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Experimental investigation on
the uniqueness of a center of a body

Shigehiro Sakata (Miyazaki)

Abstract. The object of our investigation is a point that gives the maximum value
of a potential with a strictly decreasing radially symmetric kernel. It defines a center of a
body in Rm. When the kernel is the Riesz kernel or the Poisson kernel, such a center is
called an rα−m-center or an illuminating center, respectively.

The existence of a center is easily shown but uniqueness does not always hold. The
main results in this paper are some new sufficient conditions for the uniqueness.

1. Introduction. Let Ω be a body (the closure of a bounded open set)
in Rm. We consider a potential of the form

(1.1) KΩ(x) =
�

Ω

k(r) dy, x ∈ Rm, r = |x− y|.

If the kernel k : (0,∞) → R is strictly decreasing and satisfies condition
(C0

α) (see Section 2), then KΩ is continuous on Rm (Proposition 2.1) and all
of its maximum points are in the convex hull of Ω (Proposition 2.2). We call
a maximum point of KΩ a k-center of Ω. This is the object of investigation
in this paper.

Analytically, the study of k-centers is related to the investigation of the
shape of a solution of a partial differential equation. When k(r) is the Gauss
kernel (4πt)−m/2 exp(−r2/(4t)) with a positive parameter t, we obtain the
unique bounded solution of the Cauchy problem for the heat equation with
initial datum χΩ. A (spatial) maximum point of the solution of the heat
equation is called a hot spot. The existence, asymptotic behavior, uniqueness
and location of a hot spot are well-studied, for example, in [BL, BMS, CK,
JS, MS]. When the kernel k(r) is the Poisson kernel h(r2 + h2)−(m+1)/2
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with a positive parameter h, we obtain the Poisson integral for the upper
half-space (up to a constant multiple). The Poisson integral is a solution of
the Laplace equation for the upper half-space. Maximum points of Poisson
integrals were studied in [Sak].

Geometrically, the study of k-centers is related to Moszyńska’s radial
centers. In [M1], she introduced a radial center of a star body A induced by
a function φ as a maximum point of the function

(1.2) ΦA(x) =
�

Sm−1

φ(ρA−x(v))dσ(v), x ∈ KerA.

Here, ρA−x(v) = max{λ ≥ 0 | λv + x ∈ A} is the radial function of A with
respect to x, and KerA = {p ∈ A | ∀q ∈ A, pq ⊂ A} is the kernel of A. Her
motivation for the study of radial centers comes from the optimal position of
the origin for the intersection body of a star body. Intersection bodies were
introduced by Lutwak [L] to solve Busemann and Petty’s problem [BP]. We
refer to Moszyńska’s textbook [M2, pp. 185–201] for historical background in
convex geometry. The paper [HMP] is also a good reference for the physical
meaning of radial centers.

Using polar coordinates, we rewrite the function ΦA(x) as

(1.3) ΦA(x) =
�

A

φ′(r)r1−m dy + φ(0)σ(Sm−1), x ∈ KerA, r = |x− y|.

Setting k(r) = φ′(r)r1−m, we obtain the potential KA. Since KA is defined
on Rm even if A is NOT star-shaped, we see that the notion of k-centers is
an extension of radial centers.

When the kernel k(r) is the monomial rα−m, k-centers are well-studied.
When φ(ρ) = ρα in (1.2), Moszyńska [M1] called a maximum point of ΦA a
radial center of order α and showed that if m ≥ 2 and 0 < α ≤ 1, then every
convex body has a unique such center. For α > 1, the uniqueness of a radial
center of a convex body was studied by Herburt [H1] but the argument
included an error. In [H2], Herburt studied the location of a radial center of
order 1. She showed that every smooth convex body has every radial center
of order 1 in its interior. O’Hara [O1] investigated the potential

(1.4) V
(α)
Ω (x) =


sign(m− α)

�

Ω

rα−m dy (0 < α 6= m),

−
�

Ω

log r dy (α = m),
r = |x− y|.

