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1. Introduction. Let n be a positive squarefree integer, coprime to 6,
and let B ≥ 2. Letting GB = GB(n) be the subgroup of Z∗n generated by
all positive integers coprime to n included in the interval [1, B], we denote
by G = G(n) the least B such that GB(n) = Z∗n. The evaluation of G(n)
has attracted much attention in the literature (see e.g. [B-H], [Bur]). Con-
ditionally, under the Riemann Hypothesis for Dirichlet L-functions we have
GB(n) = Z∗n for B ≥ 2 log2 n (see [B-H]).

In this paper we focus on the exponents EB(n) of the subgroups GB(n)
as n→∞. More precisely we investigate the distances defined by DB(n) =
λ(n)/EB(n), where λ is the Carmichael function. If GB(n) = Z∗n then
obviously the (global) distance DB(n) is trivial, i.e. equal to 1. The best
known value of B = B(n) such that DB(n) is trivial is of order n1/4e1/2+ε
(see [Bur]).

The numbers n ≤ x with all local distances DB(p) (p |n) nontrivial and
large B should be regarded as exceptional. In the first part of the article we
will be concerned with an upper bound for the size of the set of B-exceptional
numbers n ≤ x (i.e. such that all local distances are ≥ 2). For relatively small
B = B(x) the corresponding bound can be obtained by an application of
the Montgomery–Vaughan [M-V] large sieve inequality. Namely from the
proof of [L-W, Theorem 2] one can easily deduce that the number of primes
n ≡ 1 (mod 4) with n ≤ x such that DB(n) is even (and thus nontrivial)
is at most � x1−c/log log x provided B = B(x) is at least C log x, for some
absolute constants c and C > 0.
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In this paper we will be concerned with an upper bound for the set of B-
exceptional numbers n ∈ Ns (see Notation) for significantly greater values of
B = B(x). For this reason we use the zero density estimate for the Dirichlet
L-functions and the device applied in [Pom] to obtain an upper bound for the
size of the corresponding set of type x5δ0 logc1 x, where δ0 = log log xc0/logB
for some c0 > 0 and any c1 > 14. Furthermore applying the asymptotic
equality for the smooth numbers counting function ψn(x,B) proved in [F-T]
and the Gallagher large sieve (see [Gal]), we improve the above bound to
x2δ0(1+o(1)) in the region B(x) > exp((log log x)5/3+ε) as x→∞.

It is known that the quantities EB(m) and DB(m), where m |n, are
important in deterministic primality testing (see [F-K]), the conditional fac-
toring problem (see [Con]), the least Euler–Euclid witnesses problem (see
[Zra]), or the hardness of the discrete logarithm problem in Z∗m (see [P-Z]).
The maximal possible value of DB(n) (equal to lcmp |nDB(p)) defines the
B-special numbers. They play a significant role in the reduction of factoring
n to the computation of the Euler function φ(n). If many (characterized by
the parameter β) of the values of DB(p) for p |n have nontrivial common
divisors, we call n (B, β)∗-special.

In this article we will prove a fairly strong average upper bound forDB(n)
over the set of (B, β)∗-special numbers. This seems to be useful for a precise
characterization of numbers that are hard to factor from the algorithmic
point of view. On the other hand, we give an average upper bound for the
value wB(n) =

∏
p |n(DB(p)− 1) over the set of B-exceptional numbers.

The efficient reduction of factoring n to computing φ(n) depends essen-
tially on the set of B-exceptional numbers n with at least l prime divisors
and at least t distinct prime factors of DB(p) for all p |n, where l, t ≥ 1. We
prove that the cardinality of the set of such numbers ≤ x for sufficiently large
t is at most x5δ0−(γ(l,t)+l log(1−t−t)/log x) logc1 x, where γ(l, t) = lt log t/log x,
c0 and c1 are as above and B ≥ (c0 log x)

c with c = max(5, 5/(2(c1 − 14)),
with the corresponding improvement for B(x) > exp((log log x)5/3+ε).

There are two basic ingredients in our approach. One is the combinato-
rial Lemma 4.4 giving an upper bound for the least common multiple of an
arbitrary set of positive integers dj having many nontrivial values νq(dj) for
primes q |

∏
j≤r dj . The second is a generalization of the method applied in

[Pom] for nonprime moduli n ≤ x and the values of the local distances DB(p)
divisible by arbitrary d, which may now depend on n. The key point here
is to investigate the primitive Dirichlet characters χ of order dividing D =
lcmDB(p), so that χ([1, B]) ⊂ {0, 1}. Applying density estimates for the
zeros of the corresponding Dirichlet L-functions we obtain a suitable aver-
age upper bound for wB(n), and hence for the size of the set of B-exceptional
numbers n ≤ x with large value of lt log t. Finally, letting l and t be of order
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T (x, u) ≤ (log x)1/u(log log x)u−1, (3 ≤ u < ε log log x/log log log x) we de-
duce that either n ≤ x can be factored in subexponential time exp(T (x, u)),
or n belongs to a set of cardinality � x2δ−δ

u−2(1−2ε)/u log x log log x, for
any sufficiently small ε > 0 and sufficiently large x > x0(ε), where δ =
log(2 log x)/(2 log x)1/u. The result is interesting when u > 3 since then we
do not know any deterministic reduction of factoring n to computation of
φ(n) of complexity � exp((log x)1/u(log log x)u−1) (see [Zra]).

Notation. Throughout, m,n stand for positive integers, while p, q are
prime numbers.

• N := the set of all positive integers
• Ns := the set of all squarefree positive integers, coprime to 6
• φ := the Euler phi function
• λ := the Carmichael function, i.e. λ(n) = lcmp |n(p− 1) if n ∈ Ns
• P+(n) := the greatest prime divisor of n
• ω(n) := the number of distinct prime divisors of n
• νq(n) := the highest power of q dividing n
• k(n) := the kernel of n, i.e. the largest squarefree divisor of n
• #A := the cardinality of the (finite) set A

• δ(x, y) := log log x

log y
(y > 1, x ≥ 3)

• ordn b := the order of b mod n, where gcd(b, n) = 1
• For B > 1,

EB(n) := lcm
b≤B, gcd(b,n)=1

ordn b, DB(n) :=
λ(n)

EB(n)
,

wB(n) :=
∏
p |n

(DB(p)− 1).

