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Abstract

In this article, the authors introduce Hardy spaces with variable exponents, H∗,p(·)(X ), on RD-
spaces with infinite measures via the grand maximal function. Then the authors characterize
these spaces by means of the non-tangential maximal function or the dyadic maximal func-
tion. Characterizations in terms of atoms or Littlewood–Paley functions are also established.
As applications, the authors prove an Olsen inequality for fractional integral operators and the
boundedness of singular integral operators and quasi-Banach valued sublinear operators on these
spaces. Finally, a duality theory of these spaces is developed.

Acknowledgements. Dachun Yang is supported by the National Natural Science Foundation of
China (grant nos. 11571039 and 11361020), the Specialized Research Fund for the Doctoral Pro-
gram of Higher Education of China (grant no. 20120003110003) and the Fundamental Research
Funds for Central Universities of China (grant nos. 2013YB60 and 2014KJJCA10). The second
author is grateful for the hospitality of Beijing Normal University, where part of this work was
done. All authors would like to thank the copy editor, Jerzy Trzeciak, for his valuable remarks
which made this article more readable.

2010 Mathematics Subject Classification: Primary 42B30; Secondary 42B25, 42B20, 42B35,
47B06, 30L99.

Key words and phrases: RD-space, Hardy space, variable exponent, maximal function, atom,
Littlewood–Paley function, dual space.

Received 1 June 2015; revised 21 September 2015.
Published online 28 October 2016.

[4]



1. Introduction

The variable exponent Lebesgue space Lp(·)(Rn), with an exponent function

p(·) : Rn → (0,∞),

is a generalization of the classical Lebesgue space, which can be traced back to Birnbaum–
Orlicz [4] and Orlicz [63] (see also Luxemburg [47] and Nakano [58, 59]). But the modern
development was started with the articles [44] of Kováčik and Rákosník in 1991 and [19]
of Fan and Zhao, in which the authors investigated Sobolev spaces based on Lebesgue
spaces with variable exponents. The variable exponent function spaces have been widely
used in harmonic analysis and partial differential equations; see, for example, [10, 14, 49].

Based on the boundedness of the Hardy–Littlewood maximal operator (see, for ex-
ample, [9, 11, 13]) and other related operators (see, for example, [40, 51, 52, 64, 66])
on variable exponent Lebesgue spaces, the study of several function spaces with variable
exponents developed rapidly (see, for example, [2, 12, 15, 56, 60–62, 79–81, 88, 89]). In par-
ticular, Nakai and Sawano [56] studied Hardy spaces with variable exponents, Hp(·)(Rn),
which are extensions of variable exponent Lebesgue spaces. Later, Sawano [68] gave more
applications of these variable exponent Hardy spaces, and Zhuo et al. [90] established
their equivalent characterizations in terms of intrinsic square functions. Independently,
Cruz-Uribe and Wang [12] also investigated variable exponent Hardy spaces with some
conditions weaker than those used in [56], which also extends variable exponent Lebesgue
spaces. Recall that the classical Hardy spaces Hp(Rn) with p ∈ (0, 1] and their duals are
well studied and play an important role in harmonic analysis and in partial differential
equations (see, for example, [8, 20, 53, 74]).

On the other hand, variable exponent Lebesgue spaces on (quasi-)metric measure
spaces seem to have appeared initially in [36], where Harjulehto et al. considered the
boundedness of the Hardy–Littlewood maximal operator M on Lp(·)(X ), under the as-
sumption that X is a bounded doubling space and p(·) is locally log-Hölder continu-
ous. Later, several papers appeared dealing with operators in variable exponent spaces
on metric measure spaces (see, for example, [23, 27, 31, 41]); however, as was pointed
out by Adamowicz et al. [1], all these papers had some restrictions that either the un-
derlying space was bounded or an unnatural ball condition on p(·) was assumed. More
precisely, in [27], the boundedness of fractional integral operators in weighted variable ex-
ponent spaces with non-doubling measures was investigated and, in [41], Kokilashvili and
Samko considered the maximal operator in weighted variable exponent spaces on met-
ric measure spaces. Hajibayov and Samko [31] studied generalized potential operators
on bounded quasi-metric measure spaces with doubling measures satisfying the so-called
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upper Ahlfors N -regular condition. Moreover, very recently, Adamowicz et al. [1] stud-
ied the Hardy–Littlewood maximal operator M on Lp(·)(X ) when X is an unbounded
quasi-metric measure space with µ being a doubling measure (or an arbitrary, possibly
non-doubling, Radon measure) and p(·) being log-Hölder continuous.

Recall that a metric measure space

(X , d, µ)

is called a metric measure space of homogeneous type if µ is a Borel regular measure
and satisfies the doubling property. It is well known that spaces of homogeneous type in
the sense of Coifman and Weiss [7] present a natural setting for the theory of Calderón–
Zygmund operators. In [8], Coifman andWeiss introduced the atomic Hardy spaceHp

at(X )

with p ∈ (0, 1] and, when X is an Ahlfors 1-regular metric measure space, they estab-
lished a molecular characterization for H1

at(X ). Later, Macías and Segovia [48] obtained
a grand maximal function characterization for Hp

at(X ) with p ∈ (1/2, 1] via distributions
acting on certain spaces of Lipschitz functions; Han [32] established a Lusin-area func-
tion characterization for Hp

at(X ); Duong and Yan [16] characterized these atomic Hardy
spaces in terms of Lusin-area functions associated with certain Poisson semigroups; Li [46]
also gave a characterization of Hp

at(X ) by the grand maximal function defined via test
functions introduced in [35].

A metric measure space of homogeneous type X is called an RD-space if it has a
“dimension” n and satisfies some reverse doubling property (see Definition 2.1 below),
which was originally introduced by Han, Müller and Yang [34]. The Littlewood–Paley
theory of Hardy spaces on RD-spaces was established in [33], and the corresponding
maximal function characterizations were obtained in [29]. Moreover, in [34] these Hardy
spaces on RD-spaces were proved to coincide with Triebel–Lizorkin spaces on RD-spaces.
To develop a real-variable theory of Hardy spaces or, more generally, Besov spaces and
Triebel–Lizorkin spaces on RD-spaces, some basic tools, including spaces of test functions,
approximations of the identity and various Calderón reproducing formulas on RD-spaces,
were developed in [33, 34]. Now, it is well known that these basic tools play important
roles in harmonic analysis on RD-spaces (see, for example, [28, 30, 33, 34, 42, 43, 85, 87]).

In this article, we introduce Hardy spaces with variable exponents on RD-spaces,
denoted by H∗,p(·)(X ), via the grand maximal function. We then prove that H∗,p(·)(X )

coincides with Hardy spaces with variable exponents defined via the non-tangential max-
imal function or via the dyadic maximal function. This generalizes both Hardy spaces on
RD-spaces with constant exponents Hp(X ) (see [29, 33]) and Hardy spaces on Euclidean
spaces with variable exponents Hp(·)(Rn) (see [56]). Characterizations of H∗,p(·)(X ) in
terms of atoms or Littlewood–Paley functions are also obtained in this article. As appli-
cations, we give an Olsen inequality for fractional integral operators, and consider the
boundedness of singular integral operators and quasi-Banach valued sublinear operators
on these Hardy spaces. Finally, we prove that the dual space of H∗,p(·)(X ) is a special case
of the space BMOφ(X ) which is defined in Definition 7.1. Recall that Xu [82, Problem
2.1] pointed out that a real-variable theory of Hardy spaces with variable exponents on
metric measure spaces was still unknown, and hence the results in this article make a
step in this direction.
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This article is organized as follows.
In Section 2, we first recall the notions of RD-spaces, including the space of test func-

tions and approximations of identity, and variable exponent Lebesgue spaces on metric
measure spaces. We then establish a Fefferman–Stein vector-valued inequality for the
Hardy–Littlewood maximal operator on Lp(·)(X ) (see Theorem 2.7) and another inter-
esting inequality (see Proposition 2.11), which play important roles in this article.

In Section 3, we introduce the Hardy space H∗,p(·)(X ) with variable exponent on RD-
spaces via the grand maximal function. Then we establish the coincidence of H∗,p(·)(X )

with H
p(·)
α (X ), the Hardy space with variable exponent defined via the non-tangential

maximal function (see Theorem 3.11), as well as with H
p(·)
d (X ), the Hardy space with

variable exponent defined via the dyadic maximal function (see Theorem 3.15).
Section 4 is devoted to atomic characterizations including infinite and finite atomic

characterizations (see Theorems 4.3 and 4.24, respectively). To this end, we first prove
that the subset Lq(X ) ∩ H∗,p(·)(X ) is dense in H∗,p(·)(X ) by the Calderón–Zygmund
decomposition. We then show Theorem 4.3 by using the Calderón–Zygmund decompo-
sition and some argument similar to that used in the proof of [21, Theorem 3.28]. As
consequences of the above infinite atomic characterization, we show that the spaces

H∗,p(·)(X ), Hp(·)
α (X ) and H

p(·)
d (X )

are independent of the corresponding parameters (see Theorem 4.17). Moreover, we prove
that, when 1 < p− ≤ p+ < ∞, the space H∗,p(·)(X ) coincides with Lp(·)(X ), where p−
and p+ are as in (2.3) below. By using the constructive proof of Theorem 4.3, we further
prove Theorem 4.24. We point out that finite atomic characterizations of Hardy spaces
were first considered by Meda et al. [50], who established a finite atomic characterization
of H1(Rn). We also point out that the approach used in the proof of Theorems 4.3 is
different from that of [29, Theorem 4.16], in which the authors established an atomic
characterization of the Hardy space Hp(X ) with p being a constant exponent. Another
proof of Theorem 4.3(ii), similar to that of [29, Theorem 4.16], is given at the end of
Section 4; however, the atoms constructed in this way do not seem to be well suited for
establishing the finite atomic characterization of the Hardy spaceH∗,p(·)(X ) with variable
exponent in the setting of this article.

In Section 5, we mainly establish characterizations of H∗,p(·)(X ) via Littlewood–Paley
functions, including the Lusin area function, the g∗λ-function and the g-function. In fact,
we first introduce a Hardy space Hp(·)(X ) with variable exponent via the Lusin area
function, and then give its atomic characterization via (p(·),∞)-atoms (see Theorem 5.3)
by using the Calderón reproducing formula from [33] (see also Lemma 5.10); this space
is further proved to coincide with Hp(·),q

at (X ), where q ∈ [1,∞]∩ (p+,∞], and hence with
H∗,p(·)(X ) in Theorem 5.4. We point out that the method used in the proof of Theo-
rem 5.3 is similar to the one used in the proof of the constant exponent case (see [33,
Theorem 2.21]), with some subtle modifications in the construction of atoms and coeffi-
cients. Moreover, as a benefit of such subtle modifications, we obtain a characterization
of Hp(·)(X ) via (p(·),∞)-atoms, and not via (p(·), 2)-atoms, in Theorem 5.3, which, when
p(·) ≡ p is a constant exponent, improves the result in [33, Theorem 2.21] where Hp(X )

was characterized via (p, 2)-atoms.
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As applications, in Section 6, we obtain an Olsen inequality via the atomic charac-
terization established in Theorem 4.3, investigate the boundedness of singular integral
operators by using the characterization via the Lusin area function obtained in Theorems
5.3 and 5.4, and consider the boundedness of quasi-Banach valued sublinear operators on
H∗,p(·)(X ) via the finite atomic characterization presented in Theorem 4.24.

In Section 7, using the atomic characterization of these spaces, we consider their duals
when p(x) ≤ 1 for µ-almost every x ∈ X .

Finally, we point out that it would be interesting to see whether or not the results
of this article still hold true for spaces of homogeneous type or even for spaces of non-
homogeneous type in the sense of Hytönen [37] (see [22, 84] for developments of the theory
of Hardy spaces in this setting).

2. Preliminaries

We first give some notation which will be used in this article. Let N := {1, 2, . . . } and
Z+ := N ∪ {0}. Throughout the article, we denote by C a positive constant which is
independent of the main parameters, but may vary from line to line. The notation A . B

means A ≤ CB. If A . B and B . A, then we write A ∼ B. For all a, b ∈ R, let

a ∨ b := max{a, b} and a ∧ b := min{a, b}.

If E is a subset of X , we denote by χE its characteristic function. For a ∈ R, bac denotes
the largest integer m such that m ≤ a.

In this section, we first recall the notions of RD-spaces and variable exponent Lebesgue
spaces, respectively, in Subsections 2.1 and 2.2. Then, in Subsection 2.3, we consider the
boundedness of the Hardy–Littlewood maximal function on variable exponent Lebesgue
spaces on metric measure spaces of homogeneous type and, as a consequence, we obtain
Proposition 2.11, which plays an important role in this article and is also of independent
interest.

2.1. RD-spaces. In this subsection, we recall the notions of metric measure spaces of
homogeneous type in the sense of Coifman and Weiss [7, 8], and RD-spaces in the sense
of [34] (see also [57, 87]).

Definition 2.1. Let (X , d, µ) be a metric space with a Borel regular measure µ such
that all the balls defined by µ have finite and positive measures. For any x ∈ X and
r ∈ (0,∞), denote by B(x, r) the ball centered at x with radius r,

B(x, r) := {y ∈ X : d(x, y) < r}.

(i) The triple (X , d, µ) is called a metric measure space of homogeneous type if there
exists a constant C1 ∈ [1,∞) such that, for all x ∈ X and r ∈ (0,∞),

µ(B(x, 2r)) ≤ C1µ(B(x, r)) (doubling property). (2.1)

(ii) Let 0 < κ ≤ n < ∞. The triple (X , d, µ) is called a (κ, n)-space if there exist
constants C2 ∈ (0, 1] and C3 ∈ [1,∞) such that, for all 0 < r < diam(X )/2,
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1 ≤ λ < diam(X )/(2r) and x ∈ X ,

C2λ
κµ(B(x, r)) ≤ µ(B(x, λr)) ≤ C3λ

nµ(B(x, r)), (2.2)

where diam(E) := supx,y∈E d(x, y) for a subset E ⊂ X .

A metric measure space of homogeneous type is called an RD-space if it is a (κ, n)-space
for some 0 < κ ≤ n <∞, that is, if some “reverse” doubling condition holds true.

Recall that in [7, 8] a triple (X , d, µ) is called a space of homogeneous type if it satisfies
Definition 2.1(i) with d being a quasi-metric.

In this article, unless otherwise stated, we always assume that X is an RD-space and
µ(X ) =∞. Moreover, for all balls and a ∈ (0,∞), we use aB to denote the ball with the
same center as B but a times its radius. For any x, y ∈ X and δ ∈ (0,∞), let

Vδ(x) := µ(B(x, δ)) and V (x, y) := µ(B(x, d(x, y))).

By (2.1), we see that V (x, y) ∼ V (y, x) for all x, y ∈ X with implicit positive constants
independent of x and y.

Remark 2.2. (i) In some sense, κ and n measure the “dimension” of X . Obviously,
a (κ, n)-space is a metric measure space of homogeneous type with C1 := C32n. Con-
versely, a metric measure space of homogeneous type satisfies the second inequality of
(2.2) with C3 := C1 and n := log2 C1.

(ii) If µ is doubling, then µ satisfies (2.2) if and only if there exist constants a0, C̃0 ∈
(1,∞) such that, for all x ∈ X and 0 < r < diam(X )/a0,

µ(B(x, a0r)) ≥ C̃0µ(B(x, r)) (reverse doubling property),

or, equivalently, for all 0 < r < diam(X )/a0 and x ∈ X , B(x, a0r) \ B(x, r) 6= ∅; see
[34, 57, 87] for some other equivalent characterizations of RD-spaces.

2.2. Variable exponent Lebesgue spaces. In what follows, a measurable function
p(·) : X → (0,∞) is called a variable exponent. For any variable exponent p(·), let

p− := ess inf
x∈X

p(x) and p+ := ess sup
x∈X

p(x). (2.3)

Moreover, let p := min{1, p−}. Denote by P(X ) the set of all variable exponents on X
with 0 < p− ≤ p+ < ∞. For a measurable function f : X → R, define the modular of f
by setting

%p(·)(f) :=

∫
X
|f(x)|p(x) dµ(x),

and define the Luxemburg quasi-norm to be

‖f‖Lp(·)(X ) := inf{λ ∈ (0,∞) : %p(·)(f/λ) ≤ 1}.

Then the variable exponent Lebesgue space on (X , d, µ), denoted by Lp(·)(X ), is defined to
be the set of all measurable functions f such that %p(·)(f) <∞, equipped with the quasi-
norm ‖f‖Lp(·)(X ). For more properties of variable exponent Lebesgue spaces, we refer the
reader to [10, 14]. We point out that Lp(·)(X ) is a special case of Musielak–Orlicz spaces
(see [54]).
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For any q ∈ (0,∞], let Lqloc(X ) be the space of locally q-integrable functions on X ,
and Lq(X ) the space of all q-integrable functions on X .

Remark 2.3. (i) Variable exponent Lebesgue spaces on (quasi-)metric measure spaces
have already been studied in several papers (see, for example, [1, 31, 36]).

(ii) Let p(·) ∈ P(X ). Then it is easy to see that ‖ · ‖Lp(·)(X ) is a quasi-norm.
(iii) (The Hölder inequality) Let p− ∈ (1,∞). Then, for all f ∈ Lp(·)(X ) and g ∈

Lp
∗(·)(X ), ∫

X
|f(x)g(x)| dµ(x) ≤ 2‖f‖Lp(·)(X )‖g‖Lp∗(·)(X );

here and hereafter p∗(·) denotes the dual variable exponent of p(·) defined by 1/p(x) +

1/p∗(x) = 1 for all x ∈ X (see [36]).
(iv) Let p(·) ∈ P(X ). Then, by an argument similar to that used in the proof of [10,

Proposition 2.21], we conclude that, for all non-trivial functions f ∈ Lp(·)(X ),

%p(·)(f/‖f‖Lp(·)(X )) = 1.

Recall that the variable exponent p(·) is said to be locally log-Hölder continuous in X
if there exists a positive constant clog such that, for all x, y ∈ X ,

|p(x)− p(y)| ≤ clog

log(e+ 1/d(x, y))
;

and that p(·) is said to satisfy the log-Hölder decay condition with a basepoint xp ∈ X if
there exist p∞ ∈ R and a positive constant c∞ such that, for all x ∈ X ,

|p(x)− p∞| ≤
c∞

log(e+ d(x, xp))
.

Moreover, the variable exponent p(·) is said to be log-Hölder continuous if p(·) satisfies
both the locally log-Hölder continuous condition and the log-Hölder decay condition.

In what follows, we always fix the basepoint xp, which plays the same role as the
origin of Rn. For 0 ≤ a < b ≤ ∞, denote by C log

(a,b)(X ) (resp., C log
(a,b](X )) the set of all

log-Hölder continuous variable exponents p(·) such that p(X ) is contained in a compact
interval in (a, b) (resp., (a, b]).

Remark 2.4. Let p(·) ∈ P(X ). Then it is easy to see that p(·) ∈ C log
(0,∞)(X ) if and only

if 1/p(·) ∈ C log
(0,∞)(X ). Moreover, if p(·) ∈ C log

(0,∞)(X ), then p∗(·) ∈ C log
(0,∞)(X ).

2.3. Boundedness of the Hardy–Littlewood maximal operator. In this subsec-
tion, we mainly consider the boundedness of the maximal operator on metric measure
spaces. Recall that, for any f ∈ L1

loc(X ), the Hardy–Littlewood maximal function M(f)

of f is defined by setting, for all x ∈ X ,

M(f)(x) := sup
r∈(0,∞)

1

µ(B(x, r))

∫
B(x,r)

|f(y)| dµ(y) =: sup
r∈(0,∞)

mB(x,r)(|f |);

here and hereafter, for any measurable set E ⊂ X and any measurable function g, we
write

mE(g) :=
1

µ(E)

∫
E

g(x) dµ(x). (2.4)
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Obviously, by the Hölder inequality for variable exponent Lebesgue spaces, we find that
Lp(·)(X ) ⊂ L1

loc(X ) as sets when p− ∈ [1,∞). Therefore, for all f ∈ Lp(·)(X ) with
p− ∈ [1,∞), M(f) is finite almost everywhere.

The following lemma is just [1, Corollary 1.8].

Lemma 2.5. Let (X , d, µ) be a metric measure space of homogeneous type and let
p(·) ∈ C log

(1,∞)(X ). Then, for all f ∈ Lp(·)(X ),

‖M(f)‖Lp(·)(X ) ≤ C‖f‖Lp(·)(X ),

where C is a positive constant independent of f , but which may depend on the base-
point xp.

Remark 2.6. Let p(·) ∈ C log
(1,∞)(X ) and B be a ball of X . Then it is easy to see that, for

all λ ∈ (1,∞) and r ∈ (0,∞),

χλB ≤ (Cλn)1/r[M(χB)]1/r and ‖χλB‖Lp(·)(X ) ≤ Cλn/λ‖χB‖Lp(·)(X ),

where C is a positive constant independent of B and λ.

By Lemma 2.5 and some duality argument, we obtain the following Fefferman–Stein
vector-valued inequality for the Hardy–Littlewood maximal operator.

Theorem 2.7. Let (X , d, µ) be a metric measure space of homogeneous type (here µ(X ) ∈
(0,∞]) and p(·) ∈ C log

(1,∞)(X ). Then there exists a positive constant C such that, for all
u ∈ (1,∞] and measurable functions {fj}j∈N ⊂ Lp(·)(X ),∥∥∥{∑

j∈N
[M(fj)]

u
}1/u∥∥∥

Lp(·)(X )
≤ C

∥∥∥{∑
j∈N
|fj |u

}1/u∥∥∥
Lp(·)(X )

, (2.5)

where, when u =∞, it is understood that (2.5) means∥∥∥sup
j∈N

M(fj)
∥∥∥
Lp(·)(X )

≤ C
∥∥∥sup
j∈N
|fj |
∥∥∥
Lp(·)(X )

. (2.6)

Remark 2.8. If p(·) ≡ p ∈ (1,∞) is a constant exponent, the conclusion of Theorem 2.7
was proved in [30, Theorem 2.1].

To prove Theorem 2.7, we need the following technical lemma, whose proof is similar
to that of [10, Theorem 2.34] (see also [39, Theorem 9.2]), in which the corresponding
result on the Euclidean space is considered; the details are omitted.

Lemma 2.9. Let (X , d, µ) be a metric space with a Borel regular measure µ (here µ(X ) ∈
(0,∞]) and p(·) ∈ C log

(1,∞)(X ). If f ∈ Lp(·)(X ), then there exists a positive constant C
such that

C−1‖f‖Lp(·)(X ) ≤ ‖̃f‖Lp(·)(X ) ≤ C‖f‖Lp(·)(X ),

where

‖̃f‖Lp(·)(X ) := sup

{∣∣∣∣∫
X
f(x)g(x) dµ(x)

∣∣∣∣ : g ∈ Lp
∗(·)(X ) and ‖g‖Lp∗(·)(X ) ≤ 1

}
.

Proof of Theorem 2.7. It suffices to show (2.5), since (2.6) is obviously true. To this end,
let 1 < v < p−. Then, by Lemma 2.9,
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∥∥∥{∑
j∈N

[M(fj)]
u
}1/u∥∥∥

Lp(·)(X )
=
[∥∥∥(∑

j∈N
[M(fj)]

u
)v/u∥∥∥

Lp(·)/v(X )

]v
∼
{∫
X

(∑
j∈N

[M(fj)(x)]u
)v/u

g(x) dµ(x)

}1/v

for some non-negative measurable function g such that ‖g‖L(p(·)/v)∗ (X ) ≤ 1. By Remark 2.4
and Lemma 2.5, we know that, for all h ∈ L(p(·)/v)∗(X ),

‖M(h)‖L(p(·)/v)∗ (X ) ≤ N‖h‖L(p(·)/v)∗ (X )

for some N ∈ (1,∞) independent of h. Define

G :=
∑
k∈N

1

2kNk
Mk(g),

where Mk denotes the k-fold iteration of the Hardy–Littlewood maximal operator M .
Then

M(G) ≤ 2NG (2.7)
and ∥∥∥{∑

j∈N
[M(fj)]

u
}1/u∥∥∥

Lp(·)(X )
.

{∫
X

(∑
j∈N

[M(fj)(x)]u
)v/u

G(x) dµ(x)

}1/v

.

Notice that, for all j ∈ N and x ∈ X ,

M(fj)(x) . sup
r∈(0,∞)

1∫
B(x,22r)

G(y) dµ(y)

∫
B(x,r)

|fj(y)|G(y) dµ(y) =:MG(fj)(x)

from (2.2) and (2.7). Therefore, from [67, Theorem 1.3] with µ replaced by Gdµ, we
deduce that∥∥∥{∑

j∈N
[M(fj)]

u
}1/u∥∥∥

Lp(·)(X )
.

{∫
X

(∑
j∈N

[MG(fj)(x)]u
)v/u

G(x) dµ(x)

}1/v

.

{∫
X

[∑
j∈N
|fj(x)|u

]v/u
G(x) dµ(x)

}1/v

,

which, combined with the Hölder inequality and the fact that ‖g‖L(p(·)/v)∗ (X ) ≤ 1, implies
that ∥∥∥{∑

j∈N
[M(fj)]

u
}1/u∥∥∥

Lp(·)(X )
.
∥∥∥{∑

j∈N
|fj |u

}1/u∥∥∥
Lp(·)(X )

.

This finishes the proof of Theorem 2.7.

