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Extensions and the weak Calkin algebra
of Read’s Banach space admitting discontinuous derivations

by

Niels Jakob Laustsen and Richard Skillicorn (Lancaster)

In memoriam: Charles J. Read (1958–2015)

Abstract. Read produced the first example of a Banach space ER such that the
associated Banach algebra B(ER) of bounded operators admits a discontinuous derivation
(J. London Math. Soc., 1989). We generalize Read’s main theorem about B(ER) from
which he deduced this conclusion, as well as the key technical lemmas that his proof relied
on, by constructing a strongly split-exact sequence

{0} → W (ER)→ B(ER)→← `∼2 → {0},

where W (ER) denotes the ideal of weakly compact operators on ER, while `∼2 is the
unitization of the Hilbert space `2, endowed with the zero product.

1. Introduction and statement of the main result. In 1989, Read [7]
published the construction of a remarkable Banach space that we shall de-
note by ER. Read’s purpose was to produce an example of a discontinuous
derivation from the Banach algebra B(E) of bounded operators on a Banach
space E, thus answering an open question in automatic continuity theory go-
ing back at least to [4], in which Johnson had shown that, for each Banach
space E that is isomorphic to its Cartesian square E⊕E (or, more generally,
such that E has a ‘continued bisection’), every homomorphism from B(E)
into a Banach algebra is continuous. A general result states that the conti-
nuity of all homomorphisms from a Banach algebra implies the continuity
of all derivations from it (see, e.g., [2, Theorem 2.7.5(i)]). Hence Read’s re-
sult implies that Johnson’s theorem does not extend to all Banach spaces,
and it was the first example of a Banach space E for which B(E) admits a
discontinuous homomorphism.
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Read’s strategy was to establish the following theorem, from which the
existence of a discontinuous derivation from B(ER) into a one-dimensional
Banach B(ER)-bimodule follows by standard methods, as detailed in [7,
Theorem 1].

Theorem 1.1 (Read). There exists a Banach space ER such that the
Banach algebra B(ER) contains a closed ideal I of codimension one, but
the closed linear span of its products,

I 2 = span{ST : S, T ∈ I },
has infinite codimension in B(ER). More precisely:

(i) I contains the ideal W (ER) of weakly compact operators on ER;
(ii) W (ER) has infinite codimension in B(ER);
(iii) I 2 ⊆ W (ER).

This theorem will be an immediate consequence of our main result, which
will also incorporate and strengthen the key technical lemmas that Read used
to establish it, as we shall explain below, once we have stated our main result
precisely. It involves the following notation. Endow the separable, infinite-
dimensional Hilbert space `2 with the zero product, and denote its unitization
by `∼2 , so that `∼2 = `2 ⊕ K1 as a vector space (where K denotes the scalar
field, either R or C, and 1 is the formal identity that we adjoin), and the
product and norm on `∼2 are given by

(ξ + λ1)(η + µ1) = λη + µξ + λµ1 and ‖ξ + λ1‖ = ‖ξ‖+ |λ|
for all ξ, η ∈ `2 and λ, µ ∈ K.

Theorem 1.2. There exists a continuous, surjective homomorphism ψ
from the Banach algebra B(ER) onto `∼2 with kerψ = W (ER) such that the
short-exact sequence

{0} → W (ER)→ B(ER)
ψ−→ `∼2 → {0}

splits strongly, in the sense that there is a continuous homomorphism from
`∼2 into B(ER) which is a right inverse of ψ.

Taking I to be the preimage under ψ of the codimension-one ideal `2
of `∼2 , we see that clauses (i)–(iii) of Theorem 1.1 are satisfied, so that The-
orem 1.1 follows from Theorem 1.2, as claimed above. To explain how The-
orem 1.2 incorporates and strengthens the key technical lemmas in Read’s
construction, let us first describe the latter in more detail.

