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Iterates of systems of operators in spaces of
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Abstract. Given two systems P = (Pj(D))Nj=1 and Q = (Qj(D))Mj=1 of linear partial
differential operators with constant coefficients, we consider the spaces EPω and EQσ of
weighted-ultradifferentiable functions with respect to the iterates of the systems P and Q
respectively. We find necessary and sufficient conditions, on the systems and on the weights
ω(t) and σ(t), for the inclusion EPω ⊆ EQσ . As a consequence we obtain a generalization of
the classical Theorem of the Iterates.

1. Introduction. The problem of iterates was first introduced by Ko-
matsu [K1] in the 60’s, when he characterized analytic functions u on an
open subset Ω ⊆ Rn in terms of the behaviour of successive iterates P j(D)u
for an elliptic linear partial differential operator P (D) with constant coeffi-
cients. He proved that if P (D) is an elliptic operator of order m, then a C∞

function u is real analytic in Ω if and only if for every compact K ⊂⊂ Ω
there is a constant C > 0 such that

‖P j(D)u‖L2(K) ≤ Cj+1(j!)m, ∀j ∈ N0 := N ∪ {0},(1.1)

where ‖ · ‖L2(K) is the L2 norm on K. This is known as the Theorem of the
Iterates.

Moreover, the condition that P (D) is elliptic is sufficient and also nec-
essary (cf. [M], [LW]) for the above mentioned result, so that, given a linear
partial differential operator P (D) of order m with constant coefficients, the
ellipticity growth condition

|ξ|2m ≤ C(1 + |P (ξ)|2), ∀ξ ∈ Rn,(1.2)
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for a constant C > 0, is equivalent to the equality

A(Ω) = AP (Ω),

where A(Ω) is the space of real analytic functions on Ω and AP (Ω) is the
space of real analytic functions on Ω with respect to the iterates of P , i.e.
the space of C∞ functions u on Ω satisfying (1.1).

This problem was generalized by Newberger and Zielezny [NZ] to the
class of Gevrey functions proving, more generally, that, for a pair of hy-
poelliptic linear partial differential operators P (D) and Q(D) with constant
coefficients, of order m and r respectively, the condition that

|Q(ξ)|2 ≤ C(1 + |P (ξ)|2)h, ∀ξ ∈ Rn,(1.3)

for some h > 0, is equivalent to an inclusion of the form

EP{t1/s}(Ω) ⊆ EQ{tr/(smh)}(Ω)

if s is large enough, where EP{t1/s}(Ω) is the space of Gevrey functions of

order s with respect to the iterates of P = P (D), as defined in (2.5) for the
Gevrey weight ω(t) = t1/s.

This result was generalized to the class of ω-ultradifferentiable func-
tions in the sense of [BMT] by [JH], and was considered in the case of
systems of operators in the Gevrey setting by [BC1]. Here we improve both
papers [JH] and [BC1], considering the case of systems in the spaces of
ω-ultradifferentiable functions.

In Section 2 we define the spaces of ω-ultradifferentiable functions EPω (Ω)
with respect to the iterates of the system P = (Pj(D))Nj=1, both in the
Beurling and in the Roumieu setting.

In Sections 3 and 4 we prove that, given two systems P = (Pj(D))Nj=1

and Q = (Qj(D))Mj=1 of order m and r respectively, the condition

M∑
j=1

|Qj(ξ)| ≤ C
(

1 +
N∑
j=1

|Pj(ξ)|
)h
, ∀ξ ∈ Rn,

is necessary and sufficient for an inclusion of the form

EPω′(Ω) ⊆ EQσ′(Ω),

under assumptions weaker than hypoellipticity (condition (H ) for the suffi-
ciency in Theorem 3.8 and condition (C ) for the necessity in Theorem 4.4),
where σ′(t) = ω′(tr/(mh)) with ω′(t) = ω(t1/s) and s large enough, both in
the Beurling and in the Roumieu setting, for a non-quasianalytic weight ω.

In particular, if P = (Pj(D))Nj=1 is an elliptic system, we obtain the
Theorem of the Iterates (see Corollary 3.10), i.e.

EPω′(Ω) = Eω′(Ω).
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Moreover, we prove that the ellipticity of the system P is also necessary (see
Corollary 4.6).

In Example 3.11 we give an application of the above results.
Let us finally recall that the Theorem of the Iterates has also been gen-

eralized to the case of variable coefficients, for a single elliptic operator
P (x,D). It has been proved in the class of real analytic functions by Kotake
and Narasimhan [KN]; in the case of Denjoy–Carleman classes of Roumieu
type by Lions and Magenes [LM] and of Beurling type with some loss of
regularity with respect to the coefficients by Oldrich [O]; and in the classes
of ω-ultradifferentiable functions of Roumieu type, or of Beurling type but
with some loss of regularity with respect to the coefficients, by Boiti and
Jornet [BJ3].

