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On (conditional) positive semidefiniteness
in a matrix-valued context

by
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Abstract. In a nutshell, we intend to extend Schoenberg’s classical theorem con-
necting conditionally positive semidefinite functions F : Rn → C, n ∈ N, and their
positive semidefinite exponentials exp(tF ), t > 0, to the case of matrix-valued func-
tions F : Rn → Cm×m, m ∈ N. Moreover, we study the closely associated property that
exp(tF (−i∇)), t > 0, is positivity preserving and its failure to extend directly in the
matrix-valued context.
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1. Introduction. To set the stage and hence describe the matrix-valued
extensions of some of the classical results on (conditional) positive semidefi-
niteness we are interested in, we first briefly recall the basic definitions of pos-
itive semidefinite and conditionally positive semidefinite matrices A ∈ Cm×m
and positive semidefinite and conditionally positive semidefinite functions
F : Rn → C, and then state three classical results in this context:
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Definition 1.1. Let m ∈ N and A ∈ Cm×m, and suppose F : Rn → C,
n ∈ N.

(i) A is called positive semidefinite, denoted by A ≥ 0, if

(1.1) (c, Ac)Cm =

m∑
j,k=1

cjAj,kck ≥ 0 for all c = (c1, . . . , cm)> ∈ Cm.

(ii) A = {Aj,k}1≤j,k≤m = A∗ ∈ Cm×m is said to be conditionally posi-
tive semidefinite if

(1.2) (c, Ac)Cm ≥ 0 for all c = (c1, . . . , cm)> ∈ Cm with
m∑
j=1

cj = 0.

(iii) F is called positive semidefinite if for all N ∈ N and xp ∈ Rn,
1 ≤ p ≤ N , the matrix {F (xp − xq)}1≤p,q≤N ∈ CN×N is positive
semidefinite.

(iv) F is called conditionally positive semidefinite if for all N ∈ N and
xp ∈ Rn, 1 ≤ p ≤ N , the matrix {F (xp − xq)}1≤p,q≤N ∈ CN×N is
conditionally positive semidefinite.

(v) F is called positive semidefinite in the sense of Schoenberg if F (−x)
= F (x), x ∈ Rn, and for all N ∈ N and xp ∈ Rn, 1 ≤ p ≤ N , the
matrix {F (xp − xq) − F (xp) − F (xq)}1≤p,q≤N ∈ CN×N is positive
semidefinite.

(vi) Let T ∈ B(L2(Rn)). Then T is called positivity preserving (in
L2(Rn)) if for any 0 ≤ f ∈ L2(Rn) also Tf ≥ 0.

In connection with Definition 1.1(iv) one can show that if F is condi-
tionally positive semidefinite, then F (−x) = F (x) for all x ∈ Rn. In addi-
tion, one observes that for T to be positivity preserving it suffices to take
0 ≤ f ∈ C∞0 (Rn) in Definition 1.1(vi).

Given the notions just introduced in Definition 1.1, we now recall three
classical results. We start with Schoenberg’s Theorem [35], who studied iso-
metric imbeddability of separable spaces with appropriate distance functions
into a Hilbert space.

Theorem 1.2 (cf., e.g., [4], [24, Sect. 3.6], [34, Proposition 4.4]). Assume
that F : Rn → C. Then the following conditions are equivalent:

(i) F (0) ≤ 0 and F is conditionally positive semidefinite.
(ii) F (0) ≤ 0 and for all t > 0, exp(tF ) is positive semidefinite.

(iii) F is positive semidefinite in the sense of Schoenberg.

If, in addition, F is locally bounded and one of conditions (i)–(iii) holds,
then there exists C > 0 such that

(1.3) |F (x)| ≤ C[1 + |x|2], x ∈ Rn.
In this context see also [5, Sects. 4.3, 4.4] and [6, Sect. II.7].
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Given F ∈ C(Rn) and F polynomially bounded, one can define

(1.4) F (−i∇) :

{
C∞0 (Rn)→ L2(Rn),

f 7→ F (−i∇)f = (f∧F )∨.

More generally, if F ∈ L1
loc(Rn), one introduces the maximally defined op-

erator of multiplication by F in L2(Rn), denoted by MF , by

(1.5)
(MF f)(x) = F (x)f(x),

f ∈ dom(MF ) = {g ∈ L2(Rn) | Fg ∈ L2(Rn)},
and then defines F (−i∇) as a normal operator in L2(Rn) via

(1.6) F (−i∇) = F−1MFF
(cf. (1.16), (1.17) and their unitary extensions to L2(Rn)).

Theorem 1.3 (cf., e.g., [21], [25], [33, Theorems XIII.52 and XIII.53]).
Assume that F ∈ C(Rn) and there exists c ∈ R such that Re(F (x)) ≤ c.
Then the following conditions are equivalent:

(i) For all t > 0, exp(tF (−i∇)) is positivity preserving.
(ii) For each t > 0, etF is a positive semidefinite function.

(iii) F (−x) = F (x) for all x ∈ Rn, and F is conditionally positive
semidefinite.

(iv) (The Lévy–Khintchine formula) There exist α ∈ R, β ∈ Rn, 0 ≤ A
∈ Cn×n, and a nonnegative finite measure ν on Rn with ν({0}) = 0
such that

(1.7) F (x) = α+ i(β · x)− (x · (Ax))

+
�

Rn

[
exp(i(x · y))− 1− i(x · y)

1 + |y|2

]
1 + |y|2

|y|2
dν(y), x ∈ Rn.

The principal aim of this paper is to investigate to which degree
Theorems 1.2 and 1.3(i)–(iii) extend to the matrix-valued context, where
F : Rn → Cm×m, m ∈ N, m ≥ 2, and if direct generalizations are impos-
sible, what modified forms of extensions exist. We also note that a matrix-
valued extension of the Lévy–Khintchine formula, Theorem 1.3(iv), while
not the subject of this paper, is part of ongoing investigations. For a histor-
ical survey on infinitely divisible distributions and their connection to the
Lévy–Khintchine formula we refer to [28] (and the extensive list of references
cited therein).

For completeness we also recall Bochner’s theorem [9] as it naturally fits
in with Theorems 1.2 and 1.3:

Theorem 1.4 (Bochner’s Theorem, cf., e.g., [2, Sect. 5.4], [32, p. 13],
[34, p. 46]). Assume that F ∈ C(Rn). Then the following conditions are
equivalent:
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(i) F is positive semidefinite.
(ii) There exists a nonnegative finite measure µ on Rn such that

(1.8) F (x) = µ∧(x), x ∈ Rn.
In addition, if (i) or (ii) holds, then

(1.9) F (−x) = F (x), |F (x)| ≤ |F (0)|, x ∈ Rn,
in particular, F is bounded on Rn.

In this context we emphasize that the extension of Bochner’s Theo-
rem 1.4 has been obtained by Berberian [3] not only in the matrix con-
text (cf. Theorem 4.3), but in the infinite-dimensional case in connection
with Abelian groups. As a result, in the following we exclusively focus on
extensions of Theorems 1.2 and 1.3(i)–(iii).

Turning to the matrix-valued case, F : Rn → Cm×m, m ∈ N, and taking
the notions of positive semidefinite and conditionally positive semidefinite
matrix-valued functions F in Definition 2.4 (and the obvious matrix-valued
extension of Definition 1.1(v)) for granted, we can now briefly describe the
form in which Theorems 1.2 and 1.3(i)–(iii) extend to the matrix-valued
context. First and foremost,

• the exponential exp(tF ) must consistently be replaced by the Hada-
mard exponential expH(tF ) in the matrix context.

Here the Hadamard exponential expH(G(x)) of G : Rn → Cm×m, m ∈ N, is
defined by

(1.10) expH(G(x)) = {expH(G(x))j,k := exp(G(x)j,k)}1≤j,k≤m, x ∈ Rn.
It is understood in the following that exp(tF ) is always replaced by the
Hadamard exponential expH(tF ) in the matrix context of m ∈ N, m ≥ 2.

In connection with the matrix-valued extension of Schoenberg’s Theo-
rem 1.2 (for m ∈ N, m ≥ 2) we prove the following facts in Theorem 4.9
and Remark 4.10:

• Items (i) and (ii) of Theorem 1.2 remain equivalent (disregarding the
condition F (0) ≤ 0).
• If F (0) ≤ 0 and (i) or (ii) of Theorem 1.2 holds, then (iii) of Theo-

rem 1.2 follows, but the converse is false in the matrix-valued context.

In connection with the matrix-valued extension of Theorem 1.3 (for
m ∈ N, m ≥ 2) we prove the following facts in Theorems 4.11 and 4.15:

• Conditions (ii) and (iii) of Theorem 1.3 remain equivalent in the
matrix-valued context; however, (i) does not extend at all (employing
expH(tF ) as agreed upon). We do, however, find a proper extension of
condition (i) (cf. Theorem 4.11(i)).
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These comments illustrate that much of Theorems 1.2 and 1.3 extends
to the matrix-valued context, but some items require specific modifications.
In particular, the positivity preserving condition (i) of Theorem 1.3 has to
be altered considerably.

Next, we briefly turn to the contents of each section. Section 2 is of
preparatory nature and recalls the basic facts on positive semidefinite and
conditionally positive semidefinite matrices and matrix-valued functions on
Rn, n ∈ N, introduces the notion of the Hadamard exponential, and de-
rives the equivalence of items (i) and (ii) of Schoenberg’s Theorem 1.2 in
the matrix-valued context. Introductory remarks on convolution operators
involving matrix-valued measures are the content of Section 3. We recall
the spaces Lp(Rn,Cm×m), p ∈ [1,∞) ∪ {∞}, discuss the operator F (−i∇),
F ∈ L∞(Rn,Cm×m), via Fourier transform, discuss various consequences
of positivity preserving of F (−i∇), and conclude with two approximation
results (Lemmas 3.11 and 3.13). Our principal results are formulated in Sec-
tion 4. The classical L1 and L2 Fourier multiplier results are discussed in
the matrix-valued context in Theorems 4.4 and 4.6. The matrix-valued ex-
tension of Schoenberg’s Theorem 1.2 is formulated in Theorem 4.9; the fact
that no complete extension of Theorem 1.2 is possible (in the sense that
either of conditions (i) and (ii) of Theorem 1.2 implies (iii), but the converse
is false) is demonstrated in Remark 4.10. The extent to which Theorem
1.3 extends to the matrix-valued case is dealt with in detail in Theorems
4.11 and 4.15, as well as in Remark 4.12. The analog of the bound (1.3) in
the matrix-valued context is derived in Theorem 4.18. In Appendix A we
construct a counterexample verifying the claim made in Remark 4.2, and
Appendix B provides a proof of (4.41).

Finally, we briefly summarize the basic notation employed. Let H be a
separable complex Hilbert space, (·, ·)H the scalar product in H (linear in
the second argument), and IH the identity operator in H.

The Banach spaces of bounded and compact linear operators on a sep-
arable complex Hilbert space H are denoted by B(H) and B∞(H), respec-
tively; the corresponding `p-based Schatten–von Neumann trace ideal (cf.
[16, Ch. III], [36, Ch. 1]) is denoted by Bp(H), with norm ‖ · ‖Bp(H), p ≥ 1
(defined in terms of the `p-norm of the singular values of the operator in
question). Moreover, trH(A) denotes the trace of a trace class operator
A ∈ B1(H). We also employ the analogous notation B(X1, X2) for bounded
linear operators mapping the Banach space X1 into the Banach space X2.

For X a set, Xm×n, m,n ∈ N, represents the set of m× n matrices with
entries in X.

Unless explicitly stated otherwise, Cm is always equipped with the Eu-
clidean scalar product (·, ·)Cm and associated norm ‖ · ‖Cm .
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For A ∈ Cm×m, m ∈ N, we denote by A> the transpose of A, and by
‖A‖B(Cm) the operator norm of A, when we consider A as a linear operator
on Cm (equipped with ‖ · ‖Cm). In this context we note that

(1.11) (Cm×m, ‖ · ‖B(Cm))
∗ = (Cm×m, ‖ · ‖B1(Cm)).

We also introduce

(1.12) ‖A‖max = max
1≤j,k≤m

|Aj,k|.

The symbol S(Rn,Cm×m) denotes the space of all Cm×m-valued rapidly
decreasing functions on Rn with each entry in the usual Schwartz space
S(Rn). In addition, we introduce the spaces

C0(Rn,Cm×m) = {f ∈ C(Rn,Cm×m) | supp(f) compact},(1.13)

Cb(Rn,Cm×m) = {f ∈ C(Rn,Cm×m) | ‖f‖∞ <∞},(1.14)

C∞(Rn,Cm×m) =
{
f = {fj,k}1≤j,k≤m : Rn → Cm×m | fj,k ∈ C(Rn),(1.15)

lim
|x|→∞

fj,k(x) = 0, 1 ≤ j, k ≤ m
}
.

Unless explicitly stated otherwise, the spaces (1.13)–(1.15) will always be
equipped with the norm ‖f‖∞ = ess supx∈Rn‖f(x)‖B(Cm).

For the sake of brevity, we omit displaying the Lebesgue measure dnx in
Lp(Rn,Cm×m), p ∈ [1,∞], whenever the latter is understood.

The Fourier and inverse Fourier transforms on S(Rn,Cm×m) are given
by the pair of formulas

(Ff)(y) = f∧(y) = (2π)−n/2
�

Rn
e−i(y·x)f(x) dnx,(1.16)

(F−1g)(x) = g∨(x) = (2π)−n/2
�

Rn
ei(x·y)g(y) dny,(1.17)

for f, g ∈ S(Rn,Cm×m), and we use the same notation for the appropriate
extensions to L1(Rn,Cm×m) or L2(Rn,Cm×m).

The open ball in Rn with center x0 ∈ Rn and radius r0 > 0 is denoted
by Bn(x0, r0), the norm of x ∈ Rn is denoted by |x|, the scalar product of
x, y ∈ Rn is abbreviated by x · y.

We denote by Bn the σ-algebra of all Borel subsets of Rn, and for
E ∈ Bn, |E| is the n-dimensional Lebesgue measure of E.

2. Matrix-valued (conditional) positive semidefinite functions:
a variant of Schoenberg’s theorem. In this preparatory section we recall
the basic facts on positive semidefinite and conditionally positive semidef-
inite matrices and matrix-valued functions on Rn, n ∈ N, introduce the
notion of the Hadamard exponential, and derive the equivalence of items (i)
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and (ii) in Schoenberg’s Theorem 1.2 (see, e.g., [4], [24, Sect. 3.6], and [34,
Proposition 4.4]) in the matrix-valued context.

We start with the following definition (cf., e.g., [8, p. 180], [23, p. 451]).

Definition 2.1. Let m ∈ N and A = {Aj,k}1≤j,k≤m ∈ Cm×m.

(i) A is called positive semidefinite, denoted by A ≥ 0, if

(2.1) (c, Ac)Cm =
m∑

j,k=1

cjAj,kck ≥ 0 for all c = (c1, . . . , cm)> ∈ Cm.

(ii) A = {Aj,k}1≤j,k≤m = A∗ ∈ Cm×m is said to be conditionally positive
semidefinite if

(2.2) (c, Ac)Cm ≥ 0 for all c = (c1, . . . , cm)> ∈ Cm with
m∑
j=1

cj = 0.

