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by

Frank Patane (Birmingham, AL)

1. Introduction. Let ∆ be a discriminant of a positive definite binary
quadratic form. When the discriminants ∆ and ∆p2 have one form per
genus, [8] gives an identity that connects the theta series associated to binary
quadratic forms for each discriminant. This paper is mainly concerned with
generalizing the central identity of [8] to discriminants which have multiple
forms per genus. This generalized identity is stated in Theorem 5.1 where
the discriminants ∆ and ∆p2 are not required to have one form per genus.
Theorem 5.1 gives an identity which connects a theta series associated to
a binary quadratic form of discriminant ∆ to a theta series associated to a
subset of binary quadratic forms of discriminant ∆p2.

Section 2 sets the notation and discusses some preliminary results. Sec-
tion 3 considers a map of Buell which connects the class groups CL(∆) and
CL(∆p2). Section 4 contains the lemmas and identities which are necessary
for the proof of Theorem 5.1. Section 5 combines the results of the previous
sections to prove Theorem 5.1. Section 6 employs Theorem 5.1 to prove a
general result given by [8, Theorem 5.1]. Lastly, Section 7 gives an explicit
example which employs Theorem 5.1 to derive a Lambert series decomposi-
tion and the corresponding product representation formula.

2. Preliminaries and notation. We use (a, b, c) to represent the class
of binary quadratic forms which are equivalent to the binary quadratic form
ax2+bxy+cy2. Equivalence of two binary quadratic forms means the trans-
formation matrix which connects them is in SL(2,Z). The discriminant of
(a, b, c) is defined as ∆ := b2 − 4ac, and we only consider the case ∆ < 0
and a > 0. We say (a, b, c) is primitive when GCD(a, b, c) = 1. The set of all
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classes of primitive forms of discriminant ∆ comprise what is known as the
class group of discriminant ∆, denoted CL(∆). We will often use the term
“form” to mean a class of binary quadratic forms.

We use h(∆) := |CL(∆)| to denote the class number of ∆. In his 1801
work [5], Disquisitiones Arithmeticae, Gauss develops much of the theory of
binary quadratic forms, including the relation below between ∆ and ∆p2:

(2.1) h(∆p2) =
h(∆)

(
p−

(
∆
p

))
w

,

where

(2.2) w :=


3, ∆ = −3,

2, ∆ = −4,

1, ∆ < −4.

The relation (2.1) as well as the number w in (2.2) appear in Section 3.
Two binary quadratic forms of discriminant ∆ are said to be in the same
genus if they are equivalent over Q via a transformation matrix in SL(2,Q)
whose entries have denominators coprime to 2∆. An equivalent definition
for the genera is given by introducing the concept of assigned characters.
The assigned characters of a discriminant ∆ are the functions

(
r
p

)
for all

odd primes p |∆, as well as possibly the functions
(−1
r

)
,
(
2
r

)
, and

(−2
r

)
. The

details are discussed in Buell [2] and in Cox [3].

The genera are of equal size and partition the class group. We say a
discriminant is idoneal when each genus contains only one form. The number
of genera of discriminant ∆p2 is either equal to the number of genera of
discriminant ∆, or double that number. Letting v(∆) be the number of
genera of discriminant ∆ we have

(2.3)
v(∆p2)

v(∆)
=



1, p > 2, p |∆,
2, p > 2, p - ∆,
1, p = 2, p - ∆,
1, p = 2, ∆ ≡ 0, 12, 28 (mod 32),

2, p = 2, ∆ ≡ 4, 8, 16, 20, 24 (mod 32).

The theta series associated to (a, b, c) is

(a, b, c, q) :=
∑
x,y

qax
2+bxy+cy2 =

∑
n≥0

(a, b, c;n)qn,

where we use (a, b, c;n) to denote the total number of representations of n
by (a, b, c). We define the projection operator Pm,r to be

Pm,r
∑
n≥0

a(n)qn =
∑
n≥0

a(mn+ r)qmn+r,
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where we take 0 ≤ r < m. Informally, the operator Pp,0 applied to (a, b, c, q)
collects the terms of (a, b, c, q) which have the exponent of q congruent to 0
modulo p.

3. Connecting ∆ to ∆p2. Let (a, b, c) be a primitive form of discrim-
inant ∆. In [2, Chapter 7], Buell defines a map which sends (a, b, c) to a
set of p + 1 not necessarily distinct and not necessarily primitive forms of
discriminant ∆p2. The image of (a, b, c) under this map is given by

(3.1) {(a, bp, cp2)} ∪ {(ap2, pb+ 2ahp, ah2 + bh+ c) : 0 ≤ h < p}.
Buell devotes Section 7.1 of his book to determining the important properties
of this map. He shows that if we cast out the nonprimitive forms of (3.1),
then the remaining forms (all primitive) are repeated w times, where w is half
the number of automorphs of ∆ and is given in (2.2). We can map (a, b, c)
to the set of distinct primitive forms of (3.1), and we call this set Ψp(a, b, c).

Buell shows the images of Ψp are distinct, of the same size, and partition
CL(∆p2) [2, Section 7.1]. Moreover, there are exactly 1 +

(
∆
p

)
nonprimitive

forms in (3.1). Thus there are p+ 1−
(
1 +

(
∆
p

))
= p−

(
∆
p

)
primitive forms

in (3.1). In other words,

|Ψp(a, b, c)| =
p−
(
∆
p

)
w .

Combining these results, Buell derives the class number of ∆p2 to be

h(∆p2) =
h(∆)

(
p−

(
∆
p

))
w

.

We emphasize that the only time there are repeated primitive forms in (3.1)
is when ∆ = −3,−4. As an example we take ∆ = −3 and p = 7. The
class group for ∆ = −3 consists of the single reduced form (1, 1, 1). The
class group for discriminant ∆p2 = −3 ·72 = 147 consists of the two reduced
forms (1, 1, 37) and (3, 3, 13). The forms in (3.1) (counting repetition) consist
of (1, 1, 37) union the forms listed in Table 1.

Table 1. ∆ = −3, p = 7

h Corresponding form of (3.1)

0 (1, 1, 37)

1 (3, 3, 13)

2 (7, 7, 7)

3 (3, 3, 13)

4 (7, 7, 7)

5 (3, 3, 13)

6 (1, 1, 37)
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As expected, the primitive forms are repeated w = 3 times and there are
1+(−37 ) = 2 nonprimitive forms. We have Ψ7(1, 1, 1) = {(1, 1, 37), (3, 3, 13)}.
The preceding example illustrates the map Ψp when w > 1 and when (3.1)
contains nonprimitive forms. If we apply Theorem 5.1 to this example, we
obtain identities which are discussed in [8].