For a microlocal version of the Theorem of the Iterates see, for instance,
[BCM], [BJJ], [BJ1], [BJ2]. For anisotropic Gevrey classes we refer to [Z],
[BC2].

2. Spaces of ω-ultradifferentiable functions with respect to the
iterates of a system of operators. Let us first recall, from [BMT], the
notion of weight functions and of spaces of ω-ultradifferentiable functions of
Beurling and Roumieu type:

Definition 2.1. A non-quasianalytic weight function is a continuous
increasing function ω : [0,∞)→ [0,∞) with the following properties:

(α) there exists L > 0 such that ω(2t) ≤ L(ω(t) + 1) for all t ≥ 0;
(β)

	∞
1 (ω(t)/t2) dt <∞;

(γ) log t = o(ω(t)) as t→∞;
(δ) ϕω(t) := ω(et) is convex.

For z ∈ Cn we write ω(z) for ω(|z|), where |z| =
∑n

j=1 |zj |. We write ϕ for
ϕω when it is clear from the context.

Remark 2.2. Condition (β) is the condition of non-quasianalyticity and
it will ensure the existence of non-trivial ω-ultradifferentiable functions with
compact support.

In the Beurling setting, condition (γ) may be weakened (cf. [BG], [Bj])
to the following:

(γ)′ there are a ∈ R and b > 0 such that

ω(t) ≥ a+ b log(1 + t) for all t ≥ 0.

The Young conjugate ϕ∗ of ϕ is defined by

ϕ∗(s) := sup
t≥0
{st− ϕ(t)}, s ≥ 0.

Assuming, without any loss of generality, that ω vanishes on [0, 1], we find
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that ϕ∗ has only non-negative values, it is convex and increasing, ϕ∗(0) = 0,
ϕ∗(s)/s is increasing and (ϕ∗)∗ = ϕ (cf. [BMT]).

An easy computation shows that, for every a > 0,

σ(t) = ω(ta) ⇒ ϕ∗σ(s) = ϕ∗ω(s/a).(2.1)

For a compact set K ⊂ Rn which coincides with the closure of its interior,
and λ > 0 we consider the seminorm

pK,λ(u) = sup
α∈Nn0

sup
x∈K
|Dαu(x)|e−λϕ∗(|α|/λ);

then

Eω,λ(K) := {u ∈ C∞(K) : pK,λ(u) <∞}(2.2)

is a Banach space endowed with the norm pK,λ.
Let us now recall from [BMT] the definition of the space of ω-ultradiffe-

rentiable functions of Beurling type in an open set Ω ⊆ Rn:

E(ω)(Ω) := proj
←−−
K⊂⊂Ω

proj
←−−
λ>0

Eω,λ(K).

This is a Fréchet space.
The space of ω-ultradifferentiable functions of Roumieu type is defined

by

E{ω}(Ω) := proj
←−−
K⊂⊂Ω

ind
−→
m∈N

Eω,1/m(K).

Let us now consider a system P = (Pj(D))Nj=1 of linear partial differential

operators with constant coefficients. For β ∈ NN0 we define the iterates of
the system P as

P β := P β11 (D) ◦ P β22 (D) ◦ · · · ◦ P βNN (D),

where P
βj
j (D) is the βjth iterate of the operator Pj(D), i.e.

P
βj
j (D) = Pj(D) ◦ · · · ◦ Pj(D)︸ ︷︷ ︸

βj

,

and P 0(D)u = u.
We shall say that the system P = (Pj(D))Nj=1 has order m if each opera-

tor Pj(D) has order m. In that case, for a compact K ⊂ Rn which coincides
with the closure of its interior and λ > 0 we consider the seminorm

pPK,λ(u) := sup
β∈NN0

‖P βu‖L2(K)e
−λϕ∗(|β|m/λ)

and define

EPω,λ(K) := {u ∈ C∞(K) : pPK,λ(u) <∞}.(2.3)
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For an open set Ω ⊆ Rn we define the space of ω-ultradifferentiable
functions of Beurling type with respect to the iterates of the system P =
(Pj(D))Nj=1 by

EP(ω)(Ω) := proj
←−−
K⊂⊂Ω

proj
←−−
λ>0

EPω,λ(K).(2.4)

Analogously, we define the space of ω-ultradifferentiable functions of
Roumieu type with respect to the iterates of the system P by

EP{ω}(Ω) := proj
←−−
K⊂⊂Ω

ind
−→
`∈N

EPω,1/`(K).(2.5)

Notation. In the following we shall write EPω (Ω) if the statement holds
both in the Beurling case EP(ω)(Ω) and in the Roumieu case EP{ω}(Ω).

Remark 2.3. When the system is given by a single operator P = P (D),
the above defined spaces EPω (Ω) coincide with the corresponding ones defined
in [BJJ] (see [JH] for the original, slightly different, definition).