Given S ∈ Cm×m,m ∈ N, its Hadamard exponential, denoted by expH(S),
is defined by

(2.3) expH(S) = {expH(S)j,k := exp(Sj,k)}1≤j,k≤m.
Lemma 2.2 (see, e.g., [23, Theorem 6.3.6]). Let A ∈ Cm×m, m ∈ N, be

conditionally positive semidefinite. Then expH(A) ≥ 0, that is, the Hada-
mard exponential of A is positive semidefinite.

The following result can be viewed as a complexified version of [8, Exer-
cise 5.6.15], [23, Theorem 6.3.13]:

Lemma 2.3. Let ε > 0, assume A = A∗ ∈ Cm×m, m ∈ N, and suppose
expH(tA) is positive semidefinite for all t ∈ (0, ε). Then A is conditionally
positive semidefinite.

Proof. Let c=(c1, . . . , cm)>∈Cm with
∑m

j=1 cj =0. Then for all t∈(0, ε),

0 ≤ t−1(c, expH(tA)c)Cm =

m∑
j,k=1

cjt
−1[expH(tAj,k)− 1]ck(2.4)

−−→
t↓0

m∑
j,k=1

cjAj,kck = (c, Ac)Cm .

Combining Lemmas 2.2 and 2.3 shows that for A = A∗ ∈ Cm×m, m ∈ N,

expH(tA) ≥ 0 for all t ∈ (0, ε0) for some fixed ε0 > 0 ⇔
expH(tA) ≥ 0 for all t ≥ 0.

(2.5)

Definition 2.4. Let F : Rn → Cm×m, m,n ∈ N.

(i) F is called positive semidefinite if for all N ∈ N and xp ∈ Rn,

1 ≤ p ≤ N , the block matrix {F (xp − xq)}1≤p,q≤N ∈ CmN×mN is
positive semidefinite.
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(ii) F is conditionally positive semidefinite if for all N ∈N and xp∈Rn,
1 ≤ p ≤ N , the block matrix {F (xp − xq)}1≤p,q≤N ∈ CmN×mN is
conditionally positive semidefinite.

Lemma 2.5. Let F : Rn → Cm×m, m,n ∈ N.

(i) F is positive semidefinite if and only if for all N ∈ N and xp ∈ Rn,
cp ∈ Cm, 1 ≤ p ≤ N ,

(2.6)
N∑

p,q=1

(cp, F (xp − xq)cq)Cm ≥ 0.

(ii) ([3, p. 178]) F is positive semidefinite if and only if for all N ∈N,
xp∈Rn, cp∈C, 1≤p≤ N , and f = (f1, . . . , fm)>∈Cm,

(2.7)
N∑

p,q=1

cp(f, F (xp − xq)f)Cmcq =
N∑

p,q=1

m∑
j,k=1

cpfjF (xp − xq)j,kfkcq ≥ 0.

(iii) F is conditionally positive semidefinite if and only if the following
conditions (α) and (β) hold:

(α) F (−x) = F (x)∗ for all x ∈ Rn.
(β) For all N ∈N and xp∈Rn, cp=(cp,1, . . . , cp,m)∈Cm, 1≤p≤N ,

satisfying

(2.8)

N∑
p=1

m∑
j=1

cp,j = 0,

one has

(2.9)

N∑
p,q=1

(cp, F (xp − xq)cq)Cm ≥ 0.

In addition, F : Rn → Cm×m satisfies (α) if and only if it satisfies

(α′) for all N ∈ N and xp ∈ Rn, 1 ≤ p ≤ N , the block matrix
{F (xp − xq)}1≤p,q≤N ∈ CmN×mN is self-adjoint in CmN .

Given S : Rn → CM×M , M,n ∈ N, its Hadamard exponential, denoted
by expH(S), is defined by

(2.10) expH(S(x)) = {expH(S(x))j,k := exp(S(x)j,k)}1≤j,k≤M , x ∈ Rn.
The next two theorems represent a matrix generalization of a variant

of Schoenberg’s theorem (cf., e.g., [34, Proposition 4.4]), namely, the equiv-
alence of items (i) and (ii) in Theorem 1.2, the principal result of this sec-
tion:

Theorem 2.6. Let F : Rn → Cm×m, m,n ∈ N, be conditionally positive
semidefinite. Then expH(F ) is positive semidefinite.
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Proof. For all N ∈ N and xp ∈ Rn, 1 ≤ p ≤ N , the block matrix
{F (xp−xq)}1≤p,q≤N ∈ CmN×mN is conditionally positive semidefinite. Thus,
Lemma 2.2 implies the block matrix expH({F (xp−xq)}1≤p,q≤N ) ∈ CmN×mN
is positive semidefinite. Since

(2.11) expH({F (xp − xq)}1≤p,q≤N ) = {expH(F (xp − xq))}1≤p,q≤N ,
this completes the proof.

Theorem 2.7. Suppose that ε > 0, F : Rn → Cm×m, and expH(tF ) :
Rn → Cm×m is positive semidefinite for all t ∈ (0, ε). Then F is condition-
ally positive semidefinite.

Proof. Suppose that N ∈ N and xp ∈ Rn, 1 ≤ p ≤ N , and assume that
cp = (cp,1, . . . , cp,m) ∈ Cm, 1 ≤ p ≤ N , satisfy

(2.12)
N∑
p=1

m∑
j=1

cp,j = 0.

Then for all t ∈ (0, ε), Lemma 2.5(i) yields

0 ≤ t−1
N∑

p,q=1

(cp, expH(tF (xp − xq))cq)Cm(2.13)

=
N∑

p,q=1

m∑
j,k=1

cp,jt
−1[exp(tF (xp − xq)j,k)− 1]cq,k

−−→
t↓0

N∑
p,q=1

m∑
j,k=1

cp,jF (xp − xq)j,kcq,k =
N∑

p,q=1

(cp, F (xp − xq)cq)Cm .

By Lemma 2.5(iii), it remains to show that

(2.14) F (−x) = F (x)∗, x ∈ Rn.
To this end one observes that the block matrix

(2.15)

(
expH(tF (0)) expH(tF (x))

expH(tF (−x)) expH(tF (0))

)
∈ C2m×2m

is positive semidefinite and hence self-adjoint. Thus,

(2.16) expH(tF (−x)) = [expH(tF (x))]∗, x ∈ Rn, t ∈ (0, ε).

Next, let E2m ∈ C2m×2m be the matrix all of whose entries equal 1. Then

(2.17) t−1[expH(tF (−x))− E2m] = t−1{[expH(tF (x))]∗ − E2m},
x ∈ Rn, t ∈ (0, ε),

and letting t ↓ 0 in (2.17), one obtains

(2.18) F (−x)j,k = F (x)k,j , x ∈ Rn, 1 ≤ j, k ≤ m,
proving (2.14).
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Combining Theorems 2.6 and 2.7 shows that for F : Rn → Cm×m,

expH(tF ) ≥ 0 for all t ∈ (0, ε0) for some fixed ε0 > 0 ⇔(2.19)

expH(tF ) ≥ 0 for all t ≥ 0.

Next, we intend to show that Definitions 2.1 and 2.4 are compatible.

Corollary 2.8. Let 0 ≤ A ∈ Cm×m (i.e., A is positive semidefinite)
and introduce F : Rn → Cm×m by

(2.20) F (x) = A, x ∈ Rn.
Then F ≥ 0, that is, F is positive semidefinite in the sense of Defini-
tion 2.4(i).

Proof. For any c = (c1, . . . , cN )> ∈ CN ,

(2.21)
N∑

p,q=1

cp(f,Af)Cmcq = (f,Af)Cm
N∑

p,q=1

cpcq = (f,Af)Cm(c,HNc)CN ,

where HN denotes the N ×N -matrix with all entries equal to 1. Since it is
well-known that HN is positive semidefinite,

(2.22)
N∑

p,q=1

cp(f,Af)Cmcq ≥ 0.

Thus, Lemma 2.5(ii) implies the conclusion.

Corollary 2.9. Let A ∈ Cm×m be conditionally positive semidefinite
and introduce F : Rn → Cm×m by

(2.23) F (x) = A, x ∈ Rn.
Then F is conditionally positive semidefinite in the sense of Definition
2.4(ii).

Proof. By Lemma 2.2, for all t > 0, expH(tA) ≥ 0 is positive semidefinite.
Thus, by Corollary 2.8, for all t > 0, expH(tF )(x) = expH(tA), x ∈ Rn, is
positive semidefinite. Hence, by Theorem 2.7, F is conditionally positive
semidefinite.

Corollaries 2.8 and 2.9 indeed verify compatibility of Definitions 2.1
and 2.4. For other elementary examples of conditionally positive semidef-
inite matrix-valued functions we refer to Example 4.19.

The classical (i.e., scalar-valued, m = 1) version of Schoenberg’s theo-
rem, at first sight, suggests an alternative “weak” definition of conditionally
positive semidefinite functions (cf. also [27]) as follows:

Definition 2.10. Let F : Rn → Cm×m. Then F is called weakly condi-
tionally positive semidefinite if for all N ∈ N, xp ∈ Rn, 1 ≤ p ≤ N , and all
f = (f1, . . . , fm)> ∈ Cm, the matrix {(f, F (xp − xq)f)Cm}1≤p,q≤N ∈ CN×N
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is conditionally positive semidefinite, that is, for all cp ∈ C, 1 ≤ p ≤ N , with∑N
p=1 cp = 0, one has

(2.24)
N∑

p,q=1

m∑
j,k=1

cpfjF (xp − xq)j,kfkcq ≥ 0.

We conclude this section with a simple example showing that Defini-
tions 2.4(ii) and 2.10 are inequivalent.

Example 2.11. Consider

(2.25) A =

(
ln(1/2) 0

0 ln(1/2)

)
and introduce F : Rn → C2×2 by

(2.26) F (x) = A, x ∈ Rn.
Then, for all N ∈ N and xp ∈ Rn, cp ∈ C, 1 ≤ p ≤ N , with

∑N
p=1 cp = 0,

and all f = (f1, f2)
> ∈ C2,

(2.27)
N∑

p,q=1

2∑
j,k=1

cpfjF (xp − xq)j,kfkcq = (f,Af)C2

N∑
p,q=1

cpcq = 0,

and hence F is weakly conditionally positive semidefinite. On the other
hand,

(2.28) expH(F ) = expH(A) =

(
1/2 1

1 1/2

)
, x ∈ Rn.

However, expH(A) has a simple negative eigenvalue λ1 = −1/2; denoting by
v1 ∈ C2 an associated normalized eigenvector, for all N ∈ N and xp ∈ Rn,
cp ∈ C, 1 ≤ p ≤ N , one computes

N∑
p,q=1

cp(v1, expH(F )(xp − xq)v1)C2cq =

N∑
p,q=1

cp(v1, expH(A)v1)C2cq(2.29)

= −1

2

∣∣∣ N∑
p=1

cp

∣∣∣2 ≤ 0.

In particular, as long as
∑N

p=1 cp 6= 0, we have

(2.30)

N∑
p,q=1

cp(v1, expH(F )(xp − xq)v1)C2cq < 0,

and hence expH(F ) is not positive semidefinite by Lemma 2.5(ii). Conse-
quently, F is not conditionally positive semidefinite by Theorem 2.6, and
Definitions 2.4(ii) and 2.10 are indeed inequivalent.
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Remark 2.12. There are other inequivalent extensions of scalar con-
ditionally positive semidefinite functions to the matrix context in the lit-
erature. One of the principal goals of this paper is to extend the classical
results of Theorems 1.2 and 1.3(i)–(iii) to the matrix context. So we chose
to use the more restrictive definition of matrix-valued conditionally positive
semidefinite functions in Definition 2.4. For treatments of other inequivalent
extensions of scalar conditionally positive semidefinite functions to the ma-
trix case, see, for instance, [15, Ch. II], [44, Chs. 3, 4]. For detailed surveys
of the theory of scalar positive semidefinite functions we refer, for example,
to [17], [39].

3. Preliminaries on operators associated to matrix-valued posi-
tive semidefinite functions. In this section we develop the basic material
on convolutions involving matrix-valued measures and matrix-valued convo-
lution operators needed in our principal Section 4. We rely on [10, Sect. 2]
and [11, Sects. 2.1, 3.1] (see also [20]). For readers who are interested in
convolution involving operator-valued measures in the infinite-dimensional
Hilbert space context, we refer to [14].

Throughout the remainder of this paper we fix m ∈ N.

A Cm×m-valued measure on Rn is a countably additive function
µ : Bn → Cm×m. Equivalently, µ = {µj,k}1≤j,k≤m is a Cm×m-valued measure
on Rn if and only if each entry µj,k : Bn → C, 1 ≤ j, k ≤ m, is a complex
measure on Rn. The variation |µ| of µ is defined as the finite nonnegative
measure on Rn given by

(3.1) |µ|(E) = sup
P

{∑
E`∈P

‖µ(E`)‖B(Cm)

}
, E ∈ Bn,

where the supremum is taken over all partitions P of E into a finite number
of pairwise disjoint subsets E` ∈ Bn. The norm ‖µ‖ of µ is defined by

(3.2) ‖µ‖ = |µ|(Rn),

and we also introduce the notation

(3.3) N(µ) = max
1≤j,k≤m

|µj,k|(Rn) = max
1≤j,k≤m

‖µj,k‖.

A function f = {fj,k}1≤j,k≤m : Rn → Cm×m is called µ-integrable if the
integrals

(3.4)
�

Rn
f(x)j,k dµr,s(x), 1 ≤ j, k, r, s ≤ m,

exist, in which case one defines, for all E ∈ Bn,
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�

E

f(x) dµ(x) =
{( �

E

f(x) dµ(x)
)
j,k

}
1≤j,k≤m

,(3.5)

( �

E

f(x) dµ(x)
)
j,k

=
m∑
`=1

�

E

f(x)j,` dµ`,k(x), 1 ≤ j, k ≤ m.(3.6)

Then, for all µ-integrable functions f ,

(3.7)
∥∥∥ �
E

f(x) dµ(x)
∥∥∥
B(Cm)

≤
�

E

‖f(x)‖B(Cm) d|µ|(x), E ∈ Bn.

Next, we introduce M(Rn,Cm×m) as the space of all (finite) measures
on Rn of the form µ : Bn → (Cm×m, ‖ · ‖B(Cm)). As shown in [10, Lemma 5],
there exists a linear, isometric order isomorphism between M(Rn,Cm×m)
and the dual space of C∞(Rn,Cm×m) such that the duality pairing 〈·, ·〉 :
C∞(Rn,Cm×m)×M(Rn,Cm×m) is given by

(3.8) 〈f, µ〉 = trCm
( �

Rn
f(x) dµ(x)

)
=

m∑
j,k=1

�

Rn
f(x)j,k dµk,j(x).

Given µ ∈M(Rn,Cm×m) and a µ-integrable f : Rn → Cm×m, we define
their convolution by

(3.9) f ∗ µ :

{Rn → Cm×m,
x 7→ (f ∗ µ)(x) =

	
Rn f(x− y) dµ(y),

x ∈ Rn.

Moreover, for p ∈ [1,∞) we introduce

(3.10) Lp(Rn,Cm×m) =
{
f : Rn → Cm×m measurable

∣∣∣
‖f‖p,m =

( �

Rn
‖f(x)‖pB(Cm) d

nx
)1/p

<∞
}
,

and similarly, for p =∞,

(3.11) L∞(Rn,Cm×m) =
{
f : Rn → Cm×m measurable

∣∣∣
‖f‖∞,m = ess sup

x∈Rn
‖f(x)‖B(Cm) <∞

}
.

