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On the Brauer–Manin obstruction for
degree-four del Pezzo surfaces
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1. Introduction. A del Pezzo surface is a smooth, proper algebraic
surface X over a field K with ample anticanonical sheaf K −1. Over an al-
gebraically closed field, every del Pezzo surface of degree d ≤ 7 is isomorphic
to P2, blown up in 9−d points in general position [Man, Theorem 24.4(iii)].

According to the adjunction formula, a smooth complete intersection of
two quadrics in P4 is del Pezzo. The converse is true as well. For every del
Pezzo surface of degree 4, its anticanonical image is the complete intersection
of two quadrics in P4 [Do, Theorem 8.6.2].

For an arbitrary proper variety X over Q, the Brauer–Manin obstruction
is a phenomenon that can explain failures of weak approximation or even
the Hasse principle. It works as follows.

Let p be any prime number. The Grothendieck–Brauer group is a con-
travariant functor from the category of schemes to the category of abelian
groups. In particular, for an arbitrary scheme X and a Qp-rational point
x : SpecQp → X on it, there is a restriction homomorphism

x∗ : Br(X)→ Br(Qp) ∼= Q/Z.
For a Brauer class α ∈ Br(X), we call

evα,p : X(Qp)→ Q/Z, x 7→ x∗(α),

the local evaluation map associated to α. Analogously, for the real place,
there is the local evaluation map evα,∞ : X(R)→ 1

2Z/Z.
Let us write Ω for the set of all places of Q, i.e. for the union of all finite

primes together with ∞. The local evaluation maps are continuous with
respect to the p-adic, respectively real, topologies onX(Qν) for ν ∈ Ω. More-
over, it is well-known that evα,ν is constant for all but finitely many places.
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Thus, only adelic points x = (xν)ν∈Ω ∈ X(AQ) satisfying

(1.1)
∑
ν∈Ω

evα,ν(xν) = 0 ∈ Q/Z

may possibly be approximated by Q-rational points.

We say that a Brauer class α ∈ Br(X) works at a place ν if the local eval-
uation map evα,ν : X(Qν)→ Q/Z is nonconstant. This is in fact a property
of the residue class of α in Br(X)/Br(Q).

Observe that if X(AQ) 6= ∅ and there exists a Brauer class that works
at least at a single place then weak approximation is violated on X. On
the other hand, if Br(X)/Br(Q) ∼= Z/2Z and a nontrivial class works at
least at one place then there exist adelic points fulfilling (1.1). That is, the
Brauer–Manin obstruction cannot explain a violation of the Hasse principle.

The goal of this paper is to investigate which subsets of Ω may occur as
the set of places at which a nontrivial Brauer class works, in the situation
of a degree-4 del Pezzo surface. Our first main result is as follows.

Theorem 1.1. Let S ⊂ Ω be any finite subset. Then there exists a
degree-4 del Pezzo surface X over Q having a Q-rational point such that
Br(X)/Br(Q) ∼= Z/2Z and the nontrivial Brauer class works exactly at the
places in S.

For the construction, we make use of surfaces given as the intersection
of two quadrics of the form

−A1(T0 − T1)(T0 + T1) = T 2
3 −DT 2

4 ,

−A2(T0 − T2)(T0 + T2) = T 2
3 −B2DT 2

4 ,

with A1, A2, D,B ∈ Q. This family is inspired by a surface studied by Birch
and Swinnerton-Dyer [BSD] and has the advantage that there is a stan-
dard way to write down a Brauer class. Moreover, we obtain the following
example, which is different in nature.

Example 1.2. Let X ⊂ P4
Q be the degree-4 del Pezzo surface given by

T0T1 = T 2
2 + 7T 2

3 , (T0 − 4T1)(T0 − 6T1) = T 2
2 + 7T 2

4 .

Then X has a Q-rational point, Br(X)/Br(Q) ∼= Z/2Z, and the nontrivial
Brauer class works exactly at the infinite place. In particular, the surface
X(R) has two connected components and Q-rational points on only one of
them.

The case S = {∞} is perhaps the most interesting one. In this case, the
set of Q-rational points of X is dense in the real component of X that has
Q-rational points. This is in line with Mazur’s conjecture [Maz, Conjecture 1]
that the closure of X(Q) with respect to the real topology is a union of
connected components.
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In Section 2 we give more details about Example 1.2. Similar examples
for other kinds of surfaces are available in the literature, including singular
cubic surfaces [SD1, §3], conic bundles with five singular fibres [Maz, §3],
and others.

Recall that over an algebraically closed field, two quadratic forms are al-
ways simultaneously diagonalisable. We say that a degree-4 del Pezzo surface
is diagonalisable over Q if the defining quadratic forms are diagonalisable
over Q.

The surface from Example 1.2 is not diagonalisable over Q but only over
Q(
√

6), as is easily seen using Fact 2.1(b)(iii). Somewhat surprisingly, such
a behaviour is necessary at this point:

Theorem 1.3. Let X be a degree-4 del Pezzo surface over Q having
an adelic point and α ∈ Br(X) a Brauer class that works exactly at the
infinite place. Then X is not diagonalisable over Q.

Our method of proof uses the fact that diagonal degree-4 del Pezzo sur-
faces have nontrivial automorphisms that are defined over the ground field.
By functoriality, these operate on Br(X), but the induced operation on
Br(X)/Br(Q) turns out to be trivial automatically. Therefore, every α in
Br(X)/Br(Q) induces a homomorphism iα : Aut′(X) → Br(Q). See Con-
struction 3.2 for more details.

Moreover, we prove that if α ∈ Br(X) works at∞ then there is an auto-
morphism σ ∈ Aut(X) witnessing this, i.e. such that iα(σ) has a nontrivial
component at ∞. From this, the claim easily follows.

Our third main result asserts that, for diagonalisable degree-4 del Pezzo
surfaces, the subset {∞} is the only exception of this kind.