• log n := the natural logarithm of n
• For any Dirichlet character χ = χ (mod n) we denote by L(s, χ) the
L-series

∑
n≥1 χ(n)n

−s analytically continued onto the whole complex
plane C
• N(σ, t, χ) := the number of zeros ρ of L(s, χ) in the region Re ρ ≥ σ,
|Im ρ| ≤ t

2. B-distance and B-exceptionality. Let B ≥ 2 and λ = λ(n) be the
Carmichael function. For n ∈ Ns we define the B-distance of n by

(2.1) DB(n) =
λ(n)

EB(n)
.

Here EB(n) is the exponent of the subgroup of Z∗n generated by the positive
integers coprime to n from the interval [1, B]. The local B-distance of n
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(related to any prime p |n) is defined by the equality

(2.2) DB(p) =
p− 1

EB(p)
.

In this paper we investigate the positive integers having a nontrivial
(global or local) B-distance. If n has a nontrivial (global) B-distance, i.e.
q |DB(n), then EB(n) | λ(n)q for some prime q |λ(n). Let p |n be such that
νq(λ(n)) = νq(p− 1). Then

νq(EB(p)) ≤ νq(EB(n)) < vq(λ(n)) = νq(p− 1).

This proves that DB(p) ≥ q, hence n also has some nontrivial local B-dis-
tance. The converse is not true. To see this, choose distinct primes p1, p2
such that 2 is not a primitive root mod p1 but 2 is a primitive root mod p2
and p1 − 1 | p2 − 1. Then E2(p1) < p1 − 1 < λ(p1p2) but E2(p1p2) =
lcm(E2(p1), E2(p2)) = lcm(E2(p1), p2 − 1) = p2 − 1 = lcm(p1 − 1, p2 − 1) =
λ(p1p2). Hence the local distance D2(p1) is nontrivial, while D2(p1p2) = 1,
which is the case in particular when p1 = 7 and p2 = 13. The investigation
of n ≤ x with DB(n) > 1 can therefore be reduced to the investigation of
primes p ≤ x with DB(p) nontrivial. The numbers n ∈ Ns with many large
local distances are in some sense exceptional. This leads to the following

Definition 2.1. n ∈ Ns is called B-exceptional if DB(p) ≥ 2 for all p |n.
Moreover a B-exceptional number n is called (B, l, T )-exceptional (T ≥ 2,
l ≥ 1) if

(2.3) #{p |n : DB(p) ≥ T} ≥ l.

For a B-exceptional number n we define the nonzero number wB(n) =∏
p |n(DB(p)−1). To collect the basic facts on DB(n), DB(p) and wB(n), we

refer to the familiar lower bound for the smooth numbers counting function.

Lemma 2.2 (see [K-P]). Let x ≥ 4 and 2 ≤ y ≤ x. Then

(2.4) ψ(x, y) := #{m ≤ x : P+(m) ≤ y} > x1−δ(x,y)

where δ(x, y) = log log x/log y.

Proposition 2.3. Let n ∈ Ns, n ≥ 4, B ≥ 2, T ≥ 2, and l ≥ 1. Then

gcdp |n(DB(p)) |DB(n) | lcm
p |n

DB(p),(2.5)

DB(n) < nδ(n,B).(2.6)

Let n be (B, l, T )-exceptional and define α(l, T, n) := l log T/log n. Then

(2.7) α(l, T, n) < δ(n,B) and wB(n) ≥ nα(l,T−1,n).
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Furthermore if EB(n) = EB(p) for every prime p |n then DB(n) =
lcmp |nDB(p) and for any a > log 2 there exists a constant c = c(a) such
that if ω(n) > c(a) then

DB(n) > ω(n)(log logω(n))/a.

Proof. To prove (2.5) consider any prime q |λ(n) and a prime p0 =
p0(q) |n such that

νq(p0 − 1) = νq(λ(n)).

Then

νq

(
lcm
p |n

p− 1

EB(p)

)
≥ νq

(
p0 − 1

EB(p0)

)
= νq

(
λ(n)

EB(p0)

)
≥ νq

(
λ(n)

lcmp |nEB(p)

)
= νq

(
λ(n)

EB(n)

)
.

Similarly letting p1 = p1(q) |n satisfy νq(EB(p1)) = νq(EB(n)) we conclude
that

νq

(
λ(n)

EB(n)

)
= νq

(
λ(n)

EB(p1)

)
≥ νq

(
p1 − 1

EB(p1)

)
≥ min

p |n
νq

(
p− 1

EB(p)

)
giving the remaining divisibility of (2.5). Moreover by Lemma 2.2,

DB(n) | lcm
p |n

DB(p) ≤
∏
p |n

DB(p) =
∏
p |n

p− 1

EB(p)

<
∏
p |n

pδ(p,B) ≤
∏
p |n

pδ(n,B) = nδ(n,B)

as required.
Moreover if EB(n) = EB(p) for every prime p |n then

DB(p) =
p− 1

EB(p)
=

p− 1

EB(n)

∣∣ λ(n)

EB(n)
= DB(n),

hence by (2.5) we obtain DB(n) = lcmp |nDB(p).
To prove (2.7) assume that l ≤ ω(n) and n is (B, l, T )-exceptional. Then

T l ≤
∏
p |n

DB(p) < nδ(n,B),

and taking the logarithms of both sides we obtain the first inequality of (2.7).
Moreover

wB(n) =
∏
p |n

(DB(p)− 1) ≥ (T − 1)l = nα(l,T−1,n),

as claimed.



326 J. Pomykała

To prove the last assertion let n ∈ Ns, B ≥ 2,M =M(n) = gcdp |n(p−1)
and r = ω(n). Letting p− 1 =Mmp (p |n), we see that the mp are distinct
positive integers. The assumption EB(n) = EB(p) | p− 1 yields

(2.8)
λ(n)

DB(n)
= EB(n) |M(n).