He called it the rα−m-potential and defined an rα−m-center of Ω as a max-

imum point of V
(α)
Ω . In other words, he extended the notion of [M1] to a

non-star-shaped case. He showed that if m ≥ 2 and α ≥ m + 1, then each
body has a unique rα−m-center.
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To get the uniqueness of a k-center in [M1, O1], the common idea is to
show the strict concavity of the potential KΩ on the convex hull of Ω (where
k-centers lie). But using Aleksandrov’s reflection principle or the moving
plane method [GNN, Ser], we can restrict the region containing all k-centers
to be smaller than the convex hull of Ω. We call a certain such region
the minimal unfolded region of Ω, denoted by Uf(Ω); it was introduced by
O’Hara [O1]. When Ω is a convex body, the minimal unfolded region was
independently defined by Brasco, Magnanini and Salani [BMS] as the heart
of Ω, denoted by ♥(Ω). Hence, in order to show the uniqueness of a k-center,
it is sufficient to show the strict concavity of KΩ on the minimal unfolded
region.

The minimal unfolded region Uf(Ω) is obtained by the following proce-
dure: Fix a direction v ∈ Sm−1 and a parameter b ∈ R. Let Reflv,b denote
the reflection of Rm in the hyperplane {z ∈ Rm | z · v = b}. We denote
by Ω+

v,b = {z ∈ Ω | z · v ≥ b} the set of all points in Ω whose height in

direction v is not smaller than b. We continue to fold the set Ω+
v,b by the

reflection Reflv,b and to gradually decrease b ∈ R until the image protrudes
from Ω. Let l(v) be the maximal folding function for v, that is,

(1.5) l(v) = min{a ∈ R | ∀b ≥ a, Reflv,b(Ω
+
v,b) ⊂ Ω}

(see Figure 1). Define the minimal unfolded region of Ω by

(1.6) Uf(Ω) =
⋂

v∈Sm−1

{z ∈ Rm | z · v ≤ l(v)}.

Fig. 1. The recipe for the minimal unfolded region

For example, in R2, the minimal unfolded region of the union of the two
same-sized discs

(1.7) D1 ∪D2

= {(y1, y2) | (y1 + 1)2 + y2
2 ≤ 1} ∪ {(y1, y2) | (y1 − 1)2 + y2

2 ≤ 1}
is the line segment {(y1, 0) | −1 ≤ y1 ≤ 1}. Therefore, when we investigate
the number of k-centers of D1 ∪ D2, we should consider the graph of the
function KD1∪D2(λ, 0) for −1 ≤ λ ≤ 1. Then, for a specific kernel, we can
draw the graph of KD1∪D2(λ, 0) using Maple. In such a manner, we give
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some examples of the graphs of rα−m-potentials. To be precise, we produce
the following examples:

(1) The union (1.7) of the discs has two r−1/2-centers (Example 3.1).
(2) The set of r−1/2-centers of the annulus {(y1, y2) | 1 ≤ y2

1 + y2
2 ≤ 4}

is a circle (Example 3.2).
(3) The isosceles triangle {(y1, y2) | 0 ≤ y1 ≤ 1, |y2| ≤ tan(π/10)y1} has

a unique r−1/2-center (Example 3.3).
(4) The cone {(y1, y2, y3) | 0 ≤ y1 ≤ 1, y2

2 + y2
3 ≤ tan2(π/10)y2

1} has a
unique r−1/2-center (Example 3.4).

(5) The body of revolution of a parabola {(y1, y2, y3) | 0 ≤ y1 ≤ 1,
y2

2 + y2
3 ≤ tan2(π/10)y1} has a unique r−1/2-center (Example 3.5).

From the third example, we see that in general the rα−m-potential is not
concave on the convex hull of a body for 1 < α < m + 1. Hence it seems
difficult to give a sufficient condition for the uniqueness of an rα−m-center
for 1 < α < m+ 1.