After defining the Banach space ER, Read begins his study of it by show-
ing that the quotient E∗∗R /ER is isomorphic to a Hilbert spaceH, and he then
identifies a particular orthonormal basis (an)n∈N for this Hilbert space (see
[7, (3.6.5) and Lemma 3.7]). Given an operator T ∈ B(ER), its bidual T ∗∗
induces an operator Θ0(T ) on E∗∗R /ER, and hence on H, by a standard
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construction, as detailed in the diagram (2.1) below. Read’s main technical
achievement is [7, Lemma 4.1], which states that when Θ0(T ) is considered
as an operator on H, its matrix M with respect to the orthonormal basis
(an)n∈N has a very special form, namely

(1.1) M =



λ 0 0 · · ·
µ1 λ 0 0 · · ·
µ1 0 λ 0 0 · · ·
µ2 0 0 λ 0 0 · · ·
µ2 0 0 0 λ 0 0 · · ·
µ3 0 0 0 0 λ 0 0 · · ·
µ3 0 0 0 0 0 λ 0 0 · · ·
...

...
...

...
...

...
. . .


for some scalars λ and µ1, µ2, µ3, . . . (Note that (1.1) corrects a typo in [7,
(4.1.1)]: the first entry of the fifth row of M should be µ2, not µ3, as [7,
Lemma 4.1(c)] shows.) Finally, in [7, Lemma 4.2], Read establishes a partial
converse to this result by showing that, in the case where only finitely many
of the scalars µ1, µ2, µ3, . . . are non-zero, (1.1) arises as the matrix of Θ0(T )
for some operator T ∈ B(ER).

The connection between these results and Theorem 1.2 goes via the fol-
lowing observation. The first column of the matrix (1.1) is the image of the
first basis vector under the operator Θ0(T ), so that the sequence (µi)i∈N
belongs to `2. Hence we can define a mapping ψ : B(ER) → `∼2 by ψ(T ) =
(µi)i∈N + λ1, where λ and µ1, µ2, . . . are the scalars determined by Θ0(T )
via (1.1). We shall show that ψ is the surjective homomorphism whose exis-
tence is stated in Theorem 1.2, which therefore strengthens Read’s technical
lemmas in two ways. First, the surjectivity of ψ means that all possible
matrices of the form (1.1) arise as the matrix of Θ0(T ) for some operator
T ∈ B(ER), not just those whose first column vanishes eventually. Second,
we can choose a preimage T under ψ of the element (µi)i∈N + λ1 ∈ `∼2 in
such a way that the corresponding mapping is a bounded homomorphism.

Our motivation for proving Theorem 1.2 is that it has enabled us to show
that:

• the Banach algebra B(ER) has a singular extension which splits alge-
braically, but it is not admissible, and so does not split strongly;
• the homological bidimension of B(ER) is at least two.

The first of these results solves a natural problem left open in Bade, Dales,
and Lykova’s comprehensive study [1] of splittings of extensions of Banach
algebras, while the second answers a question originating in Helemskĭı’s sem-
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inar at Moscow State University. For details of any unexplained terminology
and how to deduce these results from Theorem 1.2, we refer to [6].

Note added in proof. After the completion of [6], in joint work with
Kania [5], we have succeeded in constructing a singular extension of B(ER)
which is admissible and splits algebraically, but does not split strongly, thus
complementing the first of the two results mentioned above. Once again,
Theorem 1.2 plays a key role in the proof of this result.

To conclude this Introduction, we would like to express the hope that,
by elucidating the structure of the Banach algebra B(ER), Theorem 1.2 will
spark new interest in and lead to further applications of this remarkable
creation of Read’s.

2. Read’s Banach space ER and the proof of Theorem 1.2. We
begin this section with some general conventions and results, followed by
an overview of Read’s construction of the Banach space ER and details of
the specific elements of Read’s work that we shall require in our proof of
Theorem 1.2, before we conclude with the proof itself. Our aim is to provide
enough detail to make this presentation self-contained, without repeating
arguments already given in [7]. An expanded, entirely self-contained version
of the proof of Theorem 1.2, incorporating all necessary details of Read’s
construction, can be found in [8, Chapter 5].

We shall generally follow the notation and terminology used in [7]; in
some places, however, we add extra details or take a slightly different view
from Read’s in order to facilitate our proof of Theorem 1.2 and avoid ambi-
guities.

