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A MODIFIED NONSYMMETRIC RATIONAL

BLOCK LANCZOS METHOD FOR MODEL REDUCTION IN

LARGE SCALE LTI DYNAMICAL SYSTEMS

Abstract. We propose an adaptive model reduction algorithm for com-
puting a reduced-order model of dynamical multi-input and multi-output
(MIMO) linear time independent (LTI) dynamical systems. The process is
based on multipoint moment matching. Moreover, we develop new simple
Lanczos-like equations for the rational block case, and we use them to de-
rive simple residual error expressions. An adaptive method for choosing the
interpolation points is also proposed. Finally, some numerical experiments
are reported to show the effectiveness of the new adaptive modified rational
block Lanczos (AMRBL) process when applied to stable linear LTI dynamical
systems.

1. Introduction. We consider the following multi-input and multi-
output (MIMO) linear time invariant (LTI) dynamical system:

(1)

{
ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t),

where x(t) ∈ Rn is the state vector and u(t), y(t) ∈ Rp are the input and
the output vectors of (1). The matrix A ∈ Rn×n is assumed to be large
and sparse, and B,CT ∈ Rn×p. A classical way for relating the input to
the output is to use the transfer function of (1). If we apply the Laplace
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transform to (1), we obtain{
sX(s) = AX(s) +BU(s),

Y (s) = CX(s),

where X(s), Y (s) and U(s) are the Laplace transforms of x(t), y(t) and u(t),
respectively. If we eliminate X(s) from the previous two equations, we obtain
Y (s) = H(s)U(s), where H(s) is called the transfer function of (1) and is
defined as

H(s) = C(sIn −A)−1B.

In many applications, the number of state variables is very high, and there-
fore it is not practical to use the full system for simulation or run-on-time
control. Then the aim of model reduction problems is to produce a lower-
dimensional system of the form

(2)

{
ẋm(t) = Amxm(t) +Bmu(t),

ym(t) = Cmxm(t),

where Am ∈ Rr×r and Bm, C
T
m ∈ Rr×p. The basic technique is to project

the system’s state space of dimension n onto a space of lower dimension
r � n, in such a way that the reduced-order model preserves the important
properties of the original system like stability and passivity. The output ym
should be close to the output y of the original system, which means that
the error should be small for an appropriate norm. The associated low-order
transfer function is denoted by

Hm(s) = Cm(sIr −Am)−1Bm.

There are two well known sets of model reduction methods for MIMO sys-
tems which are currently in use: SVD based methods and Krylov (moment
matching) based methods (see [2, 18, 23] and the references therein). One of
the most common approaches of the first category is the so-called balanced
model reduction, introduced by Moore [30]. For Krylov subspace methods,
the Lanczos process has been extensively used for SISO (the case p = 1)
and MIMO dynamical systems (see [7, 8, 13, 14, 25, 27] and the refer-
ences therein). Unfortunately, the standard version of the Lanczos algorithm
builds reduced order models that poorly approximate low frequency dynam-
ics. In order to address this problem, rational Krylov subspace methods have
recently been developed [4, 15, 16, 22, 21, 35, 33] for SISO and MIMO dy-
namical systems. The major problem in these methods is the selection of
interpolation points that have to guarantee a good convergence of the pro-
cess. Various methods for construction of good interpolation points have
been proposed [9, 6, 5, 22, 21, 28, 34].

The paper is organized as follows. We first review, in Section 2, some
moment matching techniques for model reduction. In Section 3, we propose a
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modified nonsymmetric rational block Lanczos process, and derive Lanczos-
like equations for the rational case. Simple residual error expressions are
developed in Section 4. In Section 5, we propose an adaptive choice for
selecting the shifts used in the adaptive rational block Lanczos algorithm.
The last section is devoted to some numerical experiments.

2. Moment matching based methods

2.1. The moment matching problem. Let H(s) = C(sIn − A)−1B
be the transfer function of a linear dynamical system as described in (1).
Expanding H(s) in a power series around a given point σ0 ∈ R, we get

H(s) = h0 + h1(s− σ0) + h2(s− σ0)2 + · · · ,
where the coefficients hj for j ≥ 0 are known as moments of the system
around σ0 and they are given by

hj(σ0) = C(σ0In −A)−(j+1)B.