Analogously to [BC1], we give the following:

Definition 2.4. We say that the system P = (Pj(D))Nj=1 satisfies con-
dition (C ) if, for every λ > 0 and for every compact subset K of Ω which
coincides with the closure of its interior, the space EPω,λ(K) defined in (2.3)

is a Banach space endowed with the norm pPK,λ.

Remark 2.5. Condition (C ) was introduced in [BC1] in the Gevrey
setting, in order to improve the results of [NZ] on the theorem of iterates,
by weakening the assumption of hypoellipticity on the operators (see also
Remark 2.8 below). We shall use it in the proof of the necessity part, i.e. of
Theorem 4.4.

Example 2.6. If P = (Pj(D))nj=1 = (Dj)
n
j=1, for Dj = −i∂xj , and K

is a connected compact set which coincides with the closure of its interior,
then by Sobolev’s lemma (cf. [K1, Lemma 2]) the space EPω,λ(K) defined in
(2.3) coincides with the space Eω,λ(K) defined in (2.2), which is a Banach
space. Therefore P satisfies condition (C ).

More generally, we can take Pj(D) =
∑n

h=1 chjDh for a constant in-
vertible matrix (chj)1≤h,j≤n and infer that P = (Pj(D))nj=1 satisfies condi-
tion (C ).

Example 2.7. If Pj(D) = D1 for all 1 ≤ j ≤ N , then the space EPω,λ(K)

is not a Banach space, so that the system P = (Pj(D))Nj=1 does not satisfy
condition (C ).

For further comments about condition (C ) and its relation to hypoellip-
ticity, we consider a compact exhaustion {K`}`∈N of Ω, i.e. a sequence of
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compact subsets of Ω with K` ⊂ K̊`+1 and
⋃
`K` = Ω. We can write

EP(ω)(Ω) = proj
←−−
`∈N

proj
←−−
m∈N

EPω,m(K`) = proj
←−−
`∈N

EPω,`(K`).(2.6)

Remark 2.8. If condition (C ) is satisfied, then EP(ω)(Ω), endowed with

the metrizable local convex topology defined by the fundamental system of
seminorms {pPK`,`}`∈N, is a Fréchet space. On the other hand, condition (C )

does not guarantee that EP{ω}(Ω) is complete.

However, if P = (Pj(D))Nj=1 is a system of hypoelliptic operators, then

it can be proved, as in [JH, Thm. 3.3], that both EP(ω)(Ω) and EP{ω}(Ω) are

complete.
In the case of a single operator P = P (D) it was proved in [JH, Prop.

3.1] that also the converse is valid: if EPω (Ω) is complete, then P (D) must
be hypoelliptic. This is not true in the case of systems. Take, for instance,
P = (Dj)

n
j=1 for Dj = −i∂xj . Then EPω (Ω) = Eω(Ω) is complete by [BMT,

Prop. 4.9], but the operators Pj(D) = Dj are not hypoelliptic.

Remark 2.9. It is possible to construct a finer locally convex topol-
ogy that makes EPω (Ω) always complete, without any assumption on the
operators.

In the Beurling case we take a compact exhaustion {K`}`∈N of Ω, set

p`(u) := sup
|α|≤`

sup
x∈K`

|Dαu(x)|,

and then consider the seminorm

τP` (u) := max{pPK`,`(u), p`(u)}.

We see that EP(ω)(Ω), endowed with the locally convex topology defined

by the fundamental system of seminorms {τP` }`∈N, is a Fréchet space. The
proof is standard.

In the Roumieu case we consider, for ` ∈ N and K ⊂⊂ Ω, the funda-
mental system of seminorms {τPK,`,m}m∈N defined by

τPK,`,m(u) := max
{
pPK,1/`(u), sup

|α|≤m
sup
x∈K
|Dαu(x)|

}
.(2.7)

This makes EPω,1/`(K) a Fréchet space. Considering then on EP{ω}(Ω) the

topology induced by (2.5), we can prove, as in [JH, Prop. 3.5], that EP{ω}(Ω)

is complete.

We now want to look for sufficient and necessary conditions in order
to obtain the Theorem of the Iterates for systems P = (Pj(D))Nj=1 of lin-
ear partial differential operators with constant coefficients in the classes of
ω-ultradifferentiable functions.
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3. A sufficient condition. Analogously to [BC1], we give the following:

Definition 3.1. Let P = (Pj(D))Nj=1 be a system of linear partial dif-
ferential operators with constant coefficients of order m. We say that P
satisfies condition (H ) if there exist C > 0 and γ ≥ m such that

N∑
j=1

|P (α)
j (ξ)| ≤ C

(
1 +

N∑
j=1

|Pj(ξ)|
)1−|α|/γ

, ∀α ∈ Nn0 , ξ ∈ Rn,(3.1)

where P
(α)
j (ξ) = ∂αξ Pj(ξ).