We transform Theorem 2.7 to the form we need in this article.

Corollary 2.10. Let 0 < β < 1, u ∈ ((n+ β)/n,∞), (X , d, µ) be a metric measure
space of homogeneous type (here µ(X ) ∈ (0,∞]) and r(·) ∈ C log

(n/(n+β),∞)(X ). Then there
exists a positive constant C such that, for any sequence {fj}j∈N of µ-measurable functions,∥∥∥∑

j∈N
[M(fj)]

u
∥∥∥
Lr(·)(X )

≤ C
∥∥∥∑
j∈N
|fj |u

∥∥∥
Lr(·)(X )

. (2.8)
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Proof. Notice that (2.8) is equivalent to∥∥∥(∑
j∈N

[M(fj)]
u
)1/u∥∥∥

Lr(·)u(X )
.
∥∥∥(∑

j∈N
|fj |u

)1/u∥∥∥
Lr(·)u(X )

. (2.9)

Since (r(·)u)− > 1 by assumption, we are in a position to apply Theorem 2.7 with
p(·) replaced by r(·)u to (2.9), and hence (2.8) holds true. This finishes the proof of
Corollary 2.10.

Thanks to Lemma 2.5, we obtain the following conclusion, which plays an important
role in this article and is also of independent interest.

Proposition 2.11. Let (X , d, µ) be a metric measure space of homogeneous type (here
µ(X ) ∈ (0,∞]), let r(·) ∈ P(X ) be a log-Hölder continuous variable exponent and let
q ∈ [1,∞]∩(r+,∞]. Suppose that {λj}j∈N ⊂ C, {Bj}j∈N and {aj}j∈N are given collections
of balls and Lq(X )-functions, respectively, such that, for all j ∈ N, supp aj ⊂ Bj :=

B(xj , rj) for some xj ∈ X and rj ∈ (0,∞), and

‖aj‖Lq(X ) ≤
[µ(Bj)]

1/q

‖χBj‖Lr(·)(X )

,

and that

Ãr(·)({λj}j∈N, {Bj}j∈N) :=

∥∥∥∥{∑
j∈N

[
|λj |

‖χBj‖Lr(·)(X )

χBj

]r}1/r∥∥∥∥
Lr(·)(X )

<∞.

Then ∥∥∥{∑
j∈N
|λjaj |r

}1/r∥∥∥
Lr(·)(X )

≤ CÃr(·)({λj}j∈N, {Bj}j∈N),

where C is a positive constant independent of λj, Bj and aj.

Proof. By Lemma 2.9, we find g ∈ L(r(·)/r)∗(X ) with norm not greater than 1 such that∥∥∥{∑
j∈N
|λjaj |r

}1/r∥∥∥r
Lr(·)(X )

=
∥∥∥∑
j∈N
|λjaj |r

∥∥∥
Lr(·)/r(X )

.
∫
X

∑
j∈N
|λjaj(x)|r |g(x)| dµ(x).

From the Hölder inequality, we deduce that∫
X

∑
j∈N
|λjaj(x)|r|g(x)| dµ(x) ≤

∑
j∈N

|λj |r[µ(Bj)]
r/q

‖χBj‖
r

Lr(·)(X )

‖g‖L(q/r)∗ (Bj)

.
∑
j∈N

|λj |rµ(Bj)

‖χBj‖
r

Lr(·)(X )

inf
z∈Bj

[M(|g|(q/r)
∗
)]1/(q/r)

∗

.
∫
X

∑
j∈N

|λj |rχBj (x)

‖χBj‖
r

Lr(·)(X )

[M(|g|(q/r)
∗
)(x)]1/(q/r)

∗
dµ(x),

which, together with Lemma 2.5, the Hölder inequality in Remark 2.3(iii) and the fact
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that q ∈ (r+,∞], implies that∫
X

∑
j∈N
|λjaj(x)|r|g(x)| dµ(x)

.

∥∥∥∥∑
j∈N

|λj |rχBj
‖χBj‖

r

Lr(·)(X )

∥∥∥∥
Lr(·)/r(X )

‖[M(|g|(q/r)
∗
)]1/(q/r)

∗
‖L(r(·)/r)∗ (X )

.
∥∥∥{∑

j∈N

|λj |rχBj
‖χBj‖

r

Lr(·)(X )

}1/r∥∥∥r
Lr(·)
‖g‖L(r(·)/r)∗ (X ).

This finishes the proof of Proposition 2.11.

3. Hardy spaces with variable exponents

Based on the viewpoints of [29, 33], in Subsection 3.1, we introduce the Hardy space
H∗,p(·)(X ) via the grand maximal function. Then a non-tangential maximal function
characterization for H∗,p(·)(X ) is presented in Subsection 3.2 and, in Subsection 3.3, we
consider another characterization of H∗,p(·)(X ) in terms of the dyadic maximal function.
As an application of these characterizations, in Subsection 3.4, we investigate relations
between the spaces of test functions with different parameters.

3.1. Hardy spaces with variable exponents via the grand maximal function.
Let us first recall the notion of test functions which suits RD-spaces and was introduced
in [29]. Observe that this kind of test functions is a slight variant of the test functions
originally introduced in [33] (see also [34]).

Definition 3.1. Let z ∈ X , r, γ ∈ (0,∞) and β ∈ (0, 1]. A function ϕ on X is called a
test function of type (z, r, β, γ) if, for all x ∈ X ,

|ϕ(x)| ≤ C 1

µ(B(x, r + d(x, z)))

[
r

r + d(z, x)

]γ
(3.1)

and, for all x, y ∈ X satisfying d(x, y) ≤ [r + d(z, x)]/2,

|ϕ(x)− ϕ(y)| ≤ C
[

d(x, y)

r + d(z, x)

]β[
r

r + d(z, x)

]γ
1

µ(B(x, r + d(x, z)))
, (3.2)

where C is a positive constant independent of x, y and z.
Denote by G(z, r, β, γ) the set of all test functions of type (z, r, β, γ). For any ϕ in

G(z, r, β, γ), define its norm by

‖ϕ‖G(z,r,β,γ) := inf{C : (3.1) and (3.2) hold true}.

The space G(z, r, β, γ) is called the space of test functions.

Remark 3.2. In [33, Definition 2.2] or [34, Definition 2.8], another space of test functions
was introduced in the same way as in Definition 3.1 but with µ(x, r + d(x, z)) replaced
by Vr(z) + V (z, x). Observe that, by (2.2),

µ(x, r + d(x, z)) ∼ Vr(z) + V (z, x).
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It follows that the spaces of test functions in Definition 3.1 and in [33, Definition 2.2]
or [34, Definition 2.8] coincide with equivalent norms.

Let x1 be a fixed point of X . Then define

G(β, γ) := G(x1, 1, β, γ).

Let ε ∈ (β ∧ γ, 1]. Observe that G(ε, ε) ⊂ G(β, γ). Define Gε0(β, γ) to be the completion of
G(ε, ε) in G(β, γ). The topological dual of Gε0(β, γ) is denoted by (Gε0(β, γ))′. We fix the
point x1 throughout the present article. It turns out that x1 plays the same role as the
origin of Rn.

Keeping the above definition of test functions, let us recall the notion of the grand
maximal function.

Definition 3.3. Let (X , d, µ) be an RD-space, ε ∈ (0, 1] and f ∈ (Gε0(β, γ))′ with some
β, γ ∈ (0, ε). For any x ∈ X , the grand maximal function of f is defined by

f∗(x) := sup{|〈f, ϕ〉| : ϕ ∈ Gε0(β, γ), ‖ϕ‖G(x,r,β,γ) ≤ 1 for some r ∈ (0,∞)}.

Remark 3.4. It was established in [29, (3.4)] that, for all x ∈ X , f∗(x) ≤M(f)(x).

In the present setting, we fix β, γ ∈ (n(1/p− − 1), ε). Now we introduce the Hardy
space H∗,p(·)(X ) by using the grand maximal function.

Definition 3.5. Let (X , d, µ) be an RD-space, p(·) ∈ C log
(n/(n+1),∞)(X ) and ε ∈ (0, 1]

satisfying ε > n(1/p−−1), and β, γ ∈ (0,∞) be such that β, γ ∈ (n(1/p−−1), ε). Then the
Hardy space H∗,p(·)(X ) with variable exponent is defined as the set of all f ∈ (Gε0(β, γ))′

for which the quasi-norm ‖f‖H∗,p(·)(X ) := ‖f∗‖Lp(·)(X ) is finite.

Obviously, when p(·) is a constant p ∈ (0,∞), we have H∗,p(·)(X ) = H∗,p(X ), the
space studied in [29, 33]. Similar to H∗,p(X ), we need to show that H∗,p(·)(X ) is inde-
pendent of the choice of ε and β, γ ∈ (n(1/p− − 1), ε). This will be proved in Theorem
4.17. Here let us content ourselves with checking the following fundamental inclusion.

Lemma 3.6. Let p(·), ε, β and γ be as in Definition 3.5. Then, in the sense of continuous
embedding, H∗,p(·)(X ) ↪→ (Gε0(β, γ))′, namely,

|〈f, ϕ〉| ≤ C‖ϕ‖Gε0(x1,1,β,γ)‖f‖H∗,p(·)(X )

for all f ∈ H∗,p(·)(X ) and ϕ ∈ Gε0(β, γ), where C is a positive constant independent of f
and ϕ.

Proof. Let ϕ ∈ Gε0(β, γ) be a test function. Then it is easy to see that, for all x ∈ B(x1, 1),

‖ϕ‖Gε0(x,1,β,γ) . ‖ϕ‖Gε0(x1,1,β,γ),

where x1 ∈ X is the fixed point described above. Thus, for all x ∈ B(x1, 1),

|〈f, ϕ〉| . ‖ϕ‖Gε0(x1,1,β,γ)f
∗(x),

which, combined with the Hölder inequality, implies that

|〈f, ϕ〉| . ‖ϕ‖Gε0(x1,1,β,γ)‖f‖H∗,p(·)(X ).

This finishes the proof of Lemma 3.6.
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3.2. Hardy spaces with variable exponents via the non-tangential maximal
function. In this subsection, we first introduce the Hardy space with variable exponent
via the non-tangential maximal function with aperture α, denoted by Hp(·)

α (X ), and then
prove the coincidence of H∗,p(·)(X ) and Hp(·)

α (X ).
The following notion of approximations of the identity on RD-spaces was first intro-

duced in [34]; see also [33].

Definition 3.7. Let ε1 ∈ (0, 1], ε2, ε3 ∈ (0,∞) and {Sk}k∈Z be a sequence of bounded
linear integral operators on L2(X ). Assume that Sk(·, ·) : X × X → C is the integral
kernel of Sk for each k ∈ Z. Then {Sk}k∈Z is called an approximation of the identity of
order (ε1, ε2, ε3) (for short, (ε1, ε2, ε3)-AOTI ) if there exists a positive constant C such
that, for all k ∈ Z and all x, x′, y, y′ ∈ X ,

(i) |Sk(x, y)| ≤ C 2−kε2

[2−k + d(x, y)]ε2
1

V2−k(x) + V2−k(y) + V (x, y)
;

(ii) when d(x, x′) ≤ [2−k + d(x, y)]/2,

|Sk(x, y)− Sk(x′, y)|

≤ C 2−kε2

[2−k + d(x, y)]ε2
[d(x, x′)]ε1

[2−k + d(x, y)]ε1
1

V2−k(x) + V2−k(y) + V (x, y)
;

(iii) property (ii) holds true with x and y interchanged;
(iv) when d(x, x′) ≤ [2−k + d(x, y)]/3 and d(y, y′) ≤ [2−k + d(x, y)]/3,

|[Sk(x, y)− Sk(x, y′)]− [Sk(x′, y)− Sk(x′, y′)]|

≤ C 2−kε3

[2−k + d(x, y)]ε3
[d(x, x′)]ε1

[2−k + d(x, y)]ε1

× [d(y, y′)]ε1

[2−k + d(x, y)]ε1
1

V2−k(x) + V2−k(y) + V (x, y)
;

(v)
∫
X
Sk(x, y) dµ(y) = 1 =

∫
X
Sk(x, y) dµ(x).

Before we go further, a helpful remark may be in order.

Remark 3.8. (i) Let ε1, ε2 and {Sk}k∈Z be as in Definition 3.7, and ε ∈ (0, ε1∧ε2). Then
it was pointed out in [29, p. 2258] that, for any fixed x ∈ X , we have Sk(x, ·) ∈ Gε0(β, γ)

with β, γ ∈ (0, ε).
(ii) According to Definition 3.7(i), Sk(x, ·) ∈ L1(X ) and ‖Sk(x, ·)‖L1(X ) . 1 with the

implicit positive constant independent of x. Indeed, by using (i), we have∫
X
|Sk(x, y)| dµ(y)

=

∫
B(x,2−k)

|Sk(x, y)| dµ(y) +

∞∑
l=1

∫
B(x,2l−k)\B(x,2l−k−1)

|Sk(x, y)| dµ(y)

.
µ(B(x, 2−k))

V2−k(x)
+

∞∑
l=1

2−ε2l

V2l−k−1(x)
µ
(
B(x, 2l−k) \B(x, 2l−k−1)

)
. 1,

which implies that the above claim holds true.
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(iii) It was proved in [34, Theorem 2.6] that there exists an (ε1, ε2, ε3)-AOTI with
bounded support on X , which means that there exists a positive constant C such that,
for all k ∈ Z and x, y ∈ X with d(x, y) > 2−k, we have Sk(x, y) = 0. Here let us recall
the construction from the proof of [34, Theorem 2.6].

Let h ∈ C1(R) be such that χ[−3/2,3/2] ≤ h ≤ χ[−2,2]. For all k ∈ Z, f ∈ L1
loc(X ) and

x ∈ X , let

Tkf(x) :=

∫
X
h(2kd(x, y))f(y) dµ(y)

and, for all x, y ∈ X , let

Sk(x, y) :=
1

Tk1(x)Tk1(y)

∫
X
h(2kd(x, z))h(2k(d(y, z))

1

Tk[(Tk1)−1](z)
dµ(z).

In addition to properties (i) through (v) of Definition 3.7, Sk also satisfies
1

CV2−k(x)
≤ Sk(x, y) ≤ C

V2−k(x)
(3.3)

for all x, y ∈ X with d(x, y) ≤ 2−k, where C is a positive constant independent of x, y
and k.

Definition 3.9. Let ε1 ∈ (0, 1], ε2, ε3 ∈ (0,∞), ε ∈ (0, ε1 ∧ ε2), β, γ ∈ (0, ε) and {Sk}k∈Z
be an (ε1, ε2, ε3)-AOTI .

(i) For any k ∈ Z, f ∈ (Gε0(β, γ))′ and x ∈ X , define

Sk(f)(x) := 〈f, Sk(x, ·)〉.

(ii) Let α ∈ (0,∞) and f ∈ (Gε0(β, γ))′. Then the non-tangential maximal function of f
with aperture α is defined by setting, for all x ∈ X ,

Mα(f)(x) := sup
k∈Z

[
sup

y∈B(x,α2−k)

|Sk(f)(y)|
]
.

(iii) Let p(·) ∈ C log
(n/(n+1),∞)(X ) satisfy p− ∈ (n/(n + ε),∞). In particular, let p(·) ∈

C log
(n/(n+ε),∞)(X ). Then the Hardy space Hp(·)

α (X ) with variable exponent via the non-
tangential maximal function is defined as the set of all f ∈ (Gε0(β, γ))′ for which the
quasi-norm ‖f‖

H
p(·)
α (X )

:= ‖Mα(f)‖Lp(·)(X ) is finite.

Remark 3.10. Let {Sk}k∈N be an (ε1, ε2, ε3)-AOTI as above. Then, for any f ∈ Lq(X )

with q ∈ (1,∞), we have ‖Sk(f)‖Lq(X ) → 0 as k → −∞ (here we need µ(X ) = ∞) and
‖Sk(f)− f‖Lq(X ) → 0 as k →∞; see, for example, [29, Lemma 3.1].

Now let us show that the above two notions of Hardy spaces with variable exponents
are equivalent.

Theorem 3.11. Let α ∈ (0,∞) and p(·) ∈ C log
(n/(n+1),∞)(X ). Then

H∗,p(·)(X ) = Hp(·)
α (X )

with equivalent quasi-norms.

Proof. Let ε ∈ (0, 1] and β, γ ∈ (0,∞) satisfy ε ∈ (n[1/p− − 1], 1] and

β, γ ∈ (n[1/p− − 1], ε).
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Observe that, by [29, Remark 2.9(ii)], there exists a positive constant C(α), depending
on α, such that, for all f ∈ (Gε0(β, γ))′ and x ∈ X ,

Mα(f)(x) ≤ C(α)f
∗(x).

Then we have

H∗,p(·)(X ) ⊂ Hp(·)
α (X ) and ‖f‖

H
p(·)
α (X )

. ‖f‖H∗,p(·)(X ).

Conversely, by [29, (3.13)], we see that, for all θ ∈ (n/(n + β ∧ γ), 1], f ∈ (Gε0(β, γ))′

and x ∈ X ,
f∗(x) ≤ C(θ){M([Mα(f)]θ)(x)}1/θ, (3.4)

where C(θ) is a positive constant depending on θ, but independent of f and x. From (3.4)
and Lemma 2.5, we further deduce that Hp(·)

α (X ) ⊂ H∗,p(·)(X ) and

‖f‖H∗,p(·)(X ) . ‖f‖Hp(·)α (X )
.

This finishes the proof of Theorem 3.11.

We point out that there is no restriction on α in Theorem 3.11. Moreover, from the
proof of Theorem 3.11, we easily deduce the following conclusion.

Corollary 3.12. Let α1, α2 ∈ (0,∞) and p(·) ∈ C log
(n/(n+1),∞)(X ). Then H

p(·)
α1 (X ) and

H
p(·)
α2 (X ) coincide with equivalent quasi-norms.

3.3. Hardy spaces with variable exponents via the dyadic maximal function.
As further applications of the (ε1, ε2, ε3)-AOTI , we consider Hardy spaces with variable
exponents in terms of the dyadic maximal function. The definition is based on the fol-
lowing dyadic cubes introduced in [6]. Here we are still fixing ε, β, γ as in Definition 3.9.

Lemma 3.13. Let X be a metric measure space of homogeneous type. Then there exist a
collection {Qkτ ⊂ X : k ∈ Z, τ ∈ Ik} of open subsets, where Ik denotes some index set,
and constants C,D ∈ (0,∞) such that

(i) µ(X \
⋃
τ∈Ik Q

k
τ ) = 0 for each fixed k and, if τ, η ∈ Ik and τ 6= η, then Qkτ ∩Qkη = ∅;

(ii) for any `, k ∈ Z with ` ≥ k, τ ∈ Ik and η ∈ I`, either Q`η ⊂ Qkτ or Q`η ∩Qkτ = ∅;
(iii) for all `, k ∈ Z with ` < k and τ ∈ Ik, there uniquely exists η ∈ I` such that Qkτ ⊂ Q`η;
(iv) for each k ∈ Z,

diam(Qkτ ) ≤ D2−k; (3.5)

(v) each Qkτ contains some ball B(zkτ , C2−k) with zkτ ∈ X .

Indeed, for each k ∈ Z and τ ∈ Ik, we can roughly regard Qkτ as a dyadic cube with
diameter roughly 2−k centered at zkτ as if we were placing ourselves in Rn. In what follows,
let j0 be a positive integer large enough such that

2−j0D < 1/3. (3.6)

For all k ∈ Z and τ ∈ Ik, we denote by Qk,ντ , ν ∈ {1, . . . , N(k, τ)}, the set of all dyadic
cubes Qk+j0

τ ′ ⊂ Qkτ . For all k ∈ Z, define Dk := Sk − Sk−1.
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Now we introduce Hardy spaces with variable exponents via the dyadic maximal
function as follows.

Definition 3.14. Let β, γ ∈ (0, 1), ε1 ∈ (0, 1] and ε2, ε3 ∈ (0,∞) satisfy

ε1 ∧ ε2 ∈ (β ∧ γ,∞).

Assume that ε ∈ (β ∧ γ, ε1 ∧ ε2) and {Sk}k∈Z be an (ε1, ε2, ε3)-AOTI .

(i) Let f ∈ (Gε0(β, γ))′. Then the dyadic maximal function of f is defined by setting

Md(f)(x) := sup
k∈Z, τ∈Ik

mQkτ
(|Sk(f)|)χQkτ (x), x ∈ X ,

where {Qkτ}k∈Z, τ∈Ik is as in Lemma 3.13 and mQkτ
is defined as in (2.4).

(ii) Let p(·) ∈ C log
(n/(n+1),∞)(X ) and β, γ ∈ (n(1/p− − 1), ε). Then the Hardy space

H
p(·)
d (X ) with variable exponent via the dyadic maximal function collects all f in

(Gε0(β, γ))′ for which the quasi-norm ‖f‖
H
p(·)
d (X )

:= ‖Md(f)‖Lp(·)(X ) is finite.

The notion of Hardy spaces with variable exponents via the dyadic maximal function
coincides with that via the non-tangential maximal function, as indicated by the following
theorem.

Theorem 3.15. Let α ∈ (0,∞) and p(·) ∈ C log
(n/(n+1),∞)(X ). Then Hp(·)

d (X ) and Hp(·)
α (X )

coincide with equivalent quasi-norms.

Proof. Let f ∈ Hp(·)
α (X ). Then, by [29, p. 2267], we know that, for all x ∈ X ,

Md(f)(x) .Mα0
(f)(x)

for some α0 ∈ (0,∞). This, combined with Corollary 3.12, implies that Hp(·)
α (X ) ⊂

H
p(·)
d (X ) and

‖f‖
H
p(·)
d (X )

. ‖f‖
H
p(·)
α (X )

.

Conversely, let β, γ ∈ (0, 1) and f ∈ Hp(·)
d (X ). We claim that, for all θ ∈

(
n

n+(β∧γ) , 1
]

and x ∈ X ,
f∗(x) ≤ C(θ){M([Md(f)]θ)(x)}1/θ, (3.7)

where C(θ) is a positive constant depending on θ, but independent of f and x. By com-
bining (3.7) and Theorem 3.11, we obtain the desired result, namely,

H
p(·)
d (X ) ⊂ Hp(·)

α (X ) and ‖f‖
H
p(·)
α (X )

. ‖f‖
H
p(·)
d (X )

.

To complete the proof of Theorem 3.15, it thus remains to show (3.7). To this end,
suppose that ε, ε′1 satisfy

n

n+ β ∧ γ
< θ < ε and n(θ−1 − 1) < ε′1 < β ∧ γ. (3.8)

Fix x ∈ X and a test function ϕ ∈ Gε0(β, γ) satisfying ‖ϕ‖G(x,r,β,γ) ≤ 1 with some
r ∈ (0,∞). Let `0 := b− log2 rc. Then there exists a positive constant C, independent of
x and `0, such that

‖ϕ‖G(x,2−`0 ,β,γ) ≤ C.
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According to the reproducing formula in [29, Theorem 3.3] (see also [34, Theorem
4.16]), if j0 as in (3.6) is large enough, then we know that, for any fixed yk,ντ ∈ Qk,ντ with
k ∈ N, τ ∈ Ik and ν ∈ {1, . . . , N(k, τ)}, and for all f ∈ (Gε0(β, γ))′ with β, γ ∈ (0, ε),

f =
∑
τ∈I`0

N(`0,τ)∑
ν=1

[
1

µ(Q`0,ντ )

∫
Q
`0,ν
τ

D̃`0(·, y) dµ(y)

] ∫
Q
`0,ν
τ

S`0(f)(w) dµ(w)

+

∞∑
k=`0+1

∑
τ∈Ik

N(k,τ)∑
ν=1

µ(Qk,vτ )D̃k(·, yk,vτ )Dk(f)(yk,ντ )

converges in (Gε0(β, γ))′, where {D̃k(·, ·)}∞k=`0
is a family of functions on X ×X satisfying,

for all x, x′, y ∈ X ,

|D̃k(x, y)| . 1

V1(x) + V1(y) + V (x, y)

1

[1 + d(x, y)]ε′
,

|D̃k(x, y)− D̃k(x′, y)| .
[

d(x, x′)

1 + d(x, y)

]ε′
1

V1(x) + V1(y) + V (x, y)

1

[1 + d(x, y)]ε′

when 2d(x, x′) ≤ 1 + d(x, y), and∫
X
D̃k(z, y) dµ(z) = χ{`0}(k) =

∫
X
D̃k(x, z) dµ(z).

From this, we further deduce that, for any yk,ντ ∈ Qk,ντ ,

|〈f, ϕ〉| ≤
∣∣∣∣ ∑
τ∈I`0

N(`0,τ)∑
ν=1

[∫
Q
`0,ν
τ

D̃∗`0(ϕ)(y) dµ(y)

]
1

µ(Q`0,ντ )

∫
Q
`0,ν
τ

S`0(f)(w) dµ(w)

∣∣∣∣
+
∣∣∣ ∞∑
k=`0+1

∑
τ∈Ik

N(k,τ)∑
ν=1

µ(Qk,ντ )D̃∗k(ϕ)(yk,ντ )Dk(f)(yk,ντ )
∣∣∣,

where D̃∗k denotes the integral operator with kernel D̃∗k(x, y) := D̃k(y, x) for all x, y ∈ X .
By [29, (3.17)], we find that, for all k ∈ Z with k ∈ [`0,∞),

ε′1 ∈ (n(1/θ − 1), β ∧ γ)

and for all y ∈ X ,

|D̃∗k(ϕ)(y)| . 2−(k−`0)ε′1
1

µ(B(y, 2−`0 + d(x, y)))

2−`0γ

[2−`0 + d(x, y)]γ
.