Then one estimates

‖(f ∗ µ)(x)‖B(Cm) =
∥∥∥ �

Rm
f(x− y) dµ(y)

∥∥∥
B(Cm)

(3.12)

≤
�

Rn
‖f(x− y)‖B(Cm) d|µ|(y)

≤
( �

Rn
‖f(x− y)‖pB(Cm) d|µ|(y)

)1/p
[|µ|(Rn)]1/p

′
,
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with p−1 + (p′)−1 = 1, and hence

‖f ∗ µ‖p,m =
( �

Rn
‖(f ∗ µ)(x)‖pB(Cm) d

nx
)1/p

(3.13)

≤
( �

Rn

�

Rn
‖f(x− y)‖pB(Cm) d|µ|(y) dnx

)1/p
[|µ|(Rn)]1/p

′

=
( �

Rn

�

Rn
‖f(x− y)‖pB(Cm) d

nx d|µ|(y)
)1/p

[|µ|(Rn)]1/p
′

= |µ|(Rn)‖f‖p,m, p ∈ [1,∞).

Thus, for µ ∈ M(Rn,Cm×m) one can introduce the associated convolu-
tion operator Tµ ∈ B(Lp(Rn,Cm×m)), p ∈ [1,∞), by

(3.14) Tµf = f ∗ µ, f ∈ Lp(Rn,Cm×m),

satisfying (cf. (3.13))

(3.15) ‖Tµ‖B(Lp(Rn,Cm×m)) ≤ |µ|(Rn), p ∈ [1,∞).

Next, we introduce the following equivalent norm in L1(Rn,Cm×m):

(3.16) 9f91,m :=
m∑

j,k=1

‖fj,k‖1, f ∈ L1(Rn,Cm×m),

such that

(3.17) (c′m)−19f91,m ≤ ‖f‖1,m ≤ c′m9f91,m, f ∈ L1(Rn,Cm×m),

where c′m ≥ 1 is chosen such that

(3.18) (c′m)−1
m∑

j,k=1

|Aj,k| ≤ ‖A‖B(Cm) ≤ c′m
m∑

j,k=1

|Aj,k|, A ∈ Cm×m.

Similarly, if we introduce the following equivalent norm in L2(Rn,Cm×m):

(3.19) 9f92,m :=

m∑
j,k=1

‖fj,k‖2, f ∈ L2(Rn,Cm×m),

then there exists c′′m ≥ 1 such that

(3.20) (c′′m)−19f92,m ≤ ‖f‖2,m ≤ c′′m9f92,m, f ∈ L2(Rn,Cm×m).

Next, we also introduce the following equivalent norm in L∞(Rn,Cm×m):

(3.21) 9f9∞,m := max
1≤j,k≤m

‖fj,k‖∞, f ∈ L∞(Rn,Cm×m);

then there exists dm ≥ 1 such that

(3.22) (dm)−19f9∞,m ≤ ‖f‖∞,m ≤ dm9f9∞,m, f ∈ L∞(Rn,Cm×m).
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In the special case m = 1 we will omit the extra subscript 1 in (3.16), (3.19),
and (3.21).

For future use in Section 4, we also introduce L2(Rn,Cm×mHS ), where
Cm×mHS denotes the space (Cm×m, ‖·‖B2(Cm)) (i.e., the operator norm ‖·‖B(Cm)

is now replaced by the Hilbert–Schmidt norm ‖ · ‖B2(Cm)), as follows: First,

Cm×m can be identified with Cm2
, and then the standard Euclidean norm

on Cm2
becomes the Hilbert–Schmidt norm ‖ · ‖B2(Cm) (cf., e.g., [7, p. 93]),

and hence the space B(Cm×mHS ) can be identified with Cm2×m2
. Summarizing,

(3.23) Cm×mHS ' B2(Cm) ' Cm
2
, B(Cm×mHS ) ' B(Cm

2
) ' Cm

2×m2
.

Then we introduce

(3.24) L2(Rn,Cm×mHS ) =
{
f : Rn → Cm×m measurable

∣∣∣
‖f‖L2(Rn,Cm×mHS ) =

( �

Rn
‖f(x)‖2B2(Cm) d

nx
)1/2

=
( �

Rn

m∑
j,k=1

|fj,k(x)|2 dnx
)1/2

<∞
}
,

so that as sets, L2(Rn,Cm×m) and L2(Rn,Cm×mHS ) coincide, but their norms
(and scalar products) differ. The classical Plancherel theorem then yields

(3.25) ‖f‖L2(Rn,Cm×mHS ) = ‖f∧‖L2(Rn,Cm×mHS ), f ∈ L2(Rn,Cm×mHS ).

Next, we define left translations Lx, x ∈ Rn, acting on f : Rn → Cm×m
via

(3.26) (Lxf)(y) = f(y − x), y ∈ Rn.

Definition 3.1. Let T ∈ B(Lp(Rn,Cm×m)), p ∈ [1,∞) ∪ {∞}. Then T
is called Cm×m-linear if

(3.27) T (Af) = A(Tf), A ∈ Cm×m, f ∈ Lp(Rn,Cm×m).

Proposition 3.2 ([11, p. 27]). Let p ∈ [1,∞) and µ ∈ M(Rn,Cm×m).
Then Tµ ∈ B(Lp(Rn,Cm×m)) is Cm×m-linear and

(3.28) LxTµf = TµLxf, x ∈ Rn, f ∈ Lp(Rn,Cm×m).

Proposition 3.3 ([11, Proposition 3.1.10, Corollary 3.1.11]).

(i) Let p ∈ [1,∞) and assume that T ∈ B(Lp(Rn,Cm×m)) is Cm×m-
linear. Then the following assertions are equivalent:

(α) T = Tµ for some µ ∈M(Rn,Cm×m).
(β) LxT = TLx for all x ∈ Rn, and

T ∈ B(C0(Rn,Cm×m), Cb(Rn,Cm×m)).
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(ii) Assume that T ∈ B(L1(Rn,Cm×m)) is Cm×m-linear. Then the fol-
lowing assertions are equivalent:

(γ) T = Tµ for some µ ∈M(Rn,Cm×m).
(δ) LxT = TLx for all x ∈ Rn.

Next, given F ∈ L∞(Rn,Cm×m), we also define the associated operator
F (−i∇) ∈ B(L2(Rn,Cm×m)) by

(3.29) F (−i∇)f = (f∧F )∨, f ∈ L2(Rn,Cm×m).

More generally, if F ∈ L1
loc(Rn,Cm×m), one introduces the maximally

defined operator of right multiplication by F in L2(Rn,Cm×m), denoted
by MF , by

(MF f)(x) = f(x)F (x),

f ∈ dom(MF ) = {g ∈ L2(Rn,Cm×m) | gF ∈ L2(Rn,Cm×m)},
(3.30)

and then defines F (−i∇) as the closed operator in L2(Rn,Cm×m) via

(3.31) F (−i∇)f = F−1(MF (Ff))

(cf. (1.16), (1.17) and their unitary extensions to L2(Rn,Cm×mHS ) as indicated
in (3.25)).

Lemma 3.4. If F ∈ L∞(Rn,Cm×m), then

(3.32) LxF (−i∇) = F (−i∇)Lx, x ∈ Rn.
Since S(Rn,Cm×m) is dense in L2(Rn,Cm×m), and all operators in (3.32)

are bounded, it suffices to prove (3.32) for f ∈ S(Rn,Cm×m). The latter
follows from a straightforward calculation.

For future reference we also recall the following results: Introducing

(3.33) ja(x) = e−a|x|, a > 0, x ∈ R,
one verifies

(3.34) j∧a (y) =
1

(2π)1/2
2a

y2 + a2
, y ∈ R.

Similarly, introducing

(3.35) ka(x) =

n∏
`=1

ja(x`), x ∈ Rn,

one obtains

(3.36) k∧a (y) =
1

(2π)n/2

n∏
`=1

2a

y2` + a2
, y ∈ Rn,

and hence

(3.37) ‖k∧a ‖1 =
�

Rn
|k∧a (y)| dny = (2π)n/2.
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Lemma 3.5. Let a > 0 and introduce the following diagonal matrix:

(3.38) Ma(x) = ka(x)ICm , x ∈ Rn.

Then there exists cm ≥ 1 such that

(3.39) ‖(M∧a F )∨‖∞,m ≤ c2m‖F‖∞,m, F ∈ L∞(Rn,Cm×m).

Proof. Recalling the definition of ‖ · ‖max in (1.12), there exists cm ≥ 1
such that

(3.40) c−1m ‖A‖B(Cm) ≤ ‖A‖max ≤ cm‖A‖B(Cm), A ∈ Cm×m.

Next, let x ∈ Rn, 1 ≤ j, k ≤ m. Then

|(M∧a F )∨(x)j,k| = (2π)−n/2
∣∣∣ �
Rn
ei(x·y)(M∧a F )(y)j,k d

ny
∣∣∣(3.41)

= (2π)−n/2
∣∣∣ �
Rn
ei(x·y)k∧a (y)F (y)j,k d

ny
∣∣∣

≤ (2π)−n/2
[
ess sup
y∈Rn

‖F (y)‖max

] �

Rn
|k∧a (y)| dny

= ess sup
y∈Rn

‖F (y)‖max,

employing (3.37). Thus,

(3.42) ‖(M∧a F )∨(x)‖max ≤ ess sup
y∈Rn

‖F (y)‖max, x ∈ Rn, F ∈ L∞(Rn,Cm×m),

and hence

‖(M∧a F )∨‖∞,m = ess sup
x∈Rn

‖(M∧a F )∨(x)‖B(Cm)(3.43)

≤ cm ess sup
x∈Rn

‖(M∧a F )∨(x)‖max

≤ cm ess sup
y∈Rn

‖F (y)‖max

≤ c2m ess sup
y∈Rn

‖F (y)‖B(Cm) = c2m‖F‖∞,m.

In the following we use the notation 0 ≤ g ∈ L2(Rn,Cm×m) if g ∈
L2(Rn,Cm×m) and g(x) ≥ 0 (i.e., g(x) ∈ Cm×m is positive semidefinite) for
(Lebesgue) a.e. x ∈ Rn.

Definition 3.6. Let T ∈ B
(
L2(Rn,Cm×m)

)
. Then T is called positivity

preserving (in L2(Rn,Cm×m)) if for any 0 ≤ f ∈ L2(Rn,Cm×m) also Tf ≥ 0.

As will be shown in Lemma 3.13, for T to be positivity preserving it
suffices to take 0 ≤ f ∈ C∞0 (Rn,Cm×m) in Definition 3.6.
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Lemma 3.7. Suppose that F ∈ L∞(Rn,Cm×m) and F (−i∇) is positivity
preserving in L2(Rn,Cm×m). Then, with cm ≥ 1 as in (3.40),

(3.44) ess sup
x∈Rn

‖(F (−i∇)f)(x)‖max ≤ 2c4m‖F‖∞,m

for all f ∈ L∞(Rn,Cm×m) satisfying

(i) supp(f) is compact,

(ii) supx∈Rn ‖f(x)‖max ≤ 1,(3.45)

(iii) f(x) ≥ 0 for a.e. x ∈ Rn.

Proof. By the spectral theorem one obtains, for a.e. x ∈ Rn,

(3.46) 0 ≤ f(x) ≤ ‖f(x)‖B(Cm)ICm ≤ cm‖f(x)‖maxICm ≤ cmICm ,
employing cm ≥ 1 in (3.40). Since supp (f) is compact, there exists a suffi-
ciently small a > 0 such that for a.e. x ∈ Rn,

(3.47) 0 ≤ f(x) ≤ 2cmka(x)ICm ,

with ka introduced in (3.35) (1). Since F (−i∇) is positivity preserving by
hypothesis,

(3.48) 0 ≤ F (−i∇)f ≤ 2cmF (−i∇)(kaICm),

implying

(3.49) ‖(F (−i∇)f)(x)‖B(Cm) ≤ 2cm‖(F (−i∇)(kaICm))(x)‖B(Cm)

for a.e. x ∈ Rn. Thus,

ess sup
x∈Rn

‖(F (−i∇)f)(x)‖max ≤ cm ess sup
x∈Rn

‖(F (−i∇)f)(x)‖B(Cm)(3.50)

≤ 2c2m ess sup
x∈Rn

‖(F (−i∇)(kaICm))(x)‖B(Cm)

= 2c2m‖F (−i∇)(kaICm)‖∞,m = 2c2m‖(M∧a F )∨‖∞,m ≤ 2c4m‖F‖∞,m,
applying Lemma 3.5.

Next, let A ∈ B(H) and denote, as usual,

(3.51) Re(A) = 2−1(A+A∗), Im(A) = (2i)−1(A−A∗).
Since Re(A) and Im(A) are self-adjoint in H, we define their positive and
negative parts, denoted by Re(A)± and Im(A)±, as well as |Re(A)| and
|Im(A)|, with the help of the spectral theorem (with |T | = (T ∗T )1/2,
T ∈ B(H)), and hence obtain

(3.52) Re(A)± = 2−1[|Re(A)|±Re(A)], Im(A)± = 2−1[|Im(A)|± Im(A)].

(1) Actually, the factor 2 in (3.47) can be replaced by 1+ε for ε > 0 sufficiently small,
provided that we choose a = a(ε) > 0 sufficiently small, but since this plays no role in the
following, we ignore this improvement.
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Moreover, since ‖T‖B(H) =
∥∥|T |∥∥B(H)

, one obtains (with T = Re(A))

(3.53) ‖Re(A)±‖B(H) ≤ ‖A‖B(H), ‖Im(A)±‖B(H) ≤ ‖A‖B(H).

Next, we drop the nonnegativity hypothesis (iii) in Lemma 3.7 and hence
obtain the following result.

Lemma 3.8. Suppose that F ∈ L∞(Rn,Cm×m) and F (−i∇) is positivity
preserving in L2(Rn,Cm×m). Then, with cm as in (3.40),

(3.54) ess sup
x∈Rn

‖(F (−i∇)f)(x)‖max ≤ 8c6m‖F‖∞,m

for all f ∈ L∞(Rn,Cm×m) satisfying

(i) supp(f) is compact,

(ii) ess supx∈Rn ‖f(x)‖max ≤ 1.
(3.55)

Proof. With cm as in (3.40), one concludes from the latter and from
(3.53) that for a.e. x ∈ Rn,

‖Re(f(x))±‖max ≤ cm‖Re(f(x))±‖B(Cm)(3.56)

≤ cm‖f(x)‖B(Cm) ≤ c2m‖f(x)‖max.

Thus, Re(f)± : Rn → Cm×m satisfies

(α) supp(Re(f)±) is compact,

(β) ess supx∈Rn ‖Re(f(x))±‖max ≤ c2m,

(γ) Re(f(x))± ≥ 0 for a.e. x ∈ Rn.

By Lemma 3.7,

(3.57) ess sup
x∈Rn

‖(F (−i∇)Re(f)±)(x)‖max ≤ 2c6m‖F‖∞,m,

and similarly

(3.58) ess sup
x∈Rn

‖(F (−i∇)Im(f)±)(x)‖max ≤ 2c6m‖F‖∞,m,

implying

(3.59) ess sup
x∈Rn

‖(F (−i∇)f)(x)‖max ≤ 8c6m‖F‖∞,m.

In order to prove a consequence of Lemma 3.8, we need the following
auxiliary result.

Lemma 3.9 (cf., e.g., [1, Theorem 2.29 and p. 250]).