These moments are the values of the transfer function of (1) and of its
derivatives at σ0, and they are also called shifted moments. The model
reduction using the moment matching method consists in finding a lower-
order transfer function Hm(s) having a power series expansion

Hm(s) = ĥ0 + ĥ1(s− σ0) + ĥ2(s− σ0)2 + · · ·
such that 2m moments are matched, i.e.,

(3) hj(σ0) = ĥj(σ0), j = 0, . . . , 2m− 1,

for an appropriate m � n. The resulting reduced-order model is known as
rational interpolation. If σ0 = 0, the moments satisfy hj = −CA−(j+1)B for
j ≥ 0, and the problem is known as Padé approximation [1, 35]. The Laurent
series of the transfer function H around σ0 =∞ is

H(s) =

∞∑
i=0

his
−i,

where hi = CAiB for i ≥ 0 are called the Markov parameters and the corre-
sponding problem is known as a partial realization [20]. We can also generate
a reduced-order model using multipoint Padé approximation or multipoint
rational interpolation [10, 21, 36]. By multipoint rational interpolation, we
mean that the reduced system matches the moments of the original system
at multiple interpolation points.

Let Vm,Wm ∈ Rn×mp. Then the reduced-order system (2) can be con-
structed by applying the oblique projector Π = VmWT

m to (1) and obtaining
lower-dimensional matrices

(4) Am = WT
mAVm, Bm = WT

mB, Cm = CVm.
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A careful selection of Vm and Wm as bases of certain Krylov subspaces
results in moment matching. Let σ ∈ R and m ∈ Z>0. Then the block
Krylov subspace Km(A,B, σ) is given by

Km(A,B, σ) =

{
Range{(A− σIn)−1B, . . . , (A− σIn)−mB} if σ 6=∞,

Range{B,AB,A2B, . . . , Am−1B} if σ =∞.

These are subspaces of Rn generated by the columns of the matrices ap-
pearing in the expressions of Km(A,B, σ). The block Krylov subspaces cor-
responding to σ = ∞ were widely used in many topics of linear algebra
and applications to control theory and other engineering problems. Differ-
ent algorithms such as block Arnoldi or block Lanczos were proposed to get
orthonormal bases for these block subspaces. In this paper, we focus on the
block Lanczos process [3, 7, 19, 12, 31] and give an extension to the rational
case.

2.2. The standard block Lanczos algorithm. Let V and W be
two initial blocs of Rn×p. Then the nonsymmetric block Lanczos algorithm
applied to the pairs (A, V,∞) and (AT ,W,∞) generates two sequences of
biorthonormal n× p matrices {Vi} and {Wj}, such that

Km(A, V,∞) = Range([V1, . . . , Vm]),

Km(AT ,W,∞) = Range([W1, . . . ,Wm]).

The matrices Vi and Wj that are generated by the block Lanczos algorithm
satisfy the biorthogonality condition

(5)

{
W T
j Vi = 0p if i 6= j,

W T
j Vi = Ip if i = j.

The classical versions of the block Lanczos process are generally instable
numerically. In [3], a more stable version of the nonsymmetric block Lanczos
algorithm was proposed. This algorithm, named Adaptive Block Lanczos
(ABLE), is summarized as follows.

Algorithm 1. The nonsymmetric block Lanczos algorithm

Inputs: A ∈ Rn×n, V,W ∈ Rn×p and m ∈ R
Initialize: V0 = W0 = 0p and C1 = B1 = 0p

for j = 1, . . . ,m
Sj = AVj and Rj = ATWj ;
Aj = WT

j Sj , Bj = WT
j−1Sj and CT

j = V T
j−1Rj ;

Sj = Sj − VjAj − Vj−1Bj and Rj = Rj −WjA
T
j −Wj−1C

T
j ;

Compute the QR decomposition Sj = Vj+1C
T
j+1 and Rj = Wj+1B

T
j+1;

Compute the SVD method WT
j+1Vj+1 = PjDjQ

T
j ;

Vj+1 = Vj+1QjD
−1/2
j and Wj+1 = Wj+1PjD

−1/2
j ;

Bj+1 = D
1/2
j QT

j Bj+1 and Cj+1 = D
1/2
j PT

j Cj+1

end.
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Setting Vm = [V1, . . . , Vm] and Wm = [W1, . . . ,Wm], we have the block
Lanczos relations

AVm = VmAm + Vm+1Bm+1E
T
m,

ATWm = WmA
T
m +Wm+1C

T
m+1E

T
m,

where Em is last mp×p block of the identity matrix Imp and Tm is the block
tridiagonal matrix defined by

Tm =


A1 B2

C2 A2

Bm

Cm Am

 .