All results in [7] are stated for complex scalars only. We observe that
the proofs carry over verbatim to the real case, so we shall address both
cases simultaneously, denoting the scalar field by K, so that either K = R or
K = C.

By an operator, we understand a bounded, linearmapping betweenBanach
spaces. For a Banach space E, we denote by E∗ its dual space, and we identify
E with its canonical image in the bidual space E∗∗. Let πE : E∗∗ → E∗∗/E
denote the quotient mapping. Since the restriction to E of the bidual T ∗∗
of an operator T ∈ B(E) is equal to T , it leaves the subspace E invariant,
and hence the Fundamental Isomorphism Theorem implies that there is a
unique operator Θ0(T ) ∈ B(E∗∗/E) such that the diagram

(2.1)

E∗∗
T ∗∗

//

πE

��

E∗∗

πE

��
E∗∗/E

Θ0(T ) // E∗∗/E
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is commutative. Moreover, the mapping Θ0 : B(E) → B(E∗∗/E) given by
T 7→ Θ0(T ) is a continuous, unital algebra homomorphism of norm at most
one, and a standard characterization of the ideal of weakly compact operators
shows that kerΘ0 = W (E).

Let (A, ‖ · ‖A) be a Banach space with a normalized, symmetric ba-
sis (en)n∈N. By passing to an equivalent norm, we may suppose that the
basis (en)n∈N is 1-symmetric, that is, for each n ∈ N, each permutation π
of N, and all scalars λ1, . . . , λn, µ1, . . . , µn, we have∥∥∥ n∑

j=1

λjµjeπ(j)

∥∥∥
A
≤ max{|µ1|, . . . , |µn|}

∥∥∥ n∑
j=1

λjej

∥∥∥
A
.

Read [7, Definition 1.2(b)] defines the James-like space JA based on A as
the collection of all scalar sequences x = (λn)n∈N ∈ c0 such that the quantity

‖x‖JA = sup
{∥∥∥ n∑

j=1

(λpj − λpj+1)2ej + λ2
pn+1

en+1

∥∥∥1/2

A
:

n, p1, . . . , pn+1 ∈ N, p1 < · · · < pn+1

}
is finite, and observes that (JA, ‖ · ‖JA) is a Banach space.

In [7, Section 2], Read proceeds to show that, in the case where A contains
no subspace isomorphic to c0, the space JA is quasi-reflexive of order one,
so that the canonical image of JA has codimension one in its bidual (JA)∗∗,
just like the original James space (which in this approach corresponds to
A = `1). Moreover, the standard unit vector basis (en)n∈N is a shrinking
basis for JA, so that the sequence (e∗n)n∈N of coordinate functionals is a
basis for the dual space (JA)∗. Like Read, we use (en)n∈N to denote the
basis of both A and JA, and we identify (JA)∗∗ with JA⊕KΦ, where Φ is
the functional on (JA)∗ given by 〈e∗n, Φ〉 = 1 for each n ∈ N. We record for
later use that ‖Φ‖(JA)∗∗ = 1 by [7, Lemma 2.2(a)].

Let N0 = N ∪ {0} be the set of non-negative integers, and set

I = {2} ∪ {i ∈ N0 : i ≡ 0 mod 6, i ≡ 4 mod 6, or i ≡ 5 mod 6}.

For each i ∈ I, choose a Banach space (Bi, ‖ · ‖Bi) with a normalized,
1-symmetric basis, which we denote by (en)n∈N (independent of i), such
that no subspace of Bi is isomorphic to c0, and such that the family (Bi)i∈I
is incomparable, in the sense that, for each i ∈ I and each ε > 0, there exists
n ∈ N with

(2.2) ‖σn‖Bi ≤ ε · inf{‖σn‖Bj : j ∈ I \ {i}},

where σn =
∑n

k=1 ek; Read explains in the note following [7, Definition 3.2]
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that such a family exists. For i ∈ N \ I, set