Theorem 1.4. Let S ⊂ Ω be a finite subset different from {∞}. Then
there exists a diagonalisable degree-4 del Pezzo surface X over Q having a
Q-rational point such that Br(X)/Br(Q) ∼= Z/2Z and the nontrivial Brauer
class works exactly at the places in S.

Conjecturally, for degree-4 del Pezzo surfaces, all failures of weak ap-
proximation are due to the Brauer–Manin obstruction. More precisely, it is
conjectured that X(Q) is dense in

X(AQ)Br :=
⋂

α∈Br(X)

X(AQ)α

for X(AQ)α ⊆ X(AQ) defined by (1.1) and X(AQ) endowed with the product
topology induced by the ν-adic topologies on X(Qν).

Due to work of P. Salberger and A. N. Skorobogatov [SSk, Theorem 0.1],
this conjecture is proven when X has a Q-rational point. The weaker state-
ment that if X has a Q-rational point then the Q-rational points on X are
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Zariski dense already follows from the fact that del Pezzo surfaces of de-
gree 4 that have a rational point are unirational (see [Man, Theorems 29.4
and 30.1]).

Recall that each of the surfaces provided by Theorem 1.1 has a Q-rational
point. We may thus blow up Q-rational points in general position to obtain
del Pezzo surfaces of low degree. It actually requires some thought to see
that, on every del Pezzo surface X of degree ≥ 2, there exists a nonempty
Zariski open subset U ⊂ X of admissible blow-up points (cf. [De, Theo-
rem 1]). Admissible means here that the blow-up is indeed del Pezzo, not
just the desingularisation of a weak del Pezzo surface (we omit the details).
Moreover, Brauer groups do not change under blow-up, and the local evalu-
ation maps are compatible in the sense that evα,ν(π(x)) = evπ∗α,ν(x). Hence
we obtain the following corollary.

Corollary 1.5. Let S ⊂ Ω be an arbitrary finite subset and d ≤ 4 a
positive integer. Then there exists a del Pezzo surface X of degree d over Q
having a Q-rational point such that Br(X)/Br(Q) ∼= Z/2Z and the nontrivial
Brauer class works exactly at the places in S.

It is well-known that every del Pezzo surface X of degree at least 5
has Br(X)/Br(Q) = 0. One way to see this is to systematically inspect
all possible Galois operations on the exceptional curves in a way analo-
gous to [Ja, Chapter III, 8.21–8.23] and to apply [Man, Proposition 31.3].
Thus, Corollary 1.5 cannot have an analogue for del Pezzo surfaces of higher
degree.

At least for d = 5 and 7, as well as for d = 6 under the additional
assumption that X has an adelic point, there is also a geometric argument.
Indeed, these surfaces are birationally equivalent to P2

Q ([VA, Theorem 2.1],
cf. [Man, Theorem 29.4]).

It would be interesting to produce examples as in Corollary 1.5 with the
additional restriction that the surface is minimal.

Remark 1.6. For a degree-4 del Pezzo surface, the group Br(X)/Br(Q)
may be isomorphic to either 0, Z/2Z, or (Z/2Z)2. In the cases of degree 3, 2,
or 1, there are even more options ([Co, Theorem 4.1], [Man, Section 31,
Table 3] and [SD2]). We do not know whether the analogue of Corollary 1.5
is true for a prescribed Brauer group.

2. Brauer classes on degree-4 del Pezzo surfaces. The goal of
this section is to gather some facts about degree-4 del Pezzo surfaces that
are necessary for what follows. This includes some results on their Brauer
groups and finally leads us to a proof of the assertions made in Example 1.2.
In other words, we show Theorem 1.1 under the assumption of Theorem 1.4.
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Unless a specific choice is made, we work in this section over an arbitrary
base field K of characteristic 6= 2. Let K denote an algebraic closure of K.

A del Pezzo surface X ⊂ P4
K of degree 4 is the base locus of a pencil

(µQ(1) + νQ(2))(µ:ν)∈P1 of quadratic forms in five variables with coefficients
in the field K. The generic member of the pencil must be of rank 5, as
otherwise X would be a cone. The condition that det(µQ(1) + νQ(2)) = 0
therefore defines a finite subscheme SX ⊂ P1

K of degree 5.

Choosing a different basis of the pencil yields another embedding of SX

into the projective line. Thus, one may consider the subscheme SX ⊂ P1
K

as an invariant of the surface X itself. Moreover, the definition extends to
arbitrary intersections of two quadrics in P4 that are not cones.

Facts 2.1.

(a) X is nonsingular if and only if the scheme SX is reduced.
(b) Let X ⊂ P4 be a smooth intersection of two quadrics.

(i) If {s0, . . . , s4} = SX(K) then the quadratic forms Qs0 , . . . , Qs4
are exactly of rank 4.

(ii) The cusps of the cones defined by Qsi = 0, i = 0, . . . , 4, are in
general linear position in P4, i.e. not contained in any hyper-
plane.

(iii) X is diagonalisable over K if and only if SX is split over K.

Proof. These statements are rather well-known. Proofs may be found,
for example, in [Wi]. Specifically, (a) and (b)(i) are implied by [Wi, Propo-
sition 3.26]. Furthermore, (b)(ii) is [Wi, Corollaire 3.29], while (b)(iii) is
[Wi, Corollaire 3.30].

Let X be a degree-4 del Pezzo surface over a field K and assume that
there is a K-rational point s ∈ SX(K) as well as that the corresponding
degenerate quadric Qs has a K-rational point, different from the cusp. Then
there exist four linearly independent linear forms l1, . . . , l4 such that

cQs = l1l2 − (l23 −Dl24)

for some constant c (see [VAV, Lemma 2.1]). Furthermore, D is the discrim-
inant of cQs, considered as a quadratic form in four variables.

