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1. Introduction. Let p be a sufficiently large prime. For integers m
and n we define the Kloosterman sum

Kp(m,n) =

p−1∑
x=1

ep(mx+ nx),

where x is the multiplicative inverse of x modulo p and

ep(z) = exp(2πiz/p).

Furthermore, given two intervals

I = [K + 1,K +M ], J = [L+ 1, L+N ] ⊆ [1, p− 1],

and two sequences of weights A = {αm}m∈I and B = {βn}n∈J , we define
the bilinear sums of Kloosterman sums

Sp(A,B; I,J ) =
∑
m∈I

∑
n∈J

αmβnKp(mn, 1).

We also consider the following special cases:

Sp(A; I,J ) = Sp(A, {1}Nn=1; I,J ) =
∑
m∈I

∑
n∈J

αmKp(mn, 1),

Sp(I,J ) = Sp({1}Mm=1, {1}Nn=1; I,J ) =
∑
m∈I

∑
n∈J
Kp(mn, 1),

Sp(I) = Sp({1}Mm=1, ∅; I,J ) =
∑
m∈I
Kp(m, 1).

Making the change of variable x 7→ nx (mod p), one immediately ob-
serves that Kp(mn, 1) = Kp(m,n), thus we also have

(1.1) Sp(A,B; I,J ) =
∑
m∈I

∑
n∈J

αmβnKp(m,n).
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We also define, for real σ > 0,

‖A‖σ =
(∑
m∈I
|αm|σ

)1/σ
and ‖B‖σ =

(∑
n∈J
|βn|σ

)1/σ
with the usual convention

‖A‖∞ = max
m∈I
|αm| and ‖B‖∞ = max

n∈J
|βn|.

By the Weil bound we have

|Kp(m,n)| ≤ 2p1/2

(see [8, Theorem 11.11]). Hence

(1.2) |Sp(A,B; I,J )| ≤ 2‖A‖1‖B‖1p1/2.
We are interested in studying cancellations amongst Kloosterman sums and
thus improvements of the trivial bound (1.2).

Throughout the paper, as usual A � B is equivalent to the inequality
|A| ≤ cB with some constant c > 0 (all implied constants are absolute
throughout the paper).

2. Previous results. First we note that by a very special case of a much
more general result of Fouvry, Michel, Rivat and Sárközy [5, Lemma 2.3] we
have

Sp(I)� p log p,

which for M ≥ p1/2 log p improves the trivial bound |Sp(I)| ≤ 2Mp1/2

following from (1.2). Recently, Fouvry, Kowalski, Michel, Raju, Rivat and
Soundararajan [6, Corollary 1.6] have given the bound

Sp(I)�Mp1/2(log p)−η

provided that M ≥ p1/2(log p)−η with some absolute constant η > 0.
It is also easy to derive from [15, Theorem 7] that

Sp(I,J )�MNp1/4 +M1/2N1/2p1+o(1),

which improves the trivial bound from (1.2) for MN ≥ p1+ε for any fixed
ε > 0.

The sums Sp(A,B; I,J ) and Sp(A; I,J ) have been estimated by Fouvry,
Kowalski and Michel [4, Theorem 1.17] as a part of a much more general
result about sums of so-called trace functions. For example, by [4, Theo-
rem 1.17(2)], for initial intervals I = [1,M ] and J = [1, N ], we have

(2.1) |Sp(A; I,J )| ≤ ‖A‖1p1+o(1).
Furthermore, by a result of Blomer, Fouvry, Kowalski, Michel, and Mili-
ćević [1, Theorem 6.1], also for an initial interval I and an arbitrary interval
J with

MN ≤ p3/2 and M ≤ N2,
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we have

(2.2) |Sp(A; I,J )| ≤ (‖A‖1‖A‖2)1/2M1/12N7/12p3/4+o(1).

One can also find in [1, 4, 11] a series of other bounds on the sums
Sp(A; I,J ) and Sp(A,B; I,J ) and also on more general sums.

Finally, Khan [10] has given a non-trivial estimate for the analogue of
Sp(I) modulo a fixed prime power, which is non-trivial already for M ≥ pε.
In [13] this result has been extended to arbitrary prime powers.

3. New results. We start with the sums Sp(I,J ) and present a bound
which improves (1.2) already for MN ≥ p1/2+ε.

Theorem 3.1. We have

Sp(I,J )� (p+MN)po(1).

We now estimate Sp(A; I,J ).

Theorem 3.2. We have

Sp(A; I,J )� ‖A‖2N1/2p.

We can rewrite the bounds (2.1) and (2.2) in terms of ‖A‖∞ as

(3.1) Sp(A; I,J )� ‖A‖∞Mp1+o(1)

and

(3.2) Sp(A; I,J )� ‖A‖∞M5/6N7/12p3/4+o(1),

respectively, and the bound of Theorem 3.2 as

(3.3) Sp(A; I,J )� ‖A‖∞M1/2N1/2p.

We now see that Theorem 3.1 is non-trivial provided that MN ≥ p1/2+ε
for any fixed ε > 0, and thus extends the range (and strength) of all previ-
ously known bounds.