As another example we let ∆ = −55 and p = 3. The genus structure
along with the assigned characters for the genera for the discriminants ∆ =
−55 and ∆p2 = −495 are given below.

CL(−55) ∼= Z4 ( r
5
) ( r

11
)

g1 (1, 1, 14), (4, 3, 4) +1 +1

g2 (2, 1, 7), (2,−1, 7) −1 −1

CL(−495) ∼= Z8 × Z2 ( r
3
) ( r

5
) ( r

11
)

G1 (1, 1, 124), (9, 9, 16), (4, 1, 31), (4,−1, 31), +1 +1 +1

G2 (5, 5, 26), (11, 11, 14), (9, 3, 14), (9,−3, 14), −1 +1 +1

G3 (2, 1, 62), (2,−1, 62), (8, 7, 17), (8,−7, 17), −1 −1 −1

G4 (7, 3, 18), (7,−3, 18), (10, 5, 13), (10,−5, 13), +1 −1 −1

We compute

Ψ3(1, 1, 14) = {(1, 1, 124), (9, 9, 16), (9, 3, 14), (9,−3, 14)},
Ψ3(4, 3, 4) = {(5, 5, 26), (11, 11, 14), (4, 1, 31), (4,−1, 31)},
Ψ3(2, 1, 7) = {(2,−1, 62), (7,−3, 18), (8,−7, 17), (10, 5, 13)},

Ψ3(2,−1, 7) = {(2, 1, 62), (7, 3, 18), (8, 7, 17), (10,−5, 13)}.
Also we see that

Ψ3(g1) = G1 ∪G2, Ψ3(g2) = G3 ∪G4.

As expected, the images are distinct, of equal size, and partition CL(∆p2).
Also we see in this example that Ψp(f) is split evenly between two genera, and
does not necessarily contain a form and its inverse. In general, the set Ψp(f)
will be either fully contained in one genus, or split equally between two gen-
era. This behavior corresponds to whether v(∆p2)/v(∆) = 1, 2, respectively.
We refer the reader to (2.3) for the cases.

4. Lemmas and identities. This section contains several lemmas and
identities which we use to prove Theorem 5.1. Lemma 4.1 shows exactly
which forms in (3.1) are nonprimitive.

Lemma 4.1. Let (a, b, c) be a primitive form of discriminant ∆. There
are exactly 1 +

(
∆
p

)
nonprimitive forms in the list

(4.1) {(a, bp, cp2)} ∪ {(ap2, pb+ 2ahp, ah2 + bh+ c) : 0 ≤ h < p},
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and they are given by

(4.2)



(a, bp, cp2), p | a,
(
∆
p

)
= 0,

f1, p - a,
(
∆
p

)
= 0,

∅,
(
∆
p

)
= −1,

(a, pb, cp2), f2, p | a,
(
∆
p

)
= 1,

f3, f4, p - a,
(
∆
p

)
= 1,

where fi := (ap2, p(b+ 2ahi), ah
2
i + bhi + c). For p odd we take

h1 ≡ −b2a (mod p),

h2 ≡ −cb (mod p),

h3 ≡ −b+
√
∆

2a (mod p),

h4 ≡ −b−
√
∆

2a (mod p),

and for p = 2 we take h4 6≡ h3 ≡ h2 ≡ h1 ≡ c (mod 2). We always take
0 ≤ hi < p.

Proof. Let (a, b, c) be a primitive form of discriminant ∆ < 0. Since
(a, b, c) is assumed primitive, the only way for a form in (4.1) to be non-
primitive is if p divides each of its entries. Hence (a, bp, cp2) is nonprimitive
if and only if p | a. This takes care of the form (a, bp, cp2), and we are left
with considering the forms (ap2, p(b+ 2ah), ah2 + bh+ c) with 0 ≤ h < p.

The form (ap2, p(b + 2ah), ah2 + bh + c) is nonprimitive if and only if
p | (ah2+bh+c), and so the remainder of the proof is devoted to determining
exactly when ah2 + bh+ c ≡ 0 (mod p).

Case p | a. If p | a and p | b, then ah2+bh+c ≡ 0 (mod p) has no solutions
since (a, b, c) is primitive. If p | a and p - b, then ah2 + bh + c ≡ 0 (mod p)
has the unique solution h ≡ −c/b (mod p), 0 ≤ h < p. We note that when
p | a and p - b, we have ∆ ≡ b2 (mod p), and so

(
∆
p

)
= 1. We have found the

form f2 in (4.2).

Case p - a, p 6= 2. Since p - a, we see that

ah2 + bh+ c ≡ 0 (mod p)

is equivalent to

(2ah+ b)2 ≡ ∆ (mod p).

We find the following forms are nonprimitive:
f1, p - a,

(
∆
p

)
= 0,

∅, p - a,
(
∆
p

)
= −1,

f3, f4, p - a,
(
∆
p

)
= 1,
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where fi := (ap2, p(b+ 2ahi), ah
2
i + bhi + c) with

h1 ≡ −b2a (mod p),

h3 ≡ −b+
√
∆

2a (mod p),

h4 ≡ −b−
√
∆

2a (mod p), 0 ≤ h1, h3, h4 < p.

Case p - a, p = 2. Since 2 - a, we have

ah2 + bh+ c ≡ h+ bh+ c ≡ (b+ 1)h+ c (mod 2).

If
(
∆
2

)
= 0, then 2 | b and

(b+ 1)h+ c ≡ 0 (mod 2),

which implies h ≡ c (mod 2). We have arrived at the nonprimitive form f1
with h1 ≡ c (mod 2).

If
(
∆
2

)
= −1 then 2 - b and we have

∆ ≡ 1− 4ac ≡ 5 (mod 8),

and so c is odd in this subcase. Thus a, b, c are all odd and we see (4a, 2b, c)
and (4a, 6b, a+b+c) are primitive. In other words, (ap2, pb+2ahp, ah2+bh+c)
with h = 0, 1 are both primitive forms. Hence we have only primitive forms
in this subcase.