(i) If f ∈ L1(Rn), then f∧ ∈ C∞(Rn) and ‖f∧‖∞ ≤ (2π)−n/2‖f‖1.

(ii) Let f ∈ C0(Rn) with supp(f) ⊆ Bn(0, r) for some r > 0. Then there
exists a sequence {fj}j∈N ⊂ C∞0 (Rn) with supp (fj) ⊆ Bn(0, 2r),
j ∈ N, and limj→∞ ‖fj − f‖∞ = 0.
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Remark 3.10. Let σ : Bn → [0,∞) be a finite nonnegative measure
on Rn and let µ : Bn → Cm×m be the nonnegative matrix-valued measure
defined by

(3.60) µ(E) = σ(E)Im, E ∈ Bn.

Then Tµ ∈ B(L2(Rn,Cm×m)) is positivity preserving. Indeed, let f ∈
L2(Rn,Cm×m). Then

(3.61)
�

Rn
f(y) dµ(y) =

{ �

Rn
fj,k(y) dσ(y)

}
1≤j,k≤m

.

Hence, if 0 ≤ f ∈ L2(Rn,Cm×m), then for all v = (v1, . . . , vm)> ∈ Cm,

(3.62) (v, (Tµf)(x)v)Cm =
�

Rn

m∑
j,k=1

vjfj,k(x− y)vk dσ(y) ≥ 0.

Lemma 3.11. Assume that 0 ≤ f ∈ C∞(Rn,Cm×m). Then there exists
a sequence {fj}j∈N ⊂ C∞0 (Rn,Cm×m) such that fj(x) ≥ 0, j ∈ N, and
limj→∞ fj = f in (C∞(Rn,Cm×m), ‖ · ‖∞,m).

Proof. Clearly one can find a sequence {gj}j∈N ⊂ C0(Rn,Cm×m) such
that

(3.63) gj ≥ 0, j ∈ N, lim
j→∞

gj = f in (C∞(Rn,Cm×m), ‖ · ‖∞,m).

Indeed, let

(3.64) kn ∈ C0(Rn), 0 ≤ kn ≤ 1, kn(x) =

{
1, 0 ≤ |x| ≤ n,

0, |x| ≥ n+ 1,

kn decreasing from 1 to 0 as |x| increases from n to n+ 1, and set gn = knf ,
n ∈ N. Then gn ≥ 0 on Rn and f(x) − gn(x) = 0 for 0 ≤ |x| ≤ n. Since
‖gn(x)‖max ≤ ‖f(x)‖max and lim|x|→∞ ‖f(x)‖max = 0, one obtains (3.63).
Thus, without loss of generality we may assume that f ∈ C0(Rn,Cm×m).

Next, we recall the definition of standard Friedrichs mollifiers {φε}ε>0

(cf., e.g., [1, pp. 36, 37]) and introduce

(3.65) Φε(x) = φε(x)Im, x ∈ Rn, ε > 0.

In addition, we define the measure σε ∈M(Rn,Cm×m) by

(3.66) σε(E) =
( �
E

φε(x) dnx
)
Im, E ∈ Bn.

Then, using the fact that Tσε is positivity preserving in L2(Rn,Cm×m), one
introduces fj = Tσ1/jf , j ∈ N, and concludes fj ≥ 0, j ∈ N. Moreover,

(3.67) fj(x)k,` = (fk,` ∗ φε)(x), x ∈ Rn, j ∈ N, 1 ≤ k, ` ≤ m.
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By standard properties of mollifiers, (fj)k,` ∈ C∞0 (Rn) and

(3.68) lim
j→∞

(fj)k,` = fk,` in (C0(Rn), ‖ · ‖∞), 1 ≤ k, ` ≤ m.

Thus, 0 ≤ fj ∈ C∞0 (Rn,Cm×m) and limj→∞ fj = f in (C∞(Rn,Cm×m),
‖ · ‖∞,m).

Corollary 3.12. Suppose that F ∈ L∞(Rn,Cm×m) and F (−i∇) is
positivity preserving in L2(Rn,Cm×m). Then

(3.69) F (−i∇) : (C0(Rn,Cm×m), ‖ · ‖∞,m)→ (Cb(Rn,Cm×m), ‖ · ‖∞,m)

continuously.

In addition, there exists a nonnegative measure µ ∈ M(Rn,Cm×m) such
that F (−i∇) = Tµ.

Proof. Suppose f ∈ C0(Rn,Cm×m) and supp(f) ⊆ Bn(0, r). Then
an application of Lemma 3.9(ii) implies the existence of a sequence of func-
tions {fj}j∈N ⊂ C∞0 (Rn,Cm×m) such that supp(fj) ⊆ Bn(0, 2r), j ∈ N, and
limj→∞ ‖(fj)k,` − fk,`‖∞ = 0, 1 ≤ k, ` ≤ m.

Without loss of generality we may assume that for each j ∈ N, fj − f
satisfies the hypotheses of Lemma 3.8. Thus, since

(3.70) lim
j→∞

ess sup
x∈Rn

‖fj(x)− f(x)‖max = 0,

Lemma 3.8 yields

(3.71) lim
j→∞

ess sup
x∈Rn

‖(F (−i∇)fj)(x)− (F (−i∇)f)(x)‖max = 0.

Since fj ∈ C∞0 (Rn,Cm×m), f∧j ∈ S(Rn,Cm×m), one concludes that f∧j F ∈
L1(Rn,Cm×m) and hence Lemma 3.9(i) implies F (−i∇)fj =

(
f∧j F

)∨ ∈
C∞(Rn,Cm×m). Hence, F (−i∇)f is the uniform limit of a bounded sequence
{F (−i∇)fj}j∈N ⊂ C∞(Rn,Cm×m) and thus F (−i∇)f ∈ Cb(Rn,Cm×m).
Lemma 3.8 implies that F (−i∇) maps (C0(Rn,Cm×m), ‖ · ‖∞,m) to the
space (Cb(Rn,Cm×m), ‖ · ‖∞,m) continuously. That there exists a measure
µ ∈ M(Rn,Cm×m) such that F (−i∇) = Tµ follows from Proposition 3.3(i)
(upon choosing T = F (−i∇) in Proposition 3.3(i)(β)) and Lemma 3.4. Iden-
tifying M(Rn,Cm×m) with C∞(Rn,Cm×m)∗, it remains to show that

(3.72) trCm
( �

Rn
f(x) dµ(x)

)
≥ 0, 0 ≤ f ∈ C∞(Rn,Cm×m).

By Lemma 3.11 it suffices to prove this for all 0 ≤ f ∈ C∞0 (Rn,Cm×m).
Thus, let 0 ≤ f ∈ C∞0 (Rn,Cm×m). Then f∧ ∈ S(Rn,Cm×m) and hence by
Lemma 3.9(i),

(3.73) F (−i∇)f =
(
f∧F

)∨ ∈ C∞(Rn,Cm×m).
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In addition, since F (−i∇) is positivity preserving,

(3.74) 0 ≤ (F (−i∇)f)(0) = (Tµf)(0) =
�

Rn
f(−y) dµ(y).

Thus,

(3.75) trCm
( �

Rn
f(−y) dµ(y)

)
≥ 0,

and hence µ is nonnegative.

We also add the following auxiliary result.

Lemma 3.13. Let f ∈ L2(Rn,Cm×m) and suppose f(x) ≥ 0 for a.e.
x ∈ Rn. Then there exists a sequence {fj}j∈N ⊂ C∞0 (Rn,Cm×m) such that
for all j ∈ N, fj(x) ≥ 0 for a.e. x ∈ Rn, and limj→∞ ‖fj − f‖2,m = 0.

Proof. Let φε, Φε, and σε, ε > 0, be as in the proof of Lemma 3.11, and
recall that Tσε is positivity preserving in L2(Rn,Cm×m). Next, let 0 ≤ f ∈
L2(Rn,Cm×m) and introduce

(3.76) gj = (χ[−j,j]nIm)f, j ∈ N,
where χA denotes the characteristic function of A ⊂ Rn. Clearly, 0 ≤ gj ∈
L2(Rn,Cm×m), supp(gj) is compact, j ∈ N, and limj→∞ ‖gj − f‖2,m = 0.
Hence, it suffices to show that if 0 ≤ g ∈ L2(Rn,Cm×m) and supp(g) is
compact, then there exists a sequence {hj}j∈N ⊂ C∞0 (Rn,Cm×m) such that
hj ≥ 0, j ∈ N, and limj→∞ ‖hj − g‖2,m = 0. Thus, let

(3.77) hj = Tσ1/ng, j ∈ N.
Then hj ≥ 0 since Tσ1/n is positivity preserving and

(3.78) hj(x)k,` = (gk,` ∗ φ1/n)(x), x ∈ Rn, 1 ≤ k, ` ≤ m.
By standard properties of Friedrichs mollifiers (cf., e.g., [1, pp. 36, 37]),
(hj)k,` ∈ C∞0 (Rn) and

(3.79) lim
j→∞

‖(hj)k,` − gk,`‖2 = 0, 1 ≤ k, ` ≤ m,

implying {hj}j∈N ⊂ C∞0 (Rn,Cm×m) and limj→∞ ‖hj − g‖2,m = 0.

Introducing the Hadamard product A◦HB of two matrices A,B ∈ Cm×m,
by

(3.80) (A ◦H B)j,k = Aj,kBj,k, 1 ≤ j, k ≤ m,
we conclude this section with the following remark, addressing the lack of
the semigroup property of expH(tF )(−i∇).

Remark 3.14. Suppose that F : Rn → Cm×m is conditionally positive
semidefinite such that for some c ∈ R,

(3.81) Re(F (x)j,k) ≤ c for a.e. x ∈ Rn, 1 ≤ j, k ≤ m.
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In addition, introduce

(3.82) f(t) = (expH(tF )(−i∇))f, f ∈ L2(Rn,Cm×m), t ≥ 0.

Then

(3.83)
d

dt
(f(t)) =

(
f∧((expH(tF )) ◦H F )

)∨
, t > 0.

4. Operators associated with matrix-valued positive semidefi-
nite functions. In this section we prove our principal results. In partic-
ular, we give analogs of the classical Theorems 1.2 and 1.3(i)–(iii) in the
matrix-valued context to the extent possible and along the way introduce
the necessary modifications needed to obtain such extensions. We also recall
Fourier multiplier theorems in the L1 and L2 context extending classical
results in the scalar case to the matrix-valued situation.

We start with the following fact.

Theorem 4.1. Suppose that F ∈ C(Rn,Cm×m) ∩ L∞(Rn,Cm×m) and
F (−i∇) is positivity preserving in L2(Rn,Cm×m). Then there exists a non-
negative measure µ ∈M(Rn,Cm×m) such that

(4.1) F (x) = µ∧(x), x ∈ Rn,

equivalently,

(4.2) F (x) = (2π)−n/2
�

Rn
e−i(x·ξ) dµ(ξ), x ∈ Rn.

Proof. Define φε and Φε as in the proof of Lemma 3.13 and introduce

(4.3) Φε,x(y) = Φε(x− y), x, y ∈ Rn, ε > 0.

Suppose f ∈ S(Rn,Cm×m). Then

(F (−i∇)f)(x) = (f∧F )∨(x)(4.4)

= (2π)−n
�

Rn

�

Rn
ei(ξ·(x−η))f(η)F (ξ) dnη dnξ

= (2π)−n
�

Rn

�

Rn
ei(ξ·ω)f(x− ω)F (ξ) dnω dnξ

= (2π)−n/2
�

Rn
(f(x− ·))∨(ξ)F (ξ) dnξ.

Introducing fε,x ∈ S(Rn,Cm×m) by

(4.5) fε,x(y) = (Φε,x)∧(x− y), x, y ∈ Rn, ε > 0,
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one obtains, for ε > 0,

(4.6) (F (−i∇)fε,x)(x) = (2π)−n/2
�

Rn
(fε,x(x− ·))∨(ξ)F (ξ) dnξ

= (2π)−n/2
�

Rn
(Φ∧ε,x)∨(ξ)F (ξ) dnξ

= (2π)−n/2
�

Rn
Φε,x(ξ)F (ξ) dnξ −−→

ε↓0
(2π)−n/2F (x), x ∈ Rn.

By Corollary 3.12, there exists a nonnegative measure µ0 ∈ M(Rn,Cm×m)
such that F (−i∇) = Tµ0 . Hence,

(4.7) (F (−i∇)fε,x)(x) = (Tµ0fε,x)(x) = (fε,x ∗ µ0)(x)

=
�

Rn
fε,x(x− η) dµ0(η) =

�

Rn
Φ∧ε,x(η) dµ0(η)

= (2π)−n/2
�

Rn

�

Rn
e−i(η·ξ)Φε,x(ξ) dnξ dµ0(η), x ∈ Rn, ε > 0.

Since Φε,x has compact support and µk,`, 1 ≤ k, ` ≤ m, are finite complex
measures on Rn, one can interchange the order of integration in the last
double integral in (4.7) to arrive at

(F (−i∇)fε,x)(x) = (2π)−n/2
�

Rn
Φε,x(ξ)

( �

Rn
e−i(ξ·η) dµ0(η)

)
dnξ(4.8)

=
�

Rn
Φε(x− ξ)µ∧0 (ξ) dnξ −−→

ε↓0
µ∧0 (x), x ∈ R.

Thus, (4.1) follows with µ = (2π)n/2µ0.

Remark 4.2. In Appendix A we will prove that the converse to Theo-
rem 4.1, that is, if F = µ∧ for some nonnegative µ ∈ M(Rn,Cm×m) then
F (−i∇) is positivity preserving in L2(Rn,Cm×m), does not hold (unless, of
course, µ is of the type µσ = σICm with σ : Bn → [0,∞) a finite measure).

Next, we recall the finite-dimensional special case of an infinite-dimensio-
nal version of Bochner’s theorem (cf. Theorem 1.4) in connection with locally
compact Abelian groups due to Berberian [3] (see also [12], [13], [29], [43]):

Theorem 4.3 ([3, p 178, Theorem 3 and Corollary on p. 177]). Assume
that F ∈ C(Rn,Cm×m)∩L∞(Rn,Cm×m). Then the following conditions are
equivalent:

(i) F is positive semidefinite.
(ii) There exists a nonnegative measure µ ∈M(Rn,Cm×m) such that

(4.9) F (x) = µ∧(x), x ∈ Rn.
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In addition, if (i) or (ii) holds, then

(4.10) F (−x) = F (x)∗, ‖F (x)‖B(Cm) ≤ ‖F (0)‖B(Cm), x ∈ Rn.

We note that Berberian [3, p. 178, Theorem 3] discusses a seemingly more
general result in which boundedness of F is not assumed—it is, however,
a consequence of his results.

Next, we extend the classical L1-multiplier theorem due to Bochner (cf.,
e.g., [18, Theorem 2.5.8 and pp. 143, 144], [37, p. 28], [38, pp. 29, 30])
to the matrix-valued context. An infinite-dimensional version of this re-
sult appeared in Gaudry, Jefferies, and Ricker [14, Proposition 3.15 and
Corollary 3.20]. For completeness, we present an elementary proof in the
matrix-valued case and add the estimates (4.12) which appear to be new in
this context.

We recall the definition (3.3) of N(µ) and the definition of 9 · 91,m in
(3.16).