Obviously, by Definition 3.14, we have, for all y`0,vτ ∈ Q`0,vτ ,∣∣∣∣ 1

µ(Q`0,ντ )

∫
Q
`0,ν
τ

S`0(f)(w) dµ(w)

∣∣∣∣ ≤Md(f)(y`0,ντ )

and, when k > `0, for any yk,ντ ∈ Qk,ντ ,

|Dk(f)(yk,ντ )| ≤ |Sk(f)(yk,ντ )|+ |Sk−1(f)(yk,ντ )|
.Md(f)(yk,ντ ).
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Altogether, we then see that

|〈f, ϕ〉| .
∞∑

k=`0+1

∑
τ∈Ik

N(k,τ)∑
ν=1

[
2−(k−`0)ε′1µ(Qk,ντ )

µ(B(yk,ντ , 2−`0 + d(x, yk,ντ )))

× 2−`0γ

[2−`0 + d(x, yk,ντ )]γ
Md(f)(yk,ντ )

]
.

Notice that

M
(∑
τ∈Ik

N(k,τ)∑
ν=1

[Md(f)]θχQk,ντ

)
(x)

&
∑
τ∈Ik

N(k,τ)∑
ν=1

1

µ(B(x, 2−`0 + d(x, yk,ντ )))

∫
Qk,ντ

[Md(f)(z)]θ dµ(z)

&
∑
τ∈Ik

N(k,τ)∑
ν=1

µ(Qk,ντ )

µ(B(x, 2−`0 + d(x, yk,ντ )))
inf

z∈Qk,ντ
[Md(f)(z)]θ.

Since, due to (2.2),

µ
(
B(x, 2−`0 + d(x, yk,ντ ))

)
. [2k−`0 + 2kd(x, yk,ντ )]nµ(Qk,ντ ),

it follows that

M
(∑
τ∈Ik

N(k,τ)∑
ν=1

[Md(f)]θχQk,ντ

)
(x)

&
∑
τ∈Ik

N(k,τ)∑
ν=1

[µ(Qk,ντ )]θ

[2k−`0 + 2kd(x, yk,ντ )]n(1−θ)

infz∈Qk,ντ [Md(f)(z)]θ

[µ(B(x, 2−`0 + d(x, yk,ντ )))]θ

∼ 2−n(1−θ)(k−`0)
∑
τ∈Ik

N(k,τ)∑
ν=1

infz∈Qk,ντ [Md(f)(z)]θ

[1 + 2−`0d(x, yk,ντ )]n(1−θ)

[µ(Qk,ντ )]θ

[µ(B(x, 2−`0 + d(x, yk,ντ )))]θ

& 2−n(1−θ)(k−`0)
∑
τ∈Ik

N(k,τ)∑
ν=1

infz∈Qk,ντ [Md(f)(z)]θ

[2`0 + d(x, yk,ντ )]θγ
2−`0θγ [µ(Qk,ντ )]θ

[µ(B(x, 2−`0 + d(x, yk,ντ )))]θ

& 2−n(1−θ)(k−`0)

{∑
τ∈Ik

N(k,τ)∑
ν=1

infz∈Qk,ντ [Md(f)(z)]

[2`0 + d(x, yk,ντ )]γ
2−`0γµ(Qk,ντ )

µ(B(x, 2−`0 + d(x, yk,ντ )))

}θ
,

where we have used (3.8) in the penultimate inequality and the fact that, for all {ξj}j ⊂ C
and δ ∈ (0, 1], (∑

j

|ξj |
)δ
≤
∑
j

|ξj |δ (3.9)

in the last inequality. From the arbitrariness of yk,ντ in Qk,ντ and (3.8), we deduce that,



22 C. Zhuo, Y. Sawano and D. Yang

for any θ ∈ (n/(n+ (β ∧ γ)), 1],

|〈f, ϕ〉| .
∞∑
k=`0

2−(k−`0)[ε′1+n(1−1/θ)]
{
M
(∑
τ∈Ik

N(k,τ)∑
ν=1

[Md(f)]θχQk,ντ

)
(x)
}1/θ

.M([Md(f)]θ)(x),

which further implies that (3.7) holds true, and hence completes the proof of Theo-
rem 3.15.

We point out that the proof of (3.7) is similar to that of (3.4) (see [29, (3.13)]). As an
immediate consequence of Theorems 3.11 and 3.15, we obtain the following conclusion.

Corollary 3.16. Let α ∈ (0,∞) and p(·) ∈ C log
(n/(n+1),∞)(X ). Then

H∗,p(·)(X ) = Hp(·)
α (X ) = H

p(·)
d (X )

with equivalent quasi-norms.

3.4. Relations between (Gε0(β1, γ1))′ and (Gε0(β2, γ2))′. In this subsection, we clarify
the relations of the test function classes for different parameters by using the characteri-
zations of H∗,p(·)(X ) obtained in Subsection 3.2.

Proposition 3.17. Let p(·) ∈ C log
(n/(n+1),∞)(X ) and ε ∈ (0, 1] satisfy p− ∈ (n/[n+ ε], 1).

Assume that f ∈ (Gε0(β1, γ1))′ with β1, γ1 ∈ (n(1/p−−1), ε) and ‖f‖H∗,p(·)(X ) <∞. Then
f ∈ (Gε0(β2, γ2))′ for every β2, γ2 ∈ (n(1/p− − 1), ε).

Proof. For all ϕ ∈ Gε0(β2, γ2), let

〈f, ϕ〉 :=
∑
τ∈I`0

N(`0,τ)∑
ν=1

[∫
X×Q`0,ντ

ϕ(x)D̃`0(x, y) dµ(x) dµ(y)

]
D`0,ν
τ,1 (f)

+

∞∑
k=`0+1

∑
τ∈Ik

N(k,τ)∑
ν=1

µ(Qk,ντ )

[∫
X
ϕ(x)D̃k(x, yk,ντ ) dµ(x)

]
Dk(f)(yk,ντ )

=: I + II,

where `0, D̃k are as in the proof of (3.7) and

D`0,ν
τ,1 (f) :=

1

µ(Q`0,ντ )

∫
Q
`0,ν
τ

S`0(f)(w) dµ(w).

Next, we show that, for all ϕ ∈ Gε0(β2, γ2),

|〈f, ϕ〉| . ‖ϕ‖Gε0(β2,γ2)‖f‖Hp(·)α (X )
,

where α ∈ (0,∞). To this end, let γ′2 ∈ (0, γ2). Then we have, for all k ∈ Z+,∣∣∣∣∫
X
ϕ(x)D̃k(x, y) dµ(x)

∣∣∣∣ . 2−kβ2‖ϕ‖Gε0(β2,γ2)
1

[1 + d(x1, y)]γ2
1

V1(x1) + V (x1, y)
(3.10)

and, for all k ∈ Z \ Z+,∣∣∣∣∫
X
ϕ(x)D̃k(x, y) dµ(x)

∣∣∣∣ . 2kγ
′
2‖ϕ‖Gε0(β2,γ2)

2−kγ2

[1 + d(x1, y)]γ2
1

V2−k(x1) + V (x1, y)
;

see [34, (5.24) and (5.25)].
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To estimate II, by similarity, we only need to prove that

∞∑
k=(`0+1)∨0

∑
τ∈Ik

N(k,τ)∑
ν=1

µ(Qk,ντ )

∣∣∣∣∫
X
ϕ(x)D̃k(x, yk,ντ ) dµ(x)

∣∣∣∣|Dk(f)(yk,ντ )|

. ‖ϕ‖Gε0(β2,γ2)‖f‖Hp(·)α (X )
. (3.11)

Since we have (3.10), it suffices to show that

∞∑
k=(`0+1)∨0

∑
τ∈Ik

N(k,τ)∑
ν=1

µ(Qk,ντ )|Dk(f)(yk,ντ )|
2kβ2 [V1(x1) + V (x1, y

k,ν
τ )][1 + d(x1, y

k,ν
τ )]γ2

. ‖f‖
H
p(·)
α (X )

. (3.12)

To this end, let us first consider the case that p− ∈ (1,∞). By the Hölder inequality
and [33, Lemma 2.1(ii)], we easily find that, for each k ∈ (0,∞),

∑
τ∈Ik

N(k,τ)∑
ν=1

µ(Qk,ντ )|Dk(f)(yk,ντ )|
2kβ2 [V1(x1) + V (x1, y

k,ν
τ )][1 + d(x1, y

k,ν
τ )]γ2

.
∫
X

1

2kβ2 [V1(x1) + V (x1, x)][1 + d(x1, x)]γ2

×
∑
τ∈Ik

N(k,τ)∑
ν=1

[
inf

z∈Qk,ντ
Mα(f)(z)

]
χQk,ντ (x)dµ(x)

.
1

2kβ2

∥∥∥∥ 1

[V1(x1) + V (x1, ·)][1 + d(x1, ·)]γ2

∥∥∥∥
Lp∗(·)(X )

‖f∗‖Lp(·)(X )

.
1

2kβ2
‖Mα(f)‖Lp(·)(X ).

Therefore, (3.12) and hence (3.11) hold true when p− ∈ (1,∞).
Suppose instead that p− ≤ 1. Let u be a positive constant slightly less than p−. Then

we shall prove that, for each k,

∑
τ∈Ik

N(k,τ)∑
ν=1

{
µ(Qk,ντ )|Dk(f)(yk,ντ )|

[V1(x1) + V (x1, y
k,ν
τ )][1 + d(x1, y

k,ν
τ )]γ2

}u
. 2kn(1−u)‖f‖u

H
p(·)
α (X )

, (3.13)

which is stronger than (3.12) due to (3.9). By the definition of the grand maximal function,
the arbitrariness of yk,vτ ∈ Qk,vτ and Remark 3.8(i), we have

∑
τ∈Ik

N(k,τ)∑
ν=1

{
µ(Qk,ντ )|Dk(f)(yk,ντ )|

[V1(x1) + V (x1, y
k,ν
τ )][1 + d(x1, y

k,ν
τ )]γ2

}u

.
∫
X

∑
τ∈Ik

N(k,τ)∑
ν=1

[µ(Qk,ντ )]u−1χQk,ντ (x)

{
|Dk(f)(x)|

[V1(x1) + V (x1, x)][1 + d(x1, x)]γ2

}u
dµ(x)

.
∫
X

∑
τ∈Ik

N(k,τ)∑
ν=1

[µ(Qk,ντ )]u−1χQk,ντ (x)

{[V1(x1) + V (x1, x)][1 + d(x1, x)]γ2}u
[Mα(f)(x)]u dµ(x).
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Now, for any x ∈ X , let r(x) := p(x)/[p(x)− u] and

W (x) :=
∑
τ∈Ik

N(k,τ)∑
ν=1

[µ(Qk,ντ )]u−1χQk,ντ (x)

{[V1(x1) + V (x1, x)][1 + d(x1, x)]γ2}u
.

Then the proof of (3.13) will be complete once we show that W ∈ Lr(·)(X ). Indeed, since
diam(Qk,ντ ) ∼ 2−k, we have, for all x ∈ Qk,vτ ,

B(x1,max{1, d(x1, x)}) ⊂ C̃2k max{1, d(x1, x)}Qk,ντ
for some positive constant C̃, which, together with (2.2), implies that

µ(B(x1,max{1, d(x1, x)})) . [2k max{1, d(x1, x)}]nµ(Qk,ντ ).

Inserting this estimate into the definition of W , we obtain

W (x) . 2kn(1−u)
∑
τ∈Ik

N(k,τ)∑
ν=1

χQk,ντ (x)

[V1(x1) + V (x1, x)][1 + d(x1, x)]γ2u−n(1−u)

. 2kn(1−u) 1

[V1(x1) + V (x1, x)][1 + d(x1, x)]γ2u−n(1−u)
.

From the assumption that γ2 > n(1/p− − 1) and u is slightly less than p−, we further
deduce that γ2u− n(1− u) > 0. Due to this observation and [33, Lemma 2.1(ii)], we see
that W ∈ Lr(·)(X ).

It remains to handle term I. Indeed, we can prove

I . ‖ϕ‖Gε0(β2,γ2)‖f‖Hp(·)α (X )
.

The proof is analogous, but simpler than that of (3.11), because there is no need to sum
over k ≥ `0 + 1; the details are omitted. This finishes the proof of Proposition 3.17.

4. Atomic characterizations

In this section, we aim to establish an atomic characterization of the spacesH∗,p(·)(X ) (see
Theorem 4.3). To this end, in Subsection 4.1, we introduce the atomic Hardy spaces with
variable exponents on RD-spaces. In Subsection 4.2, we present some auxiliary estimates
which are needed in the proof of Theorem 4.3, and in Subsection 4.3, we conclude the
proof of Theorem 4.3 by some arguments similar to those used in the proof of [21, Theorem
3.28]. As consequences of the atomic characterization, in Subsection 4.4, we prove that
the space H∗,p(·)(X ) is independent of the choice of the parameters β, γ, ε appearing in
the space of test functions, Gε0(β, γ), and then show that, when p− ∈ (1,∞), H∗,p(·)(X )

and Lp(·)(X ) coincide with equivalent norms. Finally, in Subsection 4.5, we establish a
finite atomic characterization of H∗,p(·)(X ) (see Theorem 4.24). At the end of this section,
we give another proof of Theorem 4.3(ii) by borrowing some ideas from [29, Lemma 4.15
and Theorem 4.16].

4.1. Atomic Hardy spaces with variable exponents. Again the parameters ε, β, γ
are fixed till we prove Theorem 4.17. Let us start with the notion of atoms.
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Definition 4.1. Let p(·) ∈ C log
(n/(n+1),∞)(X ) and let q ∈ [1,∞] ∩ (p+,∞]. A function

a ∈ Lq(X ) is called a (p(·), q)-atom if

(A1) supp a ⊂ B(x0, r) for some x0 ∈ X and r ∈ (0,∞);

(A2) ‖a‖Lq(X ) ≤
[µ(B(x0, r))]

1/q

‖χB(x0,r)‖Lp(·)(X )

;

(A3)
∫
X
a(x) dµ(x) = 0.

When it is necessary to specify the ball B(x0, r), then a is called a (p(·), q)-atom supported
on B(x0, r).

Via atoms, we introduce the atomic Hardy spaces with variable exponents.

Definition 4.2. Let p(·) ∈ C log
(n/(n+1),∞)(X ) and q ∈ [1,∞] ∩ (p+,∞]. Let ε ∈ (0, 1] and

β, γ ∈ (0, ε). Then the atomic Hardy space with variable exponent, Hp(·),q
at (X ), is defined

to be the set of all distributions f ∈ (Gε0(β, γ))′ such that there exist {λj}j∈N ⊂ C and
(p(·), q)-atoms {aj}j∈N such that f =

∑
j∈N λjaj in (Gε0(β, γ))′, where, for any j ∈ N,

aj is supported on Bj := B(xj , rj) for some xj ∈ X and rj ∈ (0,∞), and

Ẽp(·)({λjaj}j∈N) := Ãp(·)({λj}j∈N, {Bj}j∈N)

:=

∥∥∥∥(∑
j∈N

[ |λj |χBj
‖χBj‖Lp(·)

]p)1/p∥∥∥∥
Lp(·)(X )

<∞.

Moreover, let
‖f‖

H
p(·),q
at (X )

:= inf
{
Ãp(·)({λj}j∈N, {Bj}j∈N)

}
,

where the infimum is taken over all the decompositions of f as above.

The Hardy spaces H∗,p(·)(X ) with variable exponents have the following atomic char-
acterizations.

Theorem 4.3. Let ε ∈ (0, 1] and p(·) ∈ C log
(n/(n+1),∞)(X ) satisfy ε > n(1/p−−1). Assume

that the parameters q, β, γ satisfy q ∈ [1,∞]∩ (p+,∞] and β, γ ∈ (n(1/p−− 1), ε). Then

(i) Hp(·),q
at (X ) ↪→ H∗,p(·)(X ). More precisely, suppose that {λj}j∈N ⊂ C and (p(·), q)-

atoms {aj}j∈N satisfy
Ẽp(·)({λjaj}j∈N) <∞.

Then f =
∑
j∈N λjaj in (Gε0(β, γ))′ and f belongs to H∗,p(·)(X ). Furthermore, there

exists a positive constant C, independent of f , such that

‖f‖H∗,p(·)(X ) ≤ CẼp(·)({λjaj}j∈N}).

(ii) H∗,p(·)(X ) ↪→ H
p(·),∞
at (X ). More precisely, if f ∈ H∗,p(·)(X ), then there exist {λj}j∈N

⊂ C and (p(·),∞)-atoms {aj}j∈N such that

f =
∑
j∈N

λjaj in (Gε0(β, γ))′ (4.1)

and
Ẽp(·)({λjaj}j∈N) ≤ C̃‖f‖H∗,p(·)(X )

with C̃ a positive constant independent of f .
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4.2. Auxiliary estimates for the proof of Theorem 4.3. To prove Theorem 4.3, we
need some auxiliary estimates. We begin with the following estimate.

Lemma 4.4. Let ε, p(·), q, β and γ be as in the assumptions of Theorem 4.3 and a be
a (p(·), q)-atom supported on B(x0, r) for some x0 ∈ X and r ∈ (0,∞). Then the grand
maximal function of a satisfies, for all x ∈ X ,

a∗(x) ≤ CχB(x0,3r)(x)M(a)(x) +
C

‖χB(x0,r)‖Lp(·)(X )

[M(χB(x0,r))(x)]β/n+1,

where C is a positive constant independent of x and a.

Proof. Let ε, β and γ be as in the assumptions of Theorem 4.3. We distinguish two cases:
x ∈ B(x0, 3r) and x ∈ X \B(x0, 3r).

Suppose first that x ∈ B(x0, 3r). Then

a∗(x) = sup{|〈a, ϕ〉| : ϕ ∈ Gε0(β, γ), ‖ϕ‖G(x,r,β,γ) ≤ 1 for some r ∈ (0,∞)}

by Definition 3.3. Let ϕ ∈ Gε0(β, γ) satisfy ‖ϕ‖G(x,r,β,γ) ≤ 1 for some r ∈ (0,∞). Then,
by (2.2) and (3.1), we obtain

|〈a, ϕ〉| .
∫
B(x0,r)

1

µ(B(y, r + d(y, x)))
|a(y)| dµ(y)

.
1

µ(B(x0, 3r))

∫
B(x0,r)

|a(y)| dµ(y)

∼ 1

µ(B(x0, 3r))

∫
B(x0,3r)

|a(y)| dµ(y) .M(a)(x).

So, the estimate for x ∈ B(x0, 3r) is complete.
Now suppose instead that x ∈ X \ B(x0, 3r). Observe that, when y ∈ B(x0, r), we

have d(y, x0) ≤ [r + d(x, y)]/2, and it follows from (3.2) that

|ϕ(y)− ϕ(x0)| .
[
d(y, x0)

r + d(x, y)

]β
1

µ(B(y, r + d(y, x)))

[
r

r + d(x, y)

]γ
.

Then, by the vanishing moment condition on a and (2.2), we conclude that

|〈a, ϕ〉| =
∣∣∣∣∫
B(x0,r)

a(y)[ϕ(y)− ϕ(x0)] dµ(y)

∣∣∣∣
.
∫
B(x0,r)

[
d(y, x0)

r + d(x, y)

]β
1

µ(B(y, r + d(y, x)))

[
r

r + d(x, y)

]γ
|a(y)| dµ(y)

.
∫
B(x0,r)

[
r

r + d(x, x0)

]β
1

µ(B(x0, r + d(x0, x)))
|a(y)| dµ(y)

.

[
r

r + d(x, x0)

]β
µ(B(x0, r))

µ(B(x0, r + d(x0, x)))

1

‖χB(x0,r)‖Lp(·)(X )

.
1

‖χB(x0,r)‖Lp(·)(X )

[M(χB(x0,r))(x)]β/n+1,

which implies the desired estimate in the case when x ∈ X \B(x0, 3r). This finishes the
proof of Lemma 4.4.
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The following two lemmas are just [29, Lemma 4.6] and [29, Lemma 4.8], respectively.

Lemma 4.5. Let Ω be an open proper subset of X and, for all x ∈ X , let

d(x,Ω) := inf{d(x, y) : y /∈ Ω}.

For any A ∈ [1,∞) and x ∈ X , let

r(x,Ω) := d(x,Ω)/(2A).

Then there exist a positive number L, independent of Ω, and a sequence {xk}k∈N ⊂ X
such that

(i) {B(xk, rk/4)}k∈N are pairwise disjoint, where rk := r(xk,Ω);
(ii)

⋃
k∈NB(xk, rk) = Ω;

(iii) for any given k ∈ N, B(xk, Ark) ⊂ Ω;
(iv) Ark < d(x,Ω) < 3Ark whenever k ∈ N and x ∈ B(xk, Ark);
(v) for any given k ∈ N, there exists a yk /∈ Ω such that d(xk, yk) < 3Ark;
(vi) for any given k ∈ N, the number of balls B(xi, Ari) which have non-empty intersec-

tions with the ball B(xk, rk) is at most L0.

Lemma 4.6. Let Ω be an open subset of X with finite measure. Suppose that the sequences
{xk}k∈N and {rk}k∈N are as in Lemma 4.5 with A = 15. Then there exist non-negative
functions {φk}k∈N such that

(i) for any given k ∈ N, we have 0 ≤ φk ≤ 1, suppφk ⊂ B(xk, 2rk) and
∑
k∈N φk = χΩ;

(ii) for any given k ∈ N and x ∈ B(xk, rk), we have φk(x) ≥ 1/L0, where L0 is as in
Lemma 4.5;

(iii) there exists a positive constant C̃ independent of Ω such that, for all k ∈ N and
ε ∈ (0, 1],

‖φk‖G(xk,rk,ε,ε) ≤ C̃Vrk(xk).

Let ε ∈ (0, 1], p(·) ∈ C log
(n/(n+ε),∞)(X ) and β, γ ∈ (0,∞) satisfy ε > n(1/p− − 1) and

β, γ ∈ (n(1/p− − 1), ε). For f ∈ H∗,p(X ) and t ∈ (0,∞), let

Ωt := {x ∈ X : f∗(x) > t}.

Then µ(Ωt) < ∞ and Ωt is open (see [29, Remark 2.9(iii)]). Denote by {φtk}k∈N the
partition of unity associated to Ωt as in Lemma 4.6. Let {Φtk}k∈N be the corresponding
linear operators defined by setting, for all t ∈ (0,∞), k ∈ N, ϕ ∈ Gε0(β, γ) and x ∈ X ,

Φtk(ϕ)(x) := φtk(x)
[∫
X
φtk(z) dµ(z)

]−1
∫
X

[ϕ(x)− ϕ(z)]φtk(z) dµ(z).

Then Φtk is bounded on Gε0(β, γ) with the operator norm depending on k (see [29,
Lemma 4.9]). For any ϕ ∈ Gε0(β, γ), define the distribution btk by setting

〈btk, ϕ〉 := 〈f,Φtk(ϕ)〉.

The following Calderón–Zygmund type decomposition is just [29, Proposition 4.11].
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Proposition 4.7. With the notation as above, there exists a positive constant C such
that, for all k ∈ N, t ∈ (0,∞) and x ∈ X ,

(btk)∗(x) ≤ C tVrk(xk)

µ(B(xk, rk + d(x, xk)))

[
rk

rk + d(xk, x)

]β
χ[B(xk,10rk)]{(x)

+ Cf∗(x)χB(xk,10rk)(x)

and the series
∑
k∈N b

t
k converges in (Gε0(β, γ))′ to a distribution bt satisfying, for all

t ∈ (0,∞) and x ∈ X ,

(bt)∗(x) ≤ Ct
∑
k∈N

Vrk(xk)

µ(B(xk, rk + d(x, xk)))

[
rk

rk + d(xk, x)

]β
+ Cf∗(x)χΩt(x); (4.2)

moreover, the distribution gt := f − bt satisfies gt ∈ (Gε0(β, γ))′ and, for all t ∈ (0,∞)

and x ∈ X ,

(gt)∗(x) ≤ Ct
∑
k∈N

Vrk(xk)

µ(B(xk, rk + d(x, xk)))

[
rk

rk + d(xk, x)

]β
+ Cf∗(x)χ(Ωt){

(x). (4.3)

Lemma 4.8. Let q ∈ (p+,∞) ∩ [1,∞). With the notation as in Proposition 4.7,

gt ∈ H∗,p(·)(X ) ∩ Lq(X )

and gt tends to f in H∗,p(·)(X ) as t→∞. In particular, H∗,p(·)(X ) ∩ Lq(X ) is dense in
H∗,p(·)(X ).

Proof. Thanks to (4.3) and (2.2), we have, for all t ∈ (0,∞) and x ∈ X ,

(gt)∗(x) . t
∑
k∈N

[M(χB(xk,rk))(x)]β/n+1 + f∗(x)χ(Ωt){
(x).

Then, by Theorem 2.7 and Lemma 4.5, we obtain

‖(gt)∗‖Lq(X ) . t
∥∥∥∑
k∈N

[M(χB(xk,rk))]
β/n+1

∥∥∥
Lq(X )

+ ‖f∗χ(Ωt){
‖Lq(X )

. t
∥∥∥∑
k∈N

χB(xk,rk)

∥∥∥
Lq(X )

+ ‖f∗χ(Ωt){
‖Lq(X )

. ‖min{t, f∗}‖Lq(X ).