Our main result in this paper is a sufficient condition for the uniqueness
of a k-center, covering examples (3) and (5). More precisely, if the kernel k
satisfies condition (C1

α) for some α > 1 (see Section 2), and k′(r)/r is in-
creasing, then the body of revolution

(1.8) Ω = {(y1, ȳ) ∈ R× Rm−1 | 0 ≤ y1 ≤ 1, |ȳ| ≤ ω(y1)},
where ω : [0, 1] → [0,∞) is a piecewise C1 function with ωm−1 concave,
has a unique k-center. This immediately implies the uniqueness of an rα−m-
center of (1.8) for 1 < α < m+ 1. In the same manner, we also show that a
non-obtuse triangle in R2 has a unique k-center if k′(r)/r is increasing. We
remark that these results cannot be obtained by using a power-concavity
argument as in [BL].

Throughout this paper, convX, diamX, X̊ (or X◦) and Xc denote the
convex hull, diameter, interior and complement of a set X in Rm, respec-
tively. We denote the spherical Lebesgue measure of any N -dimensional
space by σN .

2. Preliminaries. In this section, we recall some results of [BMS, BM,
O1, Sak], necessary for our study.

For α > 0 and k : (0,∞)→ R, consider the following condition:

(C0
α) k is continuous on (0,∞), and

(2.1) k(r) =


O(rα−m) (α < m),

O(log r) (α = m),

O(1) (α > m),

as r tends to 0+.
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For α > 1 and k : (0,∞)→ R, we consider

(C1
α) k is once continuously differentiable on (0,∞), and

k(r) =


O(rα−m) (α < m),

O(log r) (α = m),

O(1) (α > m),

k′(r) =


O(rα−m−1) (α < m+ 1),

O(log r) (α = m+ 1),

O(1) (α > m+ 1),

(2.2)

as r tends to 0+.

Let Ω be a body (the closure of a bounded open set) in Rm, and

(2.3) KΩ(x) =
�

Ω

k(r) dy, x ∈ Rm, r = |x− y|.

We always assume that the kernel k satisfies (C0
α) or (C1

α). We denote a
point x in Rm by x = (x1, . . . , xm) and a point y in Ω by y = (y1, . . . , ym).
The letter r is always used for r = |x− y|.

2.1. Properties of KΩ. We recall some properties of the potential KΩ

from [Sak] without proofs.

Proposition 2.1 ([Sak, Propositions 2.3, 2.6, 4.1 and Corollary 4.2]).
Let Ω be a body in Rm.

(1) If the kernel k satisfies condition (C0
α) for some α > 0, then the

potential KΩ is continuous on Rm.
(2) If k satisfies condition (C1

α) for some α > 1, then KΩ is of class C1

on Rm, and

∂KΩ

∂xj
(x) =

�

Ω

∂

∂xj
k(r) dy, x ∈ Rm.

(3) If Ω has a piecewise C1 boundary, and if k satisfies condition (C1
α)

for some α > 1, then KΩ is of class C2 on Rm \ ∂Ω, and

∂KΩ

∂xj
(x) = −

�

∂Ω

k(r)ej · n(y) dσ(y), x ∈ Rm,

∂2KΩ

∂xi∂xj
(x) = −

�

∂Ω

∂

∂xi
k(r)ej · n(y) dσ(y), x ∈ Rm \ ∂Ω,

where n is the outer unit normal vector field on ∂Ω, and ej is the
jth unit vector of Rm.
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Proposition 2.2 ([Sak, Proposition 3.2]). Let Ω be a body in Rm. Sup-
pose that the kernel k is strictly decreasing and satisfies condition (C0

α) for
some α > 0. Then the potential KΩ has a maximum point, and any maxi-
mizer of KΩ belongs to the convex hull of Ω.

Definition 2.3 ([Sak, Definition 3.3]). Let Ω be a body in Rm. A point
x is called a k-center of Ω if it gives the maximum value of KΩ.

2.2. Properties of minimal unfolded regions. Let Uf(Ω) be the
minimal unfolded region of a body Ω as in (1.6). We introduce some of
its properties from [BM, BMS, O1, Sak] with slight modifications. ([BM]
does not require the regularity of k but requires the boundedness of k(r)
at r = 0+.) Geometric properties of the minimal unfolded region were also
studied in [O2].

Remark 2.4 ([O1, p. 381]). Let Ω be a body in Rm.