By definition

(2.9) λ(n) = lcm
p |n

(p− 1) =M lcm
p |n

mp,

hence by (2.8), dividing both sides of (2.9) by M we obtain

lcm
p |n

mp |DB(n),

and therefore for D = DB(n) we have

τ(D) = τ(DB(n)) ≥ τ
(
lcm
p |n

mp

)
≥ r,

where τ(D) denotes the number of all positive divisors of D. Applying [H-W,
Theorem 3.17, p. 262] we deduce, for any a > log 2 and sufficiently large
r > c(a), that D > c(a) and

log τ(D) < a
logD

log logD
,

hence

log r ≤ a logD

log logD
.

Since r ≤ D, we obtain (for D > c(a))

log r log log r < log r log logD ≤ a logD,

giving D > r(log log r)/a, as claimed.

3. Upper bound for (B, l, T )-exceptional numbers. Here we will
deal with the asymptotic behaviour of (B, l, T )-exceptional numbers n ≤ x,
where T ≥ 2 and l ≥ 1. Let B = B(x), T = T (x), l = l(x) be functions
satisfying the following conditions:

(c0 log x)
2 ≤ B(x) < x,(3.1)

l(x) log T (x) ≤ log x

logB(x)
log log x,(3.2)

where c0 is some absolute positive constant. Our aim is to get an asymptotic
upper bound for the cardinality of

(3.3) Exc(x;B, l, T ) = {n ≤ x : n is (B, l, T )-exceptional}
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as x → ∞. The main result of this section gives an upper bound for
#Exc(x;B, l, T ) in terms of l, T and δ(x,B).

Let n ∈ Ns and consider the family FD of all Dirichlet characters modulo
n of order dividing D = lcmp |nDB(p) that can represented as

χ =
∏
p |n

ψ
p−1
DB(p)

mp
p

where ψp is a fixed Dirichlet character modulo p of order p− 1 and mp runs
over the set of all residue classes modulo DB(p). Let F∗D ⊂ FD be the set of
corresponding primitive characters. We denote by [1, B] the set of positive
integers b not exceeding B.

We have

Lemma 3.1. Let n ∈ Ns and FD,F∗D be as above. Then for any χ ∈ FD,

(3.4) χ([1, B]) ⊂ {0, 1}.

Moreover

(3.5) #F∗D =
∏
p |n

[DB(p)− 1].

In particular for prime n all DB(p)−1 nonprincipal characters are primitive.

Proof. Assume that b ≤ B and gcd(b, n) = 1. Then

χ(b) =
∏
p |n

ψ
p−1
DB(p)

mp
p (b mod p) =

∏
p |n

ψ
mp
p [(b mod p)EB(p)]

=
∏
p |n

ψ
mp
p (1) = 1.

Moreover (see [Dav, Section 5]) χ is primitive providedmp (modDB(p)) 6= 0.
Hence the number of primitive χ’s is equal to

∏
p |n[DB(p) − 1] = D, as

required.

Let L(s, χ) be the L-function attached to χ and let N(σ, t, χ) =
#{ρ : L(ρ, χ) = 0, |Im ρ| ≤ t, Re ρ ≥ σ}.

Lemma 3.2 (see e.g. [Mon2, Section 9, Theorem 1]). There exists an
absolute positive constant c0 such that for any Dirichlet character χ =
χ (mod n) and for δ satisfying (log n)−1 < δ ≤ 1/2 we have

(3.6) N(1− δ, δ2 log n, χ) = 0 ⇒ Bχ < (c0δ log n)
1/δ,

where Bχ is the least character nonresidue, i.e. the least b ∈ N such that
χ(b) 6∈ {0, 1}.
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Lemma 3.3 (see [Mon1, Theorem 12.2]). Let Y ≥ 1 and t ≥ 0. Then for
1/2 ≤ σ ≤ 4/5,∑

n≤Y

∑∗

χmodn

N(σ, t, χ)� (Y 2(t+ 2))
3(1−σ)
2−σ (log Y (t+ 2))9,

while for 4/5 ≤ σ ≤ 1 we have∑
n≤Y

∑∗

χmodn

N(σ, t, χ)� (Y 2(t+ 2))2(1−σ)/σ(log Y (t+ 2))14

where
∑∗ denotes the summation over primitive characters modulo n.

The following theorem gives an upper bound for the number of (B, l, T )-
exceptional numbers. Condition (3.8) below is assumed to avoid the trivial
bound for #Exc(x;B, l, T ) following from (2.7) of Proposition 2.3.

Theorem 3.4. There exists an absolute constant c0 > 0 such that for
any c1 > 14 and B = B(x), T = T (x) ≥ 2, l = l(x) ≥ 1 satisfying

(c0 log x)
max(5, 5

2(c1−14)
) ≤ B(x) < x,(3.7)

l(x) log T (x) ≤ log x

logB(x)
log log x,(3.8)

we have
#Exc(x;B, l, T )� (T − 1)−lx5δ0 logc1 x,

where δ0 = δ(xc0 , B) and x > x0 is sufficiently large.

Proof. Consider any character χ ∈ F∗D where D = lcmp |nDB(p) and
B = B(x). Then by Lemma 3.1 the least character nonresidue Bχ is > B(x).
Let δ0 = log log xc0/logB(x). By (3.7) we have

(3.9) (c0 log x)
2 ≤ B(x) < x,

which in turn implies that

(3.10)
1

log x
< δ0 ≤

1

2

for x > x0(c0). Since δ0 ≤ 1 we have

B(x) = (c0 log x)
1/δ0 ≥ (c0δ0 log x)

1/δ0 ,

and in view of Lemma 3.2 the condition Bχ > B(x) ≥ (c0δ0 log x)
1/δ0 ≥

(c0δ0 log n)
1/δ0 implies that

N(1− δ0, δ20 log x, χ) ≥ N(1− δ0, δ20 log n, χ) ≥ 1

provided

(3.11) (log n)−1 < δ0 ≤ 1/2.
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We consider the sum∑
:=

∑
n≤x

n (B,l,T )-exc

∑∗

χmodn

N(1− δ0, t0, χ) with t0 = δ20 log x.