The case most interesting for us is when there are two distinct K-rational
points s1, s2 ∈ SX(K), and the corresponding degenerate quadrics Qs1 , Qs2
have the same discriminant. Then X may be given by a system of equations

l11l12 = l213 −Dl214,(2.1)

l21l22 = l223 −Dl224.(2.2)

For such surfaces, there is a standard way to write down a Brauer class,
which goes back at least to Birch and Swinnerton-Dyer [BSD].
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Proposition 2.2. Let X be the degree-4 del Pezzo surface over a field K
given by the equations (2.1)–(2.2). Assume that D is a nonsquare in K and

set L := K(
√
D). Then:

(a) The quaternion algebra (see [Pi, Section 15.1] for the notation)

A := (L(X), τ, l11/l21)

over the function field K(X) extends to an Azumaya algebra over
the whole of X. Here, τ ∈ Gal(L(X)/K(X)) denotes the nontriv-
ial element.

(a) For K = Q, denote by α ∈ Br(X) the Brauer class defined by the
extension of A . Let ν be any (archimedean or nonarchimedean)
place of Q.

(i) Let x ∈ X(Qν) and assume that for some i, j ∈ {1, 2}, one has
l1i(x), l2j(x) 6=0. Denote the corresponding quotient l1i(x)/l2j(x)
by q. Then

evα,ν(x) =

{
0 if (q,D)ν = 1,

1/2 if (q,D)ν = −1,

for (q,D)ν the Hilbert symbol.
(ii) If ν is split in L then the local evaluation map evα,ν is con-

stantly zero.

Proof. (a) This is a consequence of [VAV, Lemma 3.2].
(b)(i) The quotients

l11
l21
/
l11
l22

=
l223 −Dl224

l221
,

l12
l21
/
l12
l22

=
l223 −Dl224

l221
,

l11
l21
/
l12
l21

=
l213 −Dl214

l212
are norms of rational functions from L(X). Therefore, they define the trivial
element of H2(〈σ〉,K(XL)∗) ⊆ Br(K(X)), and hence in Br(X). In particu-
lar, the four expressions l1i/l2j define the same Brauer class.

The general description of the evaluation map, given in [Man, Para-
graph 45.2], shows that evα,ν(x) is equal to 0 or 1/2 depending on whether
q is in the image of the norm mapNLn/Qν : L∗n → Q∗ν or not, for n a place of L
lying above ν. This is exactly what is tested by the Hilbert symbol (q,D)ν .

(b)(ii) If ν is split in L then the norm map

NK(XLn )/K(XQν )
: K(XLn)∗ → K(XQν )∗

is surjective. In particular, l11/l21 ∈ K(XQν )∗ is the norm of a certain ratio-
nal function on XLn . Therefore, it defines the zero class in H2(〈σ〉,K(XLn)∗)
⊆ Br(K(XQν )), and thus in Br(XQν ). To complete the argument, we note
that every Qν-rational point x : SpecQν → X factors via XQν .

In the following, we will make heavy use of the two facts below. The first
one recalls the explicit description of the situation when the Brauer group



Brauer–Manin obstruction 307

of X is isomorphic to (Z/2Z)2. It is convenient to introduce the following
assumption on X defined over a local or global field K.

Assumption A. In the local field case, assume that X(K) 6= ∅, and in
the global field case that X has an adelic point.

Fact 2.3. Let X be a degree-4 del Pezzo surface over a local or global
field K satisfying Assumption A.

Then Br(X)/Br(K) ∼= (Z/2Z)2 if and only if SX has three distinct
points s0, s1, s2 ∈ SX(K) such that all three discriminants Ds0 , Ds1 , Ds2

are nonsquares in K and coincide up to square factors.

In this case, representatives of the three nontrivial classes may be ob-
tained as follows. Choose a two-element subset {si, sj} ⊂ {s0, s1, s2}. Write
X in the form (2.1)–(2.2) and take the corresponding Azumaya algebra as
described in Proposition 2.2.

Proof. This is well-known and a proof may be found, for example,
in [VAV, Theorem 3.4]. Note that the assumption on X implies that for
every closed point s ∈ SX , the corresponding rank-4 quadric has a regular
point over the residue field of s [VAV, Lemma 5.1].

Fact 2.4. Let X be a degree-4 del Pezzo surface over a local or global
field K satisfying Assumption A. Assume X to be diagonalisable over K.
Let Di ∈ K for 0 ≤ i ≤ 4 be the five rank-4 discriminants, and assume that
D0 = D1 =: D.

(a) Let D be a nonsquare in K. Then the Brauer class α ∈ Br(X)
described in Proposition 2.2 is trivial, i.e. α ∈ Br(K), if and only if
D2, D3, and D4 are all squares in K.

(b) If the conditions in (a) hold or all five discriminants Di are squares
in K, then Br(X)/Br(K) ∼= 0.

Proof. (a) This equivalence statement is established in [VAV, Proposi-
tion 3.3]. (b) Fact 2.3 above proves that Br(X)/Br(K) is at most of order 2.
If it were of order exactly 2 then, by [VAV, Theorem 3.4], the nontrivial
class could be obtained as described in Proposition 2.2. In particular, only
the case that D is a nonsquare remains to be considered. However, as the
other three discriminants are squares, this is exactly the situation in which
part (a) proves that the Brauer class is trivial.

Remark 2.5. Under the assumptions of Fact 2.4, there is an isomor-
phism

Br(X)/Br(K)
∼=←− ker(o : (Z/2Z)5 → K∗/(K∗)2)/T,

where o : (a0, . . . , a4) 7→ (Da0
0 · . . . · D

a4
4 mod (K∗)2) and T is generated by

the vector (1, . . . , 1) and the standard vectors ei for those i ∈ {0, . . . , 4} for
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which Di is a perfect square. Note that D0· . . . ·D4 is a perfect square in K
(cf. Fact 3.4 below).