Since

[min{t, f∗(x)}]q ≤ tq−p(x)[f∗(x)]p(x) ≤ (tq−p− + tq−p+)[f∗(x)]p(x)

for all t ∈ (0,∞) and x ∈ X , it follows that (gt)∗ ∈ Lq(X ). Together with the fact that
H∗,q(X ) = Lq(X ) (see [29, Corollary 3.11]), this implies gt ∈ Lq(X ). Likewise, we can
prove gt ∈ H∗,p(·)(X ). To see that gt tends to f in H∗,p(·)(X ), from Proposition 4.7 and
Theorem 2.7, we deduce that
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‖f − gt‖H∗,p(·)(X ) = ‖bt‖H∗,p(·)(X ) = ‖(bt)∗‖Lp(·)(X )

.
∥∥∥t∑

k∈N
[M(χB(xk,rk))]

β/n+1 + f∗χΩt

∥∥∥
Lp(·)(X )

.
∥∥∥t∑

k∈N
χB(xk,rk)

∥∥∥
Lp(·)(X )

+ ‖f∗χΩt‖Lp(·)(X )

. ‖f∗χΩt‖Lp(·)(X ).

By the dominated convergence theorem, we conclude that

lim
t→∞

gt = f in H∗,p(·)(X ).

This finishes the proof of Lemma 4.8.

By an argument similar to that used in the proof of [48, Lemma (3.36)], we deduce the
following conclusion, which is a variant of [29, Proposition 4.13]; the details are omitted.

Proposition 4.9. Let ε ∈ (0, 1), p− ∈ (n/(n+ ε),∞), β, γ ∈ (n(1/p−−1), ε), q ∈ (1,∞)

and f ∈ Lq(X ) ∩ H∗,p(·)(X ). Assume that there exists a positive constant C̃ such that,
for all x ∈ X ,

|f(x)| ≤ C̃f∗(x).

With the same notation as above, there exists a positive constant C, independent of f , k
and t, such that

(i) if

ηtk :=

[∫
X
φtk(ξ) dµ(ξ)

]−1 ∫
X
f(ξ)φtk(ξ) dµ(ξ) ∈ C,

then |ηtk| ≤ Ct for all k and t;
(ii) if btk := (f − ηtk)φtk, then supp btk ⊂ B(xk, 2rk) and the distribution on Gε0(β, γ)

induced by btk coincides with btk in Proposition 4.7;
(iii) the series

∑
k b

t
k converges in Lq(X ); it induces a distribution on Gε0(β, γ) which

coincides with bt in Proposition 4.7 and is still denoted by bt; moreover, supp bt ⊂ Ωt;
(iv) if gt := f − bt, then

gt = fχ(Ωt){
+
∑
k

ηtkφ
t
k

and, for all x ∈ X ,
|gt(x)| ≤ C̃t; (4.4)

moreover, gt induces a distribution on Gε0(β, γ) which agrees with gt appearing in
Proposition 4.7.

Going through an argument similar to that used in the proof of Lemma 4.8, we have
the following density result.

Corollary 4.10. Suppose that ε ∈ (0, 1], p(·) ∈ C log
((n/(n+ε),∞)(X ) and

β, γ ∈ (n(1/p− − 1), ε).

Then L∞(X ) ∩H∗,p(·)(X ) is dense in H∗,p(·)(X ).
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Proof. Since H∗,p(·)(X ) ∩ L1+p+(X ) is dense in H∗,p(·)(X ) according to Lemma 4.8, we
have only to show that any element f ∈ H∗,p(·)(X ) ∩ L1+p+(X ) lies in the closure of
H∗,p(·)(X ) ∩ L∞(X ). Since f ∈ L1+p+(X ), we are in a position to apply Proposition 4.9
in order to obtain a function gt satisfying (i) through (iv) of Proposition 4.9. As in the
proof of Lemma 4.8, we can show that gt → f in H∗,p(·)(X ) as t→∞. Since gt ∈ L∞(X )

according to Proposition 4.9(iv), it follows that f lies in the closure ofH∗,p(·)(X )∩L∞(X ),
which completes the proof of Corollary 4.10.

4.3. Proof of Theorem 4.3. We now turn to the proof of Theorem 4.3. Assume that
f ∈ Lq(X ) ∩H∗,p(·)(X ). For each k ∈ Z, let

Ωk := {x ∈ X : f∗(x) > 2k}.

Then, by Lemmas 4.5 and 4.6, we immediately obtain the following Lemmas 4.11, 4.12
and 4.14.

Lemma 4.11. Let k ∈ Z and Ωk be as above. Then there exist a positive number L and
sequences {xkj }j∈N ⊂ X and {rkj }j∈N ⊂ (0,∞) such that

(i)
Ωk =

⋃
j∈N

B(xkj , r
k
j ) =:

⋃
j∈N

Bkj

and {B(xkj , r
k
j /4)}j∈N are mutually disjoint balls;

(ii) for any j ∈ N, B(xkj , 15rkj ) ∩ (Ωk){ = ∅ and B(xkj , 45rkj ) ∩ (Ωk){ 6= ∅;
(iii) for any j ∈ N, the number of balls B(xki , 15rki ) satisfying

B(xki , 15rki ) ∩B(xkj , 15rkj ) 6= ∅

is at most L.

Lemma 4.12. Let k ∈ Z. Then there exist non-negative functions {φkj }j∈N satisfying, for
any j ∈ N,

(i) 0 ≤ φkj ≤ 1, suppφki ⊂ B(xkj , 2r
k
j ) and

∑
j∈N φ

k
j = χΩk ;

(ii) for any x ∈ Bkj := B(xkj , r
k
j ), φkj (x) ≥ 1/L;

(iii) for any ε ∈ (0, 1), there exists a positive constant C, independent of j, k, such that,
for all j ∈ N,

‖φkj ‖G(xkj ,r
k
j ,ε,ε)

≤ Cµ(B(xkj , r
k
j )).

Moreover, we have the following conclusion.

Remark 4.13. (i) If (2Bk+1
j ) ∩ (2Bki ) 6= ∅, then rk+1

j < 4rki and 2Bk+1
j ⊂ B(xki , 15rki ).

Indeed, obviously, we have d(xk+1
j , xki ) < 2(rk+1

j + rki ). By Lemma 4.11 and the fact
that Ωk+1 ⊂ Ωk, we see that

d(xk+1
j , (Ωk){) ≥ d(xk+1

j , (Ωk+1){) > 15rk+1
j .

Thus,

15rk+1
j < d(xk+1

j , xki ) + d(xki , (Ω
k){) < 2(rk+1

j + rki ) + 45rki ,
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which implies that rk+1
j < 47

13r
k
i < 4rki . On the other hand, for every y ∈ 2B(xk+1

j , rk+1
j ),

since
d(y, xki ) < d(xk+1

j , xki ) + 2rk+1
j < 15rki ,

it follows that (2Bk+1
j ) ⊂ B(xki , 15rki ).

(ii) From (2.2) and Lemmas 4.12 and 4.11(ii), we deduce that there exists a positive
constant C̃ such that, for all w ∈ B(xkj , 15rkj ) ∩ (Ωk){,

‖φkj ‖G(w,rkj ,ε,ε)
≤ C̃µ(B(xkj , r

k
j )).

For any given k ∈ Z, as in Proposition 4.9, we let, for each j, i ∈ N,

ηkj :=
1

‖φkj ‖L1(X )

∫
X
f(ξ)φkj (ξ) dµ(ξ), bkj := (f − ηkj )φkj

and

`k+1
i,j :=

1

‖φk+1
j ‖L1(X )

∫
X

[f(ξ)− ηk+1
j ]φki (ξ)φk+1

j (ξ) dµ(ξ).

Moreover, by Proposition 4.9, we have the following conclusion.

Lemma 4.14. With the same notation as above, there exists a positive constant C, inde-
pendent of f , k and j, such that

(i) |ηkj | ≤ C2k;
(ii) supp bkj ⊂ B(xkj , 2r

k
j );

(iii) the series
∑
j∈N b

k
j converges in Lq(X ) and induces a distribution bk on Gε0(β, γ);

moreover, supp bk ⊂ Ωk;
(iv) if gk := f − bk, then, for all x ∈ X , |gk(x)| ≤ C2k.

As an immediate consequence of Lemmas 4.11, 4.12, 4.14 and Remark 4.13, we obtain
the following conclusion.

Lemma 4.15.

(i) There exists a positive constant C, independent of f , i, j and k, such that

sup
x∈X
|`k+1
i,j φk+1

j (x)| ≤ C2k+1. (4.5)

(ii) For every k ∈ Z, ∑
i∈N

∑
j∈N

`k+1
i,j φk+1

j = 0, (4.6)

where the series converges pointwise and also in (Gε0(β, γ))′.

Proof. We first show (i). Obviously, by Lemma 4.14, we see that

1

‖φk+1
j ‖L1(X )

∣∣∣∣∫
X
ηk+1
j φki (ξ)φk+1

j (ξ) dµ(ξ)

∣∣∣∣ . 2k. (4.7)

On the other hand, by Lemma 4.12(ii), we find that

‖φk+1
j ‖L1(X ) ≥

∫
B(xk+1

j ,rk+1
j )

φk+1
j (ξ) dµ(ξ) ≥ 1

L
µ(B(xk+1

j , rk+1
j )). (4.8)
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Let

ϕ :=
φki φ

k+1
j

‖φk+1
j ‖L1(X )

.

Then, by (4.8), Remark 4.13(ii) and the fact that 0 ≤ φki ≤ 1, we see that, for any
ε ∈ (0, 1) and any w ∈ B(xk+1

j , 15rk+1
j ) ∩ (Ωk+1){,

‖ϕ‖G(w,rk+1
j ,ε,ε) . 1,

which further implies that
1

‖φk+1
j ‖L1(X )

∣∣∣∣∫
X
f(ξ)φki (ξ)φk+1

j (ξ) dµ(ξ)

∣∣∣∣ = |〈f, ϕ〉| . f∗(w) . 2k+1. (4.9)

From (4.9), (4.7) and Lemma 4.12(i), we deduce that (4.5) holds true.
Next, we show (ii). Since suppφk+1

j ⊂ B(xk+1
j , 2rk+1

j ), it follows from Lemma 4.11(iii)
that, for any given x ∈ X , the number j satisfying φk+1

j (x) 6= 0 is at most L. Observe
that, for such fixed j, in order to have `k+1

i,j 6= 0, i must satisfy

B(xki , 2r
k
i ) ∩B(xk+1

j , 2rk+1
j ) 6= ∅ (4.10)

by the definition of `k+1
i,j . Moreover, by Lemma 4.11(iii) again, we see that the number

i satisfying (4.10) is at most L. Thus, for any fixed x ∈ X , the sum in (4.6) is actually
finite and hence, by (i), we conclude that∑

i∈N

∑
j∈N
|`k+1
i,j φk+1

j (x)| . L22k+1, (4.11)

namely, the series in (4.6) is absolutely convergent. Therefore,∑
i∈N

∑
j∈N

`k+1
i,j φk+1

j (x) =
∑
j∈N

(∑
i∈N

`k+1
i,j

)
φk+1
j (x). (4.12)

Since, for each j ∈ N, the sum
∑
i∈N `

k+1
i,j is actually finite, by Lemma 4.12(i) and the

facts that Ωk+1 ⊂ Ωk and

suppφk+1
j ⊂ B(xk+1

j , 2rk+1
j ) ⊂ Ωk+1 (4.13)

we find that∑
i∈N

`k+1
i,j =

∫
X

[f(ξ)− ηk+1
j ]

{∑
i∈N

φki (ξ)
}
φk+1
j (ξ) dµ(ξ)

=

∫
X

[f(ξ)− ηk+1
j ]χΩk(ξ)φk+1

j (ξ) dµ(ξ)

=

∫
X

[f(ξ)− ηk+1
j ]φk+1

j (ξ) dµ(ξ) =

∫
X
bk+1
j (ξ) dµ(ξ) = 0,

which, combined with (4.12), implies that (4.6) converges pointwise.
On the other hand, by (4.11) and (4.13), we have∑

i∈N

∑
j∈N

∫
X
|`k+1
i,j φk+1

j (ξ)| dµ(ξ) . 2k+1µ(Ωk+1). (4.14)

From (4.14) and the Lebesgue dominated convergence theorem, we deduce that (4.6)
holds true in L1(X ) and hence in (Gε0(β, γ))′. This finishes the proof of Lemma 4.15.
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Finally, we give the proof of Theorem 4.3 by using some ideas from [21, Theorem 3.28].

Proof of Theorem 4.3. To prove (i), let {λj}j∈N ⊂ C and {aj}j∈N be a sequence of
(p(·), q)-atoms, with supp aj ⊂ Bj := B(xj , rj) for some xj ∈ X and rj ∈ (0,∞) and
each j ∈ N, satisfying

Ãp(·)({λj}j∈N, {Bj}j∈N) <∞.

We first assume that λj = 0 when j ≥ N0 + 1 for some N0 ∈ N and g :=
∑N0

j=1 λjaj . By
Lemma 4.4 and (3.9), we find that, for all x ∈ X ,

g∗(x) .
N0∑
j=1

|λj |M(aj)(x)χB(xj ,3rj)(x) +

N0∑
j=1

|λj |
‖χBj‖Lp(·)(X )

[M(χBj )(x)]β/n+1

.
{ N0∑
j=1

[|λj |M(aj)(x)χB(xj ,3rj)(x)]p
}1/p

+

{ N0∑
j=1

[
|λj |

‖χBj‖Lp(·)(X )

[M(χBj )(x)]β/n+1

]p}1/p

=: I1 + I2.

For the first term I1, since [M(aj)]
p ∈ Lq/p(X ) for all j ∈ N, we are in a position to use

Proposition 2.11 with r(·) = p(·)/p to obtain

I1 . Ãp(·)({λj}N0
j=1, {Bj}

N0
j=1).

Since β ∈ (n/(n + 1), ε), it follows that we are in a position to use Theorem 2.7 for the
second term to obtain the same estimation as for I1. Therefore,

‖g‖H∗,p(·)(X ) = ‖g∗‖Lp(·)(X ) . Ãp(·)({λj}N0
j=1, {Bj}

N0
j=1),

which implies that g ∈ H∗,p(·)(X ).
To consider the general case, for all N ∈ N, let

fN :=

N∑
j=1

λjaj .

Then, from what we have proved above, we deduce that, for all N1, N2 ∈ N with N1 < N2,

‖fN1
− fN2

‖H∗,p(·)(X ) .

∥∥∥∥( N2∑
j=N1+1

[ |λj |χBj
‖χBj‖Lp(·)(X )

]p)1/p∥∥∥∥
Lp(·)(X )

.

This implies that {fN}∞N=1 is a Cauchy sequence in H∗,p(·)(X ). Therefore, by Lemma 3.6,
we find that

∑
j∈N λjaj converges in (Gε0(β, γ))′, with β and γ as in Theorem 4.3, and

denote its limit by f . Finally, we go through the same argument as in the case where the
sum is finite to obtain (i) for the general case.

Next, we show (ii). We first assume that f ∈ Lq(X )∩H∗,p(·)(X ). In the remainder of
the proof, we shall use the same notation as in Lemmas 4.11, 4.12, 4.14 and 4.15. Then

f = gk +
∑
j∈N

bkj in (Gε0(β, γ))′
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with β and γ as in Theorem 4.3. Observe that gk → f in H∗,p(·)(X ) as k →∞ by Lemma
4.8, and gk → 0 uniformly as k → −∞ by Lemma 4.14(iv). Thus, we have

f =

∞∑
k=−∞

(gk+1 − gk) in (Gε0(β, γ))′.

By Lemma 4.15(ii) and the fact that∑
i∈N

bk+1
j φki = χΩkb

k+1
j = bk+1

j ,

we know that

gk+1 − gk = bk − bk+1 =
∑
i∈N

bki −
∑
j∈N

bk+1
j +

∑
i∈N

∑
j∈N

`k+1
i,j φk+1

j

=
∑
i∈N

[
bki −

∑
j∈N

(bk+1
j φki − `k+1

i,j φk+1
j )

]
=:
∑
i∈N

hki ,

where the series converge in (Gε0(β, γ))′. Moreover,

hki = (f − ηki )φki −
∑
j∈N

[(f − ηk+1
j )φki − `k+1

i,j ]φk+1
j

= fφki χ(Ωk+1){ − ηki φki + φki
∑
j∈N

ηk+1
j φk+1

j +
∑
j∈N

`k+1
i,j φk+1

j . (4.15)

Now, let
λki := 2k‖χB(xki ,15rki )‖Lp(·)(X ) and aki := [λki ]−1hki .

Then we have the following decomposition of f :

f =
∑
k∈Z

∑
i∈N

λki a
k
i in (Gε0(β, γ))′.

We claim that aki is a (p(·),∞)-atom up to a constant multiple. Indeed, from the first
equality of (4.15), we deduce that

∫
X h

k
i (ξ) dµ(ξ) = 0. Let {Sk}k∈Z be as in Definition

3.7. By Remarks 3.8(i) and 3.10, the Riesz lemma and the definition of Ωk+1, we find that
there exists {kl}l∈N ⊂ N such that kl →∞ as l→∞ and, for almost every x ∈ (Ωk+1){,

|f(x)| = lim
l→∞

|Skl(f)(x)| . f∗(x) . 2k+1,

which, together with Lemma 4.14(i), the fact that
∑
j∈N φ

k+1
j ≤ L, Lemma 4.15(i) and

the second equality of (4.15), further implies that

‖hki ‖L∞(X ) . 2k+1 + 2k + L2k+1 + L2k+1 . 2k.

Finally, since `k+1
i,j = 0 unless (2Bk+1

j ) ∩ (2Bki ) 6= ∅, it follows from Remark 4.13 that

supp
(∑
j∈N

`k+1
i,j φk+1

j

)
⊂ B(xki , 15rki ).

From this and the second equality of (4.15), we deduce that

supphki ⊂ B(xki , 15rki ). (4.16)

Therefore, for each k ∈ Z and i ∈ N, aki is a (p(·),∞)-atom up to a constant multiple,
and the above claim holds true.
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Moreover, by Theorem 2.7 and Lemma 4.11(ii), we conclude that

Ẽp(·)({λki aki }k∈Z, i∈N) ∼
∥∥∥{∑

k∈Z

∑
i∈N

[2kχB(xki ,15rki )]
p
}1/p∥∥∥

Lp(·)(X )

.
∥∥∥{∑

k∈Z

∑
i∈N

[2kχB(xki ,r
k
i /4)]

p
}1/p∥∥∥

Lp(·)(X )

.
∥∥∥{∑

k∈Z
[2kχΩk ]p}1/p

∥∥∥
Lp(·)(X )

∼
∥∥∥{∑

k∈Z
[2kχΩk\Ωk+1 ]p

}1/p∥∥∥
Lp(·)(X )

.
∥∥∥f∗{∑

k∈Z
[χΩk\Ωk+1 ]p

}1/p∥∥∥
Lp(·)(X )

. ‖f∗‖Lp(·)(X ) ∼ ‖f‖H∗,p(·)(X ).

Thus,
Lq(X ) ∩H∗,p(·)(X ) ⊂ Hp(·),∞

at (X )

and
‖f‖

H
p(·),∞
at (X )

. Ẽp(·)({λki aki }k∈Z, i∈N) . ‖f‖H∗,p(·)(X ).

Now, we let f ∈ H∗,p(·)(X ). Then, by virtue of Lemma 4.8, there exists a sequence
{fl}l∈N ⊂ Lq(X ) ∩H∗,p(·)(X ) such that f =

∑
l∈N fl in H

∗,p(·)(X ) and

‖fl‖H∗,p(·)(X ) ≤ 22−l‖f‖H∗,p(·)(X ).

For each l ∈ N, by the conclusion above, we find that fl has an atomic decomposition

fl =
∑
k∈Z

∑
i∈N

λl,ki al,ki in (Gε0(β, γ))′,

where {λl,ki al,ki }k∈Z, i∈N are constructed as above and hence {al,ki }k∈Z, l,i∈N are (p(·),∞)-
atoms. Thus, we have

f =
∑
l∈N

∑
k∈Z

∑
i∈N

λl,ki al,ki in (Gε0(β, γ))′

and

Ẽp(·)({λl,ki al,ki }k∈Z, l,i∈N) ≤
{∑
l∈N
‖fl‖

p

H∗,p(·)(X )

}1/p

. ‖f‖H∗,p(·)(X ),

which further imply that f ∈ Hp(·),∞
at (X ) and

‖f‖
H
p(·),∞
at (X )

. ‖f‖H∗,p(·)(X ).

This finishes the proof of (ii) and hence of Theorem 4.3.

Before we further investigate atomic Hardy spaces, one remark, which is useful for
later considerations, may be in order.

Remark 4.16. (i) Thanks to Theorem 4.3(i), the convergence in (4.1) takes place in
H∗,p(·)(X ) as well.
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(ii) The construction in the proof of Theorem 4.3(ii) does not depend on p(·). This
means that if f ∈ H∗,p1(·)(X ) ∩H∗,p2(·)(X ) for some p1(·) and p2(·) satisfying the same
assumptions as p(·), then the convergence in (4.1) takes place in H∗,p1(·)(X ) and also in
H∗,p2(·)(X ). In particular, since Lq(X ) ∼ Hq(X ) with q ∈ (1,∞) (see [29, Corollary 3.11]),
it follows that if f ∈ Lq(X ) ∩ H∗,p(·)(X ) with q ∈ (1,∞), then the summation in (4.1)

converges in Lq(X ) and also in H∗,p(·)(X ) according to the construction above.

4.4. Some consequences of the atomic characterization. Now we harvest some
conclusions of the atomic decomposition theorem. Here we consider a problem left open:
do the spaces depend on ε, α, β and γ? For this problem, we have the following answer.

Theorem 4.17. The spaces H∗,p(·)(X ), Hp(·)
α (X ) and Hp(·)

d (X ) are independent of the
parameters ε, α, β, γ satisfying the assumptions of Theorem 3.11.

To prove Theorem 4.17, we need the following several lemmas.

Lemma 4.18. Let R ∈ (1,∞) be fixed and, for all x ∈ X ,

AR(x) := min
{

1,max{R−1d(x1, x)− 1, 0}
}
. (4.17)

Then

|AR(x)−AR(y)| ≤ 6d(x, y)

R+ d(x1, x)
(4.18)

for all x, y ∈ X satisfying d(x, y) ≤ [1 + d(x1, x)]/2.

Proof. Observe that, by the triangle inequality, we have, for all x, y ∈ X ,

|AR(x)−AR(y)| ≤ R−1d(x, y).

Hence, to prove this lemma, we may assume that d(x1, x) ≥ 5R. Then it follows from
d(x, y) ≤ [1 + d(x1, x)]/2 that

d(x1, y) ≥ d(x1, x)− d(x, y) ≥ d(x1, x)− 1

2
≥ 5R− 1

2
≥ 2R.

In this case, we have AR(x) = 1 = AR(y), and hence (4.18) holds true. This finishes the
proof of Lemma 4.18.

In what follows, let Cb(X ) be the set of all continuous functions with bounded support.

Lemma 4.19. Let ε ∈ (0, 1] and β, γ ∈ (0, ε). Then Cb(X ) is dense in Gε0(β, γ).

Proof. Since Gε0(β, γ) is the completion of the space G(ε, ε) in G(β, γ), to prove this lemma
it suffices to approximate any ϕ ∈ G(ε, ε) by Cb(X ) functions.

We claim that
‖ARϕ‖G(β,γ) = O(Rγ−ε), R→∞.

By this claim, we find that

lim
R→∞

‖(1−AR)ϕ− ϕ‖G(β,γ) = lim
R→∞

‖ARϕ‖G(β,γ) = 0.

Since (1−AR)ϕ ∈ Cb(X ) thanks to Lemma 4.18, it follows that Cb(X ) is dense in G(ε, ε).
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It remains to prove the above claim. Obviously, by (3.1) and (4.17), we see that, for
all R ∈ (0,∞) and x ∈ X ,

|ϕ(x)AR(x)| ≤ Rγ−ε 1

µ(B(x, 1 + d(x, x1)))

[
1

1 + d(x1, x)

]γ
. (4.19)

Meanwhile, for all R ∈ (0,∞) and x, y ∈ X satisfying d(x, y) ≤ [1 + d(x1, x)]/2, we have

|ϕ(x)[AR(x)−AR(y)]|

. Rγ−ε
d(x, y)

1 + d(x1, x)

1

µ(B(x, 1 + d(x, x1)))

[
1

1 + d(x1, x)

]γ
. (4.20)

To show (4.20), we may assume that either x or y lies outside B(x1, R); otherwise the left-
hand side becomes 0. If one lies outside B(x1, R), then the other lies outside B(x1, R/4).
So, we may assume that x and y lie outside B(x1, R/4). Then, by using (3.1) and (4.18),
we obtain (4.20). Likewise, by (3.2), we conclude that, for all R ∈ (0,∞) and x, y ∈ X
with d(x, y) ≤ [1 + d(x1, x)]/2,

|AR(y)[ϕ(x)− ϕ(y)]| . Rγ−ε
[

d(x, y)

1 + d(x1, x)

]β
1

µ(B(x, 1 + d(x, x1)))

[
1

1 + d(x1, x)

]γ
,

which, combined with (4.20) and the fact that β < ε ≤ 1, implies that

|ϕ(x)AR(x)− ϕ(y)AR(y)|
≤ |ϕ(x)[AR(x)−AR(y)]|+ |AR(y)[ϕ(x)− ϕ(y)]|

. Rγ−ε
[

d(x, y)

1 + d(x1, x)

]ε
1

µ(B(x, 1 + d(x, x1)))

[
1

1 + d(x1, x)

]γ
.