If n ≤ B(x) then n is not (B, l, T )-exceptional, hence without looss of
generality we may assume that n > B(x) in the sum above. Then the left
bound of (3.11) follows since

(log n)−1 < (logB(x))−1 ≤ log log xc0

logB(x)
for x > x0 sufficiently large,

while the right bound of (3.11) follows from the right bound of (3.10).
Now, we are in a position to apply Lemma 3.3 to the sum

∑
with Y = x,

δ = δ0, σ = 1−δ0, t = t0 = δ20 log x ≤ log x to see that 3/(2−σ) = 2/σ = 5/2
for σ = 4/5 and obtain

(3.12)
∑
� (x2 log x)

5
2
δ[log(x log x)]14 � x5δ(log x)14+

5
2
δ � x5δ logc1 x.

The last inequality follows since by (3.7) we have 14 + 5
2δ ≤ c1. Finally, in

view of Lemma 3.1 we obtain∑
≥

∑
n≤x

n (B,l,T )-exc

∏
p |n

(DB(p)− 1)

≥
∑
n≤x

n (B,l,T )-exc

(T (x)− 1)l(x) = (T (x)− 1)l(x)#Exc(x;B, l, T ),

which gives the required upper bound for the cardinality of Exc(x;B, l, T ).

Denoting by Exc(x;B) the set of B-exceptional numbers ≤ x we apply
the bound (3.12) for the sum

∑
above with T = T (x) = 2 and l = l(x) =

ω(bxc), where bxc denotes the integral part of x, to conclude that under (3.7)
we have

(3.13)
∑

n∈Exc(x;B)

wB(n)� x5δ0 logc1 x.

Letting α(a, b, c) = a log b/log c we see that condition (3.8) of Theorem
3.4 is equivalent to the inequality α(l, T, x) ≤ δ(x,B). Since (T − 1)l =
xα(l,T−1,x) we directly deduce

Corollary 3.5. Let T = T (x) ≥ 2, l = l(x) ≥ 1 and α(a, b, c) =
a log b/log c. There exists an absolute constant c0 > 0 such that for any
positive constant c1 > 14, B = B(x) and α(l, T, x) satisfying

(c0 log x)
max(5, 5

2(c1−14)
) ≤ B(x) < x,(3.14)

α(l, T, x) ≤ δ(x,B),(3.15)



330 J. Pomykała

we have

(3.16) #Exc(x;B, l, T )� x5δ0−α(l,T−1,x) logc1 x

for x > x0 sufficiently large.

The above estimate is strong for relatively small values of B = B(x). On
the other hand, if B(x) ≥ exp{(log log x)5/3+ε} then a significantly better
estimate is given by

Theorem 3.6. Let ε > 0 be sufficiently small and x > x0(ε) sufficiently
large. Let l = l(x) ≥ 1, T = T (x) ≥ 2, and B = B(x2) satisfy

(3.17) exp{(log log x2)5/3+ε} ≤ B(x2) < x2.

Then for x→∞,

(3.18) #Exc(x;B(x2), l, T )

< (π + 1)eγ(log log x)x2δ(x
2,B(x2))−α(l,T−1,x)(1 + o(1)),

where

α(a, b, c) =
a log b

log c
, δ(x, y) =

log log x

log y
.

The proof of Theorem 3.6 is based on the following two lemmas.

Lemma 3.7 (see [Gal]). For every sequence (zb)M+1≤b≤M+y of complex
numbers and Dirichlet characters χ = χ (mod n) we have

(3.19)
∑
n≤x

n

ϕ(n)

∑∗

χmodn

∣∣∣ M+y∑
b=M+1

zbχ(b)
∣∣∣2 ≤ (x2 + πy)

M+y∑
b=M+1

|zb|2,

where
∑∗ denotes summation over primitive characters modulo n.

Lemma 3.8 (see [F-T]). Let ψn(y,B) = #{b ≤ y : gcd(b, n) = 1,
P+(b) ≤ B}. For any sufficiently small ε > 0, sufficiently large y > y0(ε),
B = B(y) and n satisfying

exp{(log log y)5/3+ε} ≤ B(y) ≤ y,(3.20)

log log(n+ 2) ≤
(

log y

log{log y/logB + 1}

)1−ε
,(3.21)

we have

(3.22) ψn(y,B) =
φ(n)

n
ψ(y,B)(1 +∆(n,B, y))

where

(3.23) ∆(n,B, y)� log log(nB) log log y

log y
.
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Proof of Theorem 3.6. For χ = χ (mod n) we let

T (χ) =
∑
b≤y

zbχ(b), S(x, y) =
∑
n≤x

n

ϕ(n)

∑∗

χmodn

|T (χ)|2,

where

zb =

{
1 if P+(b) ≤ B,
0 otherwise.

If b ≤ B satisfies gcd(b, n) = 1 then by Lemma 3.1, χ(b) = 1 for all
wB(n) Dirichlet characters of orders dividing lcmp |nDB(p). Hence for every
B-exceptional number n the inner sum above is equal to∑∗

χmodn

ψn(y,B(y))2 = wB(n)ψn(y,B(y))2.

By Lemma 3.7 (with M = 0) we obtain

(3.24)
∑

n∈Exc(x;B(y))

n

ϕ(n)
wB(n)ψn(y,B(y))2 ≤ (x2 + πy)ψ(y,B(y)).

Now applying Lemma 3.8 we conclude that for sufficiently large y > y0(ε)
and B = B(y) satisfying (3.20) we have

(3.25)
∑

n∈Exc(x;B(y))

ϕ(n)

n
wB(n)(1 +∆(n,B(y), y))2 ≤ x2 + πy

ψ(y,B(y))
.