Once one has an explicit description of the Brauer classes, one needs
criteria to understand whether or not they evaluate constantly at a given
place. For this, the following result turns out very useful.

Criterion 2.6 (A. Várilly-Alvarado and B. Viray). Let X be the de-
gree-4 del Pezzo surface over Q given by (2.1)–(2.2). Assume that D is a
nonsquare and let α ∈ Br(X) be as described in Proposition 2.2. Then for
any place ν 6= 2,∞ such that the reductions modulo ν of the quadratic
forms in (2.1) and (2.2) both have rank 4, the local evaluation map evα,ν
is constant.

Proof. This is [VAV, Proposition 5.4].

Proof of Theorem 1.1 assuming Theorem 1.4. Theorem 1.4 solves the
problem for every subset S 6= {∞}. Thus, in order to establish Theorem 1.1,
it suffices to verify the assertions made in Example 1.2.

For this, one first checks that SX has exactly three Q-rational points,
corresponding to the quadratic forms independent of the variable T2, T3,
and T4, respectively, and a point of degree 2 that splits over the quadratic
field Q(

√
6). In particular, X is nonsingular.

The discriminants of the three Q-rational quadratic forms of rank 4 are,
up to square factors, 1, (−7), and (−7). Therefore, Fact 2.3 shows that
Br(X)/Br(Q) is at most of order 2. On the other hand, by Proposition 2.2,
we have a Brauer class α ∈ Br(X) that is given over Q(X) as the quaternion
algebra (Q(

√
−7)(X), τ, ϕ) for ϕ := (T0 − 4T1)/T1.

Next, we observe that X has no real points such that x0 = x1 = 0.
Moreover, for every real point x ∈ X(R) such that x1 6= 0, the equations
imply x0/x1 ≥ 0 and (x0/x1 − 4)(x0/x1 − 6) ≥ 0, hence

x0/x1 ∈ [0, 4] or x0/x1 ≥ 6.

There exist real points of both kinds, for example (1 : 1 : 1 : 0 :
√

2) and
(8 : 1 : 1 : 1 : 1). Since (−7) < 0, we see that (q,−7)∞ is the sign of q. Thus,
evα,∞ distinguishes the two kinds of real points. In particular, Br(X)/Br(Q)
is indeed of order 2 and the nontrivial element works at the infinite place.

It remains to show that it does not work at any other place. Criterion 2.6
shows constancy of the evaluation map evα,ν for all finite places ν 6= 2, 7.
Furthermore, evα,2 is constant by Proposition 2.2(b)(ii), as the prime 2 splits
in Q(

√
−7).

Finally, for the prime 7, we argue as follows. Let x ∈ X(Q7) be any 7-adic
point on X. Normalise the coordinates x0, . . . , x4 so that each is a 7-adic
integer and at least one is a unit. If 7 |x0 and 7 |x1 then the equations imply
that all coordinates must be divisible by 7, a contradiction. Hence, at least
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one of x0 and x1 is a unit. Modulo 7, we have (x0 − 4x1)(x0 − 6x1) = x0x1
(since both expressions are equal to x22), and this equation has the solutions
x0/x1 = 1, 3 in Z/7Z. However, the solution x0/x1 = 3 is contradictory, as
then x0x1 would be a nonsquare. Consequently, both x0 and x1 must be
units and

x0 − 4x1
x1

≡ −3 (mod 7),

so (x0 − 4x1)/x1 is a square in Q7. This shows ((x0 − 4x1)/x1,−7)7 = 1 and
evα,7(x) = 0.

Remark 2.7. In Example 1.2, weak approximation is disturbed in a
rather astonishing way. The smooth manifold X(R) has two connected com-
ponents. There are two kinds of real points x∈X(R), those with x0/x1∈ [0, 4]
and those such that x0/x1 ∈ [6,∞]. However, for every Q-rational point
x ∈ X(Q), one has x0/x1 > 6.

A naively implemented point search shows that there are exactly 792
Q-rational points of naive height up to 1000 on X. The smallest value of the
quotient x0/x1 is 319/53 ≈ 6.019.

3. Diagonal degree-4 del Pezzo surfaces. The goal of this section is
to collect some facts about diagonal degree-4 del Pezzo surfaces. These will
lead us to a proof of Theorem 1.3.

Let X be a diagonal degree-4 del Pezzo surface over a base field K,
i.e. one given by equations of the form

a0T
2
0 + · · ·+ a4T

2
4 = 0,(3.1)

b0T
2
0 + · · ·+ b4T

2
4 = 0,(3.2)

with coefficients in K. Then, for every (i0, . . . , i4) ∈ {0, 1}5, the map

(T0 : . . . : T4) 7→ ((−1)i0T0 : . . . : (−1)i4T4)

defines a K-automorphism of X. Thus, we explicitly described a subgroup
Aut′(X) ⊆ AutK(X) that is isomorphic to (Z/2Z)4.

It is known that the automorphism group of a degree-4 del Pezzo surface
over an algebraically closed field is generically isomorphic to (Z/2Z)4, and
that there are particular cases where the automorphism group is larger [Do,
Theorem 8.6.8].

Lemma 3.1. Let X be a diagonal degree-4 del Pezzo surface over a local
or global field K satisfying Assumption A. Then the natural operation of
Aut′(X) on Br(X) induces the trivial operation on Br(X)/Br(K).

Proof. This is trivially true if Br(X)/Br(K) ∼= 0 or Z/2Z. Otherwise, it
follows from the description of the representatives given in Fact 2.3.
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Construction 3.2. Let X be a diagonal degree-4 del Pezzo surface
over a local or global field K satisfying Assumption A.