If
(
∆
p

)
= 1 then 2 - b and

∆ ≡ 1− 4ac ≡ 1 (mod 8),

so that c is even. Thus a, b are odd and c is even, which implies both (4a, 2b, c)
and (4a, 6b, a+ b+ c) are nonprimitive. Hence (ap2, pb+ 2ahp, ah2 + bh+ c)
with h = 0, 1 are both nonprimitive forms.

We now list the nonprimitve forms found in this case:
f1, 2 - a,

(
∆
2

)
= 0,

∅, 2 - a
(
∆
2

)
= −1,

f3, f4, 2 - a,
(
∆
2

)
= 1,

where fi := (ap2, p(b+ 2ahi), ah
2
i + bhi + c) with

h4 6≡ h3 ≡ h1 ≡ c (mod 2), 0 ≤ hi < 2.

We have considered all possible cases and completed the proof of Lemma
4.1.

Lemma 4.1 is essential to finding which forms are in Ψp(a, b, c), and we
are a step closer to proving Theorem 5.1. Before proving it, we first consider
Pp,0(a, b, c, q) for an arbitrary primitive form (a, b, c) and prime p.
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Lemma 4.2. Let (a, b, c) be a primitive form of discriminant ∆. Then

Pp,0(a, b, c, q) =



(a, bp, cp2, q), p | a,
(
∆
p

)
= 0,

f1(q), p - a,
(
∆
p

)
= 0,

(a, b, c, qp
2
),

(
∆
p

)
= −1,

f2(q) + (a, pb, cp2, q)− (a, b, c, qp
2
), p | a,

(
∆
p

)
= 1,

f3(q) + f4(q)− (a, b, c, qp
2
), p - a,

(
∆
p

)
= 1,

where fi(q) := (ap2, p(b+ 2ahi), ah
2
i + bhi + c, q). For p odd we take

h1 ≡ −b2a (mod p),

h2 ≡ −cb (mod p),

h3 ≡ −b+
√
∆

2a (mod p),

h4 ≡ −b−
√
∆

2a (mod p),

and for p = 2 we take h4 6≡ h3 ≡ h2 ≡ h1 ≡ c (mod 2). We always take
0 ≤ hi < p.

Proof. The proof is split into cases.

Case p | a. If p | a and p |∆, then p | b and p - c since (a, b, c) is assumed
primitive. The congruence

ax2 + bxy + cy2 ≡ cy2 ≡ 0 (mod p)

implies y ≡ 0 (mod p), and we find Pp,0(a, b, c, q) = (a, bp, cp2, q).
If p | a and p - ∆, then ∆ ≡ b2 6≡ 0 (mod p), and so we must have(

∆
p

)
= 1. Then

ax2 + bxy + cy2 ≡ y(bx+ cy) ≡ 0 (mod p)

if and only if either y ≡ 0 (mod p) or x ≡ −cb y (mod p). We have

Pp,0
∑
x,y

qax
2+bxy+cy2

=
∑
x

y≡0 (mod p)

qax
2+bxy+cy2 +

∑
x≡−cb y (mod p)

y 6≡0 (mod p)

qax
2+bxy+cy2

= (a, pb, cp2, q) +
∑

x≡−cb y (mod p)

qax
2+bxy+cy2 − (a, b, c, qp

2
)

= (a, pb, cp2, q) + (ap2, p(b+ 2ah2), ah
2
2 + bh2 + c, q)− (a, b, c, qp

2
),

where h2 ≡ −cb (mod p) and Identity 4.5 is employed in the last equality.

Case p - a, p 6= 2. In this case, the congruence

ax2 + bxy + cy2 ≡ 0 (mod p),
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is equivalent to

(4.3) (2ax+ by)2 ≡ ∆y2 (mod p).

If
(
∆
p

)
= 0 then (4.3) along with Identity 4.5 implies

Pp,0(a, b, c, q) =
∑

x≡h1y (mod p)

qax
2+bxy+cy2

= (ap2, p(b+ 2ah1), ah
2
1 + bh1 + c, q),

where h1 ≡ −b2a (mod p).

If
(
∆
p

)
= 1 then (4.3) along with Identity 4.5 yields

Pp,0(a, b, c, q) = f3(q) + f4(q)− (a, b, c, qp
2
),

where

f3(q) = (ap2, p(b+ 2ah3), ah
2
3 + bh3 + c, q),

f4(q) = (ap2, p(b+ 2ah4), ah
2
4 + bh4 + c, q),

and h3 ≡ −b+
√
∆

2a (mod p), h4 ≡ −b−
√
∆

2a (mod p).

Lastly, we note that if
(
∆
p

)
= −1, then the only solution to (4.3) is

x ≡ y ≡ 0 (mod p), and hence we have the conclusion in this case. We have
now finished the proof for p odd.

Case p - a, p = 2. If
(
∆
2

)
= 0 then 2 | b and we have

ax2 + bxy + cy2 ≡ x+ cy ≡ 0 (mod 2),

which implies x ≡ cy (mod 2) is the only solution. Employing Identity 4.5
gives

Pp,0(a, b, c, q)

=
∑

x≡h1y (mod 2)

qax
2+bxy+cy2 = (ap2, p(b+ 2ah1), ah

2
1 + bh1 + c, q),

where h1 ≡ c (mod 2).

If
(
∆
2

)
= −1 then 2 - b and ∆ ≡ 1− 4ac ≡ 5 (mod 8). Thus c is odd and

we have

ax2 + bxy + cy2 ≡ x+ xy + y ≡ 0 (mod 2),

which implies x ≡ y ≡ 0 (mod 2) is the only solution, and we have finished
this case.

If
(
∆
2

)
= 1 then 2 - b and ∆ ≡ 1− 4ac ≡ 1 (mod 8). Thus c is even and

we have

ax2 + bxy + cy2 ≡ x+ xy ≡ 0 (mod 2),
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which implies x ≡ 0 (mod 2) is a solution or y ≡ 1 (mod 2) is a solution.
We find

Pp,0(a, b, c, q)

= (a, b, c, q4) +
∑

x≡0 (mod 2),
y 6≡0 (mod 2)

qax
2+bxy+cy2 +

∑
x 6≡0 (mod 2)
y 6≡0 (mod 2)

qax
2+bxy+cy2

= (a, b, c, q4) +
∑
x

y 6≡0 (mod 2)

qax
2+bxy+cy2 .

Employing Identity 4.4 finishes the case, and hence the proof of Lemma 4.2.

We now state and prove some identities which will be of use in our proof
of Theorem 5.1.