From this and (4.19), we further deduce that the above claim holds true, which completes
the proof of Lemma 4.19.

Proof of Theorem 4.17. Observe that the spaces Hp(·)
α (X ) are independent of α; see

Corollary 3.12. So, let us now concentrate on the independence from ε, β, γ. Let ε1, β1,
γ1 and ε2, β2, γ2 satisfy the same assumptions as in Theorem 3.11. Let k ∈ {1, 2}. Denote
by Hk the Hardy space H∗,p(·)(X ) defined via the grand maximal function generated by
(Gεk0 (βk, γk))′. We need to prove that H1 and H2 coincide with equivalent quasi-norms.

Let f ∈ H1. Then f ∈ (Gε10 (β1, γ1))′. By Lemma 4.19, we find that f |Cb(X ) can
be extended to an element in (Gε20 (β2, γ2))′. According to Theorem 4.3(ii), f has an
expression f =

∑
j∈N λjaj in (Gε10 (β1, γ1))′, where each λj is a non-negative number and

aj is a (p(·),∞)-atom supported on a ball Bj satisfying

Ãp(·)({λj}j∈N, {Bj}j∈N) . ‖f‖H1 .

However, by Theorem 4.3(i), we further know that

g =
∑
j∈N

λjaj

converges in (Gε20 (β2, γ2))′, g ∈ H2 and

‖g‖H2
. Ãp(·)({λj}j∈N, {Bj}j∈N) . ‖f‖H1

.
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Since g and f coincide on a dense space Cb(X ), it follows that the mapping

f ∈ H1 7→ g ∈ H2

is a continuous injection. Likewise, we can show that g ∈ H2 7→ f ∈ H1 is a continuous
injection. Therefore, H1 and H2 are isomorphic and have equivalent quasi-norms. This
finishes the proof of Theorem 4.17.

Corollary 4.20. Let p(·) ∈ C log
(0,∞)(X ).

(i) If 1 ≤ p− ≤ p+ <∞, then

H∗,p(·)(X ) ↪→ Lp(·)(X ). (4.21)

(ii) If 1 < p− ≤ p+ <∞, then H∗,p(·)(X ) = Lp(·)(X ) with equivalent norms.

Proof. To prove (i), let ε ∈ (0, 1], β, γ ∈ (0, ε) and f ∈ H∗,p(·)(X ). Then, by Theorem
4.3(ii), we find that f =

∑
j∈N λjaj in (Gε0(β, γ))′, where {λj}j∈N ⊂ C and {aj}j∈N are

(p(·),∞)-atoms such that each aj is supported on a ball Bj and

Ãp(·)({λj}j∈N, {Bj}j∈N) . ‖f‖H∗,p(·)(X ).

By (3.9) and Proposition 2.11, we find that, for any L ∈ N,∥∥∥ L∑
j=1

|λjaj |
∥∥∥
Lp(·)(X )

≤
∥∥∥( L∑

j=1

|λjaj |p
)1/p∥∥∥

Lp(·)(X )

. Ãp(·)({λj}Lj=1, {Bj}Lj=1) . ‖f‖H∗,p(·)(X ) <∞. (4.22)

This implies
∑
j∈N |λjaj(x)| < ∞ for µ-a.e. x ∈ X . Going back to (4.22) and using the

absolute continuity of Lp(·)(X ), by letting L→∞, we see that g :=
∑
j∈N λjaj in L

p(·)(X )

(↪→ (Gε0(β, γ))′). Since f =
∑
j∈N λjaj in (Gε0(β, γ))′, it follows that

f = g ∈ Lp(·)(X ) and ‖f‖Lp(·)(X ) . ‖f‖H∗,p(·)(X ).

Conversely, we need to prove Lp(·)(X ) ⊂ H∗,p(·)(X ) in view of (4.21). Let f ∈ Lp(·)(X ).
Then, by the fact that f∗ . M(f) (see [29, (3.4)]) and the Hardy–Littlewood maximal
operator M is bounded on Lp(·)(X ) (see Lemma 2.5), we see that f ∈ H∗,p(·)(X ) and

‖f‖H∗,p(·)(X ) . ‖f‖Lp(·)(X ).

This finishes the proof of Corollary 4.20.

By combining Corollary 4.20 and Theorem 4.3, we obtain the following atomic char-
acterization of Lp(·)(X ).

Remark 4.21. Let p(·) ∈ C log
(1,∞)(X ) and the parameters q, ε, β, γ be as in Theorem 4.3.

Then:
(i) Hp(·),q

at (X ) ↪→ Lp(·)(X ), namely, if {λj}j∈N ⊂ C and {aj}j∈N are (p(·), q)-atoms
satisfying Ẽp(·)({λjaj}j∈N) < ∞, then f =

∑
j∈N λjaj in (Gε0(β, γ))′ and f ∈ Lp(·)(X ).

Furthermore,
‖f‖Lp(·)(X ) ≤ CẼp(·)({λjaj}j∈N),

where C is a positive constant independent of {λj}j∈N and {aj}j∈N.
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(ii) Lp(·)(X ) ↪→ H
p(·),∞
at (X ). More precisely, if f ∈ Lp(·)(X ), then there exist (p(·),∞)-

atoms {aj}j∈N and {λj}j∈N ⊂ C such that f =
∑
j∈N λjaj in (Gε0(β, γ))′ and that

Ẽp(·)({λjaj}j∈N) ≤ C̃‖f‖Lp(·)(X ),

where C̃ is a positive constant independent of f .

4.5. Finite atomic characterizations. In this subsection, we consider a finite atomic
characterization of H∗,p(·)(X ).

Definition 4.22. Let p(·) ∈ C log
(0,∞)(X ) with p− ∈ ( n

n+1 ,∞) and q ∈ [1,∞] ∩ (p+,∞].
Then the finite atomic Hardy space with variable exponent, Hp(·),q

fin (X ), is the set of all
finite linear combinations of (p(·), q)-atoms, and for all f ∈ Hp(·),q

fin (X ), its quasi-norm is
defined as

‖f‖
H
p(·),q
fin (X )

:= inf
{
Ẽp(·)({λjaj}Nj=1) : f =

N∑
j=1

λjaj , N ∈ N
}
,

where the infimum is taken over all decompositions of f such that, for some N ∈ N,
f =

∑N
j=1 λjaj , {λj}Nj=1 ⊂ C and {aj}Nj=1 are (p(·), q)-atoms.

Obviously, Hp(·),q
fin (X ) is a dense subspace of Hp(·),q

at (X ), and hence of H∗,p(·)(X ) by
Theorem 4.3.

For all q ∈ [1,∞], let Lq,0b (X ) be the set of all functions f ∈ Lq(X ) with bounded
support and zero average. We have the following lemma.

Lemma 4.23. Let p(·) ∈ C log
(n/(n+1),∞)(X ) and q ∈ [1,∞] ∩ (p+,∞]. Then

Lq,0b (X ) = H
p(·),q
fin (X )

as sets. Moreover, Lq,0b (X ) is dense in H∗,p(·)(X ).

Proof. Let f ∈ Lq,0b (X ) with supp f ⊂ B. Then [µ(B)]1/q

‖χB‖Lp(·)(X)
‖f‖Lq(X)

f is a (p(·), q)-atom
supported on B. Thus, f ∈ Hp(·),q

fin (X ) and

‖f‖
H
p(·),q
fin (X )

≤ [µ(B)]−1/q‖χB‖Lp(·)(X )‖f‖Lq(X ),

which implies that Lq,0b (X ) ⊂ Hp(·),q
fin (X ) as sets.

Conversely, since each (p(·), q)-atom belongs to Lq,0b (X ), it follows that Hp(·),q
fin (X ) ⊂

Lq,0b (X ) as sets. Therefore, Lq,0b (X ) = H
p(·),q
fin (X ) as sets, and hence Lq,0b (X ) is dense in

H∗,p(·)(X ). This finishes the proof of Lemma 4.23.

Theorem 4.24. Let p(·) ∈ C log
(n/(n+1),∞)(X ).

(i) If q ∈ (1,∞)∩(p+,∞), then ‖·‖
H
p(·),q
fin (X )

and ‖·‖H∗,p(·)(X ) are equivalent quasi-norms

on Hp(·),q
fin (X ).

(ii) ‖ · ‖
H
p(·),∞
fin (X )

and ‖ · ‖H∗,p(·)(X ) are equivalent quasi-norms on H
p(·),∞
fin (X ) ∩ C(X ),

where C(X ) denotes the set of all continuous functions on X .

To prove Theorem 4.24, we need some auxiliary estimates.
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Lemma 4.25. Let p(·) ∈ C log
(n/(n+1),∞)(X ), ε ∈ (0, 1] and β, γ ∈ (n(1/p− − 1), ε). Let r ∈

(0,∞) and f ∈ H∗,p(·)(X ) supported on B(x1, R) for some R ∈ (0,∞). Then there exists
a positive constant C0 such that, for all x ∈ X and ϕ ∈ Gε0(β, γ) with ‖ϕ‖G(x,r,β,γ) ≤ 1,

|〈f, ϕ〉| ≤ C0 inf
y∈B(x,d(x,x1))

f∗(y); (4.23)

moreover, for all x ∈ [B(x1, 16R)]{,

f∗(x) ≤ C0‖f‖H∗,p(·)(X )‖χB(x1,R)‖−1
Lp(·)(X )

. (4.24)

Proof. See [46, Lemma 2.2] for the proof of (4.23) with r ≥ 4d(x1, x)/3. If r < 4d(x1, x)/3,
then we invoke [29, (5.10)] to prove (4.23). Indeed, let ζ ∈ C∞(R) be chosen so that
χ[−1,1] ≤ ζ ≤ χ[−2,2]. Define

ϕ̃(z) := ϕ(z)ζ

(
16d(z, x1)

d(x, x1)

)
for z ∈ X . Notice that ϕ̃ and ϕ agree on B(x,R) because d(x, x1) ≥ 16R. Since f is
supported on B(x,R), we have 〈f, ϕ〉 = 〈f, ϕ̃〉. According to [29, (5.10)], we find that, for
all y ∈ B(x1, d(x1, x)),

‖ϕ̃‖G(y,r,β,γ) . ‖ϕ‖G(x,r,β,γ),

and hence |〈f, ϕ〉| = |〈f, ϕ̃〉| . f∗(y), which implies that (4.23) holds true also when
r < 4d(x1, x)/3.

By (4.23), Remark 2.6 and the fact that, when x ∈ [B(x1, 16R)]{,

B(x1, R) ⊂ B(x, 2d(x1, x)),

we further conclude that (4.24) holds true. This finishes the proof of Lemma 4.25.

With these estimates in hand, let us prove Theorem 4.24.

Proof of Theorem 4.24. To show (i), let f ∈ Hp(·),q
fin (X ). Obviously, by Theorem 4.3(i),

we see that
H
p(·),q
fin (X ) ⊂ Hp(·),q

at (X ) ⊂ H∗,p(·)(X ).

Then
‖f‖H∗,p(·)(X ) . ‖f‖Hp(·),qfin (X )

.

Therefore, to complete the proof of (i) it suffices to prove that

‖f‖
H
p(·),q
fin (X )

. ‖f‖H∗,p(·)(X ).

Without loss of generality, we may assume that supp f ⊂ B(x1, R) for some R in
(0,∞). According to the proof of Theorem 4.3(ii), we have an atomic decomposition

f =
∑
k∈Z

∑
i∈N

hki in (Gε0(β, γ))′

with β, γ as in Theorem 4.3. Moreover, from the construction of hki , we further deduce
that

‖hki ‖L∞(X ) . 2k, supphki ⊂ B(xki , 15rki ) and
∑
i∈N

χB(xki ,15rki ) . 1. (4.25)
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Denote by k′ the largest integer k satisfying

2k <
C0‖f‖H∗,p(·)(X )

‖χB(x1,R)‖Lp(·)(X )

,

where C0 is the constant in (4.23). Then, by Lemma 4.25, we know that Ωk ⊂ B(x1, 16R)

for all k > k′. Let
g :=

∑
k≤k′

∑
i∈N

hki and ζ :=
∑
k>k′

∑
i∈N

hki ,

where the series converge in (Gε0(β, γ))′. Obviously, f = g + ζ. By (4.16) and Lemma
4.11(ii), we easily see that

supp ζ ⊂
⋃
k>k′

Ωk ⊂ B(x1, 16R), (4.26)

and hence supp g ⊂ B(x1, 16R). Since f ∈ Lq,0b (X ) due to Lemma 4.23, it follows that f
is a multiple of a classical H1(X )-atom (see [29, Definition 4.1]), and hence f∗ ∈ L1(X ).
Recall that a measurable function a is called an H1(X )-atom if supp a ⊂ B(x0, r0) with
some x0 ∈ X and r0 ∈ (0,∞), ‖a‖Lq(X ) ≤ [µ(B(x0, r0))]1/q−1 with q ∈ (1,∞) and∫
X a(x) dµ(x) = 0. Therefore, by (4.25) and Lemma 4.11(ii), we see that∫

X

∑
k>k′

∑
i∈N
|hki (ξ)| dµ(ξ) .

∫
X

∑
k>k′

2k
∑
i∈N

χB(xki ,15rki )(ξ) dµ(ξ)

.
∫
X

∑
k>k′

2kχΩk(ξ) dµ(ξ) . ‖f∗‖L1(X ) <∞. (4.27)

From (4.27) and the vanishing moment condition on hki , we further deduce that ζ satisfies
the vanishing moment condition, and hence so does g by g = f − ζ. Moreover, by (4.25)
and Remark 2.6, we find that

‖g‖L∞(X ) .
∑
k≤k′

2k ∼ 2k
′
.

‖f‖H∗,p(·)(X )

‖χB(x1,R)‖Lp(·)(X )

.
‖f‖H∗,p(·)(X )

‖χB(x1,16R)‖Lp(·)(X )

.

So far, we have proved that ‖f‖−1
H∗,p(·)(X )

g is a (p(·),∞)-atom up to a constant multiple.
Next, we deal with ζ. We claim that, for all x ∈ X , ζ(x) . f∗(x). Indeed, for all

x ∈ X , there exists j ∈ Z such that x ∈ Ωj \ Ωj+1. From this, (4.25) and the fact that,
for all k ≥ j + 1, supphki ⊂ Ωk ⊂ Ωj+1, we deduce that

|ζ(x)| ≤
∑
k<k′

∑
i∈N
|hki (x)| .

∑
k<j

2k ∼ 2j . f∗(x),

so the above claim holds true. By this claim and the fact that f∗∈Lq(X ) (when q=1, it is
proved above, and when q ∈ (1,∞), this is a consequence of Remark 3.4 and Lemma 2.5),
we conclude that

ζ =
∑
k>k′

∑
i∈N

hki

converges in Lq(X ). For any N ∈ N, let

FN := {(k, i) : k ∈ Z, k > k′, i ∈ N and i+ |k| ≤ N}
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and
ζN :=

∑
(k,i)∈FN

hki .

Since
∑
k>k′

∑
i∈N h

k
i converges in Lq(X ), it follows that there exists N0 ∈ N large enough

such that

‖f‖−1
H∗,p(·)(X )

‖ζ − ζN0
‖Lq(X ) ≤

[µ(B(x1, 16R))]1/q

‖χB(x1,16R)‖Lp(·)(X )

,

which, combined with (4.26) and (4.27), further implies that ‖f‖−1
H∗,p(·)(X )

(ζ − ζN0) is a
(p(·), q)-atom. Therefore,

f = g + ζN0
+ (ζ − ζN0

)

= ‖f‖H∗,p(·)(X )

g

‖f‖H∗,p(·)(X )

+
∑

(k,i)∈FN0

λki a
k
i + ‖f‖H∗,p(·)(X )

ζ − ζN0

‖f‖H∗,p(·)(X )

is a finite linear combination of (p(·), q)-atoms. Moreover,

‖f‖
H
p(·),q
fin (X )

. ‖f‖H∗,p(·)(X ) + Ẽp(·)({λki aki }(k,i)∈FN0
) . ‖f‖H∗,p(·)(X ),

which completes the proof of (i).
To prove (ii), we assume that f ∈ H

p(·),∞
at (X ) ∩ C(X ). Obviously, f is a uniformly

continuous and bounded function, and hence hki is continuous by its construction. Thus,
the fact that ‖f∗‖L∞(X ) . ‖f‖L∞(X ) (see Remark 3.4) implies that there exists an integer
k′′ > k′ such that Ωk = ∅ for all k > k′′. Therefore,

ζ =
∑

k′<k<k′′

∑
i∈N

hki .

Since f is uniformly continuous, it follows that for any ε ∈ (0,∞), there exists δ ∈ (0,∞)

such that when d(x, y) < δ, |f(x)− f(y)| < ε. Let

ζε1 :=
∑

(k,i)∈G1

hki and ζε2 :=
∑

(k,i)∈G2

hki ,

where
G1 := {(k, i) : 45rki ≥ δ, k′ < k < k′′}

and
G2 := {(k, i) : 45rki < δ, k′ < k < k′′}.

Notice that {B(xki , r
k
i /4)}i∈N are disjoint and supphki ⊂ B(xki , 15rki ) ⊂ B(x1, 16R). Then

the summation in ζε1 is finite, and hence ζε1 is a continuous function by the fact that each
hki is continuous.

We claim that ‖ζε2‖L∞(X ).(k′′−k′)ε. Indeed, for each x∈B(xki , 15rki ) with (k, i)∈G2,
there exists y ∈ B(xki , 45rki ) ∩ (Ωk){ such that d(x, y) < 45rki < δ. Thus,

|hki (x)| = |hki (x)− hki (y)| < ε,

which, combined with (4.25), implies that ‖hki ‖L∞(X ) ≤ ε, and hence the above claim
holds true. From this claim and the continuity of ζε1 , we deduce that ζ is continuous, and
hence g = f − ζ and ζε2 = ζ − ζε2 are also continuous.
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Observe that ζε1 =
∑

(k,i)∈G1
λki a

k
i is a finite linear combination of (p(·),∞)-atoms

and
‖ζε1‖Hp(·),∞fin (X )

. ‖f‖H∗,p(·)(X ).

From this and the fact that ζ has the vanishing moment, we find that ζε2 also has the
vanishing moment. Moreover, supp ζε2 ⊂ B(x1, 16R) and ‖ζε2‖L∞(X ) . (k′′ − k′)ε. Now,
choose ε0 ∈ (0,∞) small enough such that

‖f‖−1
H∗,p(·)(X )

‖ζε02 ‖L∞(X ) ≤ ‖χB(x1,16R)‖−1
Lp(·)(X )

.

Then

f = g + ζε01 + ζε02

= ‖f‖H∗,p(·)(X )

g

‖f‖H∗,p(·)(X )

+
∑

(k,i)∈F1

λki a
k
i + ‖f‖H∗,p(·)(X )

ζε02

‖f‖H∗,p(·)(X )

is a finite linear combination of (p(·),∞)-atoms, and moreover

‖f‖
H
p(·),∞
fin (X )

. ‖f‖H∗,p(·)(X ) + Ẽp(·)({λki aki }(k,i)∈G1
) . ‖f‖H∗,p(·)(X ).

This finishes the proof of (ii) and hence of Theorem 4.24.

Proposition 4.26. Let p(·) ∈ C log
(n/(n+1),∞)(X ). Then the subset Hp(·),∞

fin (X ) ∩ C(X ) is
dense in Hp(·),∞

fin (X ) under the quasi-norm ‖ · ‖H∗,p(·)(X ), and hence in H∗,p(·)(X ).

Proof. By [33, Theorem 2.6], we choose an (ε1, ε2, ε3)-AOTI , {Sk}k∈Z, with bounded
support on X as in Remark 3.8(iii). For any (p(·),∞)-atom a with support B := B(x0, r)

for some x0 ∈ X and r ∈ (0,∞), let ak := Sk(a). Then, from the properties of Sk, it is easy
to deduce that Sk(a) is a continuous (p(·),∞)-atom with suppSk(a) ⊂ B(x0, r + c2−k)

for some constant c independent of a and k. By the identity approximation property of
{Sk}k∈Z (see, for example, [29, Lemma 3.1(v)]), we find that, for all q ∈ [1,∞),

lim
k→∞

‖Sk(a)− a‖Lq(X ) = 0. (4.28)

Now, let f be any element of Hp(·),∞
fin (X ), namely, f has a decomposition

f =

N∑
j=1

λjaj ,

where {λj}Nj=1 ⊂ C and {aj}Nj=1 are (p(·),∞)-atoms supported on balls {B(xj , rj)}Nj=1,
with {xj}Nj=1 ⊂ X and {rj}Nj=1 ⊂ (0,∞), such that

Ẽp(·)({λjaj}Nj=1) . ‖f‖
H
p(·),∞
fin (X )

.

Then, for any ε ∈ (0,∞), by (4.28), we find that there exists a K ∈ N such that, for all
j ∈ {1, . . . , N} and k ∈ N with k > K,

‖Sk(aj)− aj‖Lq(X ) ≤
[µ(B(xj , 2rj))]

1/q

‖χB(xj ,2rj)‖Lp(·)(X )

ε,
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which further implies that ε−1[Sk(aj) − aj ] is a (p(·), q)-atom supported on B(xj , 2rj).
For k ∈ N, let

fk :=

N∑
j=1

(ελj)
Sk(aj)

ε
.

Obviously, fk ∈ Hp(·),∞
fin (X ) ∩ C(X ). Moreover, by Theorem 4.24(i), we conclude that

‖fk − f‖H∗,p(·)(X ) ∼
∥∥∥∥ N∑
j=1

(ελj)
Sk(aj)− aj

ε

∥∥∥∥
H
p(·),q
at (X )

. εẼp(·)({λjaj}Nj=1) . ε‖f‖
H
p(·),∞
fin (X )

.

Therefore, fk → f in H∗,p(·)(X ) as k → ∞, and hence Hp(·),∞
fin (X ) ∩ C(X ) is dense in

H
p(·),∞
fin (X ) in the quasi-norm ‖·‖H∗,p(·)(X ). This, combined with the fact that Hp(·),∞

fin (X )

is dense in H∗,p(·)(X ), finishes the proof of Proposition 4.26.

We end this section by giving another proof of Theorem 4.3(ii) by borrowing some
ideas from the proofs of [29, Lemma 4.15 and Theorem 4.16]. To this end, we need the
following set-theoretical lemma.

Lemma 4.27. Let L ∈ (0,∞) be fixed and {Ωm}∞m=1 a sequence of subsets in X . Define

F :=

∞∑
m=2

2−mLχΩm\(Ω1∪···∪Ωm−1).

Then
1
2FχX\Ω1

≤
∞∑
m=2

2−mLχΩm ≤ 2FχX\Ω1
. (4.29)

Proof. If x ∈ Ω1 or x /∈ Ωm for any m ≥ 2, then there is nothing to prove, since every
term in (4.29) becomes 0. Let us suppose otherwise. Then we find the smallest m0 ≥ 2

such that x ∈ Ωm0
\ (Ω1 ∪ · · · ∪ Ωm0−1). In this case, we have

2−m0L ≤
∞∑
m=2

2−mLχΩm(x) ≤
∞∑

m=m0

2−mL = 2−m0+1L

and

2−m0L = 2−m0LχΩm0\(Ω1∪···∪Ωm0−1)(x) ≤ F (x) ≤
∞∑

m=m0

2−mL = 2−m0+1L.

This finishes the proof of Lemma 4.27.

Another proof of Theorem 4.3(ii). By Corollary 4.10, without loss of generality, we may
assume that f ∈ L∞(X ) ∩H∗,p(·)(X ). We let

L := ‖f‖L∞(X ) and f0 := f.

We then define f1, . . . , fm and θ1, . . . , θm, inductively. For the time being, let us say that
θ1 � · · · � θm ↓ 0. First, we define f1 to be the function gt in Proposition 4.9 associated
to f with t = θ1L. Proceeding by induction, assume that fm−1 is defined. Then let

Ωm := {x ∈ X : (fm−1)∗(x) > θmL}.
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Define fm to be the function gt in Proposition 4.9 associated to fm−1 with t = θmL.
Notice that, by Lemma 4.5, each Ωm has a decomposition

Ωm = {x ∈ X : (fm−1)∗(x) > θmL} =
⋃
i

B(xm,i, rm,i).

Define the partition of unity, {φm,i}i, as in Lemma 4.6. Then, according to our construc-
tion,

fm = fm−1 −
∑
i

bm,i,

where bm,i := (f−ηmi)φm,i is as in Proposition 4.9, which, combined with Proposition 4.7,
implies that there exists a positive constant K such that

f∗m(x) ≤ f∗m−1(x) +Kθm
∑
j∈N

µ(B(xm,j , rm,j))

µ(B(xm,j , rm,j + d(xm,j , x)))

[
rm,j

rm,j + d(xm,j , x)

]β
for all x ∈ (Ωm){ and m ∈ N. Observe that K is independent of {fm}∞m=1 and {θm}∞m=1.

By the definition of fm and Proposition 4.9(iv), we know that ‖fm‖L∞(X ) . θmL,
and hence

‖bm,i‖L∞(X ) ≤ θmDL,

where D∈(1,∞) is a fixed constant which is used later. More precisely, by Lemma 4.6(i),

|bm,i(x)| ≤ θmDLχB(xm,j ,2rm,j)(x) (4.30)

for µ-almost every x ∈ X . Notice that fm−fm−1 = −
∑
j bm,j belongs to L

∞(X ), thanks
to Lemma 4.6(vi).