By functoriality, the operation of Aut′(X) on X induces an operation
on Br(X), which is necessarily trivial on Br(X)/Br(K). Thus, for every
α ∈ Br(X), there is a natural homomorphism

iα : Aut′(X)→ Br(K),

given by the condition that σ∗α = α + iα(σ) for σ ∈ Aut′(X). Moreover,
iα depends only on the class of α in Br(K)/Br(K).

Definition 3.3. Let K = Q and assume that the Brauer class iα(σ), for
some α ∈ Br(K)/Br(Q) and σ ∈ Aut′(X), has a nontrivial image in Br(Kν)
at the place ν. Then, as

evα,ν(σ(x)) = evσ∗α,ν(x) = evα,ν(x) + i(σ)ν ,

the Brauer class certainly works at ν. We say in this situation that σ is a
witness for the nonconstancy of the local evaluation map at ν.

Fact 3.4. Let X be a diagonal degree-4 del Pezzo surface over a field K
and D0, . . . , D4 be the discriminants of the five associated quadratic forms
of rank four. Then D0 · . . . ·D4 is a square in K.

Proof. This is a direct calculation.

Lemma 3.5. Let X be a diagonal degree-4 del Pezzo surface over R that
has a real point. Assume that Br(X)/Br(R) 6= 0. Then X(R) has exactly two
connected components. Moreover, there is a σ ∈ Aut′(X) that interchanges
these components.

Proof. By Fact 3.4, there are three cases. The number of negative dis-
criminants among the five rank-4 discriminants is 0, 2, or 4. Facts 2.4(b)
and 2.3 show that Br(X)/Br(R) 6= 0 only in the last case.

Then the pencil of quadrics in P4 associated with X contains four rank-4
quadrics of negative discriminant. We may write each of them in the shape

−c0T 2
i0 + c1T

2
i1 + c2T

2
i2 + c3T

2
i3 = 0

for c0, . . . , c3 > 0, and say that the variable Ti0 is distinguished by the
form considered.

We claim that not all four forms may distinguish the same variable.
Indeed, if that were the case then we would also have the form

−c′0T 2
i0 + c′1T

2
i1 + c′2T

2
i2 + c′4T

2
i4 = 0,

which shows that the form in the pencil that does not involve Ti0 has oppo-
site signs at T 2

i3
and T 2

i4
. The same argument for all combinations of two of

the four quadratic forms enforces six opposite signs among the four coeffi-
cients of T 2

i1
, . . . , T 2

i4
, a contradiction.
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Thus, X may be given by two equations

−c0T 2
i0 + c1T

2
i1 + c2T

2
i2 + c3T

2
i3 = 0,

−d0T 2
j0 + d1T

2
j1 + d2T

2
j2 + d3T

2
j3 = 0,

for ck, dk > 0, i0 6= j0, and {i0, . . . , i3} ∪ {j0, . . . , j3} = {0, . . . , 4}. These
equations imply xi0 6= 0 and xj0 6= 0 for every real point x ∈ X(R). In par-
ticular, X(R) has at least two connected components, given by the two
possible signs of xi0/xj0 . Clearly, these two components are interchanged
under the operation of Aut′(X).

We finally note that a real degree-4 del Pezzo surface cannot have more
than two connected components [Silh, Chapter III, Theorem 3.3].

Remark 3.6. The stronger statement that if X(R) splits into two con-
nected components then the operation of Aut′(X) interchanges them is true
as well.

Indeed, by blowing up a real point not lying on any exceptional curve,
one obtains a real cubic surface that has two connected components. Ac-
cording to L. Schläfli [Sch, pp. 114 f.], there are exactly five real types of
real cubic surfaces, and those correspond in modern language to the four
conjugacy classes of order-2 subgroups in W (E6) together with the triv-
ial group. Only for one of these five cases is the Brauer group nontrivial
[Ja, Appendix, Table 2]: it is isomorphic to (Z/2Z)2 then, and that is the
single case in which the surface is disconnected. We will not make use of
this observation.

Proof of Theorem 1.3. Let X be a diagonalisable degree-4 del Pezzo
surface over Q that has an adelic point and a Brauer class α ∈ Br(X)
working at the infinite place. We note that since X has an adelic point,
it clearly has a real point. The local evaluation evα,∞(x) for x ∈ X(R) is
defined using the restriction homomorphism x∗ : Br(X)→ Br(R), which fac-
tors via Br(XR). Hence, nonconstancy of evα,∞ implies that the restriction
αR ∈ Br(XR)/Br(R) is a nonzero class.

In this case, Lemma 3.5 shows that X(R) splits into two connected com-
ponents. Moreover, there exists an automorphism σ ∈ Aut′(XR) ∼= Aut′(X)
interchanging these. Since evα,∞ is locally constant, this implies that σ wit-
nesses the nonconstancy of the local evaluation map at ∞. In other words,
the natural homomorphism iα : Aut′(X)→ Br(Q) has in its image a Brauer
class iα(σ) ∈ Br(Q) with a nonzero component at infinity.

According to global class field theory [Ta, Section 10, Theorem B], iα(σ)
necessarily has a nonzero component at another place ν 6=∞. Consequently,
α works at ν too, which implies the claim.
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4. Surfaces with a Brauer class working at a prescribed set of
places. The goal of this section is to prove Theorem 1.4. We distinguish
between the cases #S > 1, #S = 1, and S = ∅. The family below will serve
us in all cases.

4.1. A family of degree-4 del Pezzo surfaces. ForD,A1, A2, B ∈ Q,
let S := S(D;A1,A2,B) ⊂ P4

Q be given by

−A1(T0 − T1)(T0 + T1) = T 2
3 −DT 2

4 ,(4.1)

−A2(T0 − T2)(T0 + T2) = T 2
3 −B2DT 2

4 .(4.2)

Theorem 4.1. Let D,A1, A2, B be nonzero rational numbers. Then:

(A) (a) S is not a cone. The degree-5 scheme SX has a point at infinity
and four others, which are the roots of a completely reducible
polynomial of degree 4 having discriminant

∆ := A2
1(A1 −A2)

2(A1B
2 −A2)

2B4(B − 1)2(B + 1)2/A6
2B

12.

