)(x) =

∞
∑

n=1

−An(x)

n2

and to prove that its second symmetric derivative is f(x). (We neglect the linear term.)

This was a bright idea, however Riemann’s paper contains two weak points:

1. Riemann used the fact that the coefficients an and bn are bounded, and he wrote

that they tend to zero. He did not prove this, except in the case f is integrable.

2. Riemann did not consider the uniqueness question: Given f , are the coefficients an
and bn well defined?

Cantor filled both gaps in 1870. In his article of March 1870 entitled “Über einen

die trigonometrischen Reihen betreffenden Lehrsatz,” Cantor proved that the coefficients

tend to zero; later in April 1870 in his paper entitled “Beweis, dass eine für jeden reellen

Wert von x durch eine trigonometrische Reihe gegebene Funktion f(x) sich nur auf eine

einzige Weise in dieser Form darstellen lässt” he proved the uniqueness result [7]. Two

years later, in 1872, he raised this question: Does the uniqueness result hold when we

relax the assumption by allowing exceptional values of x? In other words, given a set E

of real numbers, does the fact that f(x) exists and vanishes outside of E imply that the

an and bn are zero?

Cantor’s 1872 article, “Über die Ausdehnung eines Satzes aus der Theorie der trigono-

metrischen Reihen,” is famous because it contains his views on real numbers and the first

notions of Cantor’s set theory. It is also the beginning of the theory of sets of uniqueness

(U-sets) and sets of multiplicity (M-sets). Referring to the question above, E is a U-set

if the answer is “yes” and an M-set if the answer is “no.” Cantor proved that a point, a

finite set, and a reducible set (a countable compact set) are U-sets [8].

2. The new start after 1900. The subject lay stagnant for many years until the

famous Comptes rendus notes by Fejér (1900) and Lebesgue (1901) gave a new impetus

to the study of trigonometric series [14,31].

After Fejér proved his celebrated theorem on (C,1)-summability of Fourier series of

continuous functions (in the more general form involving f(x+0)+ f(x− 0)), he turned

his attention to general trigonometric series. He was able to translate the Riemann theory

when ordinary convergence is replaced with (C,1)-summability. The idea in this case to

is use f (−4) instead of f (−2). Fejér observed that the series

1

2
+ cosx+ cos 2x+ · · ·

is (C,1)-summable to zero at every point except the multiplicities of 2π. Based on this

observation, he suggested to the young Marcel Riesz that he redo the Cantor theory within

the framework of (C,1) and other summability processes. The story and results can be

found in Riesz’s 1907 Comptes rendus note entitled “Sur les séries trigonométriques,”

which was published when he was 20, and in his thesis, which was translated into English

by J. Horváth and published in his collected papers [43,44].

Lebesgue first applied his results on measure and integration to geometrical questions

(lengths and areas) and to the “primitive” problem, that is, to find a function f whose
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derivative f ′ is given. He later turned to the study of trigonometric series. His first

publication was a Comptes rendus note in 1902 entitled “Un théorème sur les séries

trigonométriques.” This was followed in 1903 by an important article entitled “Sur les

séries trigonométriques.” His book, “Leçons sur les séries trigonométriques,” appeared in

1906. The first note concerns bounded functions that are sums of everywhere convergent

trigonometric series. According to Cantor, the coefficients are well defined when the

function is given. Lebesgue showed that they are given by the Fourier formulas an =
1
π

∫ π

−π f(x) cosnxdx and bn = 1
π

∫ π

−π f(x) sinnxdx, where the integral is the Lebesgue

integral. He then added the following comment: “Le résultat précédent subsiste si les

valeurs où f(x) n’est pas définie forment un ensemble fermé de mesure nulle.” This is a

mistake, and Lebesgue corrected it immediately in his 1903 article: The result holds when

f(x) is defined except on a reducible set and not a null set [32,33]. However, the question

on null sets was left open. Lebesgue knew that a set of positive Lebesgue measure is an

M-set, since this is implicit in his book [34]. W. H. Young extended Cantor’s theorem in

1909 by proving that every countable set is a U-set [49].