Since, for all n ∈ N,

f = f0 = f1 +
∑
i

b1,i = · · · = fN +

N∑
m=1

∑
j

bm,j

and
‖fN‖L∞(X ) . θNL,

it follows that ∥∥∥f − N∑
m=1

∑
j

bm,j

∥∥∥
L∞(X )

= ‖fN‖L∞(X ) . θNL.

Therefore, assuming θN ↓ 0, we obtain

f =

∞∑
m=1

∑
j

bm,j in L∞(X ),

and hence

f =

∞∑
m=1

∑
j

bm,j in (Gε0(β, γ))′. (4.31)

With these observations in mind, let

λm,j := θmDL‖χB(xm,j ,2rm,j)‖Lp(·)(X ) and em,j := (λm,j)
−1bm,j .
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Then each em,j is a (p(·),∞)-atom. Furthermore, by Remark 2.6, Theorem 2.7, (i) and
(ii) of Lemma 4.5, and Lemma 4.27, we have

J :=

∥∥∥∥( ∞∑
m=1

∑
j

[
|λm,j |

‖χB(xm,j ,rm,j)‖Lp(·)(X)

χB(xm,j ,rm,j)

]p)1/p∥∥∥∥
Lp(·)(X )

.
∥∥∥[ ∞∑
m=1

∑
j

|θmLχB(xm,j ,rm,j)|
p
]1/p∥∥∥

Lp(·)(X )
.
∥∥∥[ ∞∑
m=1

(θmLχΩm)p
]1/p∥∥∥

Lp(·)(X )

.
∥∥∥θ1LχΩ1 +

∞∑
m=2

θmLχΩm\(Ω1∪···∪Ωm−1)

∥∥∥
Lp(·)(X )

.

For any N ∈ N, we define

JN :=
∥∥∥θ1LχΩ1 +

N∑
m=2

θmLχΩm\(Ω1∪···∪Ωm−1)

∥∥∥
Lp(·)(X )

.

We claim that, for all N ∈ N,

JN ≤
(

1 +
1

N2

)1/p

JN−1 (4.32)

by choosing θN � θN−1. Once (4.32) is proved, we obtain

JN ≤ J1

N∏
k=2

(
1 +

1

k2

)1/p

≤ ‖f∗‖Lp(·)(X )

N∏
k=2

(
1 +

1

k2

)1/p

. ‖f‖H∗,p(·)(X )

because
∏∞
k=2(1 + 1/k2) is convergent. Thus,

J ≤
∥∥∥θ1LχΩ1

+

∞∑
m=2

θmLχΩm\(Ω1∪···∪Ωm−1)

∥∥∥
Lp(·)(X )

= lim
N→∞

∥∥∥θ1LχΩ1 +

N∑
m=2

θmLχΩm\(Ω1∪···∪Ωm−1)

∥∥∥
Lp(·)(X )

≤ lim
N→∞

JN . ‖f‖H∗,p(·)(X )

and we obtain the desired conclusion.
It remains to prove (4.32). We first notice that, for all N ∈ N,

JN+1 ≤
∥∥∥θ1LχΩ1

+

N∑
m=2

θmLχΩm\(Ω1∪···∪Ωm−1) + θN+1LχΩN+1\(Ω1∪···∪ΩN )

∥∥∥
Lp(·)(X )

.

Altogether, we obtain

(JN+1)p ≤ (JN )p + ‖LθN+1χΩN+1\ΩN ‖
p

Lp(·)(X )
. (4.33)

Choose {θN}N∈N such that, for each N ∈ N, 0 < 2θN+1 ≤ θN and

‖LθN+1χΩN+1\ΩN ‖Lp(·)(X ) ≤
[

1

(N + 1)2

]1/p

‖θ1LχΩ1‖Lp(·)(X )

≤
[

1

(N + 1)2

]1/p

JN . (4.34)
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Such a choice is possible. Indeed, we have (fN )∗ ∈ Lp(·)(X ) and

LθN+1χΩN+1\ΩN ≤ (fN )∗.

Thus, the absolute continuity of the Lp(·)(X ) norm, together with an induction argument,
allows us a choice of θN as in (4.34). This shows (4.32), thanks to (4.33) and (4.34), and
hence finishes the proof of Theorem 4.3(ii).

Before we conclude this section, let us compare the two proofs of Theorem 4.3(ii)
presented in this article.

Remark 4.28. (i) The second proof invokes the absolute continuity of Lp(·)(X ), while
the first one does not. So, it is expected that the first proof can be readily transformed
into one when Lp(·)(X ) is replaced by the Morrey spaceMu

q (X ), whose norm is defined
by (6.3) below.

(ii) The second proof seems to have an advantage despite the fact that it is available
only when one can use the absolute continuity of the norm. Indeed, by adjusting {θN}N∈N
in the proof, that is, by replacing {θN}N∈N with a smaller one, one can control the growth
speed of {JN}N∈N. This fact may be useful elsewhere.

5. Characterizations in terms of Littlewood–Paley functions

In this section, we establish characterizations of H∗,p(·)(X ) in terms of the Littlewood–
Paley function. The main results of this section are stated in Subsection 5.1, and in
Subsection 5.2 we give their proofs.

5.1. Main results. We begin with the following definition, taken from [33, p. 1510].

Definition 5.1. Let ε1 ∈ (0, 1] and ε2 ∈ (0,∞). A family of bounded linear operators,
{Dt}t∈(0,∞), on L2(X ) is called a Calderón reproducing formula of order (ε1, ε2) (for
short, (ε1, ε2)-CRF) in L2(X ) if, for all f ∈ L2(X ),

f =

∫ ∞
0

D2
t (f)

dt

t
(5.1)

in L2(X ), and moreover, for all f ∈ L2(X ) and x ∈ X ,

Dt(f)(x) =

∫
X
Dt(x, y)f(y) dµ(y),

where Dt(·, ·) is a measurable function from X×X to C satisfying the following estimates:
there exists a positive constant C such that, for all t ∈ (0,∞) and all x, x′, y, y′ ∈ X with
d(x, x′) ≤ [t+ d(x, y)]/2,

(A1) |Dt(x, y)| ≤ C 1

Vt(x) + Vt(y) + V (x, y)

[
t

t+ d(x, y)

]ε2
;

(A2)

|Dt(x, y)−Dt(x
′, y)| ≤ C

[
d(x, x′)

t+ d(x, y)

]ε1[ t

t+ d(x, y)

]ε2 1

Vt(x) + Vt(y) + V (x, y)
;

(A3) property (A2) still holds true with the roles of x and y interchanged;



48 C. Zhuo, Y. Sawano and D. Yang

(A4)
∫
X
Dt(x, z) dµ(z) = 0 =

∫
X
Dt(z, y) dµ(z).

In what follows, we define

G̊(x1, r, β, γ) :=

{
f ∈ G(x1, r, β, γ) :

∫
X
f(x) dµ(x) = 0

}
,

and the space G̊ε0(β, γ) to be the completion of G̊(ε, ε) in G̊(β, γ) when β, γ ∈ (0, ε).
Recall that the Littlewood–Paley S-function (also called the Lusin area function) S(f)

of f ∈ Lp(·)(X ) is defined by setting, for all x ∈ X ,

S(f)(x) :=

{∫
Γ(x)

|Dt(f)(y)|2 dµ(y) dt

Vt(x)t

}1/2

, (5.2)

where
Γ(x) := {(y, t) ∈ X × (0,∞) : d(x, y) < t}.

Definition 5.2. Let p(·) ∈ C log
(n/(n+1),∞)(X ) and {Dt}t∈(0,∞) be an (ε1, ε2)-CRF in

L2(X ) as in Definition 5.1. Assume that the parameters ε, ε1, ε2, β, γ satisfy ε1 ∈ (0, 1],
ε2 ∈ [ε1 + n/2,∞), ε ∈ (0, ε1) and β, γ ∈ (0, ε). Then the Hardy space Hp(·)(X ) via the
Lusin area function is defined by

Hp(·)(X ) := {f ∈ (G̊ε0(β, γ))′ : S(f) ∈ Lp(·)(X )},

and its quasi-norm is given by ‖f‖Hp(·)(X ) := ‖S(f)‖Lp(·)(X ).

Let q ∈ [1,∞] ∩ (p+,∞]. Then define H̊p(·),q
at (X ) in the same way as Hp(·),q

at (X ) with
(Gε0(β, γ))′ replaced by (G̊ε0(β, γ))′.

We first establish the atomic characterization of Hp(·)(X ), which, when p(·) ≡ p ∈
(0, 1], was obtained in [33, Theorem 2.21].

Theorem 5.3. Let p(·) ∈ C log
(n/(n+1),1](X ) and q ∈ [1,∞] ∩ (p+,∞]. Then

Hp(·)(X ) = H̊
p(·),q
at (X )

with equivalent quasi-norms.

Comparing H̊p(·),q
at (X ) with the atomic Hardy space corresponding to H∗,p(·)(X ), we

have the following conclusion.

Theorem 5.4. Let p(·) ∈ C log
(n/(n+1),1](X ) and q ∈ [1,∞] ∩ (p+,∞]. Then

H̊
p(·),q
at (X ) = H

p(·),q
at (X )

with equivalent quasi-norms.

As an application of Theorem 5.3, we establish the g∗λ-function characterization of
Hp(·)(X ). Let λ ∈ (0,∞). Recall that the Littlewood–Paley g∗λ-function of f ∈ Lp(·)(X )

is defined by setting, for all x ∈ X ,

g∗λ(f)(x) :=

{∫ ∞
0

∫
X

[
t

t+ d(x, y)

]λ
|Dt(f)(y)|2 dµ(y) dt

[Vt(x) + Vt(y)]t

}1/2

.
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Theorem 5.5. Let ε, ε1, β, γ and p(·) be as in Definition 5.2. If λ ∈ (n + 2n/p−,∞),
then f ∈ Hp(·)(X ) if and only if f ∈ (G̊ε0(β, γ))′ and g∗λ(f) ∈ Lp(·)(X ). Moreover,

‖f‖Hp(·)(X ) ∼ ‖g∗λ(f)‖Lp(·)(X )

with implicit positive constants independent of f .

Remark 5.6. When p(·) ≡ p ∈ (0, 1], Theorem 5.5 is just [33, Proposition 3.4(ii)].

Let ε1 ∈ (0, 1], ε2, ε3 ∈ (0,∞) and {Sk}k∈Z be an (ε1, ε2, ε3)-AOTI . For all k ∈ Z,
let Dk := Sk − Sk−1. Assume that ε ∈ (0, ε1 ∧ ε2) and β, γ ∈ (0, ε). Recall that the
Littlewood–Paley g-function of f ∈ (G̊ε0(β, γ))′ is defined by setting, for all x ∈ X ,

g(f)(x) :=
{∑
k∈Z
|Dk(f)(x)|2

}1/2

;

see [34].

Theorem 5.7. Let ε1 ∈ (0, 1], ε2, ε3 ∈ (0,∞) and let ε ∈ (0, ε1 ∧ ε2). Assume that
p(·) ∈ C log

(n/(n+ε),∞)(X ) satisfies p− ∈ (n/(n + ε), 1] and β, γ ∈ (n[1/p− − 1], ε). Then
f ∈ Hp(·)(X ) if and only if f ∈ (G̊ε0(β, γ))′ and g(f) ∈ Lp(·)(X ). Moreover,

C−1‖g(f)‖Lp(·)(X ) ≤ ‖f‖Hp(·)(X ) ≤ C‖g(f)‖Lp(·)(X )

with C being a positive constant independent of f .

Remark 5.8. In the case of p(·) := p with p ∈ (0,∞), Theorem 5.7 was proved in [34,
Theorem 5.16].

5.2. Proofs of main results of Section 5.1. We begin with the proof of Theorem 5.4.
To this end, we first establish the following estimate.

Lemma 5.9. Let p+ ∈ (0, 1] and γ ∈ [p+, 1]. Then there exists a positive constant C such
that, for all {λj}j∈N ⊂ C and any sequence {Bj}j∈N of balls in X ,(∑

j∈N
|λj |γ

)1/γ

≤ Ãp(·)({λj}j∈N, {Bj}j∈N). (5.3)

Proof. To prove (5.3), let

λ :=
(∑
j∈N
|λj |γ

)1/γ

.

Then, by (3.9) and Remark 2.3(iv), we see that∫
X

{∑
j∈N

[ |λj |χBj (x)

λ‖χBj‖Lp(·)(X )

]p}p(x)/p

dµ(x) ≥
∫
X

∑
j∈N

[ |λj |χBj (x)

λ‖χBj‖Lp(·)(X )

]p(x)

dµ(x)

≥
∑
j∈N

|λj |γ

λγ

∫
X

[
χBj (x)

‖χBj‖Lp(·)(X )

]p(x)

dµ(x)

=
∑
j∈N

|λj |γ

λγ
= 1,

which implies that (5.3) holds true. This finishes the proof of Lemma 5.9.
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Proof of Theorem 5.4. Let ε ∈ (0, 1) and β, γ ∈ (0, ε). Observe that

(Gε0(β, γ))′ ⊂ (G̊ε0(β, γ))′.

Then it follows that Hp(·),q
at (X ) ⊂ H̊

p(·),q
at (X ). Thus, to prove this theorem it suffices to

show that H̊p(·),q
at (X ) ⊂ Hp(·),q

at (X ). Let f ∈ H̊p(·),q
at (X ). Then, by Definition 5.2, we know

that f ∈ (G̊ε0(β, γ))′ and there exist sequences {λj}j∈N ⊂ C and {aj}j∈N of (p(·), q)-atoms
such that f =

∑
j∈N λjaj in (G̊ε0(β, γ))′ and

Ãp(·)({λj}j∈N, {Bj}j∈N) . ‖f‖
H̊
p(·),q
at (X )

,

where Bj is the support of aj for all j ∈ N. For any ϕ ∈ Gε0(β, γ), let

〈f̃ , ϕ〉 :=
∑
j∈N

λj〈aj , ϕ〉.

Observe that, for any j ∈ N, we have aj ∈ Hp(·),q
at (X ) and ‖aj‖Hp(·),qat (X )

≤ 1. Then, from
Theorem 4.3 and Lemma 3.6, we deduce that, for any j ∈ N,

|〈aj , ϕ〉| . ‖ϕ‖Gε0(β,γ)‖aj‖Hp(·),qat (X )
. ‖ϕ‖Gε0(β,γ).

This, combined with Lemma 5.9, yields

|〈f̃ , ϕ〉| . ‖ϕ‖Gε0(β,γ)

∑
j∈N
|λj |

. ‖ϕ‖Gε0(β,γ)Ãp(·)({λj}j∈N, {Bj}j∈N) . ‖ϕ‖Gε0(β,γ)‖f‖Hp(·),qat (X )
,

which implies that f̃ ∈ (Gε0(β, γ))′ and f̃ =
∑
j∈N λjaj in (Gε0(β, γ))′. Moreover, f̃ = f on

G̊ε0(β, γ), f̃ ∈ Hp(·),q
at (X ) and

‖f̃‖
H
p(·),q
at (X )

. ‖f‖
H̊
p(·),q
at (X )

.

Suppose that there exists another extension of f , say g̃ ∈ Hp(·),q
at (X ). Then g̃ = f on

G̊ε0(β, γ). Thus, by [33, Lemma 5.2], f̃ − g̃ is a constant, denoted by C̃. If C̃ 6= 0, then this
contradicts the fact that no non-zero constant function belongs to Hp(·)

d (X ) = H
p(·),q
at (X ).

Thus, C̃ = 0, which implies that f̃ ∈ Hp(·),q
at (X ) is the unique extension of f . This finishes

the proof of Theorem 5.4.

To prove Theorem 5.3, we need some general facts on the Lusin area function. Let
D := {Qkτ : k ∈ Z, τ ∈ Ik} be the set of all dyadic cubes as in Lemma 3.13. For all k ∈ Z,
we set

Ωk := {x ∈ X : S(f)(x) > 2k}.

Observe that {Ωk}k∈Z is a decreasing family. With this in mind, let

Dk :=
{
Q ∈ D : µ(Q ∩ Ωk) > 1

2µ(Q) and µ(Q ∩ Ωk+1) ≤ 1
2µ(Q)

}
.

Let D be the positive constant in (3.5). For Qkτ ∈ D, define

Q̂kτ := Qkτ × (D2−k, D2−k+1].

Notice that
µ⊗ dt

t

(
X × (0,∞) \

⋃
Q∈D

Q̂
)

= 0 (5.4)
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thanks to Lemma 3.13(i). Define the set Dmc
k of maximal dyadic cubes by

Dmc
k := {Q ∈ Dk : if Q̃ ) Q and Q̃ ∈ D, then Q̃ /∈ Dk}.

Then Dmc
k is the set of all dyadic cubes in Dk, which are maximal with respect to inclusion,

so that we discard cubes which are not maximal. Hence, by Lemma 3.13(i), we see that

µ
(
X \

⋃
k∈Z

⋃
Q∈Dmc

k

Q
)

= 0,

and hence (5.4) can be rephrased as

µ⊗ dt

t

(
X × (0,∞) \

⋃
k∈Z

⋃
Qmc
k ∈D

mc
k

⋃
Q∈Dk, Q⊂Qmc

k

Q̂
)

= 0.

For all k ∈ Z, let
Q̃mc
k :=

⋃
Q∈Dk, Q⊂Qmc

k

Q̂.

We invoke the following lemma from [33, Lemma 2.23].

Lemma 5.10. Let {Dt}t∈(0,∞) be an (ε1, ε2)-CRF in L2(X ) with ε1 ∈ (0, 1] and ε2 ∈ (ε1 +

n/2,∞), and let ε ∈ (0, ε1) and β, γ ∈ (0, ε). If A ∈ (0, ε2], then for any f ∈ (G̊ε0(β, γ))′,

f =

∞∑
l=0

2−Al
∑
k∈Z

∑
Qmc
k ∈D

mc
k

∫
Q̃mc
k

ϕ2lt(·, y)Dt(f)(y)
dµ(y) dt

t

in (G̊ε0(β, γ))′, where ϕ2lt(x, y) is an adjusted bump function in x associated with the ball
B(y, 2lt), which means that there exists a positive constant C such that, for all x, y ∈ X ,

(i) suppϕ2lt(·, y) ⊂ B(y, 2lt);
(ii) |ϕ2lt(x, y)| ≤ C/V2lt(y);

(iii) for all η ∈ (0, ε1),

‖ϕ2lt(·, y)‖Ċη(X ) := sup
x,y∈X , x 6=y

|f(x)− f(y)|
[d(x, y)]η

≤ C(2lt)−1 1

V2lt(y)
;

(iv)
∫
X
ϕ2lt(x, y) dµ(x) = 0.

For a fixed cube Qmc
k ∈ Dmc

k , we know that there exist k0 ∈ Z and β0 ∈ Ik0 such that
Qmc
k = Qk0β0

, and for all l ∈ Z, we set

Bmc,l
k := B(zk0β0

, D22+l−k0).

Now, let
λlQmc

k
:= 2−(A+κ)l+k‖χBmc,l

k
‖Lp(·)(X ),

where A is as in Lemma 5.10, and for all x ∈ X ,

alQmc
k

(x) :=
2lκ−k

‖χBmc,l
k
‖Lp(·)(X )

∫
Q̃mc
k

ϕ2lt(x, y)Dt(f)(y)
dµ(y) dt

t
.

Lemma 5.11. Let q ∈ [1,∞], l ∈ Z+ and Qmc
k = Qk0β0

for some k0 ∈ Z and β0 ∈ Ik0 .
Then, for any f ∈ (G̊ε0(β, γ))′, alQmc

k
is a (p(·), q)-atom supported on Bmc,l

k up to a constant
multiple.
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To prove Lemma 5.11, we need the following estimate.

Lemma 5.12. For all l ∈ Z+ and k ∈ Z,{ ∑
Q∈Dk, Q⊂Qmc

k

∫
Q̂

|Dt(f)(y)|2 dµ(y) dt

t

}1/2

. 2k2−lκ[µ(Bmc,l
k )]1/2,

where the implicit positive constant is independent of f , k and l.

Proof. Let Q ∈ Dk. We estimate

I :=

∫
Q\Ωk+1

[S(f)(x)]2 dµ(x)

from below. If we write out the definition of I in full, we obtain

I =

∫
Q\Ωk+1

∫
Γ(x)

|Dt(f)(y)|2 dµ(y) dt

Vt(x)t
dµ(x)

=

∫
X

∫ ∞
0

∫
B(y,t)∩(Q\Ωk+1)

1

Vt(x)
|Dt(f)(y)|2 dµ(x)

dµ(y) dt

t
.

Since Vt(x) ∼ Vt(y) when d(x, y) ≤ t, it follows that

I ∼
∫
X

∫ ∞
0

∫
B(y,t)∩(Q\Ωk+1)

1

Vt(y)
|Dt(f)(y)|2 dµ(x)

dµ(y) dt

t

∼
∫
X

∫ ∞
0

µ(B(y, t) ∩ (Q \ Ωk+1))

Vt(y)
|Dt(f)(y)|2 dµ(y) dt

t

&
∫
Q̂

µ(B(y, t) ∩ (Q \ Ωk+1))

Vt(y)
|Dt(f)(y)|2 dµ(y) dt

t
.

Notice that, when (y, t) ∈ Q̂, we have y ∈ Q and t ≥ diam(Q), and when Q ∈ Dk, we
further have 2µ(Q \ Ωk+1) ≥ µ(Q). Hence, by (2.2), we find that

I &
∫
Q̂

µ(Q \ Ωk+1)

Vt(y)
|Dt(f)(y)|2 dµ(y) dt

t
&
∫
Q̂

|Dt(f)(y)|2 dµ(y) dt

t
. (5.5)

Let us suppose Q = Qk0β0
∈ Dk and Q ⊂ Qmc

k for some k0 ∈ Z and β0 ∈ Ik0 . Then, from
(5.5), we deduce that{ ∑

Q∈Dk, Q⊂Qmc
k

∫
Q̂

|Dt(f)(x, y)|2 dµ(y) dt

t

}1/2

.

{ ∑
Q∈Dk, Q⊂Qmc

k

∫
Q\Ωk+1

[S(f)(x)]2 dµ(x)

}1/2

. 2k[µ(Qmc
k )]1/2 . 2k2−lκ[µ(Bmc,l

k )]1/2.

This finishes the proof of Lemma 5.12.

Proof of Lemma 5.11. Let us first show that alQmc
k

is supported on Bmc,l
k . If (y, t) ∈ Q̃mc

k ,

then (y, t) ∈ Q̂ for some Q ∈ Dk such that Q ⊂ Qmc
k := Qk0β0

for some k0 ∈ Z and β0 ∈ Ik0 .
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Consequently, we obtain y ∈ Q ⊂ Qmc
k = Qk0β0

and t ≤ D2−k0+1. If x ∈ B(y, 2lt), then

d(x, zk0β0
) ≤ d(x, y) + d(y, zk0β0

) ≤ D22+l−k0 ,

which implies x ∈ Bmc,l
k . Hence, supp aQmc,l

k
⊂ Bmc,l

k by the support property of ϕ2lt(·, y).

To show the size condition on alQmc
k
, it suffices to estimate ‖alQmc

k
‖L∞(X ). Observe that,

when (y, t) ∈ Q̃mc
k , we have d(y, zk0β0

) ≤ D2−k0 . Thus, for all ξ ∈ B(zk0β0
, D22+l−k0),

d(ξ, y) ≤ d(ξ, zk0β0
) + d(zk0β0

, y) < D23+l−k0 ,

namely,
B(zk0β0

, D22+l−k0) ⊂ B(y,D23+l−k0).

From this, (2.2) and the fact that t ≤ D2−k0+1, we further deduce that, for all
(y, t) ∈ Q̃mc

k ,

µ(B(zk0β0
, D22+l−k0)) ≤ µ(B(y,D23+l−k0)) . (D23−k0t−1)nµ(B(y, 2lt)) . µ(B(y, 2lt)).

Therefore, using condition (ii) in Lemma 5.10, we find that{∫
Q̃mc
k

|ϕ2lt(x, y)|2 dµ(y) dt

t

}1/2

.

{∫
Q̃mc
k

1

[V2lt(y)]2
dµ(y) dt

t

}1/2

. [µ(B(zk0β0
, D22+l−k0))]−1

{∫
Q̃mc
k

dµ(y) dt

t

}1/2

. [µ(B(zk0β0
, D22+l−k0))]−1/2.

From this, the Hölder inequality and Lemma 5.12, we conclude that, for all x ∈ X ,∣∣∣∣∫
Q̃mc
k

ϕ2lt(x, y)Dt(f)(y)
dµ(y) dt

t

∣∣∣∣
≤
{∫

Q̃mc
k

|Dt(f)(y)|2 dµ(y) dt

t

}1/2{∫
Q̃mc
k

|ϕ2lt(x, y)|2 dµ(y) dt

t

}1/2

. 2k2−lκ,

which implies that ‖alQmc
k
‖L∞(X ) . 1/‖χBmc,l

k
‖Lp(·)(X ).

Finally, by the vanishing moment condition on ϕ2lt(·, y), we see that∫
X
alQmc

k
(x) dµ(x) = 0.

Thus, alQmc
k

is a (p(·),∞)-atom supported on Bmc,l
k . This finishes the proof of Lem-

ma 5.11.