(1) The centroid (the center of mass) of Ω is contained in Uf(Ω). Hence
Uf(Ω) is not empty.

(2) Uf(Ω) is contained in convΩ but in general not in Ω (see Figure 2).

(3) Uf(Ω) is compact and convex.

Example 2.5 ([BM, Lemma 5], [O1, Example 3.4]). (1) The minimal
unfolded region of a non-obtuse triangle is given by the polygon formed by
the mid-perpendicular of edges and the bisectors of angles (see Figure 3).
In particular, it is contained in the triangle formed by joining the middle
points of the edges.

(2) The minimal unfolded region of an obtuse triangle is given by the
polygon formed by the largest edge, its mid-perpendicular and the bisectors
of angles (see Figure 4).

Fig. 2 Fig. 3 Fig. 4

Proposition 2.6 ([Sak, Proposition 4.9]). Let Ω be a body in Rm. If k
is strictly decreasing, then every k-center of Ω belongs to Uf(Ω).
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We give a relation between Ω and Uf(Ω). The idea of the proof is due
to [BM, Theorem 1]. To be precise, in [BM], Brasco and Magnanini studied
the geometry of the minimal unfolded region (heart) of a convex body, but
their argument works for a non-convex body with slight modifications.

Lemma 2.7. Let Ω be a body in Rm. The maximal folding function l :
Sm−1 → R is lower semicontinuous.

Proof. We show that the set {v ∈ Sm−1 | l(v) > b} is open in Sm−1 for
any b ∈ R. Fix b ∈ R. Let w ∈ Sm−1 be a direction with l(w) > b.

We first show that the non-empty intersection Reflw,b(Ω
+
w,b) ∩ Ω

c has
an interior point. We take a point x from the intersection. Since Ωc is open
in Rm, there exists an ε1 > 0 such that the ε1-neighborhood of x is contained
in Ωc. Since Reflw,b(Ω

+
w,b) is the closure of an open set, x is in its interior or

on its boundary. We only consider the latter case. We can choose a point x′

from the ε1-neighborhood of x such that x′ ∈ (Reflw,b(Ω
+
w,b))

◦. There exists

an ε2 > 0 such that the ε2-neighborhood of x′ is contained in the interior
of Reflw,b(Ω

+
w,b) ∩ Bε1(x). Hence the ε2-neighborhood of x′ is contained in

Reflw,b(Ω
+
w,b) ∩Ω

c, that is, x′ is an interior point of the intersection.
Next, we complete the proof. Let x be an interior point of

Reflw,b(Ω
+
w,b) ∩ Ω

c, and ε > 0 be such that Bε(x) ⊂ Reflw,b(Ω
+
w,b) ∩ Ω

c.

Let ξ = Refl−1
w,b(x). Then the ε-neighborhood of ξ is contained in Ω+

w,b. The
continuity of the map

Sm−1 3 u 7→ Reflu,b(ξ) = ξ + 2(b− ξ · u)u ∈ Rm

implies the existence of a positive constant δ such that, for any u ∈
Bδ(w) ∩ Sm−1, the ball Bε/2(ξ) is contained in Ω+

u,b, and we have

Reflu,b(Bε/2(ξ)) ⊂ Bε(x) ⊂ Ωc,

which completes the proof.

For v ∈ Sm−1, we denote its orthogonal complement vector space by v⊥,
that is,

(2.4) v⊥ = {z ∈ Rm | z · v = 0}.
We say that Ω is convex in direction v if Ω ∩ (Span〈v〉+ z) is connected for
any z ∈ v⊥.

Proposition 2.8. Let Ω be a body in Rm.

(1) If there exist p (1 ≤ p ≤ m) independent directions v1, . . . , vp ∈ Sm−1

such that Ω is symmetric with respect to the hyperplanes v⊥1 , . . . , v
⊥
p

and convex in directions v1, . . . , vp, then

Uf(Ω) ⊂
p⋂
j=1

v⊥j .
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(2) If the dimension of the minimal unfolded region of Ω is p (0 ≤ p
≤ m − 1), then there exists a direction w ∈ Sm−1 orthogonal to
Uf(Ω) such that Ω is symmetric with respect to a hyperplane parallel
to w⊥, and convex in direction w.