Remark 3.2. If the system P = (Pj(D))Nj=1 satisfies condition (H ) for
some γ ≥ m, there exists a smallest γP ≥ m such that P satisfies (3.1) for
γ = γP ; moreover γP ∈ Q. Indeed, the inequality (3.1) implies that there
exists C ′ > 0 such that

|gradPi(ξ)| ≤ C ′
(

1 +
N∑
j=1

|Pj(ξ)|
)1−1/γ

, ∀i = 1, . . . , N.(3.2)

Applying then the Tarski–Seidenberg theorem to the semialgebraic function

Mi(λ) = sup∑N
j=1 |Pj(ξ)|=λ

|gradPi(ξ)|,

we can argue as in [H1, Thm. 3.1] to prove that for every i ∈ {1, . . . , N}
there exists a smallest γi such that

|P (α)
i (ξ)| ≤ C

(
1 +

N∑
j=1

|Pj(ξ)|
)1−|α|/γi

, ∀α ∈ Nn0 , ξ ∈ Rn.(3.3)

Then γP := max{γ1, . . . , γN} is the smallest γ satisfying (3.1) and moreover
γP ∈ Q and γP ≥ m.

In what follows, for a system P satisfying condition (H ), we shall always
refer to γP as defined in Remark 3.2.

Remark 3.3. If P = P (D) is a hypoelliptic operator, then condition
(H ) is satisfied because of [H1, Thm. 3.1]. However, in general condition
(H ) is weaker than hypoellipticity. Take for instance in R2 the operator
P (D) = P (D1, D2) = D2

1. It is trivially not hypoelliptic, but it satisfies
condition (H ) for γ = 2.

More generally, if P = (Pj(D))Nj=1 is a system of hypoelliptic operators,
then P satisfies condition (H ). If the system P is elliptic, i.e.

|ξ|m ≤ C
(

1 +

N∑
j=1

|Pj(ξ)|
)
, ∀ξ ∈ Rn,(3.4)

then condition (H ) is satisfied for γP = m.



102 C. Boiti et al.

In order to compare, for two given systems P = (Pj(D))Nj=1 and Q =

(Qj(D))Mj=1, the corresponding spaces EPω (Ω) and EQσ (Ω), we introduce the
following:

Definition 3.4. Let P = (Pj(D))Nj=1 and Q = (Qj(D))Mj=1 be systems
of linear partial differential operators with constant coefficients. If there exist
C, h > 0 such that

M∑
j=1

|Qj(ξ)| ≤ C
(

1 +

N∑
j=1

|Pj(ξ)|
)h
, ∀ξ ∈ Rn,(3.5)

we say that Q is h-weaker than P , and we write Q ≺h P .

Remark 3.5. If P = P (D) and Q = Q(D) are single operators and
P (D) is hypoelliptic, then by [H1, Thm. 3.2] there is a smallest h such that
Q is h-weaker than P , and moreover h ∈ Q.

More generally, if Q = (Qj(D))Mj=1 is h-weaker than P = (Pj(D))Nj=1,
then there exists a smallest h > 0 such that (3.5) is satisfied and moreover
h ∈ Q. Indeed, we can argue as in [H1, Thm. 3.2] and Remark 3.2, taking
the semialgebraic functions

Mi(λ) = sup∑N
j=1 |Pj(ξ)|=λ

|Qi(ξ)|.

Definition 3.6. If P = (Pj(D))Nj=1 and Q = (Qj(D))Mj=1 are systems
with P ≺h Q and Q ≺h P , we say that P and Q are h-equally strong, and
we write P ≈h Q.

Remark 3.7. Arguing as in [H1, pg 210], we can easily prove that if
P = (Pj(D))Nj=1 and Q = (Qj(D))Mj=1 are two systems of order m and r
respectively, satisfying condition (H ) and 1-equally strong, then m = r
and γP = γQ.

We are now ready to prove the following result:

Theorem 3.8. Let P = (Pj(D))Nj=1 and Q = (Qj(D))Mj=1 be systems of
linear partial differential operators with constant coefficients, of order m and
r respectively. Assume that P and Q satisfy condition (H ) of Definition 3.1
and that Q is h-weaker than P . Let Ω be an open subset of Rn. Let ω be
a non-quasianalytic weight function and set ω′(t) = ω(t1/s) for s ≥ γP /m.
Then

EP(ω′)(Ω) ⊆ EQ(σ′)(Ω),(3.6)

EP{ω′}(Ω) ⊆ EQ{σ′}(Ω),(3.7)

for σ′(t) = ω′(tr/(mh)) = ω(tr/(smh)).
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Proof. Beurling case. Let u ∈ EP(ω′)(Ω). For every compact K ⊂ Ω there

exist an open set F relatively compact in Ω and δ > 0 such that

K ⊂ F(M+1)δ ⊂ F ⊂ Ω,

where

Fσ := {x ∈ F : d(x, ∂F ) > σ}.