(2.3) Bi =

{
B0 if i ≡ 1 mod 6,
B2 if i ≡ 2 mod 6 or i ≡ 3 mod 6,

so that Bi is now defined for each i ∈ N0, and we have a sequence (JBi)i∈N0

of James-like Banach spaces, whose `2-direct sum Y = (
⊕∞

i=0 JBi)`2 is at the
heart of Read’s construction. By standard duality and the quasi-reflexivity
of the spaces JBi, we have the following identifications:

(2.4)

Y ∗ =
( ∞⊕
i=0

(JBi)
∗
)
`2
,

Y ∗∗ =
( ∞⊕
i=0

(JBi)
∗∗
)
`2

=
( ∞⊕
i=0

JBi ⊕KΦ
)
`2
.

Another important piece of notation involves the Hilbert space B =
`2(N0) and its standard orthonormal basis (bn)n∈N0 , which Read relabels as
follows for positive indices:

(2.5)
αn = b6n, βn = b6(n−1)+1, γn = b6(n−1)+2,

δn = b6(n−1)+3, xn = b6(n−1)+4, yn = b6(n−1)+5

(n ∈ N).

For n ∈ N and ξ =
∑∞

i=0 ξibi ∈ B, Read introduces the tensor notation
en⊗ ξ = (ξien)∞i=0, which defines an element of Y due to the uniform bound
‖en‖JBi ≤ ‖e1 + e2‖Bi ≤ 2, independent of i ∈ N0. This definition extends
by linearity to tensors of the form x ⊗ ξ for x ∈ c00. By assigning special
symbols to the following linear combinations of the basis vectors (2.5):

(2.6)
α′n = αn − (xn − yn), β′n = βn − (xn + yn),

γ′n = γn − (xn + yn), δ′n = δn − (b0/2
n − xn + yn)

(n ∈ N),

we can now define Read’s space ER as follows:

(2.7)
S = {α′n, β′n, γ′n, δ′n : n ∈ N}, V = spanS ⊆ B,
N = span{en ⊗ s : n ∈ N, s ∈ S} ⊆ Y, ER = Y/N.

Note. Our definition of β′n above corrects a typo in [7, Definition 3.4(b)],
where the sign of yn is wrong, as one can see by comparing it with the second
line of the displayed equations at the bottom of [7, p. 313] and the seventh
displayed equation of [7, p. 319].

As we stated in the Introduction, the first two steps in Read’s analysis of
the space ER consist of showing that the quotient E∗∗R /ER is isomorphic to
a Hilbert space and identifying an orthonormal basis for it. Read, however,
does not obtain an explicit formula for this isomorphism. Such a formula
will be required in our proof of Theorem 1.2, so we shall now recast Read’s
arguments in a form that will produce an explicit isomorphism U between



The weak Calkin algebra of Read’s Banach space 57

the closed subspace

(2.8) H = span{b0, xn, yn : n ∈ N}

of B and E∗∗R /ER.
To this end, we observe that the proof of [7, Lemma 3.7] shows that

the restriction to H of the quotient mapping QV : B → B/V is surjective
and bounded below by 1/15; that is, QV |H is an isomorphism whose inverse
has norm at most 15. (Read denotes this mapping by α; we prefer QV |H
as it is more descriptive and avoids any possible confusion with the basis
vectors αn.)

Set U0 = πERQ
∗∗
NR0 : B → E∗∗R /ER, where πER : E∗∗R → E∗∗R /ER and

QN : Y → ER are the quotient mappings, and R0 : B → Y ∗∗ is the linear
isometry given by

R0ξ = Φ⊗ ξ = (ξiΦ)∞i=0

(
ξ =

∞∑
i=0

ξibi ∈ B
)
,

using the natural extension to Y ∗∗ of Read’s tensor notation for Y introduced
above. We claim that U0 is surjective with kerU0 = V . To establish this
claim, we first note that kerQ∗∗N = N◦◦ (the bipolar of N) by a standard
duality result, and therefore

(2.9) ker(πERQ
∗∗
N ) = Y +N◦◦.