It was only in 1916 that D. Menšov (Menchoff) constructed a closed M-set of zero

Lebesgue measure in the form of a Cantor set whose dissection ratio is 1/k at the kth

step [37]. (This is the standard Cantor construction, except that one removes the middle

kth at the kth step rather than removing the middle 3rd at each step. Of course one must

start with k = 2.)

A. Rajchman provided the first result on perfect sets in the opposite direction in

1922: He showed that the ordinary Cantor set (with dissection ratio 1/3) is a U-set. His

article entitled “Sur l’unicité du développement trigonométrique” introduced the notion

of H-sets, which were first called “ensembles du type de Hardy–Littlewood–Steinhaus.”

Here is Rajchman’s definition: Given E ⊂ T = R/2πZ, let dk be the length of the largest

interval contained in T \ kE, where k = 1, 2, . . .; E is called an H-set if lim dk > 0. All

H-sets are U-sets [40].

3. Zygmund and Bari. Antoni Zygmund was a student of Rajchman, and Nina

Bari was a student of Menšov. In 1923 both Zygmund and Bari were working on the

same subject, namely, the countable unions of U-sets. They arrived at the same result:

Every countable union of closed U-sets is a U-set. In Zygmund’s book, Trigonometric

Series, Vol. I, p. 349, this is called “Theorem of N. Bary” [56]. Zygmund liked this result

very much, and he could have claimed priority. But he did not, and here is the story.

The Comptes rendus dated 1 October 1923 contains Zygmund’s note entitled “Sur

les séries trigonométriques,” where one finds the following statement: “Si les ensem-

bles E1, E2, . . . , En, . . . sont tous de type U, l’ensemble E1 + E2 + · · · est aussi du

type U.” (When the En are H-sets, the result was already established by Nina Bari.)

There was a mistake in this statement, and Zygmund corrected it immediately: The sets

E1, E2, . . . , En, . . . should be closed U-sets. The correction was published in the Comptes

rendus dated 22 October 1923 [50].

On 3 December 1923, Nina Bari submitted a note entitled “Sur l’unicité du développe-

ment trigonométrique” that contained the correct statement [3]. She mentioned Zyg-
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mund’s note of 1 October without being aware of the correction published on 22 Octo-

ber.

The final step was taken by Zygmund in a note dated 1 January 1924 entitled “Sur les

séries de Fourier restreintes.” He related the whole story, which established his priority,

and then concluded that “la priorité de ce théorème revient à Melle Bary” [51].

This is a little more than fair play. Once I asked Professor Zygmund why he gave up

that way. He told me that he had been really puzzled, consulted Rajchman, and followed

his advice: “Never compete with a girl.”

4. Zygmund and Marcinkiewicz. Zygmund wrote a series of important articles

on U-sets and their generalizations between 1926 and 1937. I shall return to some of these

in a moment, but first I am going to jump to the joint paper from 1937 by Zygmund and

Marcinkiewicz entitled “Two theorems on trigonometric series” [36].

The first theorem in this paper says that the class of U-sets is invariant under ho-

motheties. This is a simple consequence of the fact that compact U-sets are the same

for trigonometric series (the usual case) and for trigonometric integrals, as Zygmund had

already observed in 1928.

The second theorem is actually an example of a summation process for trigonometric

series for which the analysis of Cantor’s theorem fails: There exists a nonzero trigono-

metric series that is summable to zero everywhere. This is very much in the spirit of the

joint work by Zygmund and Marcinkiewicz on generalized derivatives.

The first theorem by Zygmund and Marcinkiewicz is constantly used in the theory of

U-sets. For example, given that a special triadic Cantor set is an H-set, hence a U-set,

all triadic Cantor sets are U-sets. The same holds for all Cantor sets of the form

Eξ(a, b) =
{

a+ b
∞
∑

n=1

εnξ
n, εn = ±1

}

,

where ξ−1 is an integer≥ 3, a is real, and b > 0.

5. Zygmund and Salem. One of the pearls of the theory of U-sets is that a set

Eξ (meaning Eξ(a, b) for some a and b) is a U-set if and only if ξ−1 is an algebraic

integer whose conjugates (except itself) lie inside the unit disc of the complex plane.