Note that Fσ is always well defined, since F is bounded in Rn.

Moreover, for every q ∈ N there exists Cq > 0 such that∑
|β|=`

‖P βu‖L2(F ) ≤ Cqeqϕ
∗
ω′ (`m/q) = Cqe

qϕ∗ω(`ms/q), ∀` ∈ N,(3.8)

by the definition of EP(ω′)(Ω) and by (2.1).

By assumption Q ≺h P and, by Remark 3.5, there exists µ, ν ∈ N such
that h = µ/ν.

Arguing as in [BC1, Thm. 2.4], we fix α ∈ NM0 , choose kj , `j ∈ N0 such

that αj = kjν+`j , with lj ≤ ν−1, for 1 ≤ j ≤M , and set k =
∑M

j=1 kj . From
[BC1, formula (2.12)] there exist C1, C2 > 0 such that for every u ∈ C∞(F ),

(3.9) ‖Qαu‖L2(F(M+1)δ)
≤ CM1

[ M∑
i=0

(
M

i

)
M iCk+i2

∑
|β|≤k+i

(
k + i

|β|

)

·
(
k + i

δ

)(k+i−|β|)γPµ
‖P βµu‖L2(F )

]
.

If γP ≤ sm, then from (3.8) we obtain, for all ` ≤ k,

(3.10) k(k−`)γPµ
∑
|β|=`

‖P βµu‖L2(F ) ≤ Cqk(k−`)smµeqϕ
∗
ω(m`µs/q)

≤ Cq
(

1 +
`

k − `

) k−`
`
smµ`

(k − `)(k−`)smµeqϕ∗ω(m`µs/q)

≤ Cqesmµ`[(k − `)smµ](k−`)smµeqϕ
∗
ω(m`µs/q).

Since ω(t) is a non-quasianalytic weight function, condition (β) implies
ω(t) = o(t), and hence for every q′ ∈ N there exists Cq′ > 0 such that from
[AJO, Rem. 2.4],

y log y ≤ y + q′ϕ∗ω

(
y

q′

)
+ Cq′ , ∀y > 0.(3.11)
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Applying the above inequality to (3.10) we find that

(3.12) k(k−`)γPµ
∑
|β|=`

‖P βµu‖L2(F )

≤ Cqesmµ`e(k−`)smµeq
′ϕ∗ω((k−`)mµs/q′)eCq′eqϕ

∗
ω(m`µs/q).

By condition (α) of Definition 2.1 there exists L̃ > 0 such that

ω(et) ≤ L̃(1 + ω(t)), ∀t ≥ 0.

Then from [BJ3, Prop. 21(e) and Rem. 22] we find that for every ρ, λ > 0
there exist λ′, Dρ,λ > 0 such that

ρjeλϕ
∗
ω(j/λ) ≤ Dρ,λe

λ′ϕ∗ω(j/λ
′), ∀j ∈ N0,(3.13)

with λ′ = λ/L̃[log ρ+1] and Dρ,λ = exp{λ[log ρ+ 1]}, where [x] is the integer
part of x.

Applying (3.13) in (3.12) we find that for every λ > 0 there exists Cλ > 0
such that

(3.14) k(k−`)γPµ
∑
|β|=`

‖P βµu‖L2(F ) ≤ Cλeλϕ
∗
ω(m`µs/λ)eλϕ

∗
ω((k−`)mµs/λ).

From condition (α) of Definition 2.1, by [BMT, Lemma 1.2] we see that
there exists L′ > 0 such that

ω(u+ v) ≤ L′(ω(u) + ω(v) + 1), ∀u, v ≥ 0,

and hence for all j, k ∈ N0 and λ > 0,

(3.15) eλϕ
∗(j/λ)+λϕ∗(k/λ) = sup

s≥0
ejs−λϕω(s) · sup

t≥0
ekt−λϕω(t)

= sup
u,v≥1

ej log u+k log v−λ(ω(u)+ω(v))

≤ sup
u,v≥1

ujvke−
λ
L′ ω(u+v)eλ ≤ eλ sup

u,v≥1
(u+ v)j+ke−

λ
L′ ω(u+v)

≤ eλ sup
σ≥0

e(j+k)σ−
λ
L′ ϕω(σ) = eλe

λ
L′ ϕ
∗
ω(

j+k
λ/L′ ).