We now turn to the proof of Theorem 5.3.

Proof of Theorem 5.3. We first show that H̊p(·),q
at (X ) ↪→ Hp(·)(X ). Let f ∈ H̊p(·),q

at (X ).
Then there exist {λj}j∈N ⊂ C and (p(·), q)-atoms {aj}j∈N, where, for j ∈ N, supp aj ⊂
Bj := B(xj , rj) for some xj ∈ X and rj ∈ (0,∞), such that

Ãp(·)({λj}j∈N, {Bj}j∈N) . ‖f‖
H̊
p(·),q
at (X )

and f =
∑
j∈N λjaj in (G̊ε0(β, γ))′ with ε, β, γ as in Definition 5.2.
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By the triangle inequality, we have

S(f) ≤
∑
j∈N
|λj |S(aj)χ2Bj +

∑
j∈N
|λj |S(aj)χX\(2Bj) =: I + II.

For I, by the boundedness of S on Lq(X ) (see [33, Proposition 2.17]), we obtain

‖S(aj)‖Lq(X ) . ‖aj‖Lq(X ) .
[µ(Bj)]

1/q

‖χBj‖Lp(·)(X )

with ε1 ∈ (0, 1] satisfying p− ∈
(

n
n+ε1

,∞
)
, which, together with Proposition 2.11, implies

that ‖I‖Lp(·)(X ) . ‖f‖H̊p(·),qat (X )
.

For II, by an argument similar to that used in [33, pp. 1521–1522], we see that, for
all x ∈ X \ (2Bj),

S(aj)(x) .
µ(Bj)

‖χBj‖Lp(·)(X )

[
rj

d(x, xj)

]ε1 1

V (x, xj)
,

which, together with (2.2), implies that, for all x ∈ X \ (2Bj),

S(aj)(x) .
1

‖χBj‖Lp(·)(X )

[
µ(Bj)

µ(B(x, d(x, xj)))

]ε1/n+1

.
1

‖χBj‖Lp(·)(X )

[M(χBj )(x)]ε1/n+1. (5.6)

From (5.6), Theorem 2.7 and the fact that p− ∈ (n/(n+ ε1),∞), we deduce that

‖II‖Lp(·)(X ) .

∥∥∥∥∑
j∈N
|λj |

[M(χBj )]
ε1/n+1

‖χBj‖Lp(·)(X )

∥∥∥∥
Lp(·)(X )

. Ãp(·)({λj}j∈N, {Bj}j∈N) . ‖f‖
H̊
p(·),q
at (X )

.

This implies ‖S(f)‖Lp(·)(X ) . ‖f‖H̊p(·),qat (X )
, and hence H̊p(·),q

at (X ) ↪→ Hp(·)(X ).

Conversely, we prove Hp(·)(X ) ↪→ H̊
p(·),q
at (X ). The proof follows an argument similar

to that used in the proof of [33, Theorem 2.21]. According to Lemmas 5.10 and 5.11, we
have an expression

f =

∞∑
l=0

∑
k∈Z

∑
Qmc
k ∈D

mc
k

λlQmc
k
alQmc

k

in (G̊ε0(β, γ))′. It thus remains to establish the norm estimate. Indeed, by the construction,
Theorem 2.7 and the fact that χBmc,l

k
. 2lnM(χQmc

k
), we find that

J := Ãp(·)({λlQmc
k
}l∈Z+, k∈Z, Qmc

k ∈D
mc
k
, {Bmc,l

k }l∈Z+, k∈Z, Qmc
k ∈D

mc
k

)

.

∥∥∥∥( ∞∑
l=0

∑
k∈Z

∑
Qmc
k ∈D

mc
k

[2−(A−κ)l2−kχBmc,l
k

]p
)1/p∥∥∥∥

Lp(·)(X )

.

∥∥∥∥( ∞∑
l=0

∑
k∈Z

∑
Qmc
k ∈D

mc
k

[2−l(A−κ−n)2−kχQmc
k

]p
)1/p∥∥∥∥

Lp(·)(X )

,
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which, combined with Theorem 2.7 again and the fact that χQmc
k

. M(χQmc
k ∩Ωk) when

Qmc
k ∈ Dmc

k , further implies that

J .
∥∥∥( ∞∑

l=0

∑
k∈Z

∑
Qmc
k ∈D

mc
k

[2−l(A−κ−n)2−kχQmc
k ∩Ωk ]p

)1/p∥∥∥
Lp(·)(X )

.
∥∥∥( ∞∑

l=0

∑
k∈Z

[2−l(A−κ−n)2−kχΩk ]p
)1/p∥∥∥

Lp(·)(X )
∼
∥∥∥(∑

k∈Z
2−kpχΩk

)1/p∥∥∥
Lp(·)(X )

.
∥∥∥(∑

k∈Z
2−kpχΩk\Ωk+1

)1/p∥∥∥
Lp(·)(X )

. ‖S(f)‖Lp(·)(X ).

This shows that f ∈ H̊p(·),q
at (X ), and hence finishes the proof of Theorem 5.3.

By [34, Theorems 2.6 and 3.10] and an argument similar to that used in the proof of
Theorem 5.3, we obtain the following conclusion, the details being omitted. In the case
of p(·) being a constant, we refer to [34, Theorems 5.13 and 5.16].

Corollary 5.13. Let ε1 ∈ (0, 1], ε2, ε3 ∈ (0,∞) and ε ∈ (0, ε1 ∧ ε2). Assume that
p(·) ∈ C log

(n/(n+ε),∞)(X ) satisfies p− ∈ (n/(n + ε), 1] and β, γ ∈ (n[1/p− − 1], ε). Assume
in addition that q ∈ [1,∞] ∩ (p+,∞]. Then

H̊
p(·),q
at (X ) = H̃p(·)(X )

with equivalent quasi-norms, where H̃p(·)(X ) is defined to be the set of all f ∈ (G̊ε0(β, γ))′

such that ‖f‖H̃p(·)(X ) := ‖S̃(f)‖Lp(·)(X ) is finite; here, for all x ∈ X ,

S̃(f)(x) :=

{∑
k∈Z

∫
d(x,y)<2−k

|Dk(f)(y)|2 dµ(y)

V2−k(x)

}1/2

.

We now conclude the proof of Theorem 5.5 as follows.

Proof of Theorem 5.5. Obviously, for all f ∈ (G̊ε0(β, γ))′ with ε, β, γ as in Theorem 5.5,
we have

‖f‖Hp(·)(X ) ∼ ‖S(f)‖Lp(·)(X ) . ‖g∗λ(f)‖Lp(·)(X ).

Conversely, let f ∈ Hp(·)(X ). Then, by Theorem 5.3, f has an expression

f =
∑
j∈N

λjaj in (G̊ε0(β, γ))′,

where {λj}j∈N ⊂ C and {aj}j∈N are (p(·), q)-atoms supported on {Bj}j∈N := {B(xj , rj) :

xj ∈ X , rj ∈ (0,∞)}j∈N satisfying

Ãp(·)({λj}j∈N, {Bj}j∈N) . ‖f‖Hp(·)(X ).

Thus,
g∗λ(f) ≤

∑
j∈N
|λj |g∗λ(aj)χ2Bj +

∑
j∈N
|λj |g∗λ(aj)χX\(2Bj) =: I + II.

For I, by [33, Proposition 2.17(ii)], we find that

‖g∗λ(aj)‖Lq(X ) . ‖aj‖Lq(X ) .
[µ(Bj)]

1/q

‖χBj‖Lp(·)(X )

.
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From this and Proposition 2.11, we deduce that

‖I‖Lp(·)(X ) . ‖f‖Hp(·)(X ).

For II, we first observe that, for all x ∈ X ,

g∗λ(aj)(x) .
∞∑
k=0

2k(n−λ)/2S2k(aj)(x). (5.7)

By an argument similar to that used in the proof of [33, Proposition 3.4(ii)], we conclude
that, for all x ∈ X \ (2Bj),

S2k(aj)(x) . 2k(n+ε1) µ(Bj)

‖χBj‖Lp(·)(X )

[
rj

d(x, xj)

]ε1 1

V (x, xj)
,

which, combined with (2.2), implies that, for all x ∈ X \ (2Bj),

S2k(aj)(x) .
2k(n+ε1)

‖χBj‖Lp(·)(X )

[
µ(Bj)

µ(B(x, d(x, xj)))

]ε1/n+1

.
2k(n+ε1)

‖χBj‖Lp(·)(X )

[M(χBj )(x)]ε1/n+1.

By this, (5.7), Corollary 2.10 and choosing ε1 ∈ (n/p−−n, 1) such that λ > 3n+ 2ε1, we
have

‖II‖Lp(·)(X ) .

∥∥∥∥∑
j∈N

∞∑
k=0

2k(3n/2−λ/2+ε1) |λj |
‖χBj‖Lp(·)(X )

[M(χBj )]
ε1/n+1

∥∥∥∥
Lp(·)(X )

. Ãp(·)({λj}j∈N, {Bj}j∈N) . ‖f‖Hp(·)(X ),

which, together with the estimation of I, implies that

‖g∗λ(f)‖Lp(·)(X ) . ‖f‖Hp(·)(X ).

This finishes the proof of Theorem 5.5.

By Theorems 4.3, 5.3 and 5.4, we deduce the following conclusion, the details being
omitted.

Corollary 5.14. Let p(·) ∈ C log
(n/(n+1),1](X ). Then H∗,p(·)(X ) = Hp(·)(X ) with equiva-

lent quasi-norms.

Finally, we prove Theorem 5.7.

Proof of Theorem 5.7. For all x ∈ X , we first observe that

S̃(f)(x) =

{∑
k∈Z

∑
τ∈Ik

N(k,τ)∑
v=1

∫
d(x,y)<2−k

|Dk(f)(y)|2χQk,vτ (x)
dµ(y)

V2−k(x)

}1/2

.
{∑
k∈Z

∑
τ∈Ik

N(k,τ)∑
v=1

[
sup

z∈B(zk,vτ ,c̃2−k)

|Dk(f)(z)|
]2
χQk,vτ (x)

}1/2

=: I(x),
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where c̃ is a positive constant such that B(x, 2−k) ⊂ B(zk,vτ , c̃ 2−k) for every x ∈ Qk,vτ .
By an argument similar to that used in the proof of [34, (5.18)], we conclude that

I(x) .
{∑
k∈Z

[∑
k̃∈Z

2−|k−k̃|ε
′
2[(k∧k̃)−k′]n(1−1/r)

×
{
M
(∑
τ̃∈I

k̃

N(k̃,ṽ)∑
ṽ=1

|Dk̃(f)(yk̃,ṽτ̃ )|rχ
Qk̃,ṽ
τ̃

)
(x)
}1/r]2}1/2

,

where r ∈ (n/[n+ε′1], p−) and yk̃,ṽτ̃ is an arbitrary point in Qk̃,ṽτ̃ . From this, the Minkowski
inequality and Theorem 2.7, we deduce that

‖S̃(f)‖Lp(·)(X ) .
∥∥∥{∑

k̃∈Z

[
M
(∑
τ̃∈I

k̃

N(k̃,ṽ)∑
ṽ=1

|Dk̃(f)(yk̃,ṽτ̃ )|rχ
Qk̃,ṽ
τ̃

)]2/r}1/2∥∥∥
Lp(·)(X )

.
∥∥∥{∑

k̃∈Z

∑
τ̃∈I

k̃

N(k̃,ṽ)∑
ṽ=1

|Dk̃(f)(yk̃,ṽτ̃ )|2χ
Qk̃,ṽ
τ̃

}1/2∥∥∥
Lp(·)(X )

.

Thus, by the fact that yk̃,ṽτ̃ is an arbitrary point in Qk̃,ṽτ̃ , we obtain

‖S̃(f)‖Lp(·)(X ) .
∥∥∥{∑

k̃∈Z

∑
τ̃∈I

k̃

N(k̃,ṽ)∑
ṽ=1

[
inf

z∈Qk̃,ṽ
τ̃

|Dk̃(f)(z)|
]2
χ
Qk̃,ṽ
τ̃

}1/2∥∥∥
Lp(·)(X )

.
∥∥∥{∑

k∈Z
|Dk(f)|2

}1/2∥∥∥
Lp(·)(X )

∼ ‖g(f)‖
Lp(·)(X)

,

which, together with Corollary 5.13, implies that

‖f‖Hp(·)(X ) . ‖g(f)‖Lp(·)(X ).

Conversely, to prove
‖g(f)‖Lp(·)(X ) . ‖f‖Hp(·)(X ),

we only need to use an argument similar to that used in the proof of [34, Theorem 5.13],
the details being omitted. The proof of Theorem 5.7 is complete.

6. Applications

This section is devoted to giving some applications of the Hardy spaces H∗,p(·)(X ). More
precisely, in Subsection 6.1, we establish Olsen’s inequality for fractional integral opera-
tors on H∗,p(·)(X ). Moreover, we consider the boundedness of singular integral operators
on H∗,p(·)(X ) in Subsection 6.2, and that of quasi-Banach valued sublinear operators in
Subsection 6.3.

6.1. Fractional integral operators and Olsen’s inequality. Let {Sk}k∈Z be an
(ε1, ε2, ε3)-AOTI as in Definition 3.7, and Dk := Sk − Sk−1 for each k ∈ Z. In this
subsection, we are concerned with the fractional integral operator Iα with α ∈ (0, n),
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which was originally introduced in [83], and given by setting, for all f ∈ (Gε0(β, γ))′ with
ε, β, γ as in Definition 3.3 and x ∈ X ,

Iα(f)(x) :=
∑
k∈Z

[µ(B(x, 2−k))]αDk(f)(x). (6.1)

Lemma 6.1. Let p(·) ∈ C log
(n/(n+1),∞)(X ) and a be a (p(·),∞)-atom supported on B(z, 2−l)

for some z ∈ X and l ∈ Z. Then there exists a positive constant C such that, for all k ∈ Z
and x ∈ X ,

|Dk(a)(x)| ≤ C2ε1(k−(l∨k)) 1

‖χB(z,2−l)‖Lp(·)(X )

χB(z,2−(l∧k)+2)(x). (6.2)

Proof. When k ≥ l, (6.2) reads, for all x ∈ X ,

|Dk(a)(x)| ≤ C 1

‖χB(z,2−l)‖Lp(·)(X )

χB(z,2−l+2)(x).

From the fact that for each k ∈ Z, suppSk(x, ·) ⊂ B(x, 2−k), we deduce that, for each
k ∈ Z, suppDk(a) ⊂ B(z, 2−(l∧k)+2). Thus, (6.2) is a consequence of the definition of
(p(·),∞)-atoms.

Let us suppose instead that k < l and x ∈ B(z, 2−k+2). Then (6.2) reads

|Dk(a)(x)| ≤ C 2ε1(k−l)

‖χB(z,2−l)‖Lp(·)(X )

χB(z,2−l+2)(x).

The vanishing moment condition on a yields

Dk(a)(x) =

∫
X

[Dk(x, y)−Dk(x, z)]a(y) dµ(y).

Observe that, when y ∈ B(z, 2−l),

2d(y, z) < 21−l ≤ 2−k + d(x, y).

Then we are in a position to use Definition 3.7(ii) to obtain

|Dk(x, y)−Dk(x, z)| .
[

d(y, z)

2−k + d(y, x)

]ε1[ 2−k

2−k + d(y, x)

]ε2 1

Vk(y) + Vk(x) + V (y, x)

.

[
d(y, z)

2−k + d(y, x)

]ε1 1

Vk(y)
∼ 2ε1(k−l) 1

Vk(y)
,

which, together with the fact that, when y ∈ B(z, 2−l), B(z, 2−l) ⊂ B(y, 2−k), implies
that (6.2) holds true in this case. This finishes the proof of Lemma 6.1.

As an immediate consequence of Lemma 6.1, we have the following corollary.

Corollary 6.2. Let p(·) ∈ C log
(n/(n+1),∞)(X ) and α ∈ (0, n). Then there exists a positive

constant C such that, for any (p(·),∞)-atom a supported on B(z, 2−l), with z ∈ X and
l ∈ Z, and for any x ∈ X ,

|Iα(a)(x)| ≤ C
∞∑

k=−∞

2ε1[k−(l∨k)][µ(B(z, 2−k))]α
1

‖χB(z,2−l)‖Lp(·)(X )

χB(z,2−(l∧k)+2)(x).
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Let 1 ≤ q ≤ u < ∞ be fixed. Recall that the Morrey space Mu
q (X ) is defined to be

the set of all g ∈ Lqloc(X ) for which

‖g‖Mu
q (X ) := sup

z∈X , r∈(0,∞)

[µ(B(z, r))]1/u−1/q‖g‖Lq(B(z,r)) <∞. (6.3)

Theorem 6.3 (Olsen’s inequality). Let p(·) ∈ C log
(n/(n+1),∞)(X ) and ε, ε1, ε2, ε3 be as in

Definition 3.7. Assume that the parameters α and q satisfy 0 < α < n, 1 ≤ q ≤ 1/α <∞,
q ∈ (p+,∞) and

ε1p > n. (6.4)

If g ∈M1/α
q (X ), then the operator

f ∈ Lq,0b (X ) 7→ gIα(f) ∈M0(X ),

where M0(X ) denotes the set of all measurable functions on X , extends to a bounded
linear operator Lg on H∗,p(·)(X ), and the operator norm of L satisfies the inequality

‖Lg‖H∗,p(·)(X )→Lp(·)(X ) ≤ C‖g‖M1/α
q (X )

,

where C is a positive constant independent of g.

Proof. Since by Lemma 4.23, Lq,0b (X ) is dense in H∗,p(·)(X ), we only need to prove

‖Lg(f)‖Lp(·)(X ) . ‖g‖M1/α
q (X )

‖f‖H∗,p(·)(X )

for all f ∈ Lq,0b (X ). Thanks to Theorem 4.24, f admits a finite atomic decomposition,
namely, there exist N ∈ N and {λj}Nj=1 ⊂ C and (p(·), q)-atoms {aj}Nj=1 such that, for
j ∈ {1, . . . , N}, aj is supported in B(xj , 2

−lj ) for some xj ∈ X and lj ∈ Z,

f =

N∑
j=1

λjaj

in (Gε0(β, γ))′ and
Ãp(·)({λj}Nj=1, {B(xj , 2

−lj )}Nj=1) . ‖f‖H∗,p(·)(X ).

By Corollary 6.2 and (2.2), we see that, for all x ∈ X ,

|g(x)Iα(f)(x)| .
N∑
j=1

|λj |
lj∑

k=−∞

2ε1(k−lj) [µ(B(xj , 2
−k))]α

‖χB(xj ,2
−lj )‖Lp(·)(X )

|g(x)|χB(xj ,2−k+2)(x)

+

N∑
j=1

|λj |
∞∑

k=lj+1

[µ(B(xj , 2
−k))]α

‖χB(xj ,2
−lj )‖Lp(·)(X )

|g(x)|χB(xj ,2
−lj+2)(x)

.
N∑
j=1

|λj |
lj∑

k=−∞

2ε1(k−lj) [µ(B(xj , 2
−k))]α

‖χB(xj ,2
−lj )‖Lp(·)(X )

|g(x)|χB(xj ,2−k+2)(x)

+

N∑
j=1

|λj |
∞∑

k=lj+1

2−(k−lj)ακ [µ(B(xj , 2
−lj ))]α

‖χB(xj ,2
−lj )‖Lp(·)(X )

|g(x)|χB(xj ,2
−lj+2)(x)

.
N∑
j=1

|λj |
lj∑

k=−∞

2ε1(k−lj) [µ(B(xj , 2
−k))]α

‖χB(xj ,2
−lj )‖Lp(·)(X )

|g(x)|χB(xj ,2−k+2)(x).
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Choose κ† > 0 so that κ†p > 1 and ε1 > nκ† by using (6.4). For all x ∈ X , let

Gj,k(x) :=
[µ(B(xj , 2

2−k))]α

‖g‖M1/α
q (X )

‖χB(xj ,2−k+2)‖Lp(·)(X )

|g(x)|χB(xj ,2−k+2)(x).

Then suppGj,k ⊂ B(xj , 2
−k+2) and

‖Gj,k‖Lq(X ) =
[µ(B(xj , 2

2−k))]α‖g‖Lq(B(xj ,2−k+2))

‖g‖M1/α
q (X )

‖χB(xj ,2−k+2)‖Lp(·)(X )

≤ [µ(B(xj , 2
2−k))]1/q

‖χB(xj ,2−k+2)‖Lp(·)(X )

.

Observe that, for all x ∈ X ,

|g(x)Iα(f)(x)| .
N∑
j=1

|λj |
lj∑

k=−∞

‖g‖M1/α
q (X )

‖χB(xj ,2−k+2)‖Lp(·)(X )

2ε1(k−lj)Gj,k(x)

‖χB(xj ,2
−lj )‖Lp(·)(X )

.

By Proposition 2.11 and Theorem 2.7, we conclude that

‖Lg(f)‖Lp(·)(X )

. ‖g‖M1/α
q (X )

∥∥∥∥{ N∑
j=1

lj∑
k=−∞

[
|λj |2ε1(k−lj)

‖χB(xj ,2
−lj )‖Lp(·)(X )

χB(xj ,22−k)

]p}1/p∥∥∥∥
Lp(·)(X )

. ‖g‖M1/α
q (X )

∥∥∥∥{ N∑
j=1

lj∑
k=−∞

|λj |p2p(ε1−nκ
†)(k−lj)

[‖χB(xj ,2
−lj )‖Lp(·)(X )]

p [M(χB(xj ,2
−lj ))]

κ†p

}1/p∥∥∥∥
Lp(·)(X )

. ‖g‖M1/α
q (X )

∥∥∥∥{ N∑
j=1

lj∑
k=−∞

|λj |p2p(ε1−nκ
†)(k−lj)

[‖χB(xj ,2
−lj )‖Lp(·)(X )]

pχB(xj ,2
−lj )

}1/p∥∥∥∥
Lp(·)(X )

. ‖g‖M1/α
q (X )

∥∥∥∥{ N∑
j=1

[
|λj |

‖χB(xj ,2
−lj )‖Lp(·)(X )

χB(xj ,2
−lj )

]p}1/p∥∥∥∥
Lp(·)(X )

. ‖g‖M1/α
q (X )

Ãp(·)({λj}Nj=1, {B(xj , 2
−lj )}Nj=1) . ‖g‖M1/α

q (X )
‖f‖H∗,p(·)(X ),

which completes the proof of Theorem 6.3.

In the following remark, we explain why Theorem 6.3 deserves its name and give an
example to which we can apply Theorem 6.3.

Remark 6.4. (i) Recall that the fractional integral operator Iα on Rn, with 0 < α < 1,
is defined by setting, for all suitable functions f on Rn and all x ∈ Rn,

Iαf(x) :=

∫
Rn

f(y)

|x− y|n−nα
dy.

Olsen’s inequality is an inequality of the form

‖gIαf‖Z ≤ C‖f‖X‖g‖Y ,

where X, Y , Z are suitable quasi-Banach spaces and C is a positive constant independent
of f and g. There exists an extensive literature on Olsen inequalities; see [17, 69–71, 73,
75–78] for theoretical aspects, and [24–26] for applications to PDEs.

(ii) The restriction (6.4) forces n < 1. We point out that there exists an RD-space such
that both n and κ can be taken to be log3 2 < 1. Indeed, let K be the Cantor set on [0, 1]
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and µ := Hlog3 2, where Hlog3 2 denotes the log3 2-dimensional Hausdorff measure. Let

X :=

∞⋃
l=0

{3lx : x ∈ K} ⊂ R.

Then we claim that (X, | · |, µ) is an RD-space with n = κ = log3 2. More precisely,
µ(X∩I) ∼ |I|log3 2 for any interval I intersecting X, where the implicit positive constants
are independent of I. Indeed, let I be a compact interval contained in [0, 3l0 ] for some
l0 ∈ Z+. Then, by noticing that x ∈ X if and only if 3x ∈ X, we have

µ(X ∩ I) = 2l0µ(K ∩ [3−l0I]) ∼ 2l0 |3−l0I|log3 2 = |I|log3 2, (6.5)

where the implicit positive constants are independent of I.
To show the equivalence in (6.5), we first observe that

µ(K ∩ [3−l0I]) ≤ |3−l0I|log3 2

from the definition of µ. To see the opposite inequality, we let J := 3−lI. We may assume
that m := − log3 |J | is an integer and infx∈J x = 0. Then

K =

2m⋃
k=1

(K ∩ Jk),

where each Jk is a translate of J . Thus,
µ(K ∩ [3−l0I]) = µ(K ∩ J) = 2−mµ(K) = |J |log3 2µ(K) = |3−l0I|log3 2µ(K).

Since µ(K) is known to be non-zero (see [18]), we obtain the desired claim.
(iii) Let f belong to L∞(X ) with bounded support. Since, for all k ∈ Z and x ∈ X ,

|Sk(f)(x)| . ‖f‖L∞(X )
µ(supp f)

V2−k(x)
,

it follows that Iα given by (6.1) has the following expression:

Iα(f)(x) = lim
L1→∞

∞∑
k=−L1

[µ(B(x, 2−k))]αDk(f)(x)

= lim
L1→∞

{
lim

L2→∞

L2∑
k=−L1

[µ(B(x, 2−k))]αDk(f)(x)
}

= lim
L1→∞

{
lim

L2→∞

L2∑
k=−L1

[µ(B(x, 2−k))]α[Sk(f)(x)− Sk−1(f)(x)]
}

= lim
L1→∞

lim
L2→∞

{
[µ(B(x, 2L1))]αS−L1(f)(x)− [µ(B(x, 2−L2))]αSL2−1(f)(x)

}
+ lim
L1→∞

lim
L2→∞

L2∑
k=−L1+1

{
[µ(B(x, 2−k))]α − [µ(B(x, 2−k−1))]α

}
Sk(f)(x)

= lim
L1→∞

lim
L2→∞

L2∑
k=−L1+1

{
[µ(B(x, 2−k))]α − [µ(B(x, 2−k−1))]α

}
Sk(f)(x).