(b) S has the Q-rational point (1 :1 :1 :0 :0) ∈ X(Q).
(c) If ∆ 6= 0 then the five rank-4 discriminants are, up to factors

being perfect squares, given by D, D, DA1A2(A1−A2)(B
2−1),

A1A2(A1B
2 −A2)(B

2 − 1), and D(A1 −A2)(A1B
2 −A2).

(B) (a) There is a Brauer class α ∈ Br(X) extending that of the quater-

nion algebra
(
Q(
√
D)(X), τ, T0+T1T0+T2

)
over the function field Q(X).

(b) evα,ν(x) = 0 for x = (1:1 :1 :0 :0) and all ν ∈ Ω.
(c) At every ν ∈ Ω, the local evaluation map evα,ν is constant if

one of the following conditions holds:

• ν = p is a finite place, p 6= 2, and p divides neither D,
nor A1, nor A2, nor B.
• ν = p splits in Q(

√
D), or ν =∞ and D > 0.

• D is square-free, ν = p is a finite place, p |D, p 6= 2, gcd(B,D)
= 1,

(−A1
p

)
= 1, and A1 ≡ A2 (mod p).

(d) At a place ν, the local evaluation map evα,ν cannot be constant
if (−A1, D)ν = −1 or (−A2, D)ν = −1.

Proof. (A)(a) and (A)(c) are standard calculations, while (A)(b) is di-
rectly checked. Moreover, (B)(a) is a direct application of Proposition 2.2(a),
and (B)(b) follows from the fact that x0+x1

x0+x2
= 1 for x = (1:1 :1 :0 :0).

(B)(c) The sufficiency of the first condition is Criterion 2.6, while that
of the second was shown in Proposition 2.2(b). In order to establish the
sufficiency of the third, we argue as follows.

First of all, the prime p ramifies in Q(
√
D). A p-adic unit u ∈ Qp is a local

norm from Q(
√
D) if and only if (u mod p) ∈ F∗p is a square. Moreover, we
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note that
(−A1

p

)
=
(−A2

p

)
= 1 implies that each of the four rational functions

T0±T1
T0±T2 may be used to evaluate the Brauer class α at the place p.

Let now x ∈ X(Qp) be any p-adic point. Normalise the coordinates
x0, . . . , x4 so that each is a p-adic integer and at least one is a unit. If p |x0
and p |x1, or p |x0 and p |x2, then the equations imply that all coordinates
must be divisible by p, a contradiction. Modulo p, we have x20−x21 = x20−x22,
hence x1 = ±x2, which implies that one of the four quotients x0±x1

x0±x2 is
congruent to 1 modulo p, and therefore a norm.

(B)(d) We note first thatX hasX(Qν)-rational points such that x0 6=±x1
and x0 6= −x2. Indeed, setting x0 := 1 and choosing x3 and x4 sufficiently
close to 0 in the ν-adic topology, we see that (4.1) and (4.2) become soluble
when viewed as equations in x1 and x2, respectively.

Now, assume without loss of generality that (−A1, D)ν = −1. Then the
automorphism σ : (T0 : . . . : T4) 7→ (T0 : (−T1) : T2 : T3 : T4) changes the

rational function T0+T1
T0+T2

to

T0 − T1
T0 + T1

= − 1

A1

T 2
3 −DT 2

4

(T0 + T1)2
,

which takes only ν-adic nonnorms from Q(
√
D), since (−A1, D)ν = −1.

This shows that iα(σ) has a nonzero component at ν, i.e. σ witnesses the
nonconstancy of the local evaluation map evα,ν .

4.2. More than one place. Let S ⊂ Ω consist of at least two places.
We write {p1, . . . , pr} = S \ {2,∞}.

To construct a diagonalisable degree-4 del Pezzo surface such that a
nontrivial Brauer class works exactly at the places in S, we first choose a
square-free integer D 6= 0 satisfying the following conditions:

• D > 0 if and only if ∞ 6∈ S.
• D ≡ 3 (mod 4) when 2 ∈ S, and D ≡ 1 (mod 8) when 2 6∈ S.
• D is divisible by p1, . . . , pr and has exactly one further prime divisor,

which we call q.

That such a choice of D is possible follows immediately from the fact that
there are infinitely many primes in every odd residue class modulo 8.

Now write S as a union S1 ∪S2 of two not necessarily disjoint subsets of
even size. This is possible, because #S ≥ 2. In addition, we may put 2 into
both subsets in case it occurs as an element of S, and the same for ∞.

Next, we choose primes A1 6= A2 not dividing D such that, for i = 1, 2,

(4.3) (−Ai, D)ν = −1 ⇔ ν ∈ Si.
To see that this is possible, observe first that (−A1, D)ν = (−A2, D)ν = 1
for all ν 6= 2,∞ and all p1, . . . , pr, q, A1, and A2. The requirement at ν = 2
may be realised by choosing Ai ≡ 1 (mod 4), and the condition at ν =∞ is
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fulfilled as the Ai are positive. Furthermore, what we require in (4.3) is(
−Ai
pj

)
=

{−1 if pj ∈ Si,
1 otherwise,

for i = 1, 2, and
(−A1

q

)
=
(−A2

q

)
= 1. Let us additionally impose the condi-

tion that

(4.4) A2 ≡ A1 (mod q).

All these are congruence conditions modulo distinct odd primes. There-
fore, the existence of a prime A1 satisfying (4.3) for all places except possibly
A1 itself, is implied by Dirichlet’s Theorem on primes in arithmetic progres-
sions. Moreover, as #S1 is even, we have (−A1, D)A1 = 1 by the Hilbert
reciprocity law [Ne, Chapter VI, Theorem 8.1].