Choosing y = x2 and applying the lower bound for ψ(y,B(y)) given by
Lemma 2.2 we obtain∑

n∈Exc(x;B)

ϕ(n)

n
wB(n) ≤ (π + 1)

x2

ψ(x2, B(x2))
(1 + o(1))(3.26)

≤ (π + 1)x2δ(x
2,B(x2))(1 + o(1))

as x → ∞ provided B(y) (y = x2) satisfies (3.20). Since wB(n) =∏
p |n(DB(p) − 1) ≥ (T − 1)l = xα(l,T−1,x) and (by [H-W, Theorem 328,

p. 267])

lim inf
n→∞

φ(n) log log n

n
= e−γ ,

in the region
l log T ≤ δ(x2, B(x2)) log x

we obtain the required estimate

#Exc(x;B(x2), l, T ) ≤ (π + 1)eγx2δ(x
2,B(x2))−α(l,T−1,x) log log x (1 + o(1))

as x→∞.
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4. B-special numbers. In this section we will investigate the numbers
occurring in the reduction of factoring n to computation of φ(n). In this
connection we give

Definition 4.1. A composite number n ∈ Ns is called B-special if for
every prime p |n we have

(4.1) DB(p) |DB(n).

Directly from the definition, for every B-special number n we
have lcmp |nDB(p) |DB(n), and Proposition 2.3 implies that DB(n) =
lcmp |nDB(p).

The numbers satisfying (4.1) play a significant role in the reduction of
factoring n to the computation of φ(n). The complexity of such reduction
depends on the size of the minimal local distance DB(p).

Certainly the global distance DB(n) does not exceed the product∏
p |nDB(p) that well approximates the value of wB(n). Therefore in view

of inequality (3.13) we obtain a bound for the average value of DB(n) over
B-special numbers such that ω(DB(p)) ≥ 1 for every prime p |n. From the
point of view of applications an important task is to control the relation
between the values of ω(DB(n)) and ω(DB(p)), as given in the definition
below. For B-special numbers with large values of ω(DB(p)) we will prove a
significantly stronger inequality for the average value of DB(n). This leads
to the definition of (B, β)∗-special numbers (β ∈ (0, 1)) given by

Definition 4.2. The number n ∈ Ns is called (B, β)∗-special if it is
B-special and

(4.2) ω(DB(n)) ≤ βω(n)min
p |n

ω(DB(p)).

Let t ≥ 2 and wB(n) =
∏
p |n(DB(p)− 1). Let S∗(x;B, β, t) be the set of

(B, β)∗-special numbers n ∈ (x/2, x] with tn := minp |n ω(DB(p)) ≥ t. We
will prove

Theorem 4.3. For any η = η(x) ∈ (0, 1/2) and sufficiently large t > 2/η
we have∑
n∈S∗(x;B,1−2η,t)

DB(n)

≤
∑

n∈Exc(x;B,ω(n),tt)

wB(n) exp

{
−ω(n)ηt log(ηt)

(
1 +

log(1− t−t)
ηt log(ηt)

)}
.

In the proof of Theorem 4.3 we will need

Lemma 4.4. Let r, s, d1, . . . , dr ∈ N and let the largest squarefree divisor
of d1 . . . dr be k(d1 . . . dr) = q1 . . . qs with prime q1 < · · · < qs. Then for any
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α ∈ (0, 1) and τ, s, r satisfying

max(1/α, 2/(1− α)) < τ < s < τr,

#{(i, j) : νqi(dj) ≥ 1, i ≤ s, j ≤ r} ≥ rτ

we have

(4.3)

∏
j≤r dj

lcmj≤r dj
≥ {(1− α)τ log((1− α)τ)}αrτ+(1−α)τ−s−1.

Proof. Let K(i) = #{j : νqi(dj) ≥ 1}, where α ≥ 1/τ and l = l(α)
satisfy

K(s) +K(s− 1) + · · ·+K((s− (l − 2)) < αrτ

≤ K(s) + · · ·+K(s− (l − 2)) +K(s− (l − 1)).

Hence summing the first s− (l − 1) numbers K(i) we have, by assumption,

K(1) + · · ·+K(s− l) +K(s− (l − 1)) > (1− α)rτ.

Since K(i) ≤ r for i ≤ s, we obtain

(1− α)rτ < r(s− (l − 1)),

i.e.
s− (l − 1) > (1− α)τ.

Therefore the sum ofK(i) for i ≥ s−(l−1) is at least αrτ , where s−(l−1) ≥
d(1− α)τe and dye stands for the smallest integer ≥ y. Thus∏

j≤r dj

lcmj≤r dj
=
∏
i≤s

q
∑
j νqi (dj)−maxj≤r νqi (dj)

i

≥
∏

d(1−α)τe≤i≤s

q
∑
j≤r νqi (dj)−maxj≤r νqi (dj)

i ≥ qαrτ−(s−d(1−α)τe)−1d(1−α)τe .

By [Dus] we know that the kth prime number is > k log k for k > 2.
Therefore letting k = d(1− α)τe we find that for τ > 2/(1− α),

qd(1−α)τe ≥ d(1− α)τe logd(1− α)τe.

Since αrτ − (s−d(1−α)τe)− 1 ≥ αrτ +(1−α)τ − s− 1, we obtain (4.3).

Let α = 1− η, τ = t and suppose s, r satisfy

max

(
1

1− η
,
2

η2

)
< t < s < tr(1− 2η).

Then for t > 2/η, in view of the inequality αrt+ (1− α)t− s− 1 ≥ ηrt, we
have qαrτ−(s−d(1−α)τe)−1d(1−α)τe ≥ (ηt log ηt)ηrt, and thus we obtain
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Corollary 4.5. Let q1 . . . qs be the largest squarefree divisor of d1 . . . dr
and assume that ω(dj) ≥ t for every j ≤ r. Then for any η ∈ (0, 1/2) and
t, s, r ∈ N satisfying

2/η < t < s < tr(1− 2η)

we have

(4.4)

∏
j≤r dj

lcmj≤r dj
≥ exp

{
rηt
(
log(ηt) + log log ηt

)}
.