Applying this to (3.14) we find that for every q̃ ∈ N there exists Cq̃ > 0 such
that for all ` ≤ k,

k(k−`)γPµ
∑
|β|=`

‖P βµu‖L2(F ) ≤ Cq̃eq̃ϕ
∗
ω(kµms/q̃).(3.16)
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Substituting in (3.9) we obtain, for some constant A > 0,

‖Qαu‖L2(F(M+1)δ)
≤ AkCq̃eq̃ϕ

∗
ω((k+M)µms/q̃)(3.17)

≤ AkCq̃e
q̃
2
ϕ∗ω(2kµms/q̃)e

q̃
2
ϕ∗ω(2Mµms/q̃)

≤ C ′q̃Aµmske
q̃
2
ϕ∗ω(

kµms
q̃/2

)

≤ Cq̃′eq̃
′ϕ∗ω(kµms/q̃

′)

by the convexity of ϕ∗ω and by (3.13), for q̃′ = q̃/(2L̃[logA+1]).

Since k ≤ |α|/ν by construction, from (3.17) we thus conclude that for
every q ∈ N there exists Dq > 0 such that

‖Qαu‖L2(K) ≤ ‖Qαu‖L2(F(M+1)δ)

≤ Dqe
qϕ∗ω(|α|µms/(νq)) = Dqe

qϕ∗
σ′ (|α|r/q), ∀α ∈ NM0 ,

by (2.1), since σ′(t) = ω(tr/(smh)). This proves that u ∈ EQ(σ′)(Ω).

Roumieu case. It is similar to the Beurling case: in (3.8) we take
(1/q)ϕ∗ω′(`mq) instead of qϕ∗ω′(`m/q) and a fixed constant C instead of Cq,
and similarly later on for q′, q′′, . . . .

The proof is complete.

Corollary 3.9. Let P = (Pj(D))Nj=1 and Q = (Qj(D))Mj=1 be systems
of order m satisfying condition (H ) and 1-equally strong. Let Ω be an open
subset of Rn. Let ω be a non-quasianalytic weight function and set ω′(t) =
ω(t1/s) for s ≥ γP /m = γQ/m. Then

EP(ω′)(Ω) = EQ(ω′)(Ω) and EP{ω′}(Ω) = EQ{ω′}(Ω).

From Remark 3.3 we obtain the Theorem of the Iterates as a corollary
of Theorem 3.8:

Corollary 3.10. Let P = (Pj(D))Nj=1 be an elliptic system of order m.
Let Ω be an open subset of Rn and ω a non-quasianalytic weight function.
Then

EP(ω)(Ω) = E(ω)(Ω) and EP{ω}(Ω) = E{ω}(Ω).(3.18)

Proof. Beurling case. Let us first prove the inclusion

EP(ω)(Ω) ⊆ E(ω)(Ω).(3.19)

To this end we consider the system Q = (Dj)
n
j=1 for Dj = −i∂xj . The

operators Qj(D) = Dj are not hypoelliptic, but the system Q satisfies condi-
tion (H ). The system P satisfies (3.4) and hence condition (H ) for γP = m,
by Remark 3.3.
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Since (3.4) implies that Q is 1/m-weaker than P , from Theorem 3.8,
with s = 1 = γP /m and hence ω′(t) = ω(t), we find that

EP(ω)(Ω) ⊆ EQ(σ)(Ω) = E(σ)(Ω),(3.20)

for σ(t) = ω(t1/(m·
1
m
)) = ω(t), and hence (3.19) is proved.

Conversely, since every Pj(ξ) is a polynomial of degree m, we clearly see
that P is m-weaker than Q and, from Theorem 3.8,

E(ω)(Ω) = EQ(ω)(Ω) ⊆ EP(σ)(Ω)

for σ(t) = ω(t
m
1·m ) = ω(t), so that also the opposite inclusion

E(ω)(Ω) ⊆ EP(ω)(Ω)

is valid, and hence the equality (3.18) is proved in the Beurling case.

Roumieu case. The proof is the same as in the Beurling case, using (3.7)
instead of (3.6).

Example 3.11. Let us consider in R2 the system P = (Pj(D))2j=1 de-
fined by

P1(D1, D2) = D2
1, P2(D1, D2) = D2

2.

These operators are not hypoelliptic but the system P satisfies conditon
(H ) for γP = 2.

Let us next consider Q = Q(D) = ∆ = −D2
1 − D2

2. This is an elliptic
operator of order 2, and hence satisfies condition (H ) for γQ = 2 (see
Remark 3.3).

Moreover, P and Q are 1-equally strong and γP /m = 1. We can then
apply Corollaries 3.9 and 3.10 with ω′(t) = ω(t) and deduce that, for any
open subset Ω of R2 and for every non-quasianalytic weight function ω,

EP(ω)(Ω) = EQ(ω)(Ω) = E(ω)(Ω).

This means that the elements u ∈ E(ω)(Ω) can be equivalently determined by
estimating their derivatives Dαu(x) = Dα1

1 Dα2
2 u(x), or the iterates of Q(D),

i.e. ∆βu(x), or the iterates of the system P = (Pj(D))2j=1, i.e. P γu(x) =

D2γ1
1 D2γ2

2 u(x) for α, γ ∈ N2
0, β ∈ N0.