Theorem 4.4. Assume that F ∈ L∞(Rn,Cm×m). Then the following
conditions are equivalent:

(i) F (−i∇)|C∞0 (Rn,Cm×m) can be extended to a bounded operator (denoted

by the same symbol, for simplicity) F (−i∇) ∈ B(L1(Rn,Cm×m)).
(ii) There exists a measure µ ∈M(Rn,Cm×m) such that

(4.11) F (x) = µ∧(x), x ∈ Rn.

In addition, if (i) or (ii) holds, then

(4.12) (2π)−n/2N(µ)≤‖F (−i∇)‖B((L1(Rn,Cm×m),9·91,m))≤m(2π)−n/2N(µ).

Both estimates in (4.12) are sharp.

Proof. First, suppose that (ii) holds. Let f ∈ C∞0 (Rn,Cm×m). Then

(4.13) (F (−i∇)f)(x) = (2π)−n
�

Rn

�

Rn
ei(ξ·(x−η))f∧(ξ) dµ(η) dnξ, x ∈ Rn.

Since f∧ ∈ S(Rn,Cm×m) ⊂ L1(Rn,Cm×m), one can interchange the order
of integration in (4.13) to obtain

(4.14) (F (−i∇)f)(x) = (2π)−n
�

Rn

�

Rn
ei(ξ·(x−η))f∧(ξ) dnξ dµ(η)

= (2π)−n/2
�

Rn
(f∧)∨(x− η) dµ(η) = (2π)−n/2(Tµf)(x), x ∈ Rn.

Thus, applying (3.9)–(3.15) one gets

(4.15) ‖F (−i∇)‖B(L1(Rn,Cm×m)) ≤ (2π)−n/2‖µ‖,
implying condition (i).
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To prove the converse, suppose that (i) holds. We introduce I(j, k) ∈
Cm×m by

(4.16) I(j, k)p,q =

{
1 if p = j and q = k,

0 if p 6= j or q 6= k,
1 ≤ j, k, p, q ≤ m.

In addition, let

(4.17) U(j, k) :

{
L1(Rn)→ L1(Rn,Cm×m),

g 7→ U(j, k)g = gI(j, k),
1 ≤ j, k ≤ m,

and

(4.18) D(j, k) :

{
L1(Rn,Cm×m)→ L1(Rn),

f 7→ D(j, k)f = fj,k,
1 ≤ j, k ≤ m.

One verifies that U(j, k) and D(j, k) are bounded for each 1 ≤ j, k ≤ m,
and hence also

(4.19) P (p, q, j, k) = D(p, q)F (−i∇)U(j, k) : L1(Rn)→ L1(Rn),

1 ≤ j, k, p, q ≤ m,
are bounded. Employing the fact that

(4.20) P (1, k, 1, j)g = (g∧Fj,k)
∨, g ∈ L1(Rn),

one infers that the linear operator L1(Rn) 3 g 7→ (g∧Fj,k)
∨ ∈ L1(Rn) is

bounded, that is, Fj,k is an L1(Rn)-multiplier. By the classical Bochner
theorem, there exists a (finite) complex measure µk,j on Rn such that Fj,k
= µ∧j,k. Introducing µ = {µj,k}1≤j,k≤m ∈ M(Rn,Cm×m), we have F = µ∧,
and hence (ii) holds.

Next we turn to the lower bound in (4.12). Choose p, q ∈ {1, . . . ,m} such
that

(4.21) N(µ) = |µp,q|(Rn).

Since Fp,q = µ∧p,q, the classical (i.e., scalar-valued) L1-multiplier theorem
applies, and hence Fp,q(−i∇)|C∞0 (Rn) can be extended to a bounded operator

Fp,q(−i∇) ∈ B(L1(Rn)) with norm

(4.22) ‖Fp,q(−i∇)‖B(L1(Rn)) = (2π)−n/2‖µp,q‖ = (2π)−n/2|µp,q|(Rn).

Thus, there exists a sequence {f`}`∈N in L1(Rn) with ‖f`‖1 = 1, ` ∈ N, such
that

(4.23) lim
`→∞

‖Fp,q(−i∇)f`‖1 = (2π)−n/2|µp,q|(Rn).

Since C∞0 (Rn) is dense in L1(Rn), we can assume that f` ∈ C∞0 (Rn), ` ∈ N.
Introduce (cf. (4.17))

(4.24) g` = U(1, p)f`, ` ∈ N.
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Then

(4.25) (F (−i∇)g`)r,s =

{
0, 2 ≤ r ≤ m,
(f∧` Fp,s)

∨, r = 1,

and hence

(4.26) 9 g`91,m = ‖f`‖1, ` ∈ N,

and

(4.27) 9F (−i∇)g`91,m =
m∑
s=1

‖(f∧` Fp,s)∨‖1

≥ ‖(f∧` Fp,q)∨‖1 = ‖Fp,q(−i∇)f`‖1 −−−→
`→∞

(2π)−n/2|µp,q|(Rn),

implying the lower bound in (4.12).

To show that this lower bound is best possible it suffices to look at the
following example. With γn : Bn → [0, 1] the standard Gaussian measure
on Rn,

(4.28) γn(E) = (2π)−n/2
�

E

exp(−|x|2/2) dnx, E ∈ Bn,

introduce the measure µ0 ∈M(Rn,Cm×m) via

(4.29) µ0,j,k(E) = γn(E)δj,1δk,1, 1 ≤ j, k ≤ m, E ∈ Bn,

and let F0 = µ∧0 . For f ∈ L1(Rn,Cm×m) with 9f91,m = 1 one obtains

9F0(−i∇)f91,m =

m∑
j=1

‖(f∧j,1γ∧n )∨‖1(4.30)

≤
m∑
j=1

‖γ∧n (−i∇)‖B(L1(Rn))

m∑
j=1

‖fj,1‖1

≤ (2π)−n/2γn(Rn)‖f‖1,m = (2π)−n/2γn(Rn)

= (2π)−n/2N(µ0),

implying ‖F0(−i∇)‖B((L1(Rn,Cm×m),9·91,m)) ≤ (2π)−n/2N(µ0).

Turning to the upper bound in (4.12), let ϕ ∈ L1(Rn,Cm×m) with
9ϕ91,m = 1. Then

(4.31) (F (−i∇)ϕ)j,k =
m∑
r=1

(ϕ∧j,rFr,k)
∨, 1 ≤ j, k ≤ m.

Applying the classical (i.e., scalar-valued) L1-multiplier theorem once more,



170 F. Gesztesy and M. Pang

one estimates

(4.32) 9F (−i∇)ϕ91,m =
m∑

j,k=1

‖(F (−i∇)ϕ)j,k‖1

≤
m∑

j,k,r=1

‖(ϕ∧j,rFr,k)∨‖1 =
m∑

j,k,r=1

‖Fr,k(−i∇)ϕj,r‖1

≤
m∑

j,k,r=1

‖Fr,k(−i∇)‖B(L1(Rn))‖ϕj,r‖1 = (2π)−n/2
m∑

j,k,r=1

|µr,k|(Rn)‖ϕj,r‖1

≤ (2π)−n/2N(µ)
m∑
k=1

m∑
j,r=1

‖ϕj,r‖1 = (2π)−n/2N(µ)m9ϕ91,m

= (2π)−n/2N(µ)m.

To demonstrate that this upper bound is best possible, we once more
employ the Gaussian measure (4.28) on Rn and hence introduce the measure
µ1 ∈M(Rn,Cm×m) via

(4.33) µ1,j,k(E) = γn(E), 1 ≤ j, k ≤ m, E ∈ Bn,

and let F1 = µ∧1 , such that F1,j,k = γ∧n , 1 ≤ j, k ≤ m. Applying the classical
multiplier theorem again, one obtains

(4.34) ‖F1,j,k(−i∇)‖B(L1(Rn)) = γn(Rn) = |γn|(Rn) = 1.

Thus, there exists a sequence {f`}`∈N in L1(Rn) with ‖f`‖1 = 1, ` ∈ N, such
that for all r, s ∈ {1, . . . ,m},

(4.35) lim
`→∞

‖γ∧n (−i∇)f`‖1 = lim
`→∞

‖F1,r,s(−i∇)f`‖1 = 1.

Let ϕ` ∈ L1(Rn,Cm×m), ` ∈ N, be defined via

(4.36) ϕ`,j,k = m−2f`, ` ∈ N, 1 ≤ j, k ≤ m.

Then

(4.37) 9ϕ`91,m =

m∑
j,k=1

‖ϕ`,j,k‖1 =

m∑
j,k=1

m−2‖f`‖1 = 1, ` ∈ N.

Consequently,

(4.38) (F1(−i∇)ϕ`)j,k =
m∑
r=1

(ϕ∧`,j,rF1,r,k)
∨ =

m∑
r=1

m−2F1,r,k(−i∇)f`,

` ∈ N, 1 ≤ j, k ≤ m,
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and thus

9F1(−i∇)ϕ`91,m =

m∑
j,k=1

‖(F1(−i∇)ϕ`)j,k‖1(4.39)

=
m∑

j,k=1

∥∥∥ m∑
r=1

m−2F1,r,k(−i∇)f`

∥∥∥
1

=
m∑

j,k=1

m−1‖γ∧n (−i∇)f`‖1

−−−→
`→∞

(2π)−n/2m = (2π)−n/2mN(µ1).

Alternatively, one can prove the equivalence (i)⇔(ii) in Theorem 4.4
using (3.15), Proposition 3.3(ii), and Lemma 3.4.

Remark 4.5. (i) We stress once more that the equivalence of (i)⇔(ii)
in Theorem 4.4 was proved by Gaudry, Jefferies, and Ricker [14, Proposi-
tion 3.15 and Corollary 3.20] in the infinite-dimensional context. For com-
pleteness we decided to present a rather elementary and straightforward
proof. The bounds (4.12) appear to be new.

(ii) In the special case m = 1, the upper and lower bounds in (4.12)
coincide and hence reduce to the classical result

‖F (−i∇)‖B(L1(Rn)) = (2π)−n/2‖µ‖.

Next, we also present the L2-analog of the multiplier Theorem 4.4 (see,
e.g., [18, Theorem 2.5.10], [37, p. 28], [38, pp. 28, 29] for the classical ver-
sion where m = 1). An infinite-dimensional version of this result appeared
in Gaudry, Jefferies, and Ricker [14, Lemma 2.5 and Proposition 2.8]. For
completeness, we present an elementary proof in the matrix-valued case
(deferring the proof of (4.41) to Appendix B) and add the estimates (4.42)
which appear to be new in this context.

We recall the definition of 9 · 92,m in (3.19) and 9 · 9∞,m in (3.21).

Theorem 4.6. Assume that F : Rn → Cm×m is measurable such that
f∧F ∈ L2(Rn,Cm×m), f ∈ C∞0 (Rn,Cm×m) and define

(4.40) F (−i∇) :

{
C∞0 (Rn,Cm×m)→ L2(Rn,Cm×m),

f 7→ F (−i∇)f = (f∧F )∨.

Then the following conditions are equivalent:

(i) F (−i∇)|C∞0 (Rn,Cm×m) can be extended to a bounded operator (de-

noted by the same symbol) F (−i∇) ∈ B(L2(Rn,Cm×m)).
(ii) F ∈ L∞(Rn,Cm×m).
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In addition, if (i) or (ii) holds, then

(4.41) ‖F (−i∇)‖B(L2(Rn,Cm×mHS )) = ess sup
x∈Rn

‖F (x)‖B(Cm) = ‖F‖∞,m,

and moreover,

(4.42) 9F9∞,m ≤ ‖F (−i∇)‖B((L2(Rn,Cm×m),9·92,m)) ≤ m9F9∞,m.

Both estimates in (4.42) are sharp.

Proof. Assume that (i) holds. We recall the definitions of I(j, k), U(j, k),
D(j, k), and P (p, q, j, k) in (4.16)–(4.19), with L1 replaced by L2. Then
as in (4.20), P (1, k, 1, j)f = (f∧Fj,k)

∨, f ∈ L2(Rn), and hence the linear
operator L2(Rn) 3 g 7→ (g∧Fj,k)

∨ ∈ L2(Rn) is bounded, that is, Fj,k is an
L2(Rn)-multiplier. By the classical L2-multiplier theorem, Fj,k ∈ L∞(Rn),
1 ≤ j, k ≤ m, that is, F ∈ L∞(Rn,Cm×m), and hence (ii) holds.

The bound (4.41) has been proved in [14, Lemma 2.5] in the infinite-
dimensional context; for completeness we rederive it in the present matrix-
valued case in Appendix B. Clearly, the bound (4.41) also shows that (ii)
implies (i).

Next we turn to the lower bound in (4.42). Choose p, q ∈ {1, . . . ,m} such
that

(4.43) 9F9∞,m = ‖Fp,q‖∞.
Then the classical L2-multiplier theorem (for m = 1) implies that

(4.44) ‖Fp,q(−i∇)‖B(L2(Rn)) = ‖Fp,q‖∞.

Thus, there exists a sequence {f`}`∈N in L2(Rn) with ‖f`‖2 = 1, ` ∈ N, such
that

(4.45) lim
`→∞

‖Fp,q(−i∇)f`‖2 = ‖Fp,q‖∞.

Introducing (cf. (4.17))

(4.46) g` = U(1, p)f`, ` ∈ N,
we have

(4.47) (F (−i∇)g`)r,s =

{
0, 2 ≤ r ≤ m,
(f∧` Fp,s)

∨, r = 1,
and hence

(4.48) 9g`92,m = ‖f`‖2 = 1, ` ∈ N,
and

9F (−i∇)g`92,m =

m∑
s=1

‖(f∧` Fp,s)∨‖2(4.49)

≥ ‖(f∧` Fp,q)∨‖2 = ‖Fp,q(−i∇)f`‖2 −−−→
`→∞

‖Fp,q‖∞,

implying the lower bound in (4.42).
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To show that this lower bound is best possible it suffices to look at the
following example. Let

(4.50) F0,j,k = δj,1δk,1, 1 ≤ j, k,≤ m.

For f ∈ L2(Rn,Cm×m) with 9f92,m = 1 one obtains

9F0(−i∇)f92,m =
m∑
j=1

‖(f∧j,1)∨‖2 =

m∑
j=1

‖fj,1‖2(4.51)

≤ ‖f‖2,m = 1 = 9F09∞,m,

implying ‖F0(−i∇)‖B((L2(Rn,Cm×m),9·92,m)) ≤ 9F09∞,m.

Turning to the upper bound in (4.42), let ϕ ∈ L2(Rn,Cm×m) with
9ϕ92,m = 1. Then

(4.52) (F (−i∇)ϕ)j,k =

m∑
r=1

(ϕ∧j,rFr,k)
∨, 1 ≤ j, k ≤ m.

Applying the classical L2-multiplier theorem once more, one estimates

9F (−i∇)ϕ92,m =

m∑
j,k=1

‖(F (−i∇)ϕ)j,k‖2 =

m∑
j,k=1

∥∥∥ m∑
r=1

(ϕ∧j,rFr,k)
∨
∥∥∥
2

(4.53)

≤
m∑

j,k,r=1

‖Fr,k(−i∇)ϕj,r‖2

≤
m∑

j,k,r=1

‖Fr,k(−i∇)‖B(L2(Rn))‖ϕj,r‖2

=

m∑
j,k,r=1

‖Fr,k‖∞‖ϕj,r‖2 ≤ 9F9∞,m
m∑
k=1

m∑
j,r=1

‖ϕj,r‖2

= m9F9∞,m 9ϕ92,m = m9F9∞,m .