Proof of Theorem 4.3. Let n ∈ S∗(x;B, 1 − 2η, t), where η = η(x) ∈
(0, 1/2). Then by [Rob] for t > t0 = exp exp(1.077) the product of t primes
is ≥ tt, and therefore DB(p) ≥ tt for sufficiently large t > t0, so that n is
(B,ω(n), tt)-exceptional. It remains to prove that then

DB(n) ≤ wB(n) exp
{
−ω(n)ηt log(ηt)

(
1 +

log(1− t−t)
ηt log(ηt)

)}
provided t > max(t0, 2/η). We have

wB(n) =
∏
p |n

(DB(p)− 1) =
∏
p |n

{
DB(p)

(
1− 1

DB(p)

)}
(4.4a)

≥
(∏
p |n

DB(p)
)
(1− t−t)ω(n).

Letting r = ω(n), s = ω(
∏
p |nDB(p)) and t = tn = minp |n ω(DB(p)) >

max(t0, 2/η) in Corollary 4.5 we see that if n ∈ S∗(x;B, 1− 2η, tn) then by
(4.2) we have s=ω(

∏
p |nDB(p))=ω(k(

∏
p |nDB(p)))=ω(k(lcmp |nDB(p)))

= ω(lcmp |nDB(p)) = ω(DB(n)) ≤ (1 − 2η)ω(n)tn, and the inequalities for
t, r and s required in Corollary 4.5 are satisfied. Therefore by Proposition 2.3
we have DB(n) = lcmp |nDB(p), and since tn ≥ t we obtain

DB(n) = wB(n)
(
lcm
p |n

DB(p)
)
/wB(n)

≤ wB(n)
((

lcm
p |n

DB(p)
)/∏

p |n

DB(p)
)
(1− t−tnn )−ω(n)

≤ wB(n) exp{−ω(n)ηtn log(ηtn)− ω(n) log(1− t−tnn )}

= wB(n) exp

{
−ω(n)ηtn log(ηtn)

(
1 +

log(1− t−tnn )

ηtn log(ηtn)

)}
≤ wB(n) exp

{
−ω(n)ηt log(ηt)

(
1 +

log(1− t−t)
ηt log(ηt)

)}
for sufficiently large t > max(t0, 2/η). This completes the proof of Theo-
rem 4.3.
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Below we will prove the average estimate of the global distance DB(n)
for (B, 1 − 2η)∗-special numbers, where η depends on the value of the
largest squarefree divisor of DB(n). We let η = η(x) and recall that
tn = minp |n ω(DB(p)).

Definition 4.6. A B-special number n is called (x;B, η, t)-special if
n ∈ (x/2, x] and

(4.5)
k(DB(n)) ≤ n(1−3η)δ,
ω(n)t log t ≥ (1− η)δ log x,

where k(m) stands for the largest squarefree divisor of m and δ = δ(x,B).

We denote by S(x;B, l, t) and S(x;B, η, l, t) the sets ofB-special numbers
from the interval (x/2, x] and of (x;B, η, t)-special numbers respectively, such
that ω(n) ≥ l and tn ≥ t.

Assume that B = B(x), l = l(x) ≥ 2, t = t(x) ≥ 2 are functions
satisfying

(4.6) lt log t ≤ δ log x.

It is easily seen from (5.3) of Proposition 5.1 that (4.6) gives a natural
restriction for the parameters l and t describing the numbers n ∈ S(x;B, l, t).
In the next theorem we give an upper bound for the cardinality of S(x;B, l, t)
and the average value of DB(n) over S(x;B, η, l, t).

Theorem 4.7. Let γ = γ(l, t, x) = lt log t/log x. There exists a positive
absolute constant c0 such that for any c1 > 14 and functions B = B(x),
η = η(x) < 1/3, l = l(x) ≥ 2, and t = t(x) ≥ 2 satisfying

(c0 log x)
max(5, 5

2(c1−14)
) ≤ B(x) < x,(4.7) (

log 2

2δ log x

)1/2

< η(x) < 1/3,(4.8)

γ(l, t, x) ≤ δ(x,B(x)),(4.9)

for sufficiently large t and x we have

(4.10) #S(x;B, l, t)� x5δ0−(γ(l,t,x)+l log(1−t
−t)/log x) logc1 x.

Furthermore if B(x) satisfies

x1/2 > B(x) ≥ exp{(log log x)5/3+ε′}

then for x > x0(ε
′) we have

(4.11) #S(x;B(x2), l, t)� x2δ(x
2,B(x2))−(γ(l,t,x)+l log(1−t−t)/log x) log log x.
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Moreover if additionally η(x) > (2/t)1/2 then

(4.12)
∑

n∈S(x;B,η,l,t)

DB(n)

� x5δ0 logc1 x exp

{
−lηt log(ηt)

(
1− 2t−t

ηt log(ηt)

)}
where δ0 = δ(xc0 , B(x)). As in (4.11), in the RHS of (4.12) the quan-
tity x5δ0 logc1 x can be replaced by x2δ(x

2,B(x2)) log log x, provided B(x) ≥
exp{(log log x)5/3+ε′} and x > x0(ε

′) is sufficiently large.

The proof of Theorem 4.7 will be given in the next section. A signifi-
cant ingredient in the proof of (4.12) is the fact that if n ∈ S(x;B, η, l, t)
then n ∈ S∗(x;B, 1 − 2η, t), and thus we are able to apply Theorem 4.3
giving the exponential factor decay in the corresponding upper bound
for DB(n).

Now let us apply the estimate (4.11) for a function B(x) of subexpo-
nential order, Bu(x) = exp{(log x)1/u} (u ≥ 3). It can be directly checked
that if condition (4.13) below holds true, then Bu(x) > exp((log log x)2) >
exp((log log x)5/3+ε

′
) for ε′ < 1/3, hence by (4.11) we deduce

Corollary 4.8. Let Bu(x) = exp{(log x)1/u}, let ε > 0 be sufficiently
small and let u = u(x) satisfy

(4.13) 3 ≤ u(x) < ε
log log x

log log log x
.

Then

(4.14) #S(x;Bu, lu, tu)� x2δ(x
2,B(x2))−(δu−2/u)(1−2ε) log log x

where lu = δ−1u ,

tu = δ−1u (log log x)u−1, δu = log log x/logBu(x) = log log x/(log x)1/u

and x ≥ x0(ε) is sufficiently large.