In the next section, we propose a new version of the rational block Lanczos
method of [4] and give new simple block Lanczos like relations.

3. The modified rational block Lanczos method

3.1. The modified rational block Lanczos algorithm. The ratio-
nal block Lanczos procedure is an algorithm for constructing bi-orthonormal
bases of the union of Krylov subspaces [4]. Let Vm,Wm ∈ Rn×mp be the

bases of such subspaces and let Σ = {σ1, . . . , σK} and Σ̃ = {σ̃1, . . . , σ̃K}
be two sets of interpolation points, with multiplicities m1, . . . ,mK and m̃1,
. . . , m̃K , respectively. The column vectors of the matrices Vm and Wm are
determined from the K block Krylov subspaces Kmi(A,B, σi) and
Km̃i

(AT , CT , σ̃i), respectively.

The modified rational block Lanczos algorithm can be used to generate
Vmi ∈ Rn×mi and Wm̃i

∈ Rn×m̃i whose column-spaces span the block Krylov
subspaces Kmi(A,B, σi) and Km̃i

(AT , CT , σ̃i), respectively. From each of
these subspaces, the mi and m̃i column vectors are used to generate the
matrices Vm and Wm, respectively, such that

Vm = [Vm1 , . . . ,VmK ] and Wm = [Wm̃1
, . . . ,Wm̃K

],

where Vm,Wm ∈ Rn×mp, m =
∑K

i=1mi =
∑K

i=1 m̃i.

The application of the oblique projector Π = VmWT
m to the original

system (1) then yields a reduced order system as in (2).

The following theorem is presented in [21] for the single-input and single-
output (SISO) system, and is extended to the multiple-input and multiple-
output (MIMO) case in [17]. It shows how we can construct biorthogonal
bases Vm and Wm of the rational Krylov susbspaces so that the multi-
point rational interpolation problem is solved, i.e., the reduced-order model
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interpolates the original transfer function H(s) and its derivatives at given
interpolation frequencies.

Theorem 1. Let Σ = {σ1, . . . , σK} and Σ̃ = {σ̃1, . . . , σ̃K} be two sets
of interpolation points, with multiplicities m1, . . . ,mK and m̃1, . . . , m̃K , re-
spectively. Assume that Vm,Wm ∈ Rn×mp satisfy

K⋃
k=1

Kmk
(A,B, σk) ⊆ Range(Vm),

K⋃
k=1

Km̃k
(AT , CT , σ̃k) ⊆ Range(Wm),

where
∑K

k=1mk =
∑K

k=1 m̃k = m, and (A−σIn)−1 exists for all σ ∈ Σ∪ Σ̃.

• If σk = σ̃k, then Hm(s) matches the first mk + m̃k moments of H(s)
at σk.
• If σk 6= σ̃k, then Hm(s) matches the first mk moment of H(s) at σk

and the first m̃k moments of H(s) at σ̃k, respectively.

The modified rational block Lanczos process constructs two biorthonor-
mal bases and is summarized in Algorithm 2. It is a generalization of the
one given in [15] to the block case. For simplicity of presentation we assume
that mk = m̃k, and also that σi 6= σj and σ̃i 6= σ̃j for i 6= j.