Identity 4.3. Let (a, b, c) be a primitive form and 0 ≤ h < p. Then

(4.4)
∑

x≡0 (mod p)
y≡j (mod p)

qax
2+(b+2ah)xy+(ah2+bh+c)y2 =

∑
x≡hj (mod p)
y≡j (mod p)

qax
2+bxy+cy2 .

Proof. Use the change of variables (x, y) 7→ (x− hy, y).

Identity 4.4. Let (a, b, c) be a primitive form. Then

p−1∑
h=0

∑
x≡0 (mod p)
y 6≡0 (mod p)

qax
2+(b+2ah)xy+(ah2+bh+c)y2 =

∑
x

y 6≡0 (mod p)

qax
2+bxy+cy2 .

Proof. Sum (4.4) over h = 0, 1, . . . , p − 1 and over j = 1, . . . , p − 1.
Explicitly one gets

p−1∑
h=0

p−1∑
j=1

∑
x≡0 (mod p)
y≡j (mod p)

qax
2+(b+2ah)xy+(ah2+bh+c)y2

=

p−1∑
h=0

p−1∑
j=1

∑
x≡hj (mod p)
y≡j (mod p)

qax
2+bxy+cy2 =

∑
x

y 6≡0 (mod p)

qax
2+bxy+cy2 .

Identity 4.5. Let (a, b, c) be a primitive form and 0 ≤ h < p. Then∑
x≡0 (mod p)

y

qax
2+(b+2ah)xy+(ah2+bh+c)y2 =

∑
x≡hy (mod p)

qax
2+bxy+cy2 .

Proof. Sum (4.4) over j = 0, 1, . . . , p − 1. Alternatively one may apply
the change of variables (x, y) 7→ (x− hy, y) directly.
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Lemma 4.6. Let (A,B,C) ∈ CL(∆p2). Then

Pp,0(A,B,C, q) = (a, b, c, qp
2
),

where (a, b, c) ∈ CL(∆) and (A,B,C) ∈ Ψp(a, b, c).
Proof. By Section 3 we know (A,B,C) ∈ CL(∆p2) implies there exists

a unique (a, b, c) ∈ CL(∆) with (A,B,C) ∈ Ψp(a, b, c). In other words,
(A,B,C) is equivalent to either (a, bp, cp2) or (ap2, p(b+ 2ah), ah2 + bh+ c)
for some 0 ≤ h < p. Applying Lemma 4.2 along with Identity 4.5 completes
the proof in both cases.

5. Statement and proof of Theorem 5.1. We have arrived at the
main theorem of our paper.

Theorem 5.1. Let (a, b, c) be a primitive form of discriminant ∆ < 0.
For any prime p, we have

(5.1) w
∑

(A,B,C)∈Ψp(a,b,c)

(A,B,C, q)

=
[
p−

(
∆
p

)]
(a, b, c, qp

2
) + (a, b, c, q)− Pp,0(a, b, c, q).

We now prove Theorem 5.1. In all cases of the proof we start with the
left hand side of (5.2)

(5.2) w
∑

(A,B,C)∈Ψp(a,b,c)

(A,B,C, q)−
[
p−

(
∆
p

)]
(a, b, c, qp

2
)

= (a, b, c, q)− Pp,0(a, b, c, q),
and using the results of the previous sections, we end with the right hand
side of (5.2). The proof is split according to the sign of

(
∆
p

)
and to whether

p | a. Throughout the proof we will always take 0 ≤ hi < p.

Case p |∆, p | a. By Lemma 4.1 we have |Ψp(a, b, c)| = p and (a, bp, cp2)
is the only nonprimitive form listed in (3.1). Employing Identity 4.3 (with
j = 0), Identity 4.4, and Lemma 4.2 we find that in this case we have

w
∑

(A,B,C)∈Ψp(a,b,c)

(A,B,C, q)−
[
p−

(
∆
p

)]
(a, b, c, qp

2
)

=

p−1∑
h=0

∑
x≡0 (mod p)
y 6≡0 (mod p)

qax
2+(b+2ah)xy+(ah2+bh+c)y2

=
∑
x

y 6≡0 (mod p)

qax
2+bxy+cy2 = (a, b, c, q)− Pp,0(a, b, c, q),

as desired.
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Case p |∆, p - a. By Lemma 4.1, the only nonprimitive form in (3.1) is
(ap2, p(b+2ah1), ah

2
1 +bh1 +c, q), where for p odd we have h1 ≡ −b2a (mod p)

and for p = 2 we have h1 ≡ c (mod 2). By Identity 4.3 (with j = 0), the left
hand side of (5.2) is

(5.3)∑
x6≡0 (mod p)
y≡0 (mod p)

qax
2+bxy+cy2 +

p−1∑
h=0

h6≡h1 (mod p)

∑
x≡0 (mod p)
y 6≡0 (mod p)

qax
2+(b+2ah)xy+(ah2+bh+c)y2 .

Employing Identity 4.4, we see (5.3) becomes

(5.4)
∑

x 6≡0 (mod p)
y≡0 (mod p)

qax
2+bxy+cy2 +

∑
x

y 6≡0 (mod p)

qax
2+bxy+cy2

−
∑

x≡0 (mod p)
y 6≡0 (mod p)

qax
2+(b+2ah1)xy+(ah21+bh1+c)y

2
.

Employing Identity 4.3 transforms (5.4) into∑
x

y≡0 (mod p)

qax
2+bxy+cy2+

∑
x≡0 (mod p)
y≡0 (mod p)

qax
2+bxy+cy2−(ap2, p(b+2ah1), ah

2
1+bh1+c, q).

It is clear that this is (a, b, c, q) − Pp,0(a, b, c, q), and we have finished this
case.

Case
(
∆
p

)
= −1. By Lemma 4.1 all forms of (3.1) are primitive in this

case. By Identity 4.3 (with j = 0) the left hand side of (5.2) is

(5.5)
∑

x 6≡0 (mod p)
y≡0 (mod p)

qax
2+bxy+cy2 +

p−1∑
h=0

∑
x≡0 (mod p)
y 6≡0 (mod p)

qax
2+(b+2ah)xy+(ah2+bh+c)y2 .

Employing Identity 4.4, we see (5.5) becomes∑
x 6≡0 (mod p)
y≡0 (mod p)

qax
2+bxy+cy2 +

∑
x

y≡0 (mod p)

qax
2+bxy+cy2 .