Furthermore, the bound (3.3) improves (3.1) and (3.2) for

N < Mp−ε and M4N ≥ p3+ε

respectively, and also applies to intervals I and J at arbitrary positions.
We note that Blomer, Fouvry, Kowalski, Michel and Milićević [2] have

recently given several application of Theorem 3.1. Further applications of
bounds of bilinear Kloosterman sums can be found in [1, 4, 11].

4. Preparations. We need the following simple result.

Lemma 4.1. For any integers X and Y with 1 ≤ X,Y < p, the congru-
ence

xy ≡ 1 (mod p), 1 ≤ |x| ≤ X, 1 ≤ |y| ≤ Y,
has at most (XY/p+ 1)po(1) solutions.
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Proof. Writing xy ≡ 1 (mod p) as xy = 1 + kp for some integer k with
|k| ≤ XY/p and using the bound on the divisor function [8, (1.81)], we get
the desired estimate.

We also need the following well-known result, which dates back to Vino-
gradov [17, Chapter 6, Problem 14.a].

Lemma 4.2. For arbitrary sets U ,V ⊆ {0, . . . , p− 1} and complex num-
bers ϕu and ψv with∑

u∈U
|ϕu|2 ≤ Φ and

∑
v∈V
|ψv|2 ≤ Ψ,

we have ∣∣∣∑
u∈U

∑
v∈V

ϕuψv ep(uv)
∣∣∣ ≤√ΦΨp.

5. Proof of Theorem 3.1. The proof rests on the specific properties
of Kloosterman sums which lead to the identity (1.1), which allows us to
sum over m and n independently.

For an integer u we define

‖u‖p = min
k∈Z
|u− kp|

as the distance to the closest integer which is a multiple of p.
Then, using (1.1) and changing the order of summation, we obtain

Sp(I,J ) =

p−1∑
x=1

∑
m∈I

ep(mx)
∑
n∈J

ep(nx).

Hence,

Sp(I,J )�
p−1∑
x=1

min

{
M,

p

‖x‖p

}
min

{
N,

p

‖x‖p

}
(see [8, Bound (8.6)]). We now write

(5.1) Sp(I,J )�MNS1 +MpS2 +NpS3 + p2S4,

where

S1 =

p−1∑
x=1

‖x‖p≤p/M
‖x‖p≤p/N

1, S2 =

p−1∑
x=1

‖x‖p≤p/M
‖x‖p>p/N

1

‖x‖p
,

S3 =

p−1∑
x=1

‖x‖p>p/M
‖x‖p≤p/N

1

‖x‖p
, S4 =

p−1∑
x=1

‖x‖p>p/M
‖x‖p>p/N

1

‖x‖p‖x‖p
.
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By Lemma 4.1 we immediately obtain

(5.2) S1 ≤ (p/MN + 1)po(1).

To estimate S2, we define I = dlog pe and write

S2 ≤
I∑
i=0

S2,i,

where

S2,i =

p−1∑
x=1

‖x‖p≤p/M
ei+1p/N≥‖x‖p>eip/N

1

‖x‖p

� e−iNp−1
p−1∑
x=1

‖x‖p≤p/M
ei+1p/N≥‖x‖p>eip/N

1� e−iNp−1
p−1∑
x=1

‖x‖p≤p/M
‖x‖p≤ei+1p/N

1.

Now we use Lemma 4.1 again to derive

S2 ≤
I∑
i=0

(M−1 + e−iNp−1)po(1)(5.3)

� (I + 1)M−1po(1) +Np−1+o(1)
I∑
i=0

e−i

� (I + 1)M−1po(1) +Np−1+o(1) �M−1po(1) +Np−1+o(1).

Similarly we obtain

(5.4) S3 ≤ N−1po(1) +Mp−1+o(1).

Finally, we write

S4 ≤
I∑

i,j=0

S4,i,j ,

where

S4,i,j =

p−1∑
x=1

ei+1p/M≥‖x‖p>eip/M
ej+1p/N≥‖x‖p>ejp/N

1

‖x‖p‖x‖p

� e−i−jMNp−2
p−1∑
x=1

ei+1p/M≥‖x‖p>eip/M
ej+1p/N≥‖x‖p>ejp/N

1� e−i−jMNp−2
p−1∑
x=1

‖x‖p≤ei+1p/M

‖x‖p≤ej+1p/N

1.
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Applying Lemma 4.1 one more time, we obtain

S4,i,j � e−i−jMNp−2(ei+jp/MN + 1)po(1) = (p−1 + e−i−jMNp−2)po(1).

Hence

S4 ≤
I∑

i,j=0

(p−1 + e−i−jMNp−2)po(1)(5.5)

≤ (I + 1)2p−1+o(1) +MNp−2+o(1)

≤ p−1+o(1) +MNp−2+o(1).

Combining (5.2)–(5.5) we obtain the result.

6. Proof of Theorem 3.2. As in the proof of Theorem 3.2, using the
identity (1.1) and changing the order of summation and then changing the
variable x 7→ x, we obtain

Sp(A; I,J ) =

p−1∑
x=1

∑
m∈I

αm ep(mx)
∑
n∈J

ep(nx)

=

p−1∑
x=1

∑
m∈I

αm ep(mx)
∑
n∈J

ep(nx).