It follows from (2.4) that Y ∗∗ = Y +R0[B]. Combining this with the surjec-
tivity of πERQ

∗∗
N and (2.9), we obtain E∗∗R /ER = πERQ

∗∗
N [Y ∗∗] = U0[B], so

that U0 is indeed surjective.
Next, to determine the kernel of U0, we require Read’s observation [7,

(3.6.3)] that each element x∗∗ of Y ∗∗ can be expressed uniquely as x∗∗ =
Φ ⊗ η0 +

∑∞
i=1 ei ⊗ ηi, where ηi ∈ B for each i ∈ N0. Using this notation,

Read [7, Lemma 3.6.4] shows that

(2.10) N◦◦ = {x∗∗ : ηi ∈ V for each i ∈ N0},

which together with (2.9) immediately implies that V ⊆ kerU0.
Conversely, suppose that ξ ∈ kerU0. Then Φ ⊗ ξ ∈ ker(πERQ

∗∗
N ), so

by (2.9), we can find y =
∑∞

i=1 ei ⊗ ηi ∈ Y such that Φ⊗ ξ − y ∈ N◦◦, and
hence ξ ∈ V by (2.10) (as well as ηi ∈ V for each i ∈ N, but we do not need
this information). This proves our claim.

By the Fundamental Isomorphism Theorem, there is a unique isomor-
phism Û0 of B/V onto E∗∗R /ER such that U0 = Û0QV , and hence we have a
commutative diagram
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(2.11)

H
QV |H
∼=

//� _

ι

��

B/V ∼=̂
U0 // E∗∗R /ER

B

QV

;; ;;

U0

55

R0 // Y ∗∗
Q∗∗
N // // E∗∗R

πER

OOOO

where ι : H → B denotes the natural inclusion.
This diagram shows in particular that the restriction U of the opera-

tor U0 to the subspace H is an isomorphism onto E∗∗R /ER, and so it in-
duces a continuous algebra isomorphism AdU : T 7→ U−1TU of the Banach
algebra B(E∗∗R /ER) onto B(H). Using this notation, we can rephrase [7,
Lemma 4.1] as follows: for each T ∈ B(ER), the matrix M of the op-
erator (AdU) ◦ Θ0(T ) with respect to the orthonormal basis (an)n∈N =
(b0, xn, yn)n∈N for H is given by (1.1). Alternatively, we can express this
identity as

(2.12) (AdU) ◦Θ0(T ) = λIH + τξ,

where IH is the identity operator on H, ξ =
∑∞

n=1 µn(xn + yn), and τξ is
the rank-one operator on H given by η 7→ (η | b0)ξ, where (η | b0) denotes the
inner product of η and b0. We note in passing that the fact that the spaces
(Bi)i∈I are chosen to be incomparable in the sense of (2.2) plays a crucial
role in the proof of [7, Lemma 4.1].

We are now ready to prove Theorem 1.2. Our proof refines that of [7,
Lemma 4.2] as given in [7, p. 320]. For clarity, we shall present a fully self-
contained argument.

Proof of Theorem 1.2. For notational convenience, we shall replace the
generic Hilbert space `2 in the statement of Theorem 1.2 with the closed
subspace

H0 = span{xn + yn : n ∈ N}
of the Hilbert space H given by (2.8). The space H0 is of course isometrically
isomorphic to `2 via the mapping ξ 7→

(
1√
2
(ξ |xn + yn)

)
n∈N, so this is really

only a change in notation, provided that we endow H0 with the zero product.
Then, using the fact that the vector b0 is orthogonal to H0, we see that the
mapping Υ : ξ+λ1 7→ τξ+λIH is a continuous, unital algebra isomorphism of
the unitization H̃0 = H0⊕K1 of H0 (defined analogously to that of `2 above
Theorem 1.2) onto the closed subalgebra T = {τξ + λIH : ξ ∈ H0, λ ∈ K}
of B(H).

By (2.12), the range of (AdU)◦Θ0 is contained in T , so we may consider
the composite continuous algebra homomorphism ψ given by

ψ = Υ−1 ◦ (AdU) ◦Θ0 : B(ER)→ H̃0.
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Since Υ−1 and AdU are both isomorphisms, we see that kerψ = kerΘ0 =
W (ER). It remains to construct a continuous algebra homomorphism which
is a right inverse of ψ.