This famous theorem by Salem and Zygmund (1955) provides one of the most striking

relations between number theory and trigonometric series.

The theorem had been guessed by Salem long before it was proved. A necessary

condition for Eξ to be a U-set is that

lim
u→∞

∣

∣

∣

∞
∏

n=1

cos ξnu
∣

∣

∣
> 0,

since otherwise Eξ carries a probability measure whose Fourier transform tends to zero

at infinity, which implies that Eξ is an M-set. In particular, if ξ−1 is a rational > 2 but

not an integer, then Eξ is an M-set. This is a previous result by Nina Bari [4]. But there

was no possibility to use Rajchman’s H-sets to prove that Eξ is a U-set in the general

case when ξ−1 ∈ PV , the Pisot–Vijayaraghavan class defined above.
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The decisive step is due to I. I. Pyateckǐı-Šapiro (Piatetski-Shapiro), who introduced a

generalization of H-sets called Hm-sets. These are obtained by a similar process involving

m-dimensional space, and they enjoy the property of also being U-sets. He was able to

prove (1953) that Eξ is a U-set whenever ξ−1 ∈ PV and ξ−1 > 2n, where n is the degree

of ξ−1 [39].

Zygmund became aware of the result and the method of Piatetski-Shapiro, he wrote

to Salem, and the final result was obtained in a few days [47]. Many proofs have been

written. The easiest one, which is due to Yves Meyer, can be found in the second edition

of the Kahane–Salem book, pp. 203–204 [22].

6. Variations around U-sets. The first variation is to replace ordinary convergence

by a summability process such as (C,1), Poisson, etc., and it goes back to Fejér and Marcel

Riesz. The examples

1

2
+

∞
∑

n=1

cosnx and

∞
∑

n=1

n sinnx

show that the Cantor uniqueness theorems cannot be extended without assumptions

about the coefficients an, bn. Marcel Riesz proved the following three theorems in 1907:

1. If

(MR)

∞
∑

n=1

|an|+ |bn|

n2
< ∞

and if the series
∑∞

n=1 An(x) is (C,1)-summable to zero everywhere, then it is the

null series, that is, an = bn = 0 for all n.

2. If |an|+|bn| = o(1) as n → ∞ and if the series is (C,1)-summable to zero everywhere

except a reducible set, then the same conclusion holds.

3. If we assume (MR) and if the series is (C,1)-summable to a bounded Lebesgue-

integrable function everywhere except a reducible set, then the series is the Fourier–

Lebesgue series of this function [43,44].

The second variation appears in this last theorem, and it is due to Lebesgue. It is

based on considering convergence or summability to an integrable function. Of course, it

depends on the notion of integral being used.

A third variation is to consider specific orthogonal series instead of trigonometric

series.

All three of these variations are the subject of important papers by Rajchman, Zyg-

mund, and Rajchman and Zygmund [5, 41, 42]. Many of the theorems can be found

in Volume 1 of Zygmund’s Selected Papers. Zygmund’s 1930 article, “Théorie rieman-

nienne de certains systèmes orthogonaux” contains a history of the subject and the main

classification in the form of the following definitions [54].

M is a summation process stronger (in the wide sense) than ordinary convergence,

and only series
∑∞

n=0 An(x) with |an|+ |bn| = o(1) as n → ∞ are considered.

UM-sets: E is a UM-set if, whenever
∑∞

n=0 An(x) is M-summable to zero on the com-

plement of E, it is the null series.
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U′
M-sets: E is a U′

M-set if, whenever
∑∞

n=0 An(x) is M-summable to f(x) on the com-

plement of E and f is Lebesgue integrable, it is the Fourier–Lebesgue series of f .

U′′
M-sets:E is a U′′

M-set if, whenever
∑∞

n=0 An(x) is M-summable to f(x) on the comple-

ment of E and f(x) ≥ g(x), where g is Lebesgue integrable, it is the Fourier–Lebesgue

series of f , which implies that f is necessarily Lebesgue integrable.

U-sets, U′-sets, and U′′-sets correspond to the cases when M is ordinary convergence.