Hence

Sp(A; I,J ) =
∑
m∈I

p−1∑
x=1

αmγx ep(mx),

where
|γx| ≤ min{N, p/‖x‖p}.

Thus, similarly to the proof of Theorem 3.1, we define I = dlog pe and
write

(6.1) Sp(A; I,J )� |S0|+
I∑
i=1

|Si|,

where

S0 =
∑
m∈I

p−1∑
x=1

‖x‖p≤p/N

αmγx ep(mx),

Si =
∑
m∈I

p−1∑
x=1

ei+1p/N≥‖x‖p>eip/N

αmγx ep(mx), i = 1, . . . , I.

Now using Lemma 4.2, we have

(6.2) |S0| � ‖A‖2N
√

(p/N + 1)p� ‖A‖2N1/2p.
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Also, for i = 1, . . . , I, using the fact that if ei+1p/N ≥ ‖x‖p > eip/N then
γx � Ne−i, by Lemma 4.2 we obtain

Si =
∑
m∈I

p−1∑
x=1

ei+1p/N≥‖x‖p>eip/N

αmγx ep(mx)

� ‖A‖2(N2e−2ieip/N)1/2p1/2 = e−i/2‖A‖2N1/2p.

Therefore,

(6.3)

I∑
i=1

|Si| � ‖A‖2N1/2p

I∑
i=1

e−i/2 � ‖A‖2N1/2p.

Combining (6.2) and (6.3) gives the result.

7. Comments. It is easy to see that our estimates can be extended to
the case of composite moduli at the cost of essentially typographical changes,
while for the methods of [1, 4, 11] the primality of the modulus seems to be
crucial.

It is also natural to consider cancellations between some other exponen-
tial and character sums. For example, in [16] one can find some bound on
the sums

Sp(f,A,B;C) =
∑

(u,v)∈C

αuβv ep(v/f(u)),

Tp(f,A,B;C) =
∑

(u,v)∈C

αuβvχ(v + f(u)),

(where χ is a multiplicative character modulo p), over a convex set C ⊆
[1, U ]× [1, V ], with some integers 1 ≤ U, V < p.

Here we also note that one can also obtain a non-trivial cancellation for
sums

Hk,p(a; I) =
∑
m∈I
Gk,p(am)

of Gaussian sums

Gk,p(a) =

p−1∑
x=0

ep(ax
k)

with a positive integer k | p− 1. Indeed, we define

τp(a;χ) =

p−1∑
x=1

χ(x) ep(ax),

where χ is a multiplicative character; we refer to [8, Chapter 3] for a back-
ground on multiplicative characters. Then by the orthogonality of charac-
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ters, we have

Gk,p(a) =
∑
χk=χ0
χ 6=χ0

χ(a)τp(a;χ),

where the summation is over all non-principal multiplicative characters χ
modulo p such that χk is the principal character χ0 (see also [12, Theo-
rem 5.30]). Using |τp(a;χ)| = p1/2 for any non-principal multiplicative char-
acters χ and integer a with gcd(a, p) = 1, we derive

|Hk,p(a; I)| = p1/2
∑
χk=χ0
χ 6=χ0

χ(a)
∑
m∈I

χ(m).

Thus applying the Burgess bound [8, (12.58)], we derive

Hk,p(a; I)�M1−1/νp1/2+(ν+1)/(4ν2)(log p)1/ν(7.1)

= M1−1/νp(2ν
2+ν+1)/(4ν2)(log p)1/ν

for any fixed k | p− 1 and ν = 1, 2, . . ..

Similarly, for general quadratic polynomials f(X) = aX2 + bX with
gcd(a, p) = 1, we can define the double sums

Fp(a, b; I) =
∑
m∈I

p−1∑
x=0

ep(m(ax2 + bx)).

It is easy to see that

p−1∑
x=0

ep(ax
2 + bx) = ep

(
− b

2

4a

) p−1∑
x=0

ep(a(x+ b/(2a))2)

= ep

(
− b

2

4a

) p−1∑
x=0

ep(ax
2) =

(
a

p

)
ep

(
− b

2

4a

)
G2,p(1),

where (a/p) is the Legendre symbol of a modulo p. Hence

∑
m∈I

p−1∑
x=0

ep(m(ax2 + bx)) = G2,p(1)
∑
m∈I

(
am

p

)
ep

(
−(bm)2

4am

)
=

(
a

p

)
G2,p(1)

∑
m∈I

(
m

p

)
ep

(
−b

2m

4a

)
.

Now, using the bound of Burgess [3] on short mixed sums (see [7, 9, 14] for
various generalisations) we easily derive that for any fixed ν = 2, 3, . . . we
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have

Fp(a, b; I)�M1−1/νp1/2+1/(4(ν−1))(log p)2(7.2)

= M1−1/νp(2ν−1)/(4(ν−1))(log p)2,

where the implied constant may depend on ν.

We note that the bounds (7.1) and (7.2) are non-trivial provided that
M ≥ p1/4+ε for any fixed ε > 0 and sufficiently large p.
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