If C2 and κ in (2.2) satisfy C22κ < 1, then, in view of (3.3), we find that, for all f ∈ L∞(X )
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with f ≥ 0 µ-a.e. and all x ∈ X ,

Iα(f)(x) &
∫
X

∞∑
l=−∞

χB(x,2−l)(y)

[µ(B(x, 2−l))]1−α
f(y) dµ(y) &

∫
X

f(y)

[µ(B(x, d(x, y)))]1−α
dµ(y),

where the implicit positive constant is independent of f and x. Therefore, the fractional
integral operator Iα is closely related to the fractional integral operator dealt with in [72].

6.2. Singular integral operators. In this subsection, we consider the boundedness of
singular integral operators on the spaceHp(·)(X ). To this end, we first recall the definition
of singular integral operators studied in [33, 55].

Recall that Cb(X ) denotes the space of all continuous functions on X with bounded
support. For η ∈ (0, 1], let

Cηb(X ) :=

{
f ∈ Cb(X ) : ‖f‖Cηb (X ) := sup

x,y∈X
x 6=y

|f(x)− f(y)|
[d(x, y)]η

<∞
}
.

Assume that T is a bounded linear operator on L2(X ). The operator is said to have a
distributional kernel K, which is locally integrable away from the diagonal of X × X , if
for any f, g ∈ Cηb(X ) with supp f ∩ supp g = ∅,

〈Tf, g〉 :=

∫
X×X

g(x)K(x, y)f(y) dµ(y) dµ(x). (6.6)

First, we have the following conclusion, which is of independent interest.

Proposition 6.5. Let ε1 ∈ (0, 1], p(·) ∈ C log
(n/(n+ε1),1](X ) and T be a bounded linear

operator on L2(X ) with distributional kernel K as in (6.6). Suppose that there exists a
positive constant C such that, for all x, y, y′ ∈ X with d(y, y′) ≤ d(x, y)/2 and x 6= y,

|K(x, y)−K(x, y′)| ≤ C [d(y, y′)]ε1

V (x, y)[d(x, y)]ε1
. (6.7)

Then there exists a positive constant C̃ such that, for all (p(·), 2)-atoms a,

‖Ta‖Lp(·)(X ) ≤ C̃.

Proof. Let a be a (p(·), 2)-atom supported on B0 := B(x0, r0) for some x0 ∈ X and
r0 ∈ (0,∞). Then we have

‖Ta‖Lp(·)(X ) . ‖χ2B0
Ta‖Lp(·)(X ) + ‖χX\(2B0)Ta‖Lp(·)(X ) =: I + II.

For I, by the boundedness of T on L2(X ), we see that

‖Ta‖L2(X ) . ‖a‖L2(X ) .
[µ(B0)]1/2

‖χB0‖Lp(·)(X )

,

which, together with Proposition 2.11, implies that I . 1. For II, from (6.7) and the
vanishing moment condition on a, we deduce that, for all x ∈ X \ (2B0),

|Ta(x)| . 1

‖χB0
‖Lp(·)(X )

rε10 µ(B0)

[d(x, x0)]ε1V (x, x0)
.
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By this and (2.2), we further find that, for all x ∈ X \ (2B0),

|Ta(x)| . 1

‖χB0‖Lp(·)(X )

[
µ(B0)

µ(B(x, d(x, x0)))

]ε1/n+1

.
[M(χB0

)(x)]ε1/n+1

‖χB0‖Lp(·)(X )

,

which, combined with Theorem 2.7, implies that II . 1. This finishes the proof of Propo-
sition 6.5.

Let T be a bounded linear operator on L2(X ). We say that T1 = 0 if T satisfies, for
all g ∈ Cηb(X ), ∫

X
T ∗g(x) dµ(x) = 0,

where T ∗ denotes the adjoint operator of T on L2(X ), and that T ∗1 = 0 if T satisfies,
for all h ∈ L2(X ) with bounded support and

∫
X h(x) dµ(x) = 0,∫

X
Th(x) dµ(x) = 0.

Theorem 6.6. Let ε1 ∈ (0, 1], p(·) ∈ C log
(n/(n+ε1),1](X ) and T be a bounded linear operator

on L2(X ) with distributional kernel K as in (6.6). Assume that there exists a positive
constant c such that the kernel K of T satisfies the following conditions:

(i) for all x, y ∈ X with x 6= y,

|K(x, y)| ≤ c/V (x, y);

(ii) for all x, y, y′ ∈ X with d(y, y′) ≤ d(x, y)/2 and x 6= y, (6.7) is satisfied;
(iii) for all x, x′, y ∈ X with d(x, x′) ≤ d(x, y)/2 and x 6= y,

|K(x′, y)−K(x, y)| ≤ c 1

V (x, y)

[
d(x, x′)

d(x, y)

]ε1
;

(iv) for all x, x′, y, y′ ∈ X with d(x, x′) ≤ d(x, y)/3 and d(y, y′) ≤ d(x, y)/3,

|[K(x, y)−K(x′, y)]− [K(x, y′)−K(x′, y′)]| ≤ c [d(x, x′)]ε1 [d(y, y′)]ε1

V (x, y)[d(x, y)]2ε1
.

If T1 = 0 = T ∗1, then T extends to a bounded linear operator on Hp(·)(X ).

Proof. Let ε ∈ (0, ε1) and G̊b(β̃, γ̃) with β̃, γ̃ ∈ [ε, ε1) be the set of all functions in G̊(β̃, γ̃)

with bounded support, namely,

G̊b(β̃, γ̃) = G̊(β̃, γ̃) ∩ Cb(X ).

Then, from the proof of Theorem 4.3, we deduce that G̊b(β̃, γ̃) is dense in Hp(·)(X ) when
β̃, γ̃ ∈ [ε, ε1) and p− ∈ (n/[n+ ε1], 1].

Let f ∈ G̊b(β̃, γ̃). Since T1 = 0, it follows from [33, Lemma 2.9] that, for all g ∈
G̊ε0(β, γ) with β, γ ∈ (0, ε),

T ∗g ∈ G̊ε0(β, γ).

From this and Theorem 5.3, we further deduce that

〈Tf, g〉 = 〈f, T ∗g〉 =
∑
j∈N

λj〈aj , T ∗g〉 =
∑
j∈N

λj〈Taj , g〉,
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where {λj}j∈N ⊂ C and {aj}j∈N are (p(·),∞)-atoms supported on

{Bj}j∈N := {B(xj , rj) : xj ∈ X , rj ∈ (0,∞)}j∈N
satisfying f =

∑
j∈N λjaj in (G̊ε0(β, γ))′ and

Ãp(·)({λj}j∈N, {Bj}j∈N) . ‖f‖Hp(·)(X ). (6.8)

Let {Dt}t∈(0,∞) be an (ε1, ε2)-CRF in L2(X ) with ε2 ∈ (0,∞). Then Dt ∈ G̊ε0(β, γ) for
all t ∈ (0,∞), and hence

Dt(Tf) =
∑
j∈N

λjDt(Taj)

pointwise. From this, we obtain

‖S(Tf)‖Lp(·)(X ) .
∥∥∥∑
j∈N
|λj |S(Taj)χ2Bj

∥∥∥
Lp(·)(X )

+
∥∥∥∑
j∈N
|λj |S(Taj)χX\(2Bj)

∥∥∥
Lp(·)(X )

. (6.9)

From [33, Proposition 2.17] and the L2(X )-boundedness of T , we deduce that, for all
j ∈ N,

‖S(Taj)‖L2(X ) . ‖aj‖L2(X ) .
[µ(Bj)]

1/2

‖χBj‖Lp(·)(X )

,

which, together with Proposition 2.11 and (6.8), implies that∥∥∥∑
j∈N
|λj |S(Taj)χ2Bj

∥∥∥
Lp(·)(X )

.

∥∥∥∥∑
j∈N

|λj |χBj
‖χBj‖Lp(·)(X )

∥∥∥∥
Lp(·)(X )

. ‖f‖Hp(·)(X ). (6.10)

Meanwhile, by the proof of [33, Proposition 3.6], we know that, for all ε′1 ∈ (0, ε1), j ∈ N
and x ∈ X \ (2Bj),

S(Taj)(x) .
1

‖χBj‖Lp(·)(X )

r
ε′1
j µ(Bj)

[d(x, xj)]ε
′
1V (x, xj)

,

which, combined with (2.2), implies that

S(Taj)(x) .
1

‖χBj‖Lp(·)(X )

[
µ(Bj)

µ(B(x, d(x, xj)))

]ε′1/n+1

.
[M(χBj )(x)]ε

′
1/n+1

‖χBj‖Lp(·)(X )

.

From this and Theorem 2.7, we further conclude that∥∥∥∑
j∈N
|λj |S(Taj)χX\(2Bj)

∥∥∥
Lp(·)(X )

.

∥∥∥∥∑
j∈N
|λj |

[M(χBj )]
ε′1/n+1

‖χBj‖Lp(·)(X )

∥∥∥∥
Lp(·)(X )

.

∥∥∥∥∑
j∈N

|λj |χBj
‖χBj‖Lp(·)(X )

∥∥∥∥
Lp(·)(X )

. ‖f‖Hp(·)(X ), (6.11)

where we choose ε′1 ∈ (0, ε1) such that p− > n/(n+ ε′1).
Combining (6.9)–(6.11), we obtain

‖Tf‖Hp(·)(X ) ∼ ‖S(Tf)‖Lp(·)(X ) . ‖f‖Hp(·)(X ),

which implies that T is bounded on Hp(·)(X ). This finishes the proof of Theorem 6.6.
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Remark 6.7. When p(·) := p with a constant p ∈ (n/(n+ ε1), 1], Theorem 6.6 is just [33,
Proposition 3.6].

6.3. Quasi-Banach valued sublinear operators. Recall that a quasi-Banach space
B is a complete space endowed with a quasi-norm ‖ · ‖B which is non-negative, non-
degenerate (namely, ‖f‖B = 0 if and only if f = 0), homogeneous, and obeys the quasi-
triangle inequality, namely, there exists a constant K ∈ [1,∞) such that, for all f, g ∈ B,

‖f + g‖B ≤ K(‖f‖B + ‖g‖B);

see, for example, [85, 86]. It is easy to see that, when p(·) ∈ C log
(0,∞)(X ), the variable

exponent Lebesgue space Lp(·)(X ) and the variable exponent Hardy space H∗,p(·)(X ) are
quasi-Banach spaces.

Definition 6.8.

(i) Let γ ∈ (0, 1]. A quasi-Banach space Bγ with quasi-norm ‖ · ‖Bγ is called a γ-quasi-
Banach space if there exists a constant K1 ∈ [1,∞) such that, for all m ∈ N and
{fj}mj=1 ⊂ Bγ , ∥∥∥ m∑

j=1

fj

∥∥∥γ
Bγ
≤ K1

m∑
j=1

‖fj‖γBγ .

(ii) For any given γ-quasi-Banach space Bγ with γ ∈ (0, 1] and linear space Y, an operator
T from Y to Bγ is said to be Bγ-sublinear if there exists a positive constant K2 such
that, for all m ∈ N, {λj}mj=1 ⊂ C and {fj}mj=1 ⊂ Y,∥∥∥T( m∑

j=1

λjfj

)∥∥∥γ
Bγ
≤ K2

m∑
j=1

|λj |γ‖T (fj)‖γBγ (6.12)

and, for all f and g in Y,

‖T (f)− T (g)‖Bγ ≤ K2‖T (f − g)‖Bγ . (6.13)

Remark 6.9. (i) The γ-quasi-Banach spaces as in Definition 6.8 have been investigated
in [45]; in the case of K1 = 1, they were introduced in [85] (see also [5, 86]).

(ii) Notice that any Banach space is a 1-quasi-Banach space, and the quasi-Banach
spaces `q, Lq(X ) and Hq(X ) with q ∈ (0, 1) are typical q-quasi-Banach spaces. Moreover,
by the Aoki–Rolewicz theorem (see [3, 65]), any quasi-Banach space is a γ-quasi-Banach
space for some γ ∈ (0, 1).

Theorem 6.10. Let p(·) ∈ C log
(n/(n+1),1](X ), γ ∈ [p+, 1] and Bγ be a γ-quasi-Banach

space. Assume that one of the following is satisfied:

(i) q ∈ (1,∞) and T : H
p(·),q
fin (X )→ Bγ is a Bγ-sublinear operator such that

A1 := sup{‖Ta‖Bγ : a is a (p(·), q)-atom} <∞;

(ii) T : H
p(·),∞
fin (X ) ∩ C(X )→ Bγ is a Bγ-sublinear operator such that

A2 := sup{‖Ta‖Bγ : a is a continuous (p(·),∞)-atom} <∞.

Then T uniquely extends to a bounded Bγ-sublinear operator from H∗,p(X ) to Bγ .
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Proof. Assume first that (i) holds true. Let f ∈ Hp(·),q
fin (X ). Then we have f =

∑N
j=1 λjaj ,

where N ∈ N, {λj}Nj=1 ⊂ C and {aj}Nj=1 are (p(·), q)-atoms satisfying

Ẽp(·)({λjaj}Nj=1) . ‖f‖H∗,p(·)(X ). (6.14)

From (6.14), (6.12), assumption (i) and Lemma 5.9, we deduce that

‖T (f)‖Bγ =
∥∥∥T( N∑

j=1

λjaj

)∥∥∥
Bγ

.
{ N∑
j=1

|λj |γ‖T (aj)‖γBγ
}1/γ

.
{ N∑
j=1

|λj |γ
}1/γ

. Ẽp(·)({λjaj}Nj=1) . ‖f‖H∗,p(·)(X ). (6.15)

Now, by the density of Hp(·),q
fin (X ) in H∗,p(·)(X ), together with a density argument,

we deduce that the desired conclusion holds true.
Finally, if assumption (ii) is satisfied, then, by the fact that Hp(·),∞

fin (X ) ∩ C(X ) is
dense in H∗,p(·)(X ) (see Proposition 4.26), we also obtain the desired conclusion in this
case. This finishes the proof of Theorem 6.10.

7. Duality of H∗,p(·)(X ) with p+ ∈ (0, 1]

In this section, we first introduce a kind of BMO spaces corresponding to a function
φ : X × (0,∞) → (0,∞) on X , denoted by BMOφ(X ). Then we prove that, when
p+ ∈ (0, 1], the dual space of H∗,p(·)(X ) is BMOφ(X ) for a special function φ.

We begin with the following definition.

Definition 7.1. For a function φ : X × (0,∞)→ (0,∞), the space BMOφ(X ) is defined
to be the set of all h ∈ L1

loc(X ) such that

‖h‖BMOφ(X ) := sup
x∈X , r∈(0,∞)

1

φ(x, r)

[∫
B(x,r)

∣∣∣∣h(y)−−
∫
B(x,r)

h

∣∣∣∣2 dµ(y)

]1/2

is finite, where, for all locally integrable functions f ,

−
∫
B(x,r)

f :=
1

µ(B(x, r))

∫
B(x,r)

f(z) dµ(z).

Theorem 7.2. Let p(·) ∈ C log
(n/(n+1),∞)(X ) and p+ ∈ (0, 1]. For all x ∈ X and r ∈ (0,∞),

define

φ(x, r) :=
‖χB(x,r)‖Lp(·)(X )

[µ(B(x, r))]1/2
.

(i) For each h ∈ BMOφ(X ), the mapping

Lh : f ∈ L2,0
b (X ) 7→

∫
X
h(x)f(x) dx (7.1)

extends to a bounded linear functional on H∗,p(·)(X ) such that

‖Lh‖(H∗,p(·)(X ))∗ ≤ ‖h‖BMOϕ(X ).
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(ii) Any bounded linear functional L on H∗,p(·)(X ) can be realized as above with some
function h ∈ BMOφ(X ) and

‖h‖BMOφ(X ) ≤ C‖L‖(H∗,p(·)(X ))∗

with C being a positive constant independent of L.

Proof. To prove (i), we first show that the functional Lh is well defined on all (p(·), 2)-
atoms a. Indeed, if supp a ⊂ B for some ball B ⊂ X , then, by the vanishing moment of
the (p(·), 2)-atom a and the Hölder inequality, we see that

|Lh(a)| =
∣∣∣∣∫
X
h(x)a(x) dµ(x)

∣∣∣∣ =

∣∣∣∣∫
X

[
h(x)−−

∫
B

h

]
a(x) dµ(x)

∣∣∣∣
≤ [µ(B)]−1/2‖χB‖Lp(·)(X )‖a‖L2(X )‖h‖BMOφ(X ) ≤ ‖h‖BMOφ(X ). (7.2)

Thus, the claim holds true. Moreover, Lh is well defined on L2,0
b (X ) by (7.2). Now, for

any f ∈ L2,0
b (X ), by Lemma 4.23, we have f =

∑N
j=1 λjaj almost everywhere on X ,

where N ∈ N, {λj}Nj=1 ⊂ C and {aj}Nj=1 are (p(·), 2)-atoms satisfying

Ẽp(·)({λjaj}Nj=1) . ‖f‖
H
p(·),2
fin (X )

.

From this and Lemmas 2.9 and 4.23, we deduce that∣∣∣∣∫
X
h(x)f(x) dµ(x)

∣∣∣∣ ≤ N∑
j=1

|λj |
∣∣∣∣∫
X
aj(x)h(x) dµ(x)

∣∣∣∣ ≤ ‖h‖BMOφ(X )

N∑
j=1

|λj |

≤ ‖h‖BMOφ(X )‖f‖Hp(·),2fin (X )
.

Using this and the fact that L2,0
b (X ) is dense in H∗,p(·)(X ) (see Lemma 4.23), we conclude

that Lh extends to a unique bounded linear functional on H∗,p(·)(X ) such that

‖Lh‖(H∗,p(·)(X ))∗ ≤ ‖h‖BMOϕ(X ),

which completes the proof of (i).
Let us now prove (ii). To this end, let L be a bounded linear functional on H∗,p(·)(X ).

Notice that, for any ball B(x, r) of X , with x ∈ X and r ∈ (0,∞), and f ∈ L2(B(x, r)),

[µ(B(x, r))]1/2

2‖f‖L2(B(x,r)‖χB(x,r)‖Lp(·)(X )

[
f −−

∫
B(x,r)

f

]
χB(x,r)

is a (p(·), 2)-atom. Then, by Theorem 4.3, the mapping

f ∈ L2(B(x, r)) 7→ L

([
f −−

∫
B(x,r)

f

]
χB(x,r)

)
is a bounded linear mapping on L2(B(x, r)). Thus, by the self-duality of L2(B(x, r)), we
obtain a function bB(x,r) ∈ L2(B(x, r)) such that, for all f ∈ L2(B(x, r)),

L

([
f −−

∫
B(x,r)

f

]
χB(x,r)

)
=

∫
B(x,r)

bB(x,r)(y)f(y) dµ(y) (7.3)

and

‖bB(x,r)‖L2(X ) ≤ ‖L‖(H∗,p(·)(X ))∗
2‖f‖L2(B(x,r)‖χB(x,r)‖Lp(·)(X )

[µ(B(x, r))]1/2
.
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By choosing f := bB(x,r) in (7.3), we see that

‖bB(x,r)‖2L2(B(x,r)) = L

([
bB(x,r) −−

∫
B(x,r)

bB(x,r)

]
χB(x,r)

)
. ‖L‖(H∗,p(·)(X ))∗φ(x, r)‖bB(x,r)‖L2(B(x,r)).

Thus,
‖bB(x,r)‖L2(B(x,r)) . φ(x, r)‖L‖(H∗,p(·)(X ))∗ . (7.4)

Let B(x, r) and B(x̃, r̃) be balls in X such that B(x, r) is contained in B(x̃, r̃), where
x, x̃ ∈ X and r, r̃ ∈ (0,∞). Then, by (7.3) with B(x, r) replaced by B(x̃, r̃) and f replaced
by fχB(x,r), we find that

L

([
fχB(x,r) −

1

µ(B(x̃, r̃))

∫
B(x,r)

f(y) dµ(y)

]
χB(x̃,r̃)

)
=

∫
B(x,r)

bB(x̃,r̃)(y)f(y) dµ(y).

From this and (7.3), we obtain∫
B(x,r)

bB(x̃,r̃)(y)f(y) dµ(y)−
∫
B(x,r)

bB(x,r)(y)f(y) dµ(y)

= L

([
χB(x,r)

µ(B(x, r))

∫
B(x,r)

f(y) dµ(y)− 1

µ(B(x̃, r̃))

∫
B(x,r)

f(y) dµ(y)

]
χB(x̃,r̃)

)
=

∫
B(x̃,r̃)

bB(x̃,r̃)(z)

[
χB(x,r)(z)−

∫
B(x,r)

f − 1

µ(B(x̃, r̃))

∫
B(x,r)

f(y) dµ(y)

]
dµ(z)

=

∫
B(x,r)

f(y)

[
−
∫
B(x,r)

bB(x̃,r̃) −−
∫
B(x̃,r̃)

bB(x̃,r̃)

]
dµ(y)

for all f ∈ L2(B(x, r)). It follows that

bB(x̃,r̃)(z) = bB(x,r)(z) +−
∫
B(x,r)

bB(x̃,r̃) −−
∫
B(x̃,r̃)

bB(x̃,r̃)

for µ-almost every z ∈ B(x, r). We let

cB(x,r),B(x̃,r̃) := −
∫
B(x,r)

bB(x̃,r̃) −−
∫
B(x̃,r̃)

bB(x̃,r̃).

Then
bB(x̃,r̃)(y) = bB(x,r)(y) + cB(x,r),B(x̃,r̃) (7.5)

for µ-almost every y ∈ B(x, r) if B(x, r) is contained in B(x̃, r̃).
In particular, we can define, for all y ∈ X ,

h(y) := bB(x1,R)(y)− cB(x1,1),B(x1,R)

as long as max{1, d(x1, y)} < R despite the ambiguity of such R. Indeed, when R̃ > R >

max{1, d(x1, y)}, for almost every y ∈ B(x1, 1),

bB(x1,R̃)(y) = bB(x1,1)(y) + cB(x1,1),B(x1,R̃), bB(x1,R)(y) = bB(x1,1)(y) + cB(x1,1),B(x1,R)

and, for almost every y ∈ B(x1, R),

bB(x1,R̃)(y) = bB(x1,R)(y) + cB(x1,R),B(x1,R̃).
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Therefore, it follows that

cB(x1,1),B(x1,R) + cB(x1,R),B(x1,R̃) = cB(x1,1),B(x1,R̃),

and hence

bB(x1,R̃) − cB(x1,1),B(x1,R̃) − bB(x1,R) + cB(x1,1),B(x1,R)

= bB(x1,R̃) − bB(x1,R) − cB(x1,R),B(x1,R̃) = 0

almost everywhere on B(x1, R).
By (7.5) and the definition of h, we see that, for each ball B(x, r) of X and almost

every y ∈ B(x, r),

h(y)− bB(x,r)(y) = bB(x1,R)(y)− cB(x1,1),B(x1,R) − [bB(x1,R)(y)− cB(x,r),B(x1,R)]

= cB(x,r),B(x1,R) − cB(x1,1),B(x1,R),

where R is large enough. Thus, for each B(x, r), we know that h − bB(x,r) is just the
constant cB(x,r),B(x1,R) − cB(x1,1),B(x1,R), which depends on x and r.

Let us show that h realizes L, or more precisely, let us show that, for any (p(·), 2)-atom
a with support B,

L(a) =

∫
X
h(x)a(x) dµ(x).

To this end, choose R > 1 so that B ⊂ B(x1, R). Then, since the integral of a is zero, we
have ∫

X
a(x)h(x) dµ(x) =

∫
B

a(x)h(x) dµ(x) =

∫
B

a(x)bB(x) dµ(x). (7.6)

By (7.3), we find that∫
B

a(x)bB(x) dµ(x) = L

([
a− 1

µ(B)

∫
B

a(y) dµ(y)

]
χB

)
= L(a),

which, combined with (7.6), implies that

L(a) =

∫
X
h(x)a(x) dµ(x).

On the other hand, observe that, for each ball B ⊂ X , h − bB is constant almost
everywhere on B. Then, by (7.4), we conclude that, for every ball B := B(xB , rB) ⊂ X ,
with xB ∈ X and rB ∈ (0,∞),{∫

B

∣∣∣∣h(x)−−
∫
B

h

∣∣∣∣2 dµ(x)

}1/2

=

{∫
B

∣∣∣∣bB(x)−−
∫
B

bB

∣∣∣∣2 dµ(x)

}1/2

. ‖bB‖L2(X ) . φ(xB , rB)‖L‖(H∗,p(·)(X ))∗ ,

which further implies that

‖h‖BMOφ(X ) . ‖L‖(H∗,p(·)(X ))∗ .

This finishes the proof of Theorem 7.2.

Remark 7.3. It is still unclear how to obtain a description of (H∗,p(·)(X ))∗ when p+ > 1

and p− ≤ 1; see [38].
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