Proof. (1) We remark that l(vj) = l(−vj) for any 1 ≤ j ≤ p. Let us show
l(vj) = 0 for any 1 ≤ j ≤ p, which implies

Uf(Ω) ⊂
p⋂
j=1

(
{z ∈ Rm | z · vj ≤ l(vj)} ∩ {z ∈ Rm | z · (−vj) ≤ l(−vj)}

)
=

p⋂
j=1

v⊥j .

Suppose that l(vj) > 0 for some j. There exists a height b (0 < b < l(vj))
such that Reflvj ,b(Ω

+
vj ,b

) ∩ Ωc 6= ∅. Choose x ∈ Ω+
vj ,b

such that x′ =

Reflvj ,b(x) ∈ Ωc.

From the symmetry of Ω with respect to the hyperplane v⊥j , we have
x′′ = Reflvj ,0(x) ∈ Ω. By the convexity of Ω for vj ,

∅ 6= xx′ ∩Ωc ⊂ xx′′ ∩Ωc ⊂ Ω ∩Ωc = ∅,

which is a contradiction.

(2) Since Uf(Ω) is compact and convex, we may assume that it is con-
tained in the p-dimensional vector space Rp × {0}m−p ⊂ Rp × Rm−p = Rm.
By a translation, we may also assume that the centroid of Uf(Ω), denoted
by GΩ, coincides with the origin.

We first show that the minimum value of l is zero. Suppose that l(v) is
positive for any v ∈ Sm−1. By the lower semicontinuity of l, we have

ρ = inf
v∈Sm−1

l(v) = min
v∈Sm−1

l(v) > 0.

Then the m-dimensional ball Bρ(0) is contained in Uf(Ω), which is a con-
tradiction. Hence there exists a direction w ∈ Sm−1 such that l(w) = 0.

In order to show the symmetry of Ω with respect to the hyperplane
orthogonal to w, we show that Ω = Ω+

w,0 ∪ Reflw,0(Ω+
w,0). Suppose that the

set Ω \ (Ω+
w,0 ∪ Reflw,0(Ω+

w,0)) is not empty. Since Ω is a body, this set has
an interior point. By a reflection argument, we have

0 >
�

Ω\(Ω+
w,0∪Reflw,0(Ω+

w,0))

y · w dy =
�

Ω

y · w dy = Vol(Ω)GΩ · w = 0,

which is a contradiction. Hence Ω is symmetric with respect to the hyper-
plane w⊥.
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Finally, we show the convexity of Ω in direction w. Assume there exist
x, x′ ∈ Ω such that xx′ is parallel to Span〈w〉 and contains a point ξ in Ωc.
We may assume (x+ ξ) ·w > 0. Let b = ((x+ ξ) ·w)/2. Then ξ = Reflw,b(x),
which contradicts l(w) = 0 < b.

Furthermore, (1) implies that w ⊥Uf(Ω).

3. Examples of graphs. Let Ω be a body in Rm (m ≥ 2) with a
piecewise C1 boundary. In this section, in order to investigate the number
of k-centers of Ω, using Maple, we produce some examples of the graphs of
the rα−m-potentials

(3.1) V
(α)
Ω (x) =


sign(m− α)

�

Ω

rα−m dy (0 < α 6= m),

−
�

Ω

log r dy (α = m),

and their second derivatives. When we use Maple to draw the graph of the
rα−m-potential, it is useful to use the boundary integral expression

(3.2) V
(α)
Ω (x)

=


−sign(m− α)

α

�

∂Ω

rα−m(x− y) · n(y) dσ(y) (0 < α 6= m),

1

m

�

∂Ω

(
log r − 1

m

)
(x− y) · n(y) dσ(y) (α = m),

for x ∈ Rm \ ∂Ω [O1, Theorem 2.8].

Example 3.1. Let m = 2 and

Ω = {(y1, y2) | (y1 + 1)2 + y2
2 ≤ 1} ∪ {(y1, y2) | (y1 − 1)2 + y2

2 ≤ 1}.