Let ξ =
∑∞

n=1 ξn(xn + yn) ∈ H0 and y = (y(i))∞i=0 ∈ Y be given, where
y(i) ∈ JBi for each i ∈ N0. By (2.3), we have JB6(n−1)+1 = JB0 for each
n ∈ N, so that in analogy with the tensor notation already introduced, we
may define y(0)⊗βn to be the element of Y whose (6(n−1)+1)st coordinate
is y(0), while all other coordinates vanish. Then the series

∑∞
n=1 ξn y(0)⊗βn

converges in Y , and its sum has norm 1√
2
‖ξ‖B ‖y(0)‖JB0 .

Using (2.3) once more, we see that JB6(n−1)+2 = JB6(n−1)+3 = JB2 for
each n ∈ N, so that we have an absolutely convergent series

∞∑
n=1

y(6(n− 1) + 3)

2n

in JB2, whose sum y′ has norm at most ‖y‖Y . As above, let y′ ⊗ γn be the
element of Y whose (6(n − 1) + 2)nd coordinate is y′, while all other coor-
dinates vanish. Then the series

∑∞
n=1 ξn y

′ ⊗ γn converges in Y , and its sum
has norm at most 1√

2
‖ξ‖B ‖y‖Y .

Combining these conclusions, we may define an element of Y by

(2.13) Tξy =
∞∑
n=1

ξn

(
y(0)⊗ βn +

( ∞∑
m=1

y(6(m− 1) + 3)

2m

)
⊗ γn

)
,

and ‖Tξy‖Y ≤
√

2 ‖ξ‖B ‖y‖Y . The mapping Tξ : y 7→ Tξy is clearly linear
and has norm at most

√
2 ‖ξ‖B, and hence we have a mapping

(2.14) ρ0 : H0 → B(Y ), ξ 7→ Tξ,

which is linear and bounded with norm at most
√

2.
To prove that ρ0 is multiplicative, we must show that TηTξ = 0 for

each pair ξ, η ∈ H0 because H0 has the zero product. Write the vector ξ as
ξ =

∑∞
n=1 ξn(xn + yn), and let y = (y(i))∞i=0 ∈ Y be given. By (2.13), the

element z = Tξy has the form z = (z(i))∞i=0, where

z(i) =


ξny(0) if i = 6(n− 1) + 1 for some n ∈ N,

ξn

∞∑
m=1

y(6(m− 1) + 3)

2m
if i = 6(n− 1) + 2 for some n ∈ N,

0 otherwise.
Hence z(0) = 0 = z(6(m−1)+3) for eachm ∈ N, so that another application
of (2.13) shows that 0 = Tηz = TηTξy, as required.

Next, we shall prove that

(2.15) Tξ[N ] ⊆ N (ξ ∈ H0),
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where N is the subspace of Y given in (2.7). Since Tξ is bounded and linear,
it suffices to show that Tξ(en ⊗ s) ∈ N for each n ∈ N and s ∈ S. Com-
paring (2.13) with (2.5), we see that Tξ(en ⊗ η) = 0 whenever η belongs to
the set {αm, βm, γm, xm, ym : m ∈ N}, and therefore Tξ(en ⊗ s) = 0 ∈ N for
each s ∈ {α′m, β′m, γ′m : m ∈ N} by (2.6). Moreover, for m ∈ N, we have

Tξ(en ⊗ δ′m) = Tξ(en ⊗ δm)− 1

2m
Tξ(en ⊗ b0)

=
∞∑
k=1

ξk
en
2m
⊗ γk −

1

2m

∞∑
k=1

ξken ⊗ βk

=
1

2m

∞∑
k=1

ξken ⊗ (γk − βk) =
1

2m

∞∑
k=1

ξken ⊗ (γ′k − β′k) ∈ N,

which completes the proof of (2.15).
Thus, by the Fundamental Isomorphism Theorem, there is a unique op-

erator Ťξ ∈ B(ER) such that the diagram

(2.16)