Algorithm 2. The modified rational block Lanczos algorithm

Input: Σ = {σ1, . . . , σK}, Σ̃ = {σ̃1, . . . , σ̃K}, A, B, C and mk = m̃k

Initialize: Vm = [ ],Wm = [ ] and i = 0

for k = 1, . . . ,K
if σk =∞ then Si+1 = B else Si+1 = (A− σkIn)−1B end
if σ̃k =∞ then Ri+1 = CT else Ri+1 = (A− σ̃kIn)−TCT end
Si+1 = Si+1 − VmWT

mSi+1; Ri+1 = Ri+1 −WmVT
mRi+1;

Si+1 = Vi+1Hi+1,i; Ri+1 = Wi+1Gi+1,i (QR factorization);
WT

i+1Vi+1 = PiDiQ
T
i (Singular Value Decomposition);

Vi+1 = Vi+1QiD
−1/2
i ; Wi+1 = Wi+1PiD

−1/2
i ;

Vm = [Vm, Vi+1]; Wm = [Wm,Wi+1]; i = i+ 1
for j = 1, . . . ,mk − 1

if σk =∞ then Si+1 = AVi else Si+1 = (A− σkIn)−1Vi end
if σ̃k =∞ then Ri+1 = ATWi else Ri+1 = (A− σ̃kIn)−TWi end
Si+1 = Si+1 − VmWT

mSi+1;Ri+1 = Ri+1 −WmVT
mRi+1;

Si+1 = Vi+1Hi+1,i; Ri+1 = Wi+1Gi+1,i (QR factorization);
WT

i+1Vi+1 = PiDiQ
T
i (Singular Value Decomposition);

Vi+1 = Vi+1QiD
−1/2
i ; Wi+1 = Wi+1PiD

−1/2
i ;

Vm = [Vm, Vi+1]; Wm = [Wm,Wi+1]; i = i+ 1
end
if {k = K} then
Si+1 = Am∞B and Ri+1 = (Am̃∞)TCT ;
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Si+1 = Si+1 − VmWT
mSi+1;Ri+1 = Ri+1 −WmVT

mRi+1;
Si+1 = Vi+1Hi+1,i; Ri+1 = Wi+1Gi+1,i (QR factorization);
WT

i+1Vi+1 = PiDiQ
T
i (Singular Value Decomposition);

Vi+1 = Vi+1QiD
−1/2
i ; Wi+1 = Wi+1PiD

−1/2
i ;

Vm+1 = [Vm, Vm+1];Wm+1 = [Wm,Wm+1]
end

end.

3.2. The Lanczos-like equations for the rational block case.
In [4], the authors give relations between Vm,Wm and the matrix A in
the rational form for the block Lanczos algorithm. Here, we show that the
modified rational block Lanczos process proposed in the last section yields
Lanczos-like equations for the rational case. This result is given in [14, 15]
for the standard rational Lanczos algorithm and extended here to the block
case.

Theorem 2. Let Vm+1 and Wm+1 be the matrices generated by the
modified rational block Lanczos algorithm (Algorithm 2). Then

Range[Vm, Am∞B] ⊆ Range{Vm+1},
Range[Wm, (A

m̃∞)TCT ] ⊆ Range{Wm+1},
WT
m+1Vm+1 = Im+1,

where m∞ and m̃∞ are the multiplicities of ∞ in Σ and Σ̃, respectively.
Moreover, we have the Lanczos-like relations

AVm = VmAm + Vm+1Pm+1,(6)

B = VmBm + Vm+1bm,(7)

ATWm = WmA
T
m +Wm+1Qm+1,(8)

CT = WmC
T
m +Wm+1c

T
m,(9)

where bm = W T
m+1B, cm = CVm+1, Pm+1 = W T

m+1AVm and Qm+1 =

V T
m+1A

TWm. Furthermore, bm = 0 if m∞ > 0, and cm = 0 if m̃∞ > 0.

Proof. We first prove the result for m∞ = 0. Let Vm be as in Theorem 2.
We extend Vm to Vm+1 = [Vm, Vm+1] such that

Range[Vm, B] ⊆ Range{Vm+1}
by biorthogonalizing B against all previous columns of Wm with the Lanczos
algorithm. Then

Range{(A− σ1In)−1B} ⊂ Range{V1},(10)

Range{(A− σkIn)−(i−1)B} ⊂ Range{Vj−1},
Range{(A− σkIn)−iB} ⊂ Range{Vj},(11)

Range{B} ⊂ Range{Vm+1},
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where Vm = [V1, . . . , Vm] ∈ Rn×mp, m =
∑K

i=1mi and Vj is the matrix
constructed at the kth interpolation point and for the ith multiplicity, i.e.,
j =