Adding and subtracting (a, b, c, qp
2
) and using Lemma 4.2 shows that this

is (a, b, c, q)− Pp,0(a, b, c, q), and we have finished this case.

Case
(
∆
p

)
= 1, p | a. By Lemma 4.1 there are two nonprimitive forms

in (3.1), and they are (a, pb, cp2, q), and (ap2, p(b+ 2ah2), ah
2
2 + bh2 + c, q),

where h2 ≡ −c
b (mod p) (note this h2 holds for p = 2 as well). Employing
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Identity 4.3 (with j = 0) we find the left hand side of (5.2) is

(5.6)

p−1∑
h=0

∑
x≡0 (mod p)
y 6≡0 (mod p)

qax
2+(b+2ah)xy+(ah2+bh+c)y2

−
∑

x≡0 (mod p)
y 6≡0 (mod p)

qax
2+(b+2ah2)xy+(ah22+bh2+c)y

2
.

Employing Identity 4.4, we see (5.6) becomes

(5.7)
∑
x

y 6≡0 (mod p)

qax
2+bxy+cy2 −

∑
x≡0 (mod p)
y 6≡0 (mod p)

qax
2+(b+2ah2)xy+(ah22+bh2+c)y

2
.

Adding and subtracting (a, b, c, qp
2
) and employing Identity 4.3 (with j = 0),

we find (5.7) is∑
x

y 6≡0 (mod p)

qax
2+bxy+cy2+(a, b, c, qp

2
)−

∑
x≡0 (mod p)

y

qax
2+(b+2ah2)xy+(ah22+bh2+c)y

2
.

Lastly we add and subtract (a, bp, cp2, q) to get

(a, b, c, q)− (a, pb, cp2, q)− (ap2, p(b+ 2ah2), ah
2
2 + bh2 + c, q) + (a, b, c, qp

2
),

and applying Lemma 4.2 finishes this case.

Case
(
∆
p

)
= 1, p - a. By Lemma 4.1 there are two nonprimitive forms

in (3.1), and they are (ap2, p(b + 2ah3), ah
2
3 + bh3 + c, q), and (ap2, p(b +

2ah4), ah
2
4 + bh4 + c, q), where for p odd we take h3 ≡ −b+

√
∆

2a (mod p),

h4 ≡ −b−
√
∆

2a (mod p), and for p = 2 we can simply take h3 6≡ h4 (mod 2).
Employing Identity 4.3 (with j = 0) along with Identity 4.4 shows the left
hand side of (5.2) to be

(5.8)
∑

x 6≡0 (mod p)
y≡0 (mod p)

qax
2+bxy+cy2 +

∑
x

y 6≡0 (mod p)

qax
2+bxy+cy2

−
4∑
i=3

∑
x≡0 (mod p)
y 6≡0 (mod p)

qax
2+(b+2ahi)xy+(ah2i+bhi+c)y

2
.

By adding and subtracting 2(a, b, c, qp
2
) and employing Identity 4.3 (with

j = 0), (5.8) becomes

(a, b, c, q)− (ap2, p(b+ 2ah3), ah
2
3 + bh3 + c, q)

− (ap2, p(b+ 2ah4), ah
2
4 + bh4 + c, q) + (a, b, c, qp

2
).

Applying Lemma 4.2 finishes this case, and the theorem is proven.
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6. Relating Theorem 5.1 to [8, Theorem 5.1]. In this section we use
Theorem 5.1 to prove [8, Theorem 5.1]. First we give an example to illustrate
the difference between the two theorems. In Section 3 we discuss the map
Ψ3 between the class groups CL(−55) and CL(−55 · 32). We continue this
example by examining one of the identities of Theorem 5.1 with ∆ = −55
and p = 3. Theorem 5.1 yields

(6.1) (1, 1, 124, q) + (9, 9, 16, q) + 2(9, 3, 14, q)

= 4(1, 1, 14, q9) + P3,1(1, 1, 14, q) + P3,2(1, 1, 14, q).

In general, Theorem 5.1 yields identities which are dissections modulo p
of the theta series on the left hand side of (5.1). Equation (6.1) is a dissection
modulo 3 of (1, 1, 124, q)+(9, 9, 16, q)+2(9, 3, 14, q). Furthermore we see the
forms (1, 1, 124), (9, 9, 16) share a genus which is different than the genus
containing (9, 3, 14). See Section 3 for the genus structure of CL(−55·32). The
forms (1, 1, 124), (9, 9, 16) are in a different genus than (9, 3, 14) because they
have different assigned character values for the character

( ·
3

)
. In other words,

if (1, 1, 124;n) + (9, 9, 16;n) > 0 and 3 - n then n ≡ 1 (mod 3). Similarly if
(9, 3, 14;n) > 0 and 3 - n then n ≡ 2 (mod 3). Employing Lemma 4.6 along
with the above discussion allows us to separate (6.1) into the two identities

(6.2)
(1, 1, 124, q) + (9, 9, 16, q) = 2(1, 1, 14, q9) + P3,1(1, 1, 14, q),

2(9, 3, 14, q) = 2(1, 1, 14, q9) + P3,2(1, 1, 14, q).

Theorem 5.1 of [8] directly claims the identities of (6.2). That theorem is
the present Theorem 5.1 with the addition that we consider the congruence
conditions implied by the assigned characters of the genera. An example is
when the left hand side of (5.1) contains theta series associated to forms of
two genera; we then break (5.1) into two identities whose sum is (5.1).

We now state [8, Theorem 5.1].

Theorem 6.1. Let (a, b, c) be a primitive form of discriminant ∆, and
G a genus of discriminant ∆p2 with ΨG,p(a, b, c) nonempty. For p an odd
prime, we have

w
∑

(A,B,C)∈ΨG,p(a,b,c)

(A,B,C, q) = w|ΨG,p(a, b, c)|(a, b, c, qp
2
)(6.3)

+

p−1∑
i=1

(
ri
p

)
+1

2 Pp,i(a, b, c, q),

and for p = 2,

(6.4) w
∑

(A,B,C)∈ΨG,2(a,b,c)

(A,B,C, q)

= w|ΨG,2(a, b, c)|(a, b, c, q4) + P2t+1,r(a, b, c, q)
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where

w :=


3, ∆ = −3,

2, ∆ = −4,

1, ∆ < −4,

r is coprime to ∆p2 and is represented by any form of ΨG,p(a, b, c). When
∆ ≡ 0 (mod 16) we define t = 2, and for ∆ 6≡ 0 (mod 16) we define t = 0, 1
according to whether ∆ is odd or even.