In a completely analogous manner, Dirichlet’s Theorem and the Hilbert
reciprocity law imply the existence of a prime A2 6= A1 fulfilling (4.3)
and (4.4).

We may now formulate the main result of this paragraph.

Theorem 4.2. Let D, A1, and A2 be chosen as above. Then:

(a) For every integer B ≥ 2, the surface X ⊂ P4
Q given by

−A1(T0 − T1)(T0 + T1) = T 2
3 −DT 2

4 ,

−A2(T0 − T2)(T0 + T2) = T 2
3 −B2DT 2

4

is nonsingular and has a Q-rational point.
(b) There is a Brauer class α ∈ Br(X) extending that of the quaternion

algebra
(
Q(
√
D)(X), τ, T0+T1T0+T2

)
over the function field Q(X).

(c) The Brauer class α works at every place ν ∈ S. If B is a prime
number that splits in Q(

√
D) then α does not work at any other

place.
(d) There are infinitely many prime numbers B splitting in Q(

√
D) such

that Br(X)/Br(Q) ∼= Z/2Z.

Proof. (a) follows from Theorem 4.1(A)(a)–(b), and (b) is Theorem
4.1(B)(a).

(c) Our choices of A1, A2, and D guarantee that Theorem 4.1(B)(d)
applies to every ν ∈ S. On the other hand, as B is a prime that splits
in Q(

√
D), Theorem 4.1(B)(c) shows constancy of the evaluation map evα,ν

at all other places.

(d) In order to exclude the option Br(X)/Br(Q) ∼= (Z/2Z)2, according to
Fact 2.3 we have to choose the parameter B so that none of

A1A2(A1−A2)(B
2−1), DA1A2(A1B

2−A2)(B
2−1), (A1−A2)(A1B

2−A2)
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is a perfect square. By Siegel’s Theorem on integral points on elliptic cur-
ves [Silv, Theorem IX.4.3], the term in the middle is a square only finitely
many times. The other two lead to Pell-like equations whose integral so-
lutions are known to have exponential growth (cf. for example [Ch, Chap-
ter XXXIII, §§15–18]), and hence are much sparser than the set of primes
that split in Q(

√
D). The assertion follows.

4.3. No place

Theorem 4.3. Let X ⊂ P4
Q be the surface given by

−(T0 − T1)(T0 + T1) = T 2
3 − 17T 2

4 ,

−103(T0 − T2)(T0 + T2) = T 2
3 − 68T 2

4 .

Then X is nonsingular and X(Q) 6= ∅. Moreover, Br(X)/Br(Q) ∼= Z/2Z
but the nontrivial Brauer class works at no place.

Proof. The first two assertions follow from Theorem 4.1(A)(b) and
4.1(A)(a). The discriminants of the five rank-4 forms are, up to square fac-
tors, 17, 17, 66, 206, and 3399, so that, by Facts 2.4(a) and 2.3, we have
Br(X)/Br(Q) ∼= Z/2Z.

Let α ∈ Br(X) be nontrivial. By Theorem 4.1(B)(c), the local evaluation
map is constant at all places ν 6= 2, 17, 103,∞. Moreover, it is constant
at ν =∞ as the field Q(

√
17) is real-quadratic. Constancy at ν = 2 and 103

is clear too, since these primes split in Q(
√

17). Finally, evα,17 is constant
as
(−1
17

)
= 1 and 103 ≡ 1 (mod 17).

4.4. Exactly one place. The examples here are necessarily a bit differ-
ent, as the 16 automorphisms must not witness the nonconstancy of the eval-
uation map. We may nonetheless work with the family from Theorem 4.1.

Example 4.4. Let l be a prime number such that l ≡ 3 (mod 4).
Choose a prime D ≡ 1 (mod 8) with

(
D
l

)
= −1 and another prime A > l

such that A ≡ 1 (mod D) and (A2 − 1)(A2 − l2) is a nonsquare. Then the
surface X ⊂ P4

Q given by

−(T0 − T1)(T0 + T1) = T 2
3 −DT 2

4 ,

−A2(T0 − T2)(T0 + T2) = T 2
3 − l2DT 2

4

is nonsingular and has a Q-rational point. Moreover, Br(X)/Br(Q) ∼= Z/2Z
and the nontrivial class works exactly at the place l.

Proof. We first note that the restrictions on D and A are easy to fulfil
due to Dirichlet’s and Siegel’s Theorems. Furthermore, the first three as-
sertions follow directly from Theorem 4.1(A)(a)–(b), as well as Facts 2.4(a)
and 2.3. The nontrivial Brauer class α ∈ Br(X) may be understood as an
extension of the quaternion algebra

(
Q(
√
D)(X), τ, T0+T1T0+T2

)
over Q(X) to the
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whole scheme X. Theorem 4.1(B)(c) implies that the local evaluation map
is constant at all places ν 6= l.

Nonconstancy of evα,l. Note that l is an inert prime, since
(
D
l

)
= −1.

An element u ∈ Q∗l is a local norm from Q(
√
D) if and only if νl(u) is even.

For x = (1 : 1 : 1 : 0 : 0), we have evα,l(x) = 0 by Theorem 4.1(B)(b).
On the other hand, the substitutions T0 = lT ′0, T1 = T ′1, T2 = lT ′2, T3 = lT ′3,
and T4 = T ′4 yield a different model X ′ of X that is given by

−(lT ′0 − T ′1)(lT ′0 + T ′1) = l2T ′3
2 −DT ′42,

−A2(T ′0 − T ′2)(T ′0 + T ′2) = T ′3
2 −DT ′42.

Moreover,
T0 + T1
T0 + T2

=
lT ′0 + T ′1
lT ′0 + lT ′2

=
1

l

lT ′0 + T ′1
T ′0 + T ′2

.