Proof. In view of (4.13) and (4.10) it is sufficient to prove that

γ(lu, tu, x) ≥ (1− ε)δu−2u /u and −lu log(1− t−tuu )/log x ≤ εγ(lu, tu, x),

where γ(lu, tu, x) = lutu log tu/log x and tu = tu(ε) is sufficiently large.
Indeed, we have −lu log(1− t−tuu )/log x ≤ 2lut

−tu
u /log x ≤ εγ(lu, tu, x) for

sufficiently large tu ≥ t(ε).
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To prove the left inequality above, we have by straightforward calculation
γ(lu, tu, x) = lutu log tu/log x

= δ−2u (log log x)u−1 log(δ−1u (log log x)u−1)/log x

= δ−2u (log log x)u−1
(
log δ−1u + (u− 1) log log log x

)
/log x

=
1

log x

(
δ−2u (log log x)u−1

(
1

u
log log x− log log log x

))
=

1

log x

(
δ−2u

(log log x)u

u

(
1− u log log log x

log log x

))
=

1

log x

(
δu−2u

log x

u

(
1− u log log log x

log log x

))
=

(
δu−2u

u

(
1− u log log log x

log log x

))
≥ (1− ε)δ

u−2
u

u

provided x≥x0(ε). This completes the proof since Bu(x)>exp{(log log x)2}
for u ≤ log log x

2 log log log x .

5. Application to conditional factoring. In this section we deduce
Theorem 4.7 from Theorems 3.4 and 4.3 and apply the resulting estimate to
conditional factoring. We start from an auxiliary result giving in particular
sufficient conditions for n ∈ Ns to be B-special or (B,ω(n), T )-exceptional,
where T ≥ 2.

Proposition 5.1.
(i) Asume that n ∈ Ns and for every b ≤ B such that gcd(b, n) = 1 and

every prime q | ordn b we have

(5.1) gcd(b(ordn b)/q − 1, n) = 1.

Then n is B-special.
(ii) Additionally if for any positive integer τ < T (with T ≥ 2) we have

(5.2) gcd(τEB(n) + 1, n) = 1

then n is (B,ω(n), T )-exceptional. Moreover if (5.2) holds for some
n ∈ (x/2, x] such that ω(n) ≥ l and every τ |

∏
p |nDB(p) satisfying

ω(τ) < t, then n ∈ S(x;B, l, t).
(iii) Furthermore if l ≥ 2 and t is sufficiently large then we have the

following. If n ∈ S(x;B, l, t), then
(5.3) lt log t ≤ δ log x.

Moreover if n ∈ S(x;B, l, t) and (see Notation) k(DB(n)) ≤ nαδ,
where δ = δ(x,B) and α ∈ (0, 1), then

ω(DB(n)) ≤
αδ log x

log t
.
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Proof. Condition (5.1) implies that ordn b = ordp b for every prime p |n
and b ≤ B such that gcd(b, n) = 1. Hence EB(n) = lcmb≤B ordn b =
lcmb≤B ordp b = EB(p), and therefore by Proposition 2.3 we obtain DB(n) =
lcmDB(p), so n is B-special. Letting τ = DB(p) we conclude that the LHS
of (5.2) would be divisible by p if DB(p) < T , giving a contradiction. There-
foreDB(p) ≥ T for every prime p |n, and hence n is (B,ω(n), T )-exceptional.
The last conclusion of (ii) easily follows by remarking that (5.2) implies that
each DB(p) must have at least t prime divisors, hence belongs to S(x;B, l, t).

To prove (iii) let n ∈ S(x;B, l, t) and minp |nDB(p) = q1 . . . qt. Then by
(2.6) for prime arguments we have (q1 . . . qt)l ≤

∏
p |nDB(p) <

∏
p |n p

δ ≤ xδ.
Hence taking the logarithms of both sides we obtain the required inequality
in view of [Rob].

To prove the last assertion, let s = ω(DB(n)). Since for n B-special we
have DB(p) |DB(n), one concludes that s ≥ t, and similar arguments to
those above (for l = 1 and δ replaced by αδ) give

t log t ≤ s log s < αδ log x,

hence
s ≤ αδ log x

log t

provided t is sufficiently large.
Proof of Theorem 4.7. To prove (4.10) we apply (3.16), while in the proof

of (4.12) we apply Theorem 4.3 and Proposition 5.1. Finally, (4.11) will follow
from Theorem 3.6.

First, let us remark that if n ∈ S(x;B, l, t) then n is also (B, l, T )-
exceptional for T = tt. To apply Corollary 3.5 we remark that T − 1 = θtt

for θ = 1− t−t. Therefore
α(l, T − 1, x) = l log(θtt)/log x = γ(l, t, x) + l log(1− t−t)/log x,

and so by (3.16) we obtain

#S(x;B, l, t)� x5δ0−α(l,T−1,x) logc1 x ≤ x5δ0−(γ(l,t,x)+l log(1−t−t)/log x) logc1 x
provided t is sufficiently large.

In order to prove the upper bound (4.12) we let η = η(x) satisfy (4.8)
and assume that n ∈ Ns belongs to the set S(x;B, η, l, t). By (4.5) we have
ω(n)t log t ≥ (1 − η)δ log x for δ = δ(x,B). Hence applying Proposition
5.1(iii) with α = 1− 3η we obtain

s = ω(DB(n)) ≤
(1− 3η)δ log x

log t
= δ log x

(
1− 3η

log t

)
≤ ω(n)t1− 3η

1− η
≤ (1− 2η)ω(n)t

by the second inequality of (4.5).
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Therefore n ∈ S∗(x;B, 1 − 2η, t) and ω(n) ≥ l. Now applying Theorem
4.3 (with ω(n) replaced by its lower bound l), we see that the sum appearing
there is bounded by

exp

{
−lηt log(ηt)

(
1− 2t−t

ηt log(ηt)

)}
multiplied by an upper bound for∑

n∈Exc(x;B,l,tt)

wB(n),

giving in view of (3.13) the bound

x5δ0 logc1 x exp

{
−lηt log(ηt)

(
1− 2t−t

ηt log(ηt)

)}
provided t ≥ 2/η is sufficiently large. The estimate (4.11), and also
(4.12) with x5δ0(log log x)c1 replaced by x2δ(x

2,B(x2)) log log x, follow eas-
ily in view of (3.26), (4.4a) and the implication n ∈ S(x;B, η, l, t) ⇒
n ∈ S∗(x;B, 1 − 2η, t) by repeating the arguments applied in the proof of
Theorem 4.3. We remark that the condition 3 ≤ u < log log x/2 log log log x
implies Bu(x) > exp{(log log x)5/3+ε′} whenever ε′ < 1/3. This completes
the proof of Theorem 4.7.