The same holds also in the Roumieu case.

4. A necessary condition. In order to obtain a necessary condition
for the inclusions (3.6) or (3.7), we first need to introduce the following:

Definition 4.1. We say that a non-quasianalytic weight function ω
satisfies the growth condition B-M-M if there exists a constant H ≥ 1 such
that

2ω(t) ≤ ω(Ht) +H, ∀t ≥ 0.(4.1)
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Remark 4.2. Condition B-M-M was introduced in [BMM] in order to
characterize those weight functions ω for which E(ω)(Ω) (or E{ω}(Ω)) can
also be considered as a Denjoy–Carleman class E(Mp)(Ω) (or E{Mp}(Ω), re-
spectively) as defined in [K2], for some sequence {Mp}.

Gevrey weights satisfy condition B-M-M.

Let us now prove that the condition Q ≺h P of Theorem 3.8 is also
necessary for the inclusions (3.6) and (3.7).

To this end we first recall, from [JH, Lemma 4.7], the following:

Lemma 4.3. For all h, λ > 0 and t ≥ 1,

(i) sup
j∈N0

tj exp{−λϕ∗(hj/λ)} ≤ exp{λω(t1/h)},

(ii) sup
j∈N0

tj exp{−λϕ∗(hj/λ)} ≥ 1

t
exp{λω(t1/h)}.

We can then prove:

Theorem 4.4. Let Ω be an open subset of Rn and ω a non-quasianalytic
weight function satisfying condition B-M-M. Let P = (Pj(D))Nj=1 be a sys-
tem of linear partial differential operators of order m with constant coeffi-
cients satisfying condition (C ) of Definition 2.4 and let Q = (Qj(D))Mj=1

be a generic system of linear partial differential operators of order r with
constant coefficients. If there exists h > 0 such that either

EP(ω)(Ω) ⊆ EQ(σ)(Ω),(4.2)

or

EP{ω}(Ω) ⊆ EQ{σ}(Ω),(4.3)

for σ(t) = ω(tr/(mh)), then Q is h-weaker than P .

Proof. Roumieu case. We follow the ideas of Juan-Huguet [JH], replac-
ing the assumption, in [JH, Thm. 4.5], that the single operator P (D) is
hypoelliptic, with the weaker assumption that the system P satisfies condi-
tion (C ), in the spirit of [BC1].

Let us now assume that (4.3) is satisfied and fix a compact set K0 ⊂ Ω
which coincides with the closure of its interior.

We have the following inclusions:

EP(ω)(Ω) ⊆ EP{ω}(Ω) ⊆ EQ{σ}(Ω)

= proj
←−−
K⊂⊂Ω

ind
−→
`∈N

EQσ,1/`(K) ⊆ ind
−→
`∈N

EQσ,1/`(K0).

By assumption the system P satisfies condition (C ), and hence, by Re-

mark 2.8, EP(ω)(Ω) is a Fréchet space and ind−→`∈N
EQσ,1/`(K0) is an (LF)-space.
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We can therefore apply the Closed Graph Theorem and Grothendieck’s Fac-
torization Theorem (see [MV, Thms. 24.31 and 24.33]) to conclude that there
exists `0 ∈ N such that

EP(ω)(Ω) ⊆ EQσ,1/`0(K0)

with continuous inclusion. Then there exist a constant C > 0, a compact
K ⊂⊂ Ω and λ > 0 such that, for all f ∈ EP(ω)(Ω),

(4.4) sup
β∈NM0

‖Qβ(D)f‖L2(K0)e
− 1
`0
ϕ∗σ(|β|r`0)

≤ C sup
α∈NN0

‖Pα(D)f‖L2(K)e
−λϕ∗ω(|α|m/λ).

For ξ ∈ Rn, we denote fξ(x) := ei〈x,ξ〉 and remark that fξ ∈ EP(ω)(Ω),

because for every compact K ⊂⊂ Ω and λ > 0,

‖Pα(D)fξ‖L2(K) = ‖Pα(ξ)fξ‖L2(K) ≤ m(K)|Pα(ξ)|

≤ C(1 + |ξ|m|α|) ≤ Cξeλ
′ϕ∗ω(|α|m/λ′)

for some Cξ > 0 and λ′ > 0, by (3.13). Since fξ ∈ EP(ω)(Ω), we can apply

(4.4) to fξ, obtaining

sup
β∈NM0

|Qβ(ξ)|e−
1
`0
ϕ∗σ(|β|r`0) ≤ C ′ sup

α∈NN0
|Pα(ξ)|e−λϕ∗ω(|α|m/λ)(4.5)

for some C ′ > 0. Therefore

(4.6) sup
β∈NM0

( M∑
j=1

∣∣∣∣QjM (ξ)