To demonstrate that this upper bound is best possible, we introduce
F1 ∈ L∞(Rn,Cm×m) by

(4.54) F1,j,k = 1, 1 ≤ j, k ≤ m.

Let f ∈ L2(Rn) with ‖f‖2 = 1, and define ϕ ∈ L2(Rn,Cm×m) via

(4.55) ϕj,k = m−2f, 1 ≤ j, k ≤ m.

Then

(4.56) 9ϕ92,m =

m∑
j,k=1

‖ϕj,k‖2 =

m∑
j,k=1

m−2‖f‖2 = 1.
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Consequently,

(F1(−i∇)ϕ)j,k =
m∑
r=1

(ϕ∧j,rF1,r,k)
∨ =

m∑
r=1

m−2f(4.57)

= m−1f, 1 ≤ r, s ≤ m,
and thus

9F1(−i∇)ϕ92,m =

m∑
j,k=1

‖(F1(−i∇)ϕ)j,k‖2 =

m∑
j,k=1

m−1‖f‖2(4.58)

= m = m9F19∞,m .

Remark 4.7. (i) We stress once more that the equivalence (i)⇔(ii) in
Theorem 4.6 (as well as the fact (4.41)) was proved by Gaudry, Jefferies, and
Ricker [14, Lemma 2.5 and Proposition 2.8] in the infinite-dimensional con-
text (we also refer to [31] for related results). For completeness we again de-
cided to present a rather elementary and straightforward proof. The bounds
(4.42) appear to be new.

(ii) In the special case m = 1, the upper and lower bounds in (4.42)
coincide and hence reduce to the classical result ‖F (−i∇)‖B(L2(Rn)) = ‖F‖∞.

Next, we provide a matrix-valued extension of a part of Schoenberg’s
Theorem [34, Proposition 4.4] (cf. Theorem 1.2). To be precise, we will
show that (i) implies (iii) in Schoenberg’s Theorem 1.2 in the matrix-valued
context:

Theorem 4.8. Let F : Rn → Cm×m and suppose that F is conditionally
positive semidefinite and F (0) ≤ 0. Then for all N ∈ N and xp ∈ Rn,
1 ≤ p ≤ N , the block matrix {F (xp − xq) − F (xp) − F (xq)

∗}1≤p,q≤N ∈
CmN×mN is positive semidefinite.

Proof. Let xp ∈ Rn, cp ∈ Cm, 1 ≤ p ≤ N . Writing c0 := −
∑N

p=1 cp and

cp = (cp,1, . . . , cp,m)>, 0 ≤ p ≤ N , one has

(4.59)
N∑
p=0

m∑
j=1

cp,j = 0.

In addition, set x0 = 0 ∈ Rn. Then by Lemma 2.5(iii) one obtains

(4.60) 0 ≤
N∑

p,q=0

(cp, F (xp − xq)cq)Cm

= (c0, F (0)c0)Cm +

N∑
p=1

(cp, F (xp)c0)Cm +

N∑
q=1

(c0, F (−xq)cq)Cm

+

N∑
p,q=1

(cp, F (xp − xq)cq)Cm
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= (c0, F (0)c0)Cm +
N∑
p=1

(cp, F (−xp)∗c0)Cm +
N∑
q=1

(c0, F (−xq)cq)Cm

+
N∑

p,q=1

(cp, F (xp − xq)cq)Cm

= (c0, F (0)c0)Cm −
N∑

p,q=1

(cp, F (−xp)∗cq)Cm −
N∑

p,q=1

(cp, F (−xq)cq)Cm

+

N∑
p,q=1

(cp, F (xp − xq)cq)Cm .

Since xp ∈ Rn, 1 ≤ p ≤ N , were arbitrary, replacing xp by −xp, 1 ≤ p ≤ N ,
implies

(4.61) 0 ≤ −(c0, F (0)c0)Cm ≤
N∑

p.q=1

(cp, [F (xq−xp)−F (xq)−F (xp)
∗]cq)Cm ,

completing the proof.

Combining Theorems 2.6, 2.7, and 4.8, one obtains the following matrix
variant of Schoenberg’s Theorem 1.2:

Theorem 4.9. Let F : Rn → Cm×m. Then the following conditions are
equivalent:

(i) F is conditionally positive semidefinite.
(ii) For all t > 0, expH(tF ) is positive semidefinite.

If (i) or (ii) holds, and if F (0) ≤ 0, then the following holds:

(iii) For all N ∈ N and xp ∈ Rn, 1 ≤ p ≤ N , the block matrix
{F (xp − xq) − F (xp) − F (xq)

∗}1≤p,q≤N ∈ CmN×mN is positive
semidefinite.

Remark 4.10. It should be noted that the converse of Theorem 4.8, and
hence the complete analog of Schoenberg’s Theorem 1.2, cannot hold in the
matrix-valued context, as the following example for m = 2 shows: Choose
n = 1, m = 2 and

(4.62) F0(x) = ixS, S = S∗ ∈ C2×2, x ∈ R,

with

(4.63) Sj,j ∈ R, j = 1, 2, S1,2 = S2,1 = is, s > 0.

Then

(4.64) F0(xp − xq)− F0(xp)− F0(xq)
∗ = 0, xp, xq ∈ R,
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and hence condition (iii) in Theorem 4.9 holds for F0 in the special case
n = 1, m = 2.

Next, pick x1, x2 ∈ R, x1 > x2. Then

{F0(xp − xq)}1≤p,q≤2 =

(
F0(0) F0(x1 − x2)

F0(x2 − x1) F0(0)

)
(4.65)

= (x1 − x2)
(

0 iS

−iS 0

)
.

Thus, choosing c ∈ R4 with c1 = c4 = 0, c3 = −c2 6= 0 one obtains

(4.66)
4∑

k=1

ck = 0, (c, {F0(xp − xq)}1≤p,q≤2 c)C4 = −(x1 − x2)2sc22 < 0,

and hence F0 is not conditionally positive semidefinite.

Now we turn to a matrix-valued extension of [33, Theorem XIII.52] (cf.
Theorem 1.3 and the subsequent Remark 4.12).

Theorem 4.11. Let F ∈ C(Rn,Cm×m) and suppose there exists c ∈ R
such that

(4.67) Re(F (x)j,k) ≤ c, x ∈ Rn, 1 ≤ j, k ≤ m.

Then the following conditions are equivalent:

(i) For all t > 0, (expH(tF ))(−i∇)|C∞0 (Rn,Cm×m) extends to a bounded

operator (denoted by the same symbol) in B(L1(Rn,Cm×m)) and (2)

(4.68) trCm
(
((expH(tF ))(−i∇)f)(0)

)
≥ 0, 0 ≤ f ∈ C∞0 (Rn,Cm×m), t > 0.

(ii) For all t > 0, expH(tF ) : Rn → Cm×m is positive semidefinite.
(iii) F is conditionally positive semidefinite.

In addition, if one of the conditions (i)–(iii) holds, then inequality (4.68)
can be replaced by

(4.69) trCm
(
((expH(tF ))(−i∇)f)(x)

)
≥ 0, 0 ≤ f ∈ C∞0 (Rn,Cm×m),

x ∈ Rn, t > 0.

Proof. Fix t > 0 and suppose condition (i) holds. Then expH(tF ) is an
L1(Rn,Cm×m) multiplier and hence Theorem 4.4 guarantees the existence

(2) By Lemma 3.9(i), (expH(tF ))(−i∇)f ∈ C∞(Rn,Cm×m) for f ∈ C∞0 (Rn,Cm×m),
hence the pointwise evaluation ((expH(tF ))(−i∇)f)(x0), x0 ∈ R, is well-defined. Indeed,
if f ∈ C∞0 (Rn,Cm×m), then f∧ ∈ S(Rn,Cm×m) ⊂ L1(Rn,Cm×m). In addition, since
Re(F (·)j,k) ≤ c, expH(tF ) ∈ L∞(Rn,Cm×m), and so each entry of f∧ expH(tF ) lies in
L1(Rn), Lemma 3.9(i) yields (expH(tF ))(−i∇)f = (f∧ expH(tF ))∨ ∈ C∞(Rn,Cm×m).
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of µ ∈M(Rn,Cm×m) such that expH(tF ) = µ∧. In addition,

(4.70)
(
(expH(tF ))(−i∇)f

)
(x) = (f∧ expH(tF ))∨(x)

= (2π)−n
�

Rn

�

Rn
ei((x−η)·ξ)f∧(ξ) dµ(η) dnξ,

f ∈ C∞0 (Rn,Cm×m), x ∈ Rn.
Since f∧ ∈ S(Rn,Cm×m) ⊂ L1(Rn,Cm×m), one can interchange the order
of integration in (4.70) to obtain

(4.71)
(
(expH(tF ))(−i∇)f

)
(x) = (2π)−n

�

Rn

�

Rn
ei((x−η)·ξ)f∧(ξ) dnξ dµ(η)

= (2π)−n/2
�

Rn
(f∧)∨(x− η) dµ(η) = (2π)−n/2

�

Rn
f(x− η) dµ(η)

= (2π)−n/2(Tµf)(x), f ∈ C∞0 (Rn,Cm×m).

Thus, by (i),

(4.72)

0 ≤ trCm
(
((expH(tF ))(−i∇)f)(0)

)
= (2π)−n/2 trCm

( �

Rn
f(−η) dµ(η)

)
,

0 ≤ f ∈ C∞0 (Rn,Cm×m),

and hence

(4.73) trCm
( �

Rn
f(x) dµ(x)

)
≥ 0, 0 ≤ f ∈ C∞0 (Rn,Cm×m).

By Lemma 3.11, (4.73) extends to

(4.74) trCm
( �

Rn
f(x) dµ(x)

)
≥ 0, 0 ≤ f ∈ C∞(Rn,Cm×m).

By the duality result preceding (3.8), this implies µ ≥ 0. In view of Theorems
4.3 and 4.4, expH(tF ) = µ∧ is positive semidefinite and hence (ii) holds.

Conversely, suppose that (ii) holds. Then Theorem 4.4 implies that
(expH(tF ))(−i∇)|C∞0 (Rn,Cm×m) extends to an operator (expH(tF ))(−i∇) ∈
B
(
L1(Rn,Cm×m)

)
. As in the first part of this proof (cf. (4.71)), one infers

(4.75) (expH(tF ))(−i∇)f = (2π)−n/2Tµf, f ∈ C∞0 (Rn,Cm×m).

Thus,

(4.76) trCm
(
((exp(tF ))(−i∇)f)(0)

)
= (2π)−n/2 trCm((Tµf)(0))

= (2π)−n/2 trCm
( �

Rn
f(−y) dµ(y)

)
≥ 0, 0 ≤ f ∈ C∞0 (Rn,Cm×m),

by the duality result preceding (3.8). Thus, (i) holds.
The equivalence (ii)⇔(iii) is a consequence of Theorems 2.6 and 2.7.
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Finally, if one of (i)–(iii) holds, then (4.69) follows from (4.68) since by
Lemma 3.4, (expH(tF ))(−i∇) commutes with translations.

Remark 4.12. In the classical case where m = 1, condition (i) in The-
orem 4.11 is equivalent to

(i′) for all t > 0, (exp(tF ))(−i∇) ∈ B(L2(Rn)) is positivity preserving
in L2(Rn).

Thus Theorem 4.11 resembles Theorem 1.3 for m = 1. In this context we
note that (exp(tF ))(−i∇) = exp(tF (−i∇)) for all t ≥ 0, for m = 1.

Proof of (i′)⇒(i). If (i′) holds, then

(4.77) trC
(
((exp(tF ))(−i∇)f)(x)

)
=
(
(exp(tF ))(−i∇)f

)
(x) ≥ 0,

0 ≤ f ∈ C∞0 (Rn), x ∈ Rn, t > 0

(see also the footnote accompanying Theorem 4.11). In particular,

(4.78) trC
(
((exp(tF ))(−i∇)f)(0)

)
=
(
(exp(tF ))(−i∇)f

)
(0) ≥ 0, t > 0,

under the assumptions in (4.77). Since (exp(tF ))(−i∇) is positivity preserv-
ing, Corollary 3.12 guarantees the existence of a scalar-valued, nonnegative,
finite measure µ on R such that

(4.79) (exp(tF ))(−i∇) = Tµ, t > 0.

Thus, the estimate (3.15) for p = 1 shows that (exp(tF ))(−i∇)|C∞0 (Rn) ex-

tends to a bounded operator (exp(tF ))(−i∇) ∈ B(L1(Rn)), implying (i).

Proof of (i)⇒(i′). If (i) holds, then

(4.80)
(
(exp(tF ))(−i∇)f

)
(0) = trC

(
((exp(tF ))(−i∇)f)(0)

)
≥ 0,

0 ≤ f ∈ C∞0 (Rn), t > 0.

By Lemma 3.4, this yields

(4.81)
(
(exp(tF ))(−i∇)f

)
(x) = trC

(
((exp(tF ))(−i∇)f)(x)

)
≥ 0,

0 ≤ f ∈ C∞0 (Rn), x ∈ Rn, t > 0.

Since {f ∈ C0(Rn) | f ≥ 0} is dense in {f ∈ L2(Rn) | f ≥ 0}, one concludes
that (exp(tF ))(−i∇) ∈ B(L2(Rn)) is positivity preserving, that is, (i′) holds.

Next, we will show that the analog of (i′) for m = 1, with exp(·) replaced
by expH(·), cannot hold for m ≥ 2. We start with two preliminaries:

Lemma 4.13. Let F ∈ C(Rn,Cm×m) be conditionally positive semidefi-
nite and suppose there exists c ∈ R such that

(4.82) Re(F (x)j,k) ≤ c, x ∈ Rn, 1 ≤ j, k ≤ m.
By Theorem 4.11, for all t > 0, expH(tF ) : Rn → Cm×m is positive semidef-
inite, and hence by Theorem 4.3, there exists a nonnegative finite measure
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µt ∈M(Rn,Cm×m), t > 0, such that

(4.83) expH(tF )(x) = µ∧t (x), x ∈ Rn, t > 0.

Then

(4.84) µt,j,k(Rn) 6= 0, 1 ≤ j, k ≤ m, t > 0.

Thus, for all t > 0, there exists Rt > 0 such that

(4.85) µt,j,k(B(0, Rt)) 6= 0, 1 ≤ j, k ≤ m.
Proof. Since expH(tF )(x) = µ∧t (x) for all x ∈ Rn and t > 0, one con-

cludes that

0 6= exp(tF (0)j,k) = expH(tF )j,k(0) = (2π)−n/2
( �

Rn
dµt(x)

)
j,k

(4.86)

= (2π)−n/2µt,j,k(Rn), 1 ≤ j, k ≤ m,

and hence (4.84) holds. Since µt is nonnegative, µt(B(0, R)) ↑ µt(Rn) as
R→∞, and thus

(4.87) µt,j,k(B(0, R)) −−−−→
R→∞

µt,j,k(Rn), 1 ≤ j, k ≤ m,

implying (4.85).

Lemma 4.14. Let D ∈ Cm×m with m ∈ N, m ≥ 2, be a strictly positive
diagonal matrix with

(4.88) Dj,k = djδj,k, dj > 0, 1 ≤ j, k ≤ m, d1 6= d2,

and let S = S∗ ∈ Cm×m be self-adjoint with S1,2 6= 0. Then DS is not
self-adjoint in Cm×m.

Proof. This is clear from (DS)1,2 = d1S1,2 and (DS)2,1 = d2S2,1 =
d2S1,2.