The inclusions between these classes are expressed by the following diagram:

U U′
oo U′′

oo

UM

OO

U′
M

oo

OO

U′′
M

OO

oo

The most striking results are the following (Rajchman, Steinhaus, Banach, Zygmund;

see Zygmund’s Selected Papers I, pp. 70, 128, 134, 215):

Every countable set is a U′′
P-set, where P stands for Poisson summation.

Every closed U-set is a U′
P-set, and every closed U-set is a U′′-set [53,54].

7. Another variation: Zygmund’s U(ε)-sets. Zygmund’s 1926 article, “Contri-

bution à l’unicité du développement trigonometrique,” considers the uniqueness problem

for series
∑∞

n=0 An(x) that are subject to the condition

(Zε) |an|+ |bn| = O(εn), n → ∞,

where ε = (εn) is a given decreasing sequence tending to zero. Here is the definition:

A subset E of the circle is a U(ε)-set if, whenever a series
∑∞

n=0 An(x) satisfying (Zε)

converges to zero on the complement of E, it is the null series.

Surprisingly, given any sequence ε, there are U(ε)-sets of positive Lebesgue measure, and

there are even U(ε)-sets with Lebesgue measure arbitrarily close to 2π. After stating and

proving this result, Zygmund posed two questions [52]: (1) Is every countable union of

closed U(ε)-sets a U(ε)-set? (2) Do there exist U(ε)-sets of full Lebesgue measure?

The first question is still open. A positive answer would imply a positive answer to the

second question. Using a different method, Kahane and Katznelson answered the second

question in 1973 in a positive way [20]. Related results were obtained by Bernard Connes

in 1976 on Hausdorff measures and dimensions of the complementary sets, which I denote

by CU(ε) [9]. For example, if εn = n−α, 0 < α < 1, then there exists a CU(ε)-set of

Hausdorff dimension 1−α, and there is no CU(ε)-set of Hausdorff dimension < 1−α [9].

A simplified version of the method used in [20] is given in [19]. The idea is to

construct a probability measure µ, supported by a closed null set E, such that αm =
∑

n∈Z |µ̂m−n|εn < ∞, (ε−n = εn) for all m and such that αm = o(1), |m| → ∞. Then,

given a countable, dense set D on the circle, the algebraic sum E +D is a CU(ε)-set.

8. Thin sets and functional analysis. From now on we shall concentrate on closed

subsets of the circle T = R/2πZ. For such a subset, E, C(E) denotes the space of

continuous complex-valued functions on E, and we assume that C(E) has the usual
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Banach space structure. A(E) denotes the subspace of functions of C(E) that can be

represented as sums of absolutely convergent trigonometric series. A(E) can be considered

to be the quotient of A(T) by the ideal A(π) consisting of functions vanishing on E. M [E]

is the space of complex, bounded measures carried by E; it is the dual space of C(E). The

pseudomeasures are linear forms of A(T) identified with the trigonometric series whose

coefficients are bounded,

T =
∞
∑

n=−∞

T̂ (n)eint, 〈T, e−int〉 = T̂ (n),

and also with the corresponding Schwartz distributions. PM [E] is the space of pseu-

domeasures carried by E. PF [E] is the space of pseudofunctions carried by E. The

pseudofunctions are pseudomeasures whose coefficients tend to zero. With these nota-

tions we have the following characterizations or definitions:

E is a U-set if PF [E] = {0}.

E is an M-set if PF [E] 6= {0}.

E is a M0-set if M [E] ∩ PF [E] 6= {0}.

E is a Helson set if A(E) = C(E), or, equivalently, if M [E] = A(E)′, where A(E)′ is

the dual of A(E).

Explanations and comments can be found in the Kahane–Salem book [23]. The following

are the most important results:

(Piatetski-Shapiro, 1952–1954) There exist M-sets that are not M0-sets [38].

(Helson, 1954) No Helson set is an M0-set [15].

(Malliavin, 1959) There exist sets of non spectral synthesis [35].

(Körner, 1973) There exists a Helson M-set [29].