Then

∂Ω = {(cos θ − 1, sin θ) | 0 ≤ θ ≤ 2π} ∪ {(cos θ + 1, sin θ) | 0 ≤ θ ≤ 2π},
Uf(Ω) = {(y1, 0) | −1 ≤ y1 ≤ 1},

V
(α)
Ω (λ, 0) = − 1

α

2π�

0

((λ− cos θ + 1)2 + sin2 θ)(α−2)/2((λ+ 1) cos θ − 1) dθ

− 1

α

2π�

0

((λ− cos θ − 1)2 + sin2 θ)(α−2)/2((λ− 1) cos θ − 1) dθ,

and the graph of V
(3/2)
Ω (λ, 0) for −1 ≤ λ ≤ 1 is in Figure 5. Hence, in this

case, Ω has two r−1/2-centers.
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Fig. 5. The graph of V
(3/2)
Ω (λ, 0) when Ω is

the union of two discs
Fig. 6. The graph of V

(3/2)
Ω (λ, 0) when Ω is

an annulus

Example 3.2. Let m = 2 and

Ω = {(y1, y2) | 1 ≤ y2
1 + y2

2 ≤ 4}.

Then

∂Ω = {(2 cos θ, 2 sin θ) | 0 ≤ θ ≤ 2π} ∪ (−{(cos θ, sin θ) | 0 ≤ θ ≤ 2π}),
Uf(Ω) = {(y1, y2) | y2

1 + y2
2 ≤ 9/4},

V
(α)
Ω (λ, 0) =

1

α

2π�

0

(λ2 − 2λ cos θ + 1)(α−2)/2(λ cos θ − 1) dθ

− 2

α

2π�

0

(λ2 − 4λ cos θ + 4)(α−2)/2(λ cos θ − 2) dθ,

and the graph of V
(3/2)
Ω (λ, 0) for −3/2 ≤ λ ≤ 3/2 is in Figure 6. Hence, in

this case, the set of r−1/2-centers of Ω is a circle.

Example 3.3 ([O1, Remark 3.13]). Let m = 2 and

Ω = {(y1, y2) | 0 ≤ y1 ≤ 1, 0 ≤ |y2| ≤ tan(π/10)y1}.

Then

∂Ω = {(y1, y2) | 0 ≤ y1 ≤ 1, y2 = − tan(π/10)y1}
∪ {(1, y2) | − tan(π/10) ≤ y2 ≤ tan(π/10)},
∪ (−{(y1, y2) | 0 ≤ y1 ≤ 1, y2 = tan(π/10)y1}),

(1/2, 0) ∈ Uf(Ω) ⊂ {(y1, 0) | 1/2 ≤ y1 ≤ 1},
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∂2V
(α)
Ω

∂x2
1

(λ, 0) = −2(2−α) tan(π/10)

1�

0

(
(λ−t)2+(tan(π/10)t)2

)(α−4)/2
(λ−t) dt

+ 2(2− α)(λ− 1)

tan(π/10)�

0

((λ− 1)2 + t2)(α−4)/2 dt,

and the graph of the second derivative of V
(3/2)
Ω (λ, 0) for 0 ≤ λ ≤ 1 is in

Figure 7. Moreover, the contribution of the slopes to the boundary integral
(the first integral) is shown in Figure 8. Hence, in this case, Ω has a unique
r−1/2-center.

Fig. 7. The graph of (∂2V
(3/2)
Ω /∂x21)(λ, 0)

when Ω is an isosceles triangle
Fig. 8. The contribution of the slopes to the
boundary integral

Example 3.4. Let m = 3 and

Ω = {(y1, y2, y3) | 0 ≤ y1 ≤ 1, y2
2 + y2

3 ≤ tan2(π/10)y2
1}.