Theorem 4.15. Let F ∈ C(Rn,Cm×m), m ≥ 2, be conditionally positive
semidefinite and suppose there exists c ∈ R such that

(4.89) Re(F (x)j,k) ≤ c, x ∈ Rn, 1 ≤ j, k ≤ m.
Then for all t > 0,

(4.90) (expH(tF ))(−i∇) ∈ B(L2(Rn,Cm×m)) is not positivity preserving.

Proof. Fix t > 0 and let µt and Rt be as in Lemma 4.13, and D ∈ Cm×m
be the strictly positive diagonal matrix of Lemma 4.14. For sufficiently small
ε > 0 we introduce

(4.91) hε ∈ C∞([0,∞)), hε(r) =

{
1, r ∈ [0, Rt],

0, r ∈ [Rt + ε,∞),

and

(4.92) 0 ≤ gε ∈ C∞0 (Rn,Cm×m), gε(x) = hε(|x|)D, x ∈ Rn.
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Then

(4.93)
(
((expH(tF ))(−i∇))f

)
(x) = (2π)−n/2(Tµtf)(x),

f ∈ C∞0 (Rn,Cm×m), x ∈ Rn,
by the (ii)⇒(i) part of the proof of Theorem 4.4. Thus,

(4.94)
(
((expH(tF ))(−i∇))gε

)
(0) = (2π)−n/2(Tµtgε)(0)

= (2π)−n/2
�

Rn
gε(−y) dµt(y) = (2π)−n/2

�

Rn
gε(y) dµt(y)

= (2π)−n/2
[ �

Bn(0,Rt)

gε(y) dµt(y) +
�

Bn(0,Rt+ε)\Bn(0,Rt)

gε(y) dµt(y)
]

= (2π)−n/2Dµt(Bn(0, Rt)) + (2π)−n/2
�

Bn(0,Rt+ε)\Bn(0,Rt)

gε(y) dµt(y).

By estimate (3.7),

(4.95)
∥∥∥ �

Bn(0,Rt+ε)\Bn(0,Rt)

gε(y) dµt(y)
∥∥∥

≤
�

Bn(0,Rt+ε)\Bn(0,Rt)

‖gε(y)‖B(Cm) d|µt|(y)

≤
�

Bn(0,Rt+ε)\Bn(0,Rt)

‖D‖B(Cm) d|µt|(y) −−→
ε↓0

0.

Using the fact that

(4.96) Nm = Cm×m \ {A∗A ∈ Cm×m | A ∈ Cm×m} is open in Cm×m

(since the nonnegative m ×m matrices form a closed cone in Cm×m), em-
ploying

(4.97) Dµt(Bn(0, Rt)) ∈ Nm,
applying Lemma 4.14 with S = µt

(
Bn(0, Rt)

)
, and utilizing

(4.98) ((expH(tF ))(−i∇))(gε) ∈ L2(Rn,Cm×m) ∩ C∞(Rn,Cm×m)

by Lemma 3.9(i), one concludes that for all sufficiently small ε > 0,
(expH(tF )(−i∇)gε)(0) is not nonnegative. Thus, for all sufficiently small
ε > 0, there exists η(ε) > 0 such that (expH(tF )(−i∇)gε)(x), x∈Bn(0, η(ε)),
is not nonnegative. Since gε ≥ 0, this completes the proof.

Thus, unlike the classical case m = 1 discussed in Remark 4.12, the
straightforward extension of Theorem 1.3 replacing its condition (i) by

(i′) for all t > 0, (expH(tF ))(−i∇) is positivity preserving

cannot hold in the matrix-valued context, m ≥ 2.
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Finally, we derive the bound (1.3) in the matrix-valued context following
[24, Lemma 3.6.22]. First, we recall the following fact:

Proposition 4.16 ([22, p. 112]). Let 0 ≤ M` ∈ Cm`×m`, m` ∈ N,
` = 1, 2 (i.e., M`, ` = 1, 2, are positive semidefinite), and X ∈ Cm1×m2.
Introduce the block matrix

(4.99) A =

(
M1 X

X∗ M2

)
∈ C(m1+m2)×(m1+m2).

Then A is positive semidefinite (i.e., A ≥ 0) if and only if there exists a

contraction C ∈ Cm1×m2 such that X = M
1/2
1 CM

1/2
2 .

Here C is viewed as a linear map C : Cm2 → Cm1 , and, according to
our convention, we employ the standard Euclidean scalar product and norm
on Cm` , ` = 1, 2.

Next, we state a preparatory result:

Lemma 4.17. Suppose that F ∈ C(Rn,Cm×m) is conditionally positivie
semidefinite with F (0) ≤ 0. Then

0 ≤ F (0)− 2Re(F (x)) ≤ −2Re(F (x)), x ∈ Rn,(4.100)

‖F (0)− 2Re(F (x))‖B(Cm) ≤ 2‖Re(F (x))‖B(Cm)(4.101)

≤ 2‖F (x)‖B(Cm), x ∈ Rn,
‖F (x− y)− F (x)− F (y)∗‖B(Cm)(4.102)

≤ 2‖F (x)‖1/2B(Cm)‖F (y)‖1/2B(Cm), x, y ∈ Rn,

‖F (x+ y)‖1/2B(Cm) ≤ ‖F (x)‖1/2B(Cm) + ‖F (y)‖1/2B(Cm), x, y ∈ Rn.(4.103)

Proof. Inequality (4.100) follows from Theorem 4.8 and from F (0) ≤ 0,
and (4.101) is a consequence of (3.51)–(3.53).

Next, denote G(x) = F (0)−F (x)−F (x)∗, H(x, y) = F (x− y)−F (x)−
F (y)∗, and K(y) = F (0)− F (y)− F (y)∗. Applying once more Theorem 4.8
one infers that

(4.104) 0 ≤
(

G(x) H(x, y)

H(x, y)∗ K(y)

)
∈ C2m×2m, x, y ∈ Rn.

By (4.100),

(4.105) G(x) ≥ 0, K(y) ≥ 0, x, y ∈ Rn,

and hence Proposition 4.16 guarantees the existence of a linear contraction
C(x, y) ∈ Cm×m, x, y ∈ Rn, such that

(4.106) H(x, y) = G(x)1/2C(x, y)K(y)1/2, x, y ∈ Rn.
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Thus, (4.101) yields

‖H(x, y)‖B(Cm) ≤ ‖G(x)‖1/2B(Cm)‖K(y)‖1/2B(Cm)(4.107)

≤ 2‖F (x)‖1/2B(Cm)‖F (y)‖1/2B(Cm), x, y ∈ Rn,

proving (4.102).

By (4.102) one obtains

(4.108) ‖F (x− y)‖B(Cm) − ‖F (x)‖B(Cm) − ‖F (y)∗‖B(Cm)

≤ ‖F (x− y)‖B(Cm) − ‖F (x) + F (y)∗‖B(Cm)

≤ ‖F (x− y)− F (x)− F (y)∗‖B(Cm)

≤ 2‖F (x)‖1/2B(Cm)‖F (y)‖1/2B(Cm), x, y ∈ Rn,

implying

(4.109) ‖F (x− y)‖B(Cm) ≤ [‖F (x)‖1/2B(Cm) + ‖F (y)‖1/2B(Cm)]
2, x, y ∈ Rn.

Replacing y by −y and using F (−y) = F (y)∗ yields (4.103).

Theorem 4.18. Suppose that F : Rn → Cm×m is locally bounded and
conditionally positive semidefinite with F (0) ≤ 0. Then there exists C > 0
such that

(4.110) ‖F (x)‖B(Cm) ≤ C[1 + |x|2], x ∈ Rn.

Proof. By local boundedness of F it suffices to prove the existence of
C ′ > 0 such that ‖F (x)‖B(Cm) ≤ C ′|x|2 for |x| sufficiently large. Thus,
for x ∈ Rn with |x| ≥ 2, let m(x) ∈ N be the positive integer such that
|x| ∈ [m(x),m(x) + 1). Then by (4.103),

‖F (x)‖1/2B(Cm) = ‖F (m(x)(x/m(x)))‖1/2B(Cm)(4.111)

≤ m(x)‖F ((x/m(x)))‖1/2B(Cm)

≤ m(x)
[

sup
y∈Rn
{‖F (y)‖B(Cm) | 0 ≤ |y| ≤ 2}

]1/2
≤ [C ′]1/2|x|, |x| ≥ 2,

where

(4.112) C ′ = sup
y∈Rn
{‖F (y)‖B(Cm) | 0 ≤ |y| ≤ 2}.

We conclude with some elementary examples of conditionally positive
semidefinite matrix-valued functions on Rn.

Example 4.19. (i) Fix yj∈Rn, j=1, 2, with y1 6=y2. Then F2 : Rn → C2

defined via



(Conditional) positive semidefiniteness 183

(4.113) F2(x) = −i
(
x · (y1 + y2) x · y2

x · y2 x · (y1 + y2)

)
, x ∈ Rn,

is conditionally positive semidefinite.
(ii) Suppose that G0 : Rn → C is conditionally positive semidefinite and

introduce the constant matrix H = {Hj,k}1≤j,k≤m ∈ Cm×m by

(4.114) Hj,k = 1, 1 ≤ j, k ≤ m.
Then F0 : Rn → Cm×m defined by

(4.115) F0(x) = G0(x)H, x ∈ Rn,
is conditionally positive semidefinite.

Proof. (i) Introduce the 2× 2 matrix-valued measure µ2,t, t > 0, via

(4.116) µ2,t = (2π)n/2
(
δty1 + δty2 δty2

δty2 δty1 + δty2

)
, t > 0.

Here δx0 denotes the usual Dirac measure at x0 ∈ Rn. One readily computes,
for x ∈ Rn,

(µ∧2,t(x))j,j = e−it(x·y1) + e−it(x·y2) = (expH(tF2(x)))j,j , j = 1, 2,(4.117)

(µ∧2,t(x))1,2 = e−it(x·y2) = (expH(tF2(x)))1,2(4.118)

= (expH(tF2(x)))2,1 = (µ∧2,t(x))2,1,

and hence

(4.119) expH(tF2(x)) = µ∧2,t(x), x ∈ Rn, t > 0.

By Theorem 4.3 and the equivalence (ii)⇔(iii) in Theorem 4.11, it suffices
to prove that µ2,t is nonnegative for all t > 0. Since for all E ∈ Bn, µ2,t(E)
can only take on the values(

0 0

0 0

)
if tyj /∈ E, j = 1, 2,

(
1 0

0 1

)
if ty1 ∈ E, ty2 /∈ E,

(
2 1

1 2

)
if tyj ∈ E, j = 1, 2,

(
1 1

1 1

)
if ty1 /∈ E, ty2 ∈ E,

(4.120)

and all matrices in (4.120) are nonnegative, so is µ2,t, t > 0.
(ii) Since G0 is conditionally positive semidefinite, exp(tG0) : Rn → C is

positive semidefinite for all t > 0. So by the classical Bochner theorem, for
all t > 0, there exists a nonnegative scalar-valued measure νt on Rn such
that

(4.121) etG0 = ν∧t , t > 0.

Set

(4.122) µ0,t(E) = νt(E)H, E ∈ Bn, t > 0.
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Then µ0,t, t > 0, is nonnegative and

(4.123) expH(tF0) = etG0H = ν∧t H = µ∧0,t, t > 0.

Thus F0 is conditionally positive semidefinite by utilizing once more Theo-
rem 4.3 and the equivalence (ii)⇔(iii) in Theorem 4.11.

Appendix A. A counterexample. In this appendix we verify the
claim made in Remark 4.2. For brevity, we construct the counterexample
for m = 2, but the construction extends to general m ∈ N, m ≥ 3.

Let γn : Bn → [0, 1] be the standard Gaussian measure on Rn,

(A.1) γn(E) = (2π)−n/2
�

E

exp(−|x|2/2) dnx, E ∈ Bn,

and introduce

(A.2) µ(E) = γn(E)A, A =

(
1 0

0 2

)
≥ 0, E ∈ Bn, F = µ∧,

and

(A.3) M =

(
3 1

1 3

)
≥ 0 such that MA =

(
3 2

1 6

)
is not self-adjoint,

let alone positive semidefinite.

As in the proof of (ii)⇒(i) in Theorem 4.4, one obtains

(A.4) (F (−i∇)f)(x) = (2π)−n/2(Tµf)(x), f ∈ C∞0 (Rn,C2×2), x ∈ Rn.

Next, for sufficiently small ε > 0, consider hε ∈ C∞0 (Rn) satisfying

0 ≤ hε(x) ≤ 1, x ∈ Rn, hε(x) =

{
1, x ∈ Bn(0, 1),

0, x ∈ Rn \Bn(0, 1 + ε),
(A.5)

and let

(A.6) gε(x) = hε(x)M, x ∈ Rn.

Then

(A.7) (F (−i∇)gε)(0) = (2π)−n/2(Tµgε)(0)

= (2π)−n/2
�

Rn
gε(−y) dµ(y) = (2π)−n/2

�

Rn
gε(y) dµ(y)

= (2π)−n/2
�

Bn(0,1)

gε(y) dµ(y) + (2π)−n/2
�

Bn(0,1+ε)\Bn(0,1)

gε(y) dµ(y)

= (2π)−n/2γn(Bn(0, 1))MA+ (2π)−n/2
�

Bn(0,1+ε)\Bn(0,1)

gε(y) dµ(y).
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By (3.7),

(A.8)
∥∥∥ �

Bn(0,1+ε)\Bn(0,1)

gε(y) dµ(y)
∥∥∥
B(Cm)

≤
�

Bn(0,1+ε)\Bn(0,1)

‖gε(y)‖B(Cm) d|µ|(y)

≤
�

Bn(0,1+ε)\Bn(0,1)

‖M‖B(Cm) d|µ|(y)

= ‖M‖B(Cm)‖A‖B(Cm)γn
(
Bn(0, 1 + ε) \Bn(0, 1)

)
−−→
ε↓0

0.

Since the set

(A.9) N2 = C2×2 \ {A∗A ∈ C2×2 | A ∈ C2×2}
is open in C2×2 (cf. (4.96)), since

(A.10) γn(Bn(0, 1))MA ∈ N2,

and since F (−i∇)gε ∈ L2(Rn,Cm×m)∩C∞(Rn,Cm×m) by Lemma 3.9(i), for
ε > 0 sufficiently small, (F (−i∇)gε)(0) is not positive semidefinite, and thus
there exists δ(ε) > 0 such that (F (−i∇)gε)(x) is not positive semidefinite
for all x ∈ Bn(0, δ(ε)), even though gε ≥ 0, illustrating Remark 4.2.

In the special case where µσ(E) = σ(E)ICm , E ∈ Bn, with σ : Bn →
[0,∞) a finite meausure, and F = µ∧σ , F (−i∇) = (2π)−n/2Tµσ is of course
positivity preserving in L2(Rn,Cm×m).

Appendix B. The multiplier norm equality (4.41). The purpose
of this appendix is an elementary and straightforward proof of the multiplier
norm equality (4.41).

We start with some preliminary observations. First, each matrix in Cm×m
will be identified with a column vector in Cm2

by listing the entries of
the matrix from left to right, and from top to bottom. We also recall the
identifications

(B.1) Cm×mHS ' B2(Cm) ' Cm
2
, B(Cm×mHS ) ' B

(
Cm

2) ' Cm
2×m2

,

consistently employing the Euclidean norm on Cm and Cm2
.