It is easy to check that Körner, together with Helson, implies both Piatetski-Shapiro

and Malliavin. However, Körner’s construction, even as simplified by Kaufman [27], is

rather difficult. A slightly simplified version was given in the second edition of Kahane–

Salem [22, pp. 213–216].

Let us consider two more notions: Kronecker sets and Mα-sets.

E is a Kronecker set if every continuous function with modulus 1 on E can be approx-

imated uniformly on E by some sequence of imaginary exponentials, exp inkt, nk ∈ N,

nk → ∞.

A Kronecker set is necessarily independent on T, which means that all linear com-

binations of its elements with integer coefficients are different. Conversely, Kronecker’s

theorem states that every finite, independent set on T is a Kronecker set. There exist

perfect Kronecker sets.

Kronecker set are “thin” is many respects: They are U-sets, Helson sets, and sets of

spectral synthesis. On the other hand, there are Kronecker set of Hausdorff dimension 1.

References to Kronecker sets can be found in [45] and [17].

E is an Mα-set if it carries a measure µ whose Fourier transform satisfies the condition

µ̂(u) = o(|u|−α/2).
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Here we can consider E as a subset of R contained in an interval of length 2π, as well

as a subset of T. The Hausdorff dimension of an Mα-set is ≥ α. We say that the Fourier

dimension of a set E is the supremum of the α such that E is an Mα-set.

(Salem, 1951) Given 0 < α < 1, there exists sets E whose Hausdorff dimension and

Fourier dimension are both equal to α [46].

Salem sets are defined—in R
d, d ≥ 2 as well as in R—as sets whose Hausdorff and

Fourier dimensions are equal. A sphere in R
d is a Salem set.

We close this section with a historical comment: The terms pseudomeasure and pseud-

ofunction were coined by Kahane and Salem in 1956 [22]. However, pseudofunctions ap-

pear implicitly whenever one considers trigonometric series whose coefficients tend to

zero, and thus their theory goes back to Riemann, Cantor, and Rajchman.

9. The construction of thin sets. We shall consider in turn Kronecker sets, U-sets,

Mα-sets, Salem sets, and Helson U-sets. Explicit constructions are difficult, and I shall

give only a few examples involving U-sets and Mα-sets. Two main tools are used in place

of explicit constructions: Baire category theory and probability theory.

Robert Kaufman introduced a Baire argument for Kronecker sets in 1967. His method

can be illustrated with two specific cases. First, given any Cantor set E0, that is, a set

homeomorphic to the triadic Cantor set, we consider the space C(E0) of all real-valued

continuous functions on E0. Then there exists a dense Gδ-set in C(E0) such that if f

belongs to this set, then f(E0) is a Kronecker set. In short, we say that f(E0) is a

Kronecker set for quasi-all f , or quasi-surely. From this point of view, Kronecker sets are

the most common in the world.

We start with a particular type of Cantor set E0 that has large gaps. This means

that for arbitrarily small ε > 0, E0 can be covered by intervals of lengths ε separated by

intervals of length > l such that l/ε is arbitrarily large. Now consider the cone D(E0) con-

sisting of those real-valued continuous functions on E0 that can be extended to increasing

C1 functions on R and whose derivative is 1 on E0 and lies between two positive bounds

on R. D(E0) is a Baire space, and f(E0) is a Kronecker set for quasi-all f ∈ D(E0). Then,

from a local point of view, f(E0) is obtained from E0 by a translation and a small distor-

tion. Starting with a “big” E0 (its Lebesgue measure is necessarily 0, but its Hausdorff

dimension can be 1), we obtain a “big” Kronecker set [24,17].

There are several explicit ways to construct U-sets. I already mentioned the H-sets of

Rajchman and the Hmsets of Piatetski-Shapiro in sections 2 and 5. If E is a Dirichlet set,

which means that 1 is a uniform limit on E of some sequence of imaginary exponentials

exp(inkt), nk → ∞, then it is a U-set (Varopoulos, 1969) [48, 17]. Here is special class of

U-sets that were discovered by Salem in 1941.