∑k−1
l=1 ml+ i. We start by proving the theorem for the first block column

of Vm. Multiply (10) by A− σ1In from the left and rearrange to get

Range{AV1} ⊂ Range{V1, B}.
Then

Range{AV1} ⊂ Range{Vm+1}.
We now proceed by induction. We assume that the result holds for an arbi-
trary interpolation point σk of the Kσk Krylov subspace up to the (i− 1)th
multiplicity. We will prove the result for the next multiplicity. Therefore we
assume

(12) Range{AVj−1} ⊂ Range{Vm+1},
and we will prove that

Range{AVj} ⊂ Range{Vm+1}.
Multiply (11) from the left by A− σkIn and rearrange to get

Range{AVj} ⊂ Range{Vj , AVj−1},
which gives

Range{AVj} ⊂ Range{Vm+1}.
Combining the last relation with (12) gives

(13) Range{AVj} ⊂ Range{Vm+1}.
It is easy to see that the result in (13) holds for all columns in Vm, i.e.,

Range{AVm} ⊂ Range{Vm+1},
and so there exists a matrix Y ∈ R(m+1)p×mp such that

AVm = Vm+1Y.

Setting Y =
(
Ãm
Pm+1

)
, we obtain

AVm = Vm+1

(
Ãm

Pm+1

)
.

Using the biorthogonality between Wm+1 and Vm+1 gives Ãm = Am =
WT
mAVm and Pm+1 = W T

m+1AVm. Therefore

AVm = VmAm + Vm+1Pm+1.

Similarly, to prove (7) we proceed as follows: As Range{B}⊂Range{Vm+1},
there exists a matrix Z ∈ R(m+1)p×p such that

(14) B = Vm+1Z.
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Setting Z =
(
B̃m
bm

)
and multiplying (14) by WT

m+1 from the left, we get

(15) WT
m+1B =

(
B̃m

bm

)
.

Then B̃m = Bm = WT
mB, bm = W T

m+1B and consequently

B = VmBm + Vm+1bm.

Assume now that m∞ > 0. The matrix Vm satisfies

Range[B AB . . . Ap−1B Vm−p] ⊂ Range{Vm}

for p < m. Since B is already in the range of Vm, it is easy to see that (6)
will be satisfied if

(16) Range{AV1, . . . , AVp} ⊂ Range{Vm+1}.

This can be shown by setting Vm+1 = [Vm, Vm+1]. Then

Range[Vm, ApB] ⊂ Range{Vm+1} and WT
m+1Vm+1 = Im+1,

which is obtained by biorthogonalizing ApB against all the previous columns
of Wm. It follows that (16) holds, since by construction we have

(17) Range{AkB} ⊂
{

Range{V1, . . . , Vk+1} for 0 < k < p,

Range{V1, . . . , Vm+1} for k = p,

which completes the proof of (6) and (7).

To prove the last part, note that if m∞ > 0 then B ∈ Range{Vm}, from
which it follows that bm = 0.

In a similar way, (8) and (9) can be shown.

4. Error estimations and residual error expressions. The compu-
tation of the norm of the error

(18) ε(s) = H(s)−Hm(s)

is important to measure the accuracy of the resulting reduced-order model.
Unfortunately, the exact error ε(s) is not available during the process, be-
cause the high dimension of the original system yields the computation
of H(s) difficult. To remedy this, various approaches have been explored.
In [21], a method was proposed of computing the modeling error in terms of
two residual vectors in the case of single-input and single-output systems.

These results are extended here to the multi-input and multi-output case.
Let

(19)

{
RB(s) = B − (sIn −A)VmX̃B(s),

RC(s) = CT − (sIn −A)TWmX̃C(s)
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be the residual expressions where X̃B(s) and X̃C(s) are the solutions of the
multiple linear systems{

(sImp −Am)X̃B(s) = Bm,

(sImp −Am)T X̃C(s) = CTm,

and satisfy the Petrov–Galerkin condition{
RB(s) ⊥ Range(W1, . . . ,Wm),

RC(s) ⊥ Range(V1, . . . , Vm),

which means that WT
mRB(s) = VTmRC(s) = 0. Then we can state the fol-

lowing theorem.

Theorem 3. The error between the frequency responses of the original
and reduced-order systems is given by

(20) ε(s) = RTC(s)(sIn −A)−1RB(s).