In addition, given A ∈ Cm×m we introduce the linear operator MA of
right multiplication by A on Cm×m via

(B.2) MA(B) := BA, B ∈ Cm×m.

Since MA is a linear operator on Cm2
, it is representable by a matrix KA ∈

Cm2×m2
, and the latter may be described upon inspection as follows:

Lemma B.1. KA is a block matrix with m2 blocks, m blocks across hori-
zontally and m blocks vertically. Each block is an m×m matrix, the diagonal
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blocks each equal A> (the transpose of A), and all off-diagonal blocks equal
the zero matrix in Cm×m.

Then one obtains the following result for the operator norm of MA.

Proposition B.2. Let A ∈ Cm×m. Then

(B.3) ‖MA‖B(Cm2 )
= ‖KA‖B(Cm2 )

= ‖A‖B(Cm),

where, according to our conventions, Cm and Cm2
are equipped with the

Euclidean norm.

Proof. Let {uj}j∈N be a sequence in Cm such that ‖uj‖Cm = 1, j ∈ N,

and limj→∞ ‖A>uj‖Cm = ‖A>‖B(Cm). For each j ∈ N, let vj ∈ Cm2
be

the column vector obtained by repeating uj m times down the column, and
introduce

(B.4) ωj = m−1/2vj ∈ Cm
2
, such that ‖ωj‖Cm2 = 1, j ∈ N.

Then for all j ∈ N, KAωj ∈ Cm2
is the column vector obtained upon re-

peating m−1/2A>uj m times down the column such that

(B.5) ‖KAωj‖Cm2 = ‖A>uj‖Cm −−−→
j→∞

‖A>‖B(Cm).

Thus,

(B.6) ‖KA‖B(Cm2 )
≥ ‖A>‖B(Cm) = ‖A‖B(Cm), A ∈ Cm×m.

To prove the opposite inequality we identify Cm×mHS = (Cm×m, ‖ · ‖HS) with

Cm2
and observe that for all B ∈ Cm×m ' Cm2

one has

‖MA(B)‖Cm2 = ‖BA‖(Cm×m,‖·‖HS) = ‖BA‖B2(Cm)(B.7)

≤ ‖B‖B2(Cm)‖A‖B(Cm) = ‖B‖Cm2‖A‖B(Cm),

implying

(B.8) ‖MA(B)‖Cm2 ≤ ‖A‖B(Cm).

At this point we can turn to the principal aim of this appendix:

Proof of (4.41). Suppose that

(B.9)
Φ : Rn → B(Cm×mHS ) ' Cm

2×m2
is measurable,

‖Φ‖∞,m2 = ess sup
x∈Rn

‖Φ(x)‖B(Cm×mHS ) <∞,

and introduce

(B.10) SΦ :

{
L2(Rn,Cm×mHS )→ L2(Rn,Cm×mHS ),

(SΦf)∧(y) = Φ(y)f∧(y) for a.e. y ∈ Rn.
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Lemma B.3. Assume (B.9). Then

(B.11) ‖SΦ‖B(L2(Rn,Cm×mHS )) ≤ ‖Φ‖∞,m2 .

Proof. Let f ∈ L2(Rn,Cm×mHS ) with ‖f‖L2(Rn,Cm×mHS ) = 1. Then

‖SΦf‖L2(Rn,Cm×mHS ) = ‖(SΦf)∧‖L2(Rn,Cm×mHS )(B.12)

=
( �

Rn
‖Φ(y)f∧(y)‖2Cm2 d

nx
)1/2

≤
( �

Rn
‖Φ(y)‖2B(Cm×mHS )

‖f∧(y)‖2Cm2 d
nx
)1/2

≤ ‖Φ‖∞,m2

( �

Rn
‖f∧(y)

∥∥2
Cm2 dnx

)1/2
= ‖Φ‖∞,m2‖f∧‖L2(Rn,Cm×mHS )

= ‖Φ‖∞,m2‖f‖L2(Rn,Cm×mHS ) = ‖Φ‖∞,m2 .

Lemma B.4. Assume that Φ̃ is a simple function, that is, there exist
J ∈ N, aj ∈ C, Φj ∈ B(Cm×mHS ), with ‖Φj‖B(Cm×mHS ) = 1, and Ej ∈ Bn,

1 ≤ j ≤ J , such that Φ̃ is of the type

(B.13) Φ̃ =

J∑
j=1

ajΦjχEj .

Then

(B.14) ‖S
Φ̃
‖B(L2(Rn,Cm×mHS )) = ‖Φ̃‖∞,m2 .

Proof. Without loss of generality we may assume in addition that the
sets Ej are pairwise disjoint, and that |Ej | > 0, 1 ≤ j ≤ J , 0 < |E1| < ∞,
|a1| ≥ |aj | > 0, 2 ≤ j ≤ J , implying

(B.15) ‖Φ̃‖∞,m2 = |a1|.

Since by assumption ‖Φ1‖B(Cm×mHS ) = 1, there exists a sequence {u`}`∈N ⊂
Cm×mHS with ‖u`‖B2(Cm) = 1, ` ∈ N, such that

(B.16) lim
`→∞

‖Φ1u`‖B2(Cm) = 1.

Introducing f` ∈ L2(Rn,Cm×mHS ), ` ∈ N, via

(B.17) f` = (|E1|−1/2u`χE1)∨, ` ∈ N,
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one infers

‖f`‖L2(Rn,Cm×mHS ) = ‖f∧` ‖L2(Rn,Cm×mHS )(B.18)

=
∥∥|E1|−1/2u`χE1

∥∥
L2(Rn,Cm×mHS )

= |E1|−1/2
( �

Rn

m∑
j,k=1

|(u`χE1(x))j,k|2 dnx
)1/2

= |E1|−1/2
( �

E1

m∑
j,k=1

|(u`)j,k|2 dnx
)1/2

= 1, ` ∈ N,

and

(B.19) ‖SΦf`‖2L2(Rn,Cm×mHS )
= ‖(SΦf`)∧‖2L2(Rn,Cm×mHS )

=
( �

Rn

m∑
j,k=1

∣∣(Φ̃(x)|E1|−1/2u`χE1(x))j,k
∣∣2 dnx)1/2

=
(
|E1|−1

�

Rn

m∑
j,k=1

|(a1Φ1u`χE1(x))j,k|2 dnx
)1/2

=
(
|E1|−1|a1|2

�

E1

m∑
j,k=1

|(Φ1u`)j,k|2 dnx
)1/2

= |a1| ‖Φ1u`‖B2(Cm) −−−→
`→∞

|a1|.

Thus,

(B.20) ‖S
Φ̃
‖B(L2(Rn,Cm×mHS )) ≥ |a1| = ‖Φ̃‖∞,m2 ,

and Lemma B.3 provides the converse inequality.

Lemma B.5. Assume (B.9). Then

(B.21) ‖SΦ‖B(L2(Rn,Cm×mHS )) = ‖Φ‖∞,m2 .

Proof. Let cm ≥ 1 be such that

c−1m max
1≤j,k≤m2

|Aj,k| ≤ ‖A‖B(Cm×mHS )(B.22)

≤ cm max
1≤j,k≤m2

|Aj,k|, A ∈ Cm
2×m2

.

Then, for (Lebesgue) a.e. x ∈ Rn,

(B.23) |Φ(x)j,k| ≤ max
1≤r,s≤m2

|Φ(x)r,s| ≤ cm‖Φ(x)‖B(Cm×mHS ) ≤ cm‖Φ‖∞,m2 .

Thus, for each j, k ∈ {1, . . . , ,m2}, there exists a sequence of simple functions
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Ψj,k,` : Rn → C, ` ∈ N, such that for a.e. x ∈ Rn,

|Φ(x)j,k − Ψ(x)j,k,`| ≤ 21/2−`,(B.24)

|Ψ(x)j,k,`| ≤ |Φ(x)j,k|.(B.25)

Next, introduce Ψ` : Rn → Cm2×m2
via (Ψ`(x))j,k = Ψ(x)j,k,`, 1 ≤ j, k ≤ m2,

x ∈ Rn. Then for a.e. x ∈ Rn,

‖Φ(x)− Ψ`(x)‖B(Cm×mHS ) ≤ cm max
1≤j,k≤m2

|Φ(x)j,k − Ψ(x)j,k,`|(B.26)

≤ 21/2−`cm.

Combining Lemma B.3 and (B.26) results in

‖SΦ − SΨ`‖B(L2(Rn,Cm×mHS )) = ‖SΦ−Ψ`‖B(L2(Rn,Cm×mHS ))(B.27)

≤ ‖Φ− Ψ`‖∞,m2 ≤ 21/2−`cm,

implying

(B.28)
∣∣‖SΦ‖B(L2(Rn,Cm×mHS )) − ‖SΨ`‖B(L2(Rn,Cm×mHS ))

∣∣ ≤ 21/2−`cm.

Since Ψ` is a simple function, Lemma B.4 implies

(B.29) ‖SΨ`‖B(L2(Rn,Cm×mHS )) = ‖Ψ`‖∞,m2 .

Employing (B.24) one obtains for a.e. x ∈ Rn,

(B.30)
∣∣‖Φ(x)‖B(Cm×mHS ) − ‖Ψ`(x)‖B(Cm×mHS )

∣∣ ≤ ‖Φ(x)− Ψ`(x)‖B(Cm×mHS )

≤ cm max
1≤j,k≤m2

|Φ(x)j,k − Ψ`(x)j,k| ≤ 21/2−`cm,

implying

(B.31) ‖Φ‖∞,m2 = lim
`→∞

‖Ψ`‖∞,m2 .

Combining (B.28), (B.29), and (B.31) finally yields

(B.32) ‖SΦ‖B(L2(Rn,Cm×mHS )) = ‖Φ‖∞,m2 .

We emphasize that Lemma B.5 has been proven in [14] in the infinite-
dimensional context.

Corollary B.6. Assume that F : Rn → Cm×m is measurable and that
‖F‖∞,m = ess supx∈Rn ‖F (x)‖B(Cm) <∞. Then

(B.33) ‖F (−i∇)‖B(L2(Rn,Cm×mHS )) = ‖F‖∞,m.

Proof. Given A ∈ Cm×m, let MA ∈ B(Cm×mHS ) be defined as in (B.2),

(B.34) MA(B) = BA, B ∈ Cm×mHS ,

and introduce Φ : Rn → B(Cm×mHS ) by

(B.35) Φ(x) = MF (x), x ∈ Rn.
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By Proposition B.2,

(B.36) ‖Φ(x)‖B(Cm×mHS ) = ‖F (x)‖B(Cm), x ∈ Rn,

and hence by Lemma B.5,

‖F (−i∇)‖B(L2(Rn,Cm×mHS )) = ‖SΦ‖B(L2(Rn,Cm×mHS ))(B.37)

= ess sup
x∈Rn

‖Φ(x)‖B(Cm×mHS )

= ess sup
x∈Rn

‖F (x)‖B(Cm) = ‖F‖∞,m.

Acknowledgements. We are grateful to Loukas Grafakos, Alexander
Sakhnovich, Lev Sakhnovich, Fedor Sukochev, and Yuri Tomilov for very
helpful correspondence. Particular thanks are due to Loukas Grafakos for
his help with the proof of the multiplier equality (4.41), and to Yuri Tomilov
for providing us with a most relevant list of references. We also thank both
referees for a critical reading of our manuscript and for very helpful com-
ments.

References

[1] R. A. Adams and J. J. F. Fournier, Sobolev Spaces, 2nd ed., Academic Press, 2003.
[2] N. I. Akhiezer, The Classical Moment Problem, and Some Related Questions in

Analysis, Oliver & Boyd, Edinburgh, 1965.
[3] S. K. Berberian, Năımark’s moment theorem, Michigan J. Math. 13 (1966), 171–184.
[4] C. Berg, J. P. R. Christensen, and P. Ressel, Positive definite functions on Abelian

semigroups, Math. Ann. 223 (1976), 253–272.
[5] C. Berg, J. P. R. Christensen, and P. Ressel, Harmonic Analysis on Semigroups.

Theory of Positive Definite and Related Functions, Grad. Texts in Math. 100,
Springer, New York, 1984.

[6] C. Berg and G. Forst, Potential Theory on Locally Compact Abelian Groups, Ergeb.
Math. Grenzgeb. 87, Springer, Berlin, 1975.

[7] R. Bhatia, Matrix Analysis, Grad. Texts in Math. 169, Springer, New York, 1997.
[8] R. Bhatia, Positive Definite Matrices, Princeton Univ. Press, Princeton, NJ, 2007.
[9] S. Bochner, Monotone Funktionen, Stieltjessche Integrale und harmonische Analyse,

Math. Ann. 108 (1933), 378–410.
[10] C.-H. Chu, Matrix-valued harmonic functions on groups, J. Reine Angew. Math.

552 (2002), 15–52.
[11] C.-H. Chu, Matrix Convolution Operators on Groups, Lecture Notes in Math. 1956,

Springer, Berlin, 2008.
[12] P. L. Falb and U. Haussmann, Bochner’s theorem in infinite dimensions, Pacific J.

Math. 43 (1972), 601–618.
[13] J. Friedrich and L. Klotz, On different definitions of positive definiteness, Math.

Nachr. 152 (1991), 35–37.
[14] G. I. Gaudry, B. R. F. Jefferies, and W. J. Ricker, Vector-valued multipliers: con-

volution with operator-valued measures, Dissertationes Math. 385 (2000), 77 pp.

http://dx.doi.org/10.1307/mmj/1028999543
http://dx.doi.org/10.1007/BF01360957
http://dx.doi.org/10.1007/BF01452844
http://dx.doi.org/10.2140/pjm.1972.43.601
http://dx.doi.org/10.1002/mana.19911520104


(Conditional) positive semidefiniteness 191

[15] I. M. Gel’fand and N. Ya. Vilenkin, Generalized Functions, Vol. 4. Applications of
Harmonic Analysis, Academic Press, New York, 1964.

[16] I. Gohberg and M. G. Krein, Introduction to the Theory of Linear Nonselfadjoint
Operators, Transl. Math. Monogr. 18, Amer. Math. Soc., Providence, RI, 1969.

[17] E. A. Gorin, Positive definite functions as an instrument of mathematical analysis,
J. Math. Sci. (N.Y.) 197 (2014), 492–511.

[18] L. Grafakos, Classical Fourier Analysis, 2nd ed., Grad. Texts in Math. 249, Springer,
New York, 2008.

[19] A. Hausner, On generalized group algebras, Proc. Amer. Math. Soc. 10 (1959), 1–10.
[20] H. He, On matrix valued square integrable positive definite functions, Monatsh.

Math. 177 (2015), 437–449.
[21] I. W. Herbst and A. D. Sloan, Perturbation of translation invariant positivity pre-

serving semigroups on L2(RN ), Trans. Amer. Math. Soc. 236 (1978), 325–360.
[22] R. A. Horn, The Hadamard product, in: Matrix Theory and Applications, C. R.

Johnson (ed.), Proc. Sympos. Appl. Math. 40, Amer. Math. Soc., Providence, RI,
1990, 87–169.

[23] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge Univ. Press,
Cambridge, 1994.

[24] N. Jacob, Pseudo Differential Operators and Markov Processes. Vol. 1. Fourier
Analysis and Semigroups, Imperial College Press, London, 2001.

[25] N. Jacob and R. L. Schilling, An analytic proof of the Lévy–Khinchin formula on
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