Below we will show that the cardinality of the set of positive integers
n ∈ Ns with n ≤ x that cannot be factored using at most Tu gcd computa-
tions (5.1) and (5.2) does not exceed

(5.4) #S(x;Bu, δ
−1
u , δ−1u (log log x)u−1) log x

� x2δ−δ
u−2(1−2ε)/u log x log log x,

where Tu = exp((log x)1/u(log log x)u−1), Bu = Bu(x
2) = exp((2 log x)1/u),

δu = δ(x2, Bu(x
2)) and u satisfies

(5.5) 3 ≤ u < ε log log x/log log log x

for sufficiently small ε > 0 and sufficiently large x > x0(ε). We start from

Lemma 5.2. Let B ≥ 3, n ∈ Ns, n ≤ y (y ≥ 4), τ ∈ N and DB(p) be
defined by (2.2). Then the number of divisors of

∏
p |nDB(p) having exactly

τ distinct prime factors is at most

(5.6) exp

{
τ

[
log

(
δ(y,B) log y

log 2
+ τ

)
− log τ + 1

]}
.

Proof. Let D ≥ 2 and let Nτ (d) stand for the number of positive divisors
of d having exactly τ prime factors. First we will prove that

(5.7) max
d≤D

Nτ (d) ≤ exp
{
τ
(
log(A+ τ)− log τ + 1

)}
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where A = blogD/log 2c. We write

d =
∏
q | d

qνq(d)

where ω(d) = τ . Hence taking the logarithms of both sides we obtain∑
q | d

νq(d) ≤ blogD/log 2c.

Therefore the number of such d’s is by Stirling’s formula at most(
A+ τ

τ

)
≤
(
A+ τ

τ/e

)τ
= exp

{
τ
(
log(A+ τ)− log τ + 1

)}
,

giving (5.7).
Now we apply the above estimate for d =

∏
p |nDB(p) and D = yδ to

conclude that the number of divisors in question is at most

max
d≤D

Nτ (d) ≤ exp

{
τ

[
log

(
δ log y

log 2
+ τ

)
− log τ + 1

]}
,

where δ = log log y/logB.

To prove (5.4) we split the set of positive integers in (1, x] into at most
log x subintervals of type (y/2, y], where 1 < y ≤ x. Now let n ∈ Ns be such
that ω(n) = l and n ∈ (y/2, y]. If (5.1) holds then EB(n) = EB(p) for all
primes p |n and n is B-special. Moreover letting

τ = DB(p) |
∏
p |n

DB(p) =
∏
p |n

p− 1

EB(n)
=

λ(n)

(EB(n))l

we see that τ < yδ(y,B). If furthermore (5.2) holds for all τ | λ(n)
(EB(n))l

such
that ω(τ) < t then tn = minp |n ω(DB(p)) ≥ t and n ∈ S(x;B, l, t). Let

(5.8) T (t, y) = t exp

{
t

[
log

(
δ(y,B) log y

log 2
+ t

)
− log t+ 1

]}
.

By Lemma 5.2 the number of required computations (5.1) and (5.2) for
n ∈ Ns with n ∈ (y/2, y] is at most

(5.9) Tu(y) = Bu(y) + T (t, y)
where B = Bu(y) = exp((log y)1/u). As follows from [Zra], the deterministic
reduction of factoring n to computation of the Euler function φ(n) is very
efficient (i.e. of polynomial time compexity) if

ω(n) ≤ δ(n,B)−1.

Therefore without loss of generality we may assume that the opposite
condition l > δ(n,Bu)

−1 ≥ δ(y,Bu)−1 is valid. Now let l = lu ≥ δ(y,Bu)−1,
t = tu(y) = δ(y,Bu)

−1(log log y)u−1, and fix a sufficiently small ε > 0 and
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u satisfying (5.5) with x replaced by y. Since n ∈ S(y;B, l, t), summation
over at most log x intervals of type (y/2, y] and application of Corollary 4.8
(with x replaced by y) implies that the number of n ∈ Ns with n ≤ x that
cannot be factored in at most Tu(x) log x computations of (5.1) and (5.2) is

� (log x)max
y≤x

#S(y;Bu, lu, tu) ≤ (log x)#S(x;Bu, δ
−1
u , δ−1u (log log x)u−1)

� x2δ−δ
(u−2)(1−2ε)/u

log x log log x,

where δu = δ(x2, Bu(x
2)) = δ(x2, (2 log x)1/u).

To complete the argument it is sufficient to remark that the dominating
term T (tu, xδu) in Tu(xδu), where tu = δ−1u (log log x)u−1, is

T (tu, xδu) ≤ tu exp
{
tu log

(
δu log x

log 2
+ tu

)}
≤ tu exp

{
tu log

(
δu log x

(
1

log 2
+1

))}
≤ exp

{
tu

((
1− 1

u

)
log log x+log log log x+O(1)

)}
≤ exp

{
tu

((
1− 1

2u

)
log log x+2 log log log x)

)}
≤ exp

{
tu

(
1− 1

3u

)
log log x)

}
≤ exp

{(
1− 1

3u

)
δ−1u (log log x)u

}
≤ exp

{(
1− 1

3u

)
(log x)1/u(log log x)u−1

}
≤ exp{(log x)1/u(log log x)u−1} = Tu

provided u < ε log log x/log log log x, for any sufficiently small ε > 0 and
sufficiently large x > x0(ε). This completes the proof of estimate (5.4) for u
restricted by (5.5).
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