The proof is similar to the one given in [21] for SISO dynamical sys-
tems. In [15] the authors developed simple Lanczos-like equations for the
standard rational algorithm and used them to derive simple residual errors
expressions. Such results for the rational block case are given in the next
subsection.

4.1. Simplified Lanczos residual errors in the rational block
Lanczos. Using the results of Theorem 2, we first give a new expression of
the residuals RB(s) and RC(s). In fact, from (19) we get

RB(s) = B − (sI −A)Vm(sImp −Am)−1Bm.

= B − Vm(sImp −Am)(sImp −Am)−1Bm

+ Vm+1Pm+1(sImp −Am)−1Bm,

= Vm+1

(
Pm+1(sImp −Am)−1Bm + bm

)
,

= Vm+1 R̃B(s),

where R̃B(s) = Pm+1(sImp − Am)−1Bm + bm is the frequency-dependent
term of the residual error RB(s).

In a similar way, we can obtain the relations

RC(s) = CT − (sI −A)TWm(sImp −Am)−TCTm

= Wm+1R̃C(s),

where R̃C(s) = Qm+1(sImp − Am)−TCTm + cTm is the frequency-dependent
term of the residual error RC(s).

Then the error expression in (20) becomes

(21) εm(s) = R̃C(s)T C̃(sIn −A)−1B̃R̃B(s) = R̃C(s)T H̃(s)R̃B(s).
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The transfer function H̃(s) = C̃(sIn − A)−1B̃ contains terms related to
the original system, which makes the computation of ‖R̃TCH̃R̃B‖∞ expen-

sive. Therefore, instead of using H̃(s), we can use an approximation of H̃(s).

Table 1. Various estimations of the error

ε̂m(s) = R̃B(s)

ε̂m(s) = R̃C(s)T

ε̂m(s) = H̃m(s)R̃B(s)

ε̂m(s) = H̃m(s)

ε̂m(s) = R̃T
C(s)H̃m(s)

ε̂m(s) = R̃T
C(s)H̃m(s)R̃B(s)

Various possible approximations are listed in Table 1. The simple ones
are the first two for which the computations require small work as compared
to the other choices. In the last section, we will give some numerical tests
comparing these approximations.

5. An adaptive modified rational block Lanczos algorithm. Mo-
del-order reduction using multipoint rational interpolation generally gives a
more accurate reduced-order model than interpolation around a single point.
Unfortunately, the selection of interpolation points is not an automated
process and it requires an appropriate choice of a more accurate rational
Krylov subspace. In [5, 24] the iterative rational Krylov algorithm (IRKA)
has been proposed in the context of H2-optimal model-order reduction by
using a specific way to choose the interpolation points σi, i = 1, . . . ,m.
Starting from an initial set of interpolation points, a reduced-order system
is determined and a new set of interpolation points is chosen which are the
Ritz values −λi(Am), i = 1, . . . ,m, i.e., λi(Am) are the eigenvalues of Am.
The process continues until the Ritz values from consecutive reduced-order
models stabilize.

In contrast to the IRKA method, the authors of [22] proposed an adap-
tive method for choosing the interpolation points. This approach is based
on the residual expression derived for the rational Lanczos algorithm such
that the interpolation points are selected where the residual error is large.
At each iteration of the algorithm, a residual function is computed and a
new interpolation point is selected so as to correspond to the maximum of
this residual function.

For more adaptive interpolation points methods, we refer the readers to
[6, 11, 26, 28, 34]. In [6] the authors proposed an adaptive computation of
the shifts in the case of the standard rational Arnoldi. This method is based
on approximation of an upper bound of the norm of the error between the
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original and the reduced transfer functions. Here, we use the same approach
for our rational block Lanczos algorithm. The following result is the key
ingredient of this adaptive method.

Proposition 1. Let Σm = {σ1, . . . , σm} denote a given set of interpola-
tion points and let Vm,Wm ∈ Rn×mp be the biorthogonal matrices computed
by the rational block Lanczos algorithm. Then

(22) ‖H(s)−Hm(s)‖2 ≤ ‖CP−1(s)‖2‖RB(s)‖2,
where RB(s) = B − P (s)VmP−1

m (s)Bm, P (s) = sI −A and Bm = WT
mB.