Given a compact set E, let N(ε, E) be the smallest number of intervals of length ε

whose union covers E. If

(S1) lim
ε→0

N(ε, E)

log(1/ε)
,

then E is a U-set. This is the Salem box, or entropic, condition. Proofs of these last two

results are given in [17].
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There are not many explicit ways to construct Mα-sets, α > 0. Here is an interesting

example given by Robert Kaufman in 1980 [25]. Let (a0, a1, . . . , an, . . .) = a0 + (1 +

1/(a1 + · · ·)) be the continued fraction expansion of a positive real number x. Let FN be

the set of x’s such that an ≤ N for all n. When N is large enough and α is small enough,

FN is an Mα-set.

The most powerful way to obtain Mα-sets, and even Salem sets, is to use random

constructions or processes. Random constructions were introduced by Salem in 1951;

they are described in chapter VIII of [23]. Lévy processes were used by Kahane and

Mandelbrot in 1965, and Brownian motion was used by Kahane in 1966; in both cases

the analytic tools were those used in Salem’s approach [21,16]. Here is the simplest result,

using Brownian motion:

Let B(t, ω) be the real Brownian motion starting from 0, h(t) a positive concave

function of t > 0, θ a probability measure such that θ(I) ≤ h(|I|) for all intervals I,

and µ the (random) image of θ by B(· , ω). Then

(S2) µ̂(u) = O(
√

log |u| h(|u|−2) ), |u| → ∞, almost surely.

As a consequence, starting from any compact subset of R with Hausdorff dimension α/2,

0 < α < 1, its image under B(· , ω) is almost surely (a. s.) a Salem set of dimension α.

Another consequence is that the Salem box condition (S1) is best possible in the sense

that the denominator log(1/ε) cannot be replaced with a substantially larger function,

that is, one whose ratio with log(1/ε) tends to infinity as ε tends to zero. On the other

hand, (S1) shows that log |u| in (S2) cannot be replaced with a substantially smaller

function.

Probability methods are well suited to provide M-sets, in particular, Mα-sets and

Salem sets, whereas Baire methods are well suited to provide U-sets, in particular, Kro-

necker sets. Random images of a given set carry measures whose Fourier transforms

“decrease” as fast as possible, given their Hausdorff measures or dimensions. From the

Baire point of view, the opposite is true: The images under consideration do not carry

measures whose Fourier transforms tend to zero. Almost sure and quasi sure properties

go in opposite directions.

10. Construction of thin sets—continued. It was a surprise to me when Tom

Körner showed in 1993 how to use Baire methods to produce M-sets, Mα-sets, and Salem

sets [30]. The probability method consisted of investigating Fourier properties of random

sets whose Hausdorff properties were given and of proving that fast decrease of Fourier

transforms of some measures (as fast as possible given the Hausdorff properties) is almost

sure. Körner’s method is to impose the Fourier properties by defining a convenient Baire

space of sets equipped with measures or pseudomeasures and to prove (I quote) that

“quasi all sets are as thin as possible,” in particular, from the Hausdorff dimension point

of view or from the Helson point of view. Here are two important examples ([29], see also

[18, p. 174]).

Let Gα be the set of ordered pairs (E, µ), where E is a closed subset of T and µ is a

probability measure carried by E whose Fourier coefficients satisfy µ̂(n) = o(|n|−α/2),
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|n| → ∞, 0 ≤ α < 1. When Gα is equipped with the metric

d((E1, µ1), (E2µ2)) = d(E1, E2) + sup
n
(|n|−α/2|µ̂1(n)− µ̂2(n)|)

it is a Baire space. Then E is a Salem set of dimension α quasi surely. Moreover, given

any positive function h(ε), ε > 0, such that ε−α log(1/ε) = o(h(ε)), ε → 0, then

lim
ε→0

N(ε, E)

h(ε)
= 0

for quasi all (E, µ) in Gα.

Choosing α = 0, the Salem condition S1 for uniqueness shows that the condition on

h(ε) is precise in the sense that “o” cannot be replaced by “O.”

Roughly speaking, quasi-all Mα-sets are Salem sets, and quasi-all M0-sets satisfy a

box condition as close as we want to the Salem uniqueness condition (S1).