It suffices to find an Ql-rational point onX ′ such that
lT ′0+T

′
1

T ′0+T
′
2

is an l-adic unit.

The reduction of X ′ modulo l is given by

T ′1
2 = −DT ′42, −A2(T ′0 − T ′2)(T ′0 + T ′2) = T ′3

2 −DT ′42.

We observe that the first equation has a nontrivial solution, as
(
D
l

)
= −1

and l ≡ 3 (mod 4) together imply that (−D) ∈ F∗l is a square. Let ρ ∈ F∗l
be one of its square roots.

The Fl-rational point

x =

(
A2 +D

2A2
: ρ :

A2 −D
2A2

: 0 : 1

)
∈ X ′(Fl)

is nonsingular, as is easily checked using the Jacobian criterion. The quo-

tient
lT ′0+T

′
1

T ′0+T
′
2

is an l-adic unit for any l-adic lift of x, as required. The assertion
follows.

In order to provide a corresponding example in the case l ≡ 1 (mod 4),
we need the following lemma.

Lemma 4.5. Let Fl be a finite field of characteristic 6= 2. Then there
exists κ ∈ Fl such that 2(1 + κ2) is a nonsquare in Fl.

Proof. If l = 3 then set κ := 0. Otherwise, i.e. for l ≥ 5, let c ∈ Fl be any
nonsquare. The equation cT 2

0 = 2(T 2
1 + T 2

2 ) defines a conic over Fl, which
has exactly l+ 1 Fl-rational points. Among them, at most four have x1 = 0
or x0 = 0. For the others, κ := x2/x1 fulfils the required condition.

Example 4.6. Let l be a prime number such that either l ≡ 1 (mod 4)
or l = 2. If l = 2 then choose B := 2, otherwise let B be an odd prime
number that is split in Q(

√
l) and such that neither l(l − 1)(B2 − 1),

nor (lB2 − 1)(B2 − 1), nor (l − 1)(lB2 − 1) is a perfect square. Then the
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surface X ⊂ P4
Q given by

−l(T0 − T1)(T0 + T1) = T 2
3 − lT 2

4 ,(4.5)

−(T0 − T2)(T0 + T2) = T 2
3 −B2lT 2

4(4.6)

is nonsingular and has a Q-rational point. Moreover, Br(X)/Br(Q) ∼= Z/2Z
and the nontrivial class works exactly at the place l.

Proof. Once again, the restrictions on B are easy to fulfil due to Dirich-
let’s and Siegel’s Theorems. Furthermore, the first three assertions follow
directly from Theorem 4.1(A)(a)–(b) as well as Facts 2.4(a) and 2.3. There
is a Brauer class α ∈ Br(X), which may be understood as an extension of the

quaternion algebra
(
Q(
√
l)(X), τ, T0+T1T0+T2

)
over Q(X) to the whole scheme X.

Moreover, Theorem 4.1(B)(c) implies that the local evaluation map is con-
stant at all places ν 6= 2, l. Thus, it remains to show that evα,l is nonconstant
and that evα,2 is constant in the case l ≡ 1 (mod 4).

Nonconstancy of evα,2 for l = 2. For Q(
√

2), the prime 2 is ramified.
A 2-adic unit u is a local norm from Q(

√
2) if and only if u ≡ ±1 (mod 8).

For x = (1 : 1 : 1 : 0 : 0), we have evα,2(x) = 0 by Theorem 4.1(B)(b).
On the other hand, there is the 2-adic point x = (1:0 :

√
−7:0 :1) ∈ X(Q2).

Observe that −7 ≡ 1 (mod 8) implies that −7 is a square in Q2. More-
over, we may choose

√
−7 ∈ 5 + 16Z2 since 52 ≡ −7 (mod 32). Then

x0+x1
x0+x2

= 1/(1 +
√
−7), which is in the residue class 1

2 · (3 mod 8). Conse-

quently, evα,2(x) = 1/2.
Nonconstancy of evα,l for l ≡ 1 (mod 4). For Q(

√
l), the prime l is

ramified. An l-adic unit u is a local norm from Q(
√
l) if and only if (u mod l)

∈ F∗l is a square.
For x = (1 : 1 : 1 : 0 : 0), we have evα,l(x) = 0. On the other hand, the

substitution T3 = lT ′3 yields a different model X ′ of X that is given by

(T0 − T1)(T0 + T1) = T 2
4 − lT ′32,

(T0 − T2)(T0 + T2) = l(B2T 2
4 − lT ′32).

The Fl-rational point

x =
(
(1 + κ2) :2σ : (1 + κ2) :0 : (1− κ2)

)
∈ X(Fl)

is nonsingular for any κ ∈ Fl such that κ2 6= −1.
If, moreover, κ is chosen as in Lemma 4.5 then x0+x1

x0+x2
= (1+κ)2

2(1+κ2)
, which

is a nonsquare. Then, for every l-adic point that lifts x, the local evaluation
map has value 1/2.

Constancy of evα,2 for l ≡ 1 (mod 4). If l ≡ 1 (mod 8) then p = 2
is split in Q(

√
l) and there is nothing to prove.

On the other hand, assume that l ≡ 5 (mod 8), in which case 2 is an
inert prime. Then u ∈ Q∗2 is a local norm from Q(

√
l) if and only if ν2(u)
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is even. In particular, (−1) and (−l) are local norms, such that any of the

quotients T0±T1
T0±T2 may be used to evaluate α at the place 2.

Furthermore, any 2-adic point x ∈ X(Q2) may be represented by coor-
dinates x0, . . . , x4 that are 2-adic integers, at least one of which is a unit.
It is now a routine matter to determine all quintuples of residues modulo 8
that do not entirely consist of even ones and satisfy the system (4.5)–(4.6)
modulo 8. From the list obtained, one readily sees that evα,2(x) = 0 in
each case.
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