Proof. From the expressions of H(s) and Hm(s), we have

‖H(s)−Hm(s)‖2 = ‖C(sIn −A)−1B − Cm(sImp −Am)−1Bm‖2
= ‖CP (s)−1(B − P (s)VmPm(s)−1Bm)‖2
≤ ‖CP (s)−1‖2‖RB(s)‖2.

Now, we can approximate the upper bound by employing the reduced
order matrix triplet (Am, Bm, Cm); then ‖CP (s)−1‖ could be approximated
by ‖CmPm(s)−1‖, where Pm(s) = sImp −Am and Am = WT

mAVm.

Using the above approximation, the next shift σk+1 can be selected as

(23) σk+1 = arg max
s∈S

‖CmPm(s)−1‖2‖RB(s)‖2.

We notice here that another simple way of choosing the shifts is to consider
in (23) only the second part, which gives

(24) σk+1 = arg max
s∈S

‖RB(s)‖2;

however, for some problems, choosing the interpolation points by using
(23) gives more accurate results than those obtained with (24). The adap-
tive order rational block Lanczos algorithm for the computation of the
reduced-order system using the modified rational block Lanczos process
(Algorithm 2) and the adaptive approach given by (23) for selecting the
interpolation points can be summarized as follows.

Algorithm 3. The Adaptive Modified Rational Block Lanczos (AMRBL)
algorithm for model-order reduction

Input: The original system (A,B,C), the initial values σ1 = σ̃1, choose a tolerance tol and
set H0 = Ip

Output: The reduced system (Am, Bm, Cm)

Initialize: Σ = {σ1}; Σ̃ = {σ̃1}; m1 = m̃1 = 3; ε̂ = 1 and K = 1

While (ε̂ > tol) do

[Vm,Wm] = Modified rational Block Lanczos(A,B,C,Σ, Σ̃);

Compute the reduced model Am = WT
mAVm, Bm = WT

mB, Cm = CVm and the corre-
sponding transfer function Hm;
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Compute the next interpolation point σK+1 = σ̃K+1 using (23);

Σ = {Σ, σK+1}; Σ̃ = {Σ̃, σ̃K+1}; mK+1 = m̃K+1 = 3;
Compute the error estimation ε̂m = ‖Hm −Hm−1‖∞;
K = K + 1

end.

Remark. To choose the interpolation points, we can also use one of the
error approximation expressions listed in Table 1. In this case the interpo-
lation points are selected to be the frequencies σ ∈ Σ and σ̃ ∈ Σ̃ at which
one of the approximated error expressions achieves its maximum, i.e.,

Σ = {σ : |ε̂m(σ)| = ‖ε̂m‖∞} and Σ̃ = {σ̃ : |ε̂m(σ̃)| = ‖ε̂m‖∞}.

6. Numerical results. In this section, we give some experimental re-
sults to show the effectiveness of the adaptive modified rational block Lanc-
zos (AMRBL) algorithm for model reduction in large LTI dynamical systems.
All the experiments were performed on an Intel Core i5 computer at 1.3GHz
and 8Gb of RAM. The algorithms were coded in Matlab 8.0. In all the ex-
periments, we used tol = 10−5, and the while-loop in Algorithm 3 is stopped
when

ε̂m = ‖Hm −Hm−1‖∞ < tol

where
‖Hm −Hm−1‖∞ = sup

ω∈R
‖Hm(jω)−Hm−1(jω)‖2,

with ω ∈ [10−6, 106] and j =
√
−1.

In all the experiments, we considered the special case where the sequences
of shifts {σi}mi=1 and {σ̃i}mi=1 are equal. To compute the set of frequencies ω,
we used the function lp lgfrq from LYAPACK [32]. This function generates
a set of logarithmically distributed frequency sampling points.

Example 1. The first model used in this example is the modified FOM

model from [29]. We notice that originally, the FOM model is a SISO system
of order n = 1006, and we modified the inputs and outputs to get a MIMO
system. The matrices B and C are then given by

B = [b1, . . . , b6], CT = [c1, . . . , c6],

where bT1 = c1 = (10, . . . , 10︸ ︷︷ ︸
6

, 1, . . . , 1︸ ︷︷ ︸
1000

) and b2, . . . , b6, c2, . . . , c6 are random

column vectors. We applied AMRBL to get a reduced order model of dimension
m = 40.