We know that no M0-set can be a Helson set, which is Helson’s theorem. However,

roughly speaking, quasi-all M-sets are Helson sets; in other words, the Körner example,

well considered, is generic. This is the content of the second example:

Let G be the set of ordered pairs (E, τ), where E is a closed M-set on T and τ is

a pseudofunction carried by E such that τ̂ (0) = 1. This is a Baire space when it is

endowed with the metric

d((E1, τ1), (E2, τ2)) = d(E1, E2) + sup
n

|τ̂1(n)− τ̂2(n)|,

and E is a Helson set quasi surely.

In these examples the use of the Baire method is illuminating, but probability methods

remain an essential tool in the proofs. The marriage of both methods is a charm of this

approach.

11. The new role of set theory. Cantor’s set theory appeared in 1872 in connection

with the uniqueness problem for trigonometric series. In 1985 Robert Kaufman had the

idea of applying the general theory of sets to the space K(T), the space of all compact

subsets of T, to investigate U-sets and other thin sets. Important work by logicians

followed. Here are a few prominent results.

Let U be the ensemble of U-sets in T. Then U is coanalytic in K(T), that is, M,

the ensembles of M-sets in T, is analytic in the sense of Lusin. Moreover, neither U nor

M is Borelian in K(T), where Borelian means analytic and coanalytic. This result is by

R. Kaufman and R. Solovay [26].

The theorem of Nina Bari says that U is a σ-ideal in K(T). This means that a closed

subset of an element of U belongs to U and that a countable union of elements of U

belongs to U as soon as it belongs to K(T). Answering a question of R. Solovay, G. Debs

and J. Saint-Raymond proved that U as a σ-ideal has no Borelian basis. (B is a basis

for the σ-ideal U if U is the smallest σ-ideal containing B.) This means that, given any

system of Borelian conditions, there exists a closed U-set that is not a countable union

of closed sets satisfying these conditions. The proof makes use of the existence of Helson

M-sets [11].
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Parallel to U and M, it is possible to consider U0 and M0, complementary in K(T),

the latter being the ensemble of closed M0-sets. Again, U0 is analytic, it is not Borelian,

and it is a σ-ideal. But unlike U , U0 has a Borelian basis [28].

12. Several variables. This field of research is relatively recent, but it is now very

active. A good exposition can be found in the article by Marshall Ash and Geng Wang

in [1]. The trigonometric series under consideration are
∑

m∈Zd

cmei(m,x),

where x = (x1, · · · , xd),m = (m1, · · · ,md), and (m,x) = m1x1+· · ·+mdxd. The spherical

sums are

Sr(x) =
∑

|m|≤r

cmei(m,x),

where |m| = (m2
1 + · · ·+m2

d)
1/2, and their building blocks are the sums

Cr =
∑

|m|=r

cmei(m,x).

Here are the main results:

(Zygmund, 1972) Suppose that d = 2. Then for some λ > 0, depending on E,

1

λ

∑

|m|=r

|cm|2 ≤

∫

E

|Cr(x)|
2 dx ≤ λ

∑

|m|=r

|cm|2

whenever E has positive Lebesgue measure on T
2.

Corollary. If Cr(x) tends to zero as r = (r21 + r22)
1/2 tends to infinity on a set E of

positive Lebesgue measure, then
∑

|m|=r |cm|2 tends to zero [55].

(B. Connes, 1976) Suppose that d ≥ 3. Then the same conclusion holds for open sets

E [10].

(J. Bourgain, 1996) Assume that d ≥ 2. If Sr(x) tends to zero everywhere as r → ∞,

then the series is the null series. This uses B. Connes’s result. Finally, here is the most

recent extension [6].

(M. Ash and G. Wang, 2000) If Sr(x) tends to f(x) for all x as r → ∞ and if

f ∈ L1(Td), then the cm are the Fourier–Lebesgue coefficients of f [2].

I wish to thank Robert Ryan for a careful reading of this article and for helping me

with its presentation.
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[12] A. Denjoy, Calcul des coefficients d’une série trigonométrique convergente quelconque dont

la somme est donnée, C. R. Acad. Sci. Paris 172 (1921), 1218–1221.
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47–104; Selected Papers I, 1989, 23–80.
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