Here ΨG,p(a, b, c) := Ψp(a, b, c) ∩ G, and all other notation is consistent

with our notation. We note that the coefficient
( ri
p
)+1

2 of Pp,i(a, b, c, q) is
simply 0 or 1 depending on the congruence class of ri.

Proof of Theorem 6.1. Our proof naturally splits according to the parity
of p and to whether p |∆. In general, both (6.3) and (6.4) are dissections
modulo p of the theta series ∑

(A,B,C)∈ΨG,p(a,b,c)

(A,B,C, q).

Lemma 4.6 shows

Pp,0
∑

(A,B,C)∈ΨG,p(a,b,c)

(A,B,C, q) = |ΨG,p(a, b, c)|(a, b, c, qp
2
),

which is the 0 modulo p dissection of (6.3) and (6.4). Our proof now breaks
into cases.

Case 2 - p, p - ∆. Theorem 5.1 gives the identity

(6.5) w

p−1∑
i=1

∑
(A,B,C)∈Ψp(a,b,c)

Pp,i(A,B,C, q) =

p−1∑
i=1

Pp,i(a, b, c, q).

When p is odd and p - ∆, we know from Section 3 that Ψp(a, b, c) is split
equally between two genera which have the same assigned characters except
for the character

( ·
p

)
. Let G1 be the genus with assigned character

( ·
p

)
= 1,

G2 the genus with assigned character
( ·
p

)
= −1, and Ψp(a, b, c) is contained

in G1 ∪G2. The left hand side of (6.5) is

w

p−1∑
i=1

∑
(A,B,C)∈ΨG1,p

(a,b,c)

Pp,i(A,B,C, q)

+ w

p−1∑
i=1

∑
(A,B,C)∈ΨG2,p

(a,b,c)

Pp,i(A,B,C, q).
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The right hand side of (6.5) is

p−1∑
i=1(
i
p

)
=1

Pp,i(a, b, c, q) +

p−1∑
i=1(
i
p

)
=−1

Pp,i(a, b, c, q).

If (A,B,C) ∈ G1 and (A,B,C; r) > 0 for some r coprime to ∆p2, then
(A,B,C;n) = 0 for any n with

(
n
p

)
= −1. Similarly if (A,B,C) ∈ G2 and

(A,B,C; r) > 0 for some r coprime to ∆p2, then (A,B,C;n) = 0 for any n
with

(
n
p

)
= 1. We arrive at the identities

w

p−1∑
i=1

∑
(A,B,C)∈ΨG1,p

(a,b,c)

Pp,i(A,B,C, q) =

p−1∑
i=1(
i
p

)
=1

Pp,i(a, b, c, q),

w

p−1∑
i=1

∑
(A,B,C)∈ΨG2,p

(a,b,c)

Pp,i(A,B,C, q) =

p−1∑
i=1(
i
p

)
=−1

Pp,i(a, b, c, q),

which shows Theorem 6.1 when p is odd and p - ∆.

Case 2 - p, p |∆. In this case, Ψp(a, b, c) ⊆ G. Since p is odd and p |∆,
the character

( ·
p

)
is one of the assigned characters for the discriminant ∆.

If (a, b, c) ∈ CL(∆) is in a genus g which has
( ·
p

)
= 1 then Pp,r(a, b, c, q) = 0

for any r with
(
r
p

)
= −1. In this case, showing (6.3) is equivalent to showing

(6.6) w
∑

(A,B,C)∈ΨG,p(a,b,c)

(A,B,C, q)

= w|Ψp(a, b, c)|(a, b, c, qp
2
) +

p−1∑
i=1

Pp,i(a, b, c, q),

where we have used ΨG,p(a, b, c) = Ψp(a, b, c) and Pp,r(a, b, c, q) = 0 for any
r with

(
r
p

)
= −1. Equation (6.6) is exactly (5.1). The case when (a, b, c) ∈

CL(∆) is in a genus g with assigned character
( ·
p

)
= −1 follows similarly.

Case p = 2, p - ∆. Then (6.4) becomes

w
∑

(A,B,C)∈ΨG,2(a,b,c)

(A,B,C, q) = w|ΨG,2(a, b, c)|(a, b, c, q4) + P2,1(a, b, c, q),

which is equivalent to (5.1).

Case p = 2, p |∆. Due to the nature of the assigned characters of a
genus, there are several subcases to consider. This is apparent from (2.3)
as well as examining whether the characters δ :=

(−1
r

)
, ε :=

(
2
r

)
, and
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δε :=
(−2
r

)
are part of the assigned character list for ∆ and 4∆. Details

regarding the congruence conditions when ∆ contains the assigned charac-
ters δ, ε, and δε are given in [2] and [3]. The assigned characters for even
discriminants are given in Table 2, with χi :=

( ·
pi

)
and pi an odd prime di-

viding ∆ where i runs up to the number of distinct odd primes dividing ∆.

Table 2

∆ Assigned characters

∆ ≡ 4 (mod 16) χ1, . . . , χr

∆ ≡ 12 (mod 16) χ1, . . . , χr, δ

∆ ≡ 24 (mod 32) χ1, . . . , χr, δε

∆ ≡ 8 (mod 32) χ1, . . . , χr, ε

∆ ≡ 16 (mod 32) χ1, . . . , χr, δ

∆ ≡ 0 (mod 32) χ1, . . . , χr, δ, ε

Our proof now splits according to whether v(∆p2)/v(∆) = 1, 2 along
with congruence conditions on ∆. In all of these cases we have |Ψ2(a, b, c)|
= 2 unless ∆ = −4. If ∆ = −4 then Theorem 6.1 directly reduces to
Theorem 5.1, which reduces to the main theorem of [8] since both −4 and
−16 are idoneal discriminants.

We first consider the case when v(∆p2)/v(∆) = 1, which implies Ψ2 maps
into a single genus. Hence Theorem 6.1 reduces to Theorem 5.1 if can show

(6.7) P2t+1,r(a, b, c, q) = P2,1(a, b, c, q),

where t is given in Theorem 6.1 and r is coprime to 2∆ and represented by
(a, b, c). Equation (2.3) implies that we need to consider ∆ ≡ 0 (mod 32) or
∆ ≡ 12 (mod 16). When ∆ ≡ 0 (mod 32), (6.7) becomes

P8,r(a, b, c, q) = P2,1(a, b, c, q).