In the second experiment, we considered the International Space Station
(ISS) model from [29]. This system is of dimension n = 270, with three
inputs and three outputs. The reduced second order system was of dimension
m = 45. The left plots of Figure 1 (modified FOM) and Figure 2 (ISS) show
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the frequency responses of the original system (circles) compared with the
frequency responses of its approximation (solid plot). The right plots of these
figures represent the exact error ‖H(jω)−Hm(jω)‖2 for different frequencies
ω ∈ [10−6, 106].
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Fig. 1. Left: ‖H(jω)‖2 and its approximations ‖Hm(jω)‖2. Right: the exact error
‖H(jω)−Hm(jω)‖2 for the modified FOM model with m = 40.
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ISS model: Error plot

Fig. 2. Left: ‖H(jω)‖2 and its approximations ‖Hm(jω)‖2. Right: the exact error
‖H(jω)−Hm(jω)‖2 for the ISS circuit model with m = 45.

Example 2. For this experiment, we considered the fdm [32] and the
Rail821 [29] models. We plotted the H∞ relative error norm

‖H −Hm‖∞
‖H‖∞

versus the number m of iterations. For the fdm model, the corresponding
matrix A is obtained from the centred finite difference discretization of the
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operator

LA(u) = ∆u− f(x, y)
∂u

∂x
− g(x, y)

∂u

∂y
− h(x, y)u

on the unit square [0, 1]× [0, 1] with homogeneous Dirichlet boundary con-
ditions with 

f(x, y) = log(x+ 2y),

g(x, y) = ex+y,

h(x, y) = x+ y.

The matrices B and C were random matrices with entries uniformly dis-
tributed in [0, 1]. The number of inner grid points in each direction was
n0 = 100, and the dimension of A was n = n2

0 = 10.000. For this experi-
ment, we used p = 6. The Rail821 model is a first-order system of dimension
n = 821 and p = 6. As can be seen from Figure 3, the relative error decreases
rapidly to zero.
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Fig. 3. Relative error norms. Left: the Rail821 model; right: the fdm model.

In Table 2 we report the results obtained with the different matrix tests.
In this table, we list the exact H∞-error norm, the corresponding number
of iterations (# Itrs.) and the cpu-time obtained.

Table 2. The exact H∞-error for different matrix tests

Matrices # Itrs. ‖H − Ĥ‖∞
Rail821 16 2.12× 10−11

Rail3113 26 5.32× 10−9

fdm, n = 10.000, p = 6 40 30.66× 10−9

Example 3. In the last example, we compare the exact H∞-error with
different approximations using the methods described in this paper for
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choosing the interpolation points (Table 1). For this experiment, the matrix
test was Rail821. As seen in Table 3, the results are similar when using the

Table 3. Results with the Rail821 model

Error expressions # Itrs. ‖H −Hm‖∞
Σ1 = {σ : ‖R̃B(σ)‖2 = ‖R̃B‖∞} 16 4.5× 10−10

Σ2 = {σ : ‖R̃T
C(σ)‖2 = ‖R̃T

C‖∞} 14 5.2× 10−11

Σ3 = {σ : ‖H̃m(σ)R̃B(σ)‖2 = ‖H̃mR̃B‖∞} 16 1.8× 10−11

Σ4 = {σ : ‖R̃T
C(σ)H̃m(σ)‖2 = ‖R̃T

CH̃m‖∞} 16 2.5× 10−10

Σ5 = {σ : ‖H̃m(σ)‖2 = ‖H̃m‖∞} 50 9.6× 10−10

Σ6 16 2.0× 10−11

Σ7 16 5.3× 10−11

different proposed approaches for selecting the shifts except for the set Σ5

for which one needs many iterations to get a good approximation. Therefore,
we can choose simple sets such as Σ1 or Σ2 to get good interpolation points
that could be used in the adaptive modified rational block Lanczos algorithm

with Σ6 = {σ : ‖R̃TC(σ)H̃m(σ)R̃B(σ)‖2 = ‖R̃TCH̃mR̃B‖∞} and Σ7 = {σ :
‖CmP−1

m (σ)‖2‖RB(σ)‖2 = ‖CmP−1
m ‖∞‖RB‖∞}.
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