∣∣∣∣)|β|e− 1
`0
ϕ∗σ(|β|r`0)

≤ sup
β∈NM0

( ∑
β1+···+βM=|β|

|β|!
β1! · · ·βM !

|Q1(ξ)|β1 · · · |QM (ξ)|βM 1

M |β|
e
− 1
`0
ϕ∗σ(|β|r`0)

)
≤ sup

β∈NM0
|Qβ(ξ)|e−

1
`0
ϕ∗σ(|β|r`0) ≤ C ′ sup

α∈NN0
|Pα(ξ)|e−λϕ∗ω(|α|m/λ)

≤ C ′′ sup
α∈NN0

( N∑
j=1

|Pj(ξ)|
)|α|

e−λϕ
∗
ω(|α|m/λ).

From Lemma 4.3 it follows that if

(4.7)
M∑
j=1

∣∣∣∣QjM (ξ)

∣∣∣∣ ≥ 1 and
N∑
j=1

|Pj(ξ)| ≥ 1,

then
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(4.8)

( M∑
j=1

∣∣∣∣QjM (ξ)

∣∣∣∣)−1 exp

{
1

`0
σ

(( M∑
j=1

∣∣∣∣QjM (ξ)

∣∣∣∣)1/r)}

≤ C̃ exp
{
λω
(( N∑

j=1

|Pj(ξ)|
)1/m)}

for some C̃ > 0.
From property (γ) of the weight function σ(t) we see that (4.8) implies

that if (4.7) holds, then for some λ′ > 0,

exp

{
λ′σ

(( M∑
j=1

∣∣∣∣QjM (ξ)

∣∣∣∣)1/r)}
≤ C̃ exp

{
λω
(( N∑

j=1

|Pj(ξ)|
)1/m)}

.

Since σ(t) = ω(tr/(mh)) by assumption, we thus obtain

ω

(( M∑
j=1

∣∣∣∣QjM (ξ)

∣∣∣∣)1/(mh))
≤ A

(
1 + ω

(( N∑
j=1

|Pj(ξ)|
)1/m))

(4.9)

≤ ω
(
A′
( N∑
j=1

|Pj(ξ)|
)1/m)

for some A′ > 0 if (4.7) holds, because condition B-M-M implies that for
every k ∈ N there exists a constant Hk ≥ 1 such that 2k−1ω(t) ≤ ω(Hkt)
for all t ≥ 1.

Since ω(t) is increasing, (4.9) implies that there exists a constant B > 1
such that if (4.7) holds, then

M∑
j=1

|Qj(ξ)| ≤ B
(

1 +

N∑
j=1

|Pj(ξ)|
)h
.(4.10)

However, (4.10) is trivial if (4.7) does not hold, because of (4.5), so that
(4.10) is satisfied for all ξ ∈ Rn and Q is h-weaker than P .

Beurling case. The proof is similar, but easier, as in the Roumieu case,
since EP(ω)(Ω) and EQ(σ)(Ω) are metrizable, and hence the inclusion (4.2) im-

plies (4.4).

Remark 4.5. By Remark 2.9, instead of condition (C ) we can consider,
in Theorem 4.4, the weaker assumption that EP(ω)(Ω) is a Fréchet space and

then take on EQσ,1/`(K0) the fundamental system of seminorms {τQK0,`,m
}m∈N

defined by (2.7), to make ind−→ `∈NEQσ,1/`(K0) an (LF)-space.

As a consequence of Theorem 4.4 we have the converse of Corollary 3.10:

Corollary 4.6. Let Ω be an open subset of Rn. Let ω be a non-quasi-
analytic weight function satisfying condition B-M-M, and let P =(Pj(D))Nj=1
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be a system of order m satisfying condition (C ). If either

EP(ω)(Ω) ⊆ E(ω)(Ω),(4.11)

or

EP{ω}(Ω) ⊆ E{ω}(Ω),(4.12)

then the system P is elliptic.

Proof. Beurling case. Let us consider the system Q = (Dj)
n
j=1. Then

EQ(ω)(Ω) = E(ω)(Ω) and (4.11) implies (4.2) with σ(t) = ω(t) = ω(tr/(mh))

for r = 1 and h = 1/m.
By Theorem 4.4 we find that Q is 1/m-weaker than P , i.e.

n∑
j=1

|ξj | ≤ C
(

1 +

N∑
j=1

|Pj(ξ)|
)1/m

, ∀ξ ∈ Rn.

This proves that the system P is elliptic, and hence the corollary is proved.

Roumieu case. The proof is similar to that in the Beurling case, using
(4.12) and (4.3) instead of (4.11) and (4.2).

Acknowledgements. The first author was partially supported by FAR
2013 (University of Ferrara) and by the “INdAM-GNAMPA Project 2015”.
The second and third authors were supported by “Laboratoire d’analyse
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