Proving this is equivalent to showing (a, b, c; s) = 0 for all odd s coprime to
∆ and s 6≡ r (mod 8). This congruence condition follows from the fact that
when ∆ ≡ 0 (mod 32), both ∆ and 4∆ have the same assigned characters,
which are χp, δ, ε for all odd primes p |∆.

Similarly if ∆ ≡ 12 (mod 16) then (6.7) becomes

P4,r(a, b, c, q) = P2,1(a, b, c, q).

Proving this is equivalent to showing (a, b, c; s) = 0 for all odd s coprime to
∆ and s 6≡ r (mod 4). This congruence condition follows from the fact that
when ∆ ≡ 12 (mod 16), both ∆ and 4∆ have the same assigned characters,
which are χp, δ for all odd primes p |∆.

We are now left with the cases which all have v(∆p2)/v(∆) = 2, and so Ψ2
consists of two forms in different genera. In other words, we are left with the
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cases in which ∆p2 has exactly one additional character besides those of ∆.
Examining Table 2, we see these are the cases when ∆ ≡ 4 (mod 16) and
∆ ≡ 8, 16, 24 (mod 32). Let us call the additional character λ. For example,
when ∆ ≡ 4 (mod 16), the assigned characters of ∆ are χ1, . . . , χm and those
of 4∆ are χ1, . . . , χm, δ. In this example, λ would be the character δ. By
taking λ to be a general character we can prove the remaining cases together.

Fix (a, b, c) ∈ CL(∆). Let G1 be the genus of 4∆ with assigned character
λ = 1, G2 the genus of 4∆ with assigned character λ = −1, and Ψ2(a, b, c) =
{(A,B,C), (D,E, F )} so that (A,B,C) ∈ G1 and (D,E, F ) ∈ G2. Theorem
5.1 gives

(A,B,C, q) + (D,E, F, q) = 2(a, b, c, q4) + P2,1(a, b, c, q).

We can writeP2,1(a, b, c, q)=P2k,r1(a, b, c, q)+P2k,r2(a, b, c, q) whereλ(r1)=1,
λ(r2) = −1, and k is 2 or 3 depending on the character λ. Employing Lemma
4.6 yields the identities

(A,B,C, q) = (a, b, c, q4) + P2k,r1(a, b, c, q),

(D,E, F, q) = (a, b, c, q4) + P2k,r2(a, b, c, q).

These are the identities of Theorem 6.1, and we have finished the proof of
the theorem.

7. Lambert series and product representation formulas. One of
the main applications of Theorem 6.1 is that we are often able to deduce a
Lambert series decomposition of the left hand side of (6.3) and (6.4), and
hence a product representation formula for the associated forms. Theorem
6.1 yields a Lambert series decomposition only when the theta series on
the left hand side of (6.3) and (6.4) are associated to the entire genus. We
illustrate this property with an example.

Let ∆ = −23 and p = 3. The class group and genus structure for the
relevant discriminants is given by

CL(−23) ∼= Z3 ( r
23
)

(1, 1, 6), (2, 1, 3), (2,−1, 3) +1

CL(−207) ∼= Z6 ( r
23
) ( r

3
)

(1, 1, 52), (4, 1, 13), (4,−1, 13) +1 +1

(8, 7, 8), (2, 1, 26), (2,−1, 26) +1 −1

We compute

Ψ3(1, 1, 6) = {(1, 1, 52), (8, 7, 8)},
Ψ3(2, 1, 3) = {(2,−1, 26), (4, 1, 13)},

Ψ3(2,−1, 3) = {(2, 1, 26), (4,−1, 13)}.
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Employing Theorem 5.1 yields the identities

(7.1)
(1, 1, 52, q) + (8, 7, 8, q) = 2(1, 1, 6, q9) + (P3,1 + P3,2)(1, 1, 6, q),

(2, 1, 26, q) + (4, 1, 13, q) = 2(2, 1, 3, q9) + (P3,1 + P3,2)(2, 1, 3, q).

Either by Theorem 6.1 or by employing congruences directly to (7.1), we
find

(7.2)

(1, 1, 52, q) = (1, 1, 6, q9) + P3,1(1, 1, 6, q),

(8, 7, 8, q) = (1, 1, 6, q9) + P3,2(1, 1, 6, q),

(4, 1, 13, q) = (2, 1, 3, q9) + P3,1(2, 1, 3, q),

(2, 1, 26, q) = (2, 1, 3, q9) + P3,2(2, 1, 3, q).

The identities of (7.1) and (7.2) do not directly yield Lambert series decom-
positions since the left hand sides are not associated with the entire genus.
However, we can combine the identities of (7.2) to find

(7.3)
(1, 1, 52, q) + 2(4, 1, 13, q) = f(q9) + P3,1f(q),

(8, 7, 8, q) + 2(2, 1, 26, q) = f(q9) + P3,2f(q),

where f(q) = (1, 1, 6, q) + 2(2, 1, 3, q) is the theta series associated with
the principal genus of ∆. The identities of (7.3) yield Lambert series de-
compositions; we demonstrate how to derive these, together with product
representation formulas.

Dirichlet’s formula for quadratic forms gives f(q) as a Lambert series

(7.4) f(q) := (1, 1, 6, q) + 2(2, 1, 3, q) = 3 + 2
∞∑
n=1

(
−23

n

)
qn

1− qn
.

Using (7.4) it is not hard to show

(7.5) (P3,1 − P3,2)f(q) = 2

∞∑
n=1

(
69

n

)
qn(1− qn)

1− q3n
.

For convenience we define the Lambert series

L1(q) =

∞∑
n=1

(
−23

n

)
qn

1− qn
, L2(q) =

∞∑
n=1

(
69

n

)
qn(1− qn)

1− q3n
.

It is easy to show

(7.6) P3,0L1(q) = 2L1(q
3)− L1(q

9).

Adding and subtracting the identities of (7.3) and employing (7.5), (7.6)
gives the Lambert series decompositions for the theta series associated with
the genera of discriminant −207:

(1, 1, 52, q) + 2(4, 1, 13, q) = 3 + L1(q)− 2L1(q
3) + 3L1(q

9) + L2(q),(7.7)

(8, 7, 8, q) + 2(2, 1, 26, q) = 3 + L1(q)− 2L1(q
3) + 3L1(q

9)− L2(q).(7.8)
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Both (7.7) and (7.8) yield product representation formulas, as we now
demonstrate. We use the notation

[qk]
∑
n≥0

a(n)qn = a(k),

so that [qk]f(q) is simply the coefficient of qk in the expansion of the series
f(q). The coefficient of qn in L1(q) is given by

A(n) := [qn]

∞∑
n=1

(
−23

n

)
qn

1− qn
=
∑
d|n

(
−23

d

)
.