Y
Tξ //

QN

��

Y

QN

��
ER

Ťξ // ER

is commutative, and ‖Ťξ‖ = ‖QNTξ‖ ≤
√

2 ‖ξ‖B. The fact that the map-
ping ρ0 given by (2.14) is an algebra homomorphism implies that the same
is true for the mapping H0 → B(ER), ξ 7→ Ťξ, and hence

ρ : H̃0 → B(ER), ξ + λ1 7→ Ťξ + λIER ,

is a continuous, unital algebra homomorphism, where IER denotes the iden-
tity operator on ER.

We shall now complete the proof by showing that this homomorphism ρ
is a right inverse of ψ. Since ψ and ρ are both unital, it suffices to show that
ψ ◦ ρ(ξ) = ξ for each ξ ∈ H0, which amounts to showing that

(AdU) ◦Θ0(Ťξ) = τξ

by the definitions of ρ, ψ, and Υ . According to (2.12), both sides of the above
identity belong to T , so the fact (to be established below) that

(2.17) T = T ′ ⇔ Tb0 = T ′b0 (T, T ′ ∈ T )

means that it is enough to verify that ((AdU) ◦ Θ0(Ťξ))b0 = τξ(b0), or
equivalently that

(2.18) Θ0(Ťξ)Ub0 = Uξ.
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To prove (2.17), let T = τη+λIH ∈ T be given, where η ∈ H0 and λ ∈ K.
Then Tb0 = η+λb0, which uniquely determines both η and λ, and hence T ,
because b0 is orthogonal to H0 3 η. This establishes the implication⇐, while
the converse is clear.

We begin our proof of (2.18) by observing that σm =
∑m

j=1 ej is a unit
vector in JBi for each m ∈ N and i ∈ N0, and hence (σm ⊗ η)m∈N is a
norm-bounded sequence in Y ⊆ Y ∗∗ for each η =

∑∞
i=0 ηibi ∈ B. Since the

elements of the form e∗n⊗ζ = (ζie
∗
n)i∈N0 , where n ∈ N and ζ =

∑∞
i=0 ζibi ∈ B,

span a norm-dense subspace of Y ∗, and

〈σm ⊗ η, e∗n ⊗ ζ〉 =

∞∑
i=0

ηiζi = 〈e∗n ⊗ ζ, Φ⊗ η〉 (m ≥ n),

we conclude that the sequence (σm⊗η)m∈N weak∗-converges to Φ⊗η in Y ∗∗
by a standard elementary result (see, e.g., [3, Exercise 3.3]), as noted by
Read [7, p. 315].

Writing the vector ξ as ξ =
∑∞

n=1 ξn(xn + yn), we obtain

QNTξ(σm ⊗ b0) = QN

( ∞∑
n=1

ξn σm ⊗ βn
)

by (2.13)

=
∞∑
n=1

ξnQN (σm ⊗ βn)

=

∞∑
n=1

ξnQN (σm ⊗ (xn + yn)) by (2.6)–(2.7)

= QN

(
σm ⊗

∞∑
n=1

ξn(xn + yn)
)

= QN (σm ⊗ ξ)

for each m ∈ N. This implies that

Q∗∗N T
∗∗
ξ (Φ⊗ b0) = w∗-lim

m→∞
QNTξ(σm ⊗ b0) = w∗-lim

m→∞
QN (σm ⊗ ξ)

= Q∗∗N (Φ⊗ ξ)
because the bidual of an operator T is a weak∗-continuous extension of T .
Combining this identity with the diagrams (2.11), (2.1), and (2.16), we can
now verify (2.18):

Θ0(Ťξ)Ub0 = Θ0(Ťξ)πERQ
∗∗
N (Φ⊗ b0) = πER Ť

∗∗
ξ Q∗∗N (Φ⊗ b0)

= πERQ
∗∗
N T
∗∗
ξ (Φ⊗ b0) = πERQ

∗∗
N (Φ⊗ ξ) = Uξ,

which completes the proof of Theorem 1.2.
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