Then

∂Ω =
{

(t, tan(π/10)t cos θ, tan(π/10)t sin θ)
∣∣ 0 ≤ t ≤ 1, 0 ≤ θ ≤ 2π

}
∪ {(1, r cos θ, r sin θ) | 0 ≤ r ≤ tan(π/10), 0 ≤ θ ≤ 2π},

(1/2, 0, 0) ∈ Uf(Ω) ⊂ {(y1, 0, 0) | 1/2 ≤ y1 ≤ 1},

∂2V
(α)
Ω

∂x2
1

(λ, 0, 0)

= −2π(3− α) tan2(π/10)

1�

0

(
(λ− t)2 + (tan(π/10)t)2

)(α−5)/2
(λ− t)t dt

+ 2π(3− α)(λ− 1)

tan(π/10)�

0

((λ− 1)2 + r2)(α−5)/2r dr,
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Fig. 9. The graph of (∂2V
(5/2)
Ω /∂x21)(λ, 0)

when Ω is a cone

Fig. 10. The contribution of the side to the
boundary integral

and the graph of the second derivative of V
(5/2)
Ω (λ, 0, 0) for 0 ≤ λ ≤ 1 is in

Figure 9. Moreover, the contribution of the side to the boundary integral
(the first integral) is shown in Figure 10. Hence, in this case, Ω has a unique
r−1/2-center.

Example 3.5. Let m = 3 and

Ω = {(y1, y2, y3) | 0 ≤ y1 ≤ 1, y2
2 + y2

3 ≤ tan2(π/10)y1}.
Then

∂Ω = {
(
t, tan(π/10)

√
t cos θ, tan(π/10)

√
t sin θ

)
| 0 ≤ t ≤ 1, 0 ≤ θ ≤ 2π}

∪ {(1, r cos θ, r sin θ) | 0 ≤ r ≤ tan(π/10), 0 ≤ θ ≤ 2π},
(1/2, 0, 0) ∈ Uf(Ω) ⊂ {(y1, 0, 0) | 1/2 ≤ y1 ≤ 1},

∂2V
(α)
Ω

∂x2
1

(λ, 0, 0)

= −π(3− α) tan2(π/10)

1�

0

(
(λ− t)2 + tan2(π/10)t

)(α−5)/2
(λ− t) dt

+ 2π(3− α)(λ− 1)

tan(π/10)�

0

((λ− 1)2 + r2)(α−5)/2r dr,

and the graph of the second derivative of V
(5/2)
Ω (λ, 0, 0) for 0 ≤ λ ≤ 1 is in

Figure 11. Moreover, the contribution of the side to the boundary integral
(the first integral) is shown in Figure 12. Hence, in this case, Ω has a unique
r−1/2-center.



Uniqueness of a center of a body 161

Fig. 11. The graph of (∂2V
(5/2)
Ω /∂x21)(λ, 0)

when Ω is the body of revolution of a
parabola

Fig. 12. The contribution of the side to the
boundary integral

4. Uniqueness of a k-center. Let Ω be a body in Rm. In this section,
we investigate the uniqueness of a k-center of Ω. Set

d(Ω) = min{|z − w| | z ∈ Uf(Ω), w ∈ ∂Ω},
D(Ω) = max{|z − w| | z ∈ Uf(Ω), w ∈ ∂Ω}.

(4.1)

4.1. Uniqueness of a center of an axially symmetric convex body

Theorem 4.1. Let ω : [0, 1] → [0,∞) be a piecewise C1 function such
that the function ωm−1 : t 7→ ω(t)m−1 is concave. Let

Ω = {y = (y1, ȳ) ∈ R× Rm−1 | 0 ≤ y1 ≤ 1, |ȳ| ≤ ω(y1)}.
Suppose that the kernel k is strictly decreasing and satisfies condition (C1

α)
for some α > 1. If k′(r)/r is increasing on the interval (d(Ω), D(Ω)), then
the potential KΩ is strictly concave on the minimal unfolded region.

Proof. Set

a = min
{
t ∈ [0, 1]

∣∣∣ ω(t) = max
0≤τ≤1

ω(τ)
}
,

b = max
{
t ∈ [0, 1]

∣∣∣ ω(t) = max
0≤τ≤1

ω(τ)
}
.

Proposition 2.8 and the concavity of ω imply that Uf(Ω) is contained in the
line segment

{(y1, 0) ∈ R× Rm−1 | a/2 