We see that
∞∑
n=1

(
69

n

)
qn(1− qn)

1− q3n
=
∞∑
n=1

∞∑
m=0

(
69

n

)
(qn(3m+1) − qn(3m+2))

=
∞∑
n=1

∞∑
m=1

(
69

n

)
(qn(3m−1) − qn(3m−2))

=

∞∑
n=1

∞∑
m=1

(
69

n

)(
m

3

)
qnm

=
∞∑
n=1

(∑
d|n

(
69

d

)(
n/d

3

))
qn,

and so the coefficient of qn in L2(q) is given by

B(n) := [qn]
∞∑
n=1

(
69

n

)
qn(1− qn)

1− q3n
=
∑
d|n

(
69

d

)(
n/d

3

)
.

It is easy to check that for a prime p,

A(pα) =


1, p = 23,

1 + α,
(−23

p

)
= 1,

(−1)α+1
2 ,

(−23
p

)
= −1,

(7.9)

B(pα) =



0, p = 3, α 6= 0,

(−1)α, p = 23,

1 + α,
(−23

p

)
= 1 and

(p
3

)
= 1,

(−1)α(1 + α),
(−23

p

)
= 1 and

(p
3

)
= −1,

(−1)α+1
2 ,

(−23
p

)
= −1.

(7.10)

Since A(n) and B(n) are multiplicative, we can use (7.9) and (7.10) along
with (7.7) and (7.8) to give formulas for the number of representations of
an integer by a given genus of discriminant −207.
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Theorem 7.1. Let the prime factorization of n be

n = 3a · 23b
r∏
i=1

pvii

s∏
j=1

q
wj
j ,

where pi 6= 3 and
(−23
pi

)
= 1 and

(−23
qj

)
= −1. Let

Λ(n) :=

r∏
i=1

(1 + vi)
s∏
j=1

1 + (−1)wj

2
.

We have

(1, 1, 52;n) + 2(4, 1, 13;n) =


(1 + (−1)b+t)Λ(n), a = 0,

0, a = 1,

2Λ(n), a ≥ 2,

(7.11)

(8, 7, 8;n) + 2(2, 1, 26;n) =


(1− (−1)b+t)Λ(n), a = 0,

0, a = 1,

2Λ(n), a ≥ 2,

(7.12)

where t is the number of prime factors p of n, counting multiplicity, with(−23
p

)
= 1 and

(p
3

)
= −1.

Theorem 7.1 gives the total number of representations by all forms of a
given genus of discriminant −207. To find (a, b, c;n) for any particular form
of discriminant −207, one can employ the techniques of [1].

Let A = (2, 1, 26) and A(q) the associated theta series. Recall CL(−207)
∼= Z6, and A is a generator of this group. Theorem 7.1 gives representation
formulas for

I(q) + 2A2(q),(7.13)

A3(q) + 2A(q),(7.14)

where I is the principal form, and Ak corresponds to Gaussian composition
k times. The techniques of [1] allow us to find representation formulas for

I(q)−A2(q),(7.15)

A(q)−A3(q),(7.16)

by using the fact that

(7.17) M(q) :=
I(q)−A2(q) + [A(q)−A3(q)]

2
is an eigenform for all Hecke operators and also employing congruences to
separate I(q) − A2(q) and A(q) − A3(q). We note that one can use the
formulas of Hecke [6, p. 794] to show M(q) is an eigenform for all Hecke
operators. A concise formula for the action of the Hecke operators on the
theta series associated to a binary quadratic form is given by [1, (1.18)]. It
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is interesting to note that L2(q) = [I(q) + 2A2(q)− (A3(q) + 2A(q))]/2 is an
example of a Lambert series which is an eigenform for all Hecke operators.

[1] discusses the example CL(−135) ∼= Z6
∼= 〈A〉 which is very similar to

our example except that for CL(−135) both [I(q)−A2(q)±(A(q)−A3(q))]/2
are eigenforms for all Hecke operators. In our example the combination
[I(q)−A2(q)− (A(q)−A3(q))]/2 is not an eigenform for all Hecke operators
and so congruences must be employed to derive (7.15). We do not give
explicit representation formulas for (7.15) since the derivation process is
similar to the example for ∆ = −135 in [1].

Another approach to proving Theorem 7.1 is to employ the general for-
mula [7, Theorem 8.1, p. 289] proven by Huard, Kaplan, and Williams. This
formula gives the total number of representations of an integer n by all the
forms in a genus of discriminant d < 0. Section 8 of [9] discusses repre-
sentations of n by an individual form. We conclude this paper by deriving
Theorem 7.1 from [7, Theorem 8.1].

In the case that 9 |n > 0, Theorem 8.1 of [7] gives

(1, 1, 52;n) + 2(4, 1, 13;n) = (8, 7, 8;n) + 2(2, 1, 26;n) = 2
∑
µ|n9

(
−23

µ

)
,

which is consistent with Theorem 7.1. When 3 |n and 9 - n Theorem 8.1 of
[7] gives

(1, 1, 52;n) + 2(4, 1, 13;n) = (8, 7, 8;n) + 2(2, 1, 26;n) = 0.

The last case to consider is when 3 - n. In the notation of [7], Theorem 8.1
of [7] gives the total number of representations by the forms of genus G to
be

RG(n,−207) =
1

2

∑
d1∈{1,−3,−23,69}

γd1(G)S

(
n, d1,

−207

d1

)
,

where

S

(
n, d1,

−207

d1

)
=
∑
µν=n

(
d1
µ

)(
−207/d1

ν

)
,

and γd1(G) =
(
d1
g

)
with g a positive integer coprime to d1 and represented

by the genus G. Simplifying yields

(1, 1, 52;n) + 2(4, 1, 13;n) =
∑
µ|n

(
−23

µ

)
+
∑
µν=n

(
−3

µ

)(
69

ν

)
,

(8, 7, 8;n) + 2(2, 1, 26;n) =
∑
µ|n

(
−23

µ

)
−
∑
µν=n

(
−3

µ

)(
69

ν

)
,

which is consistent with Theorem 7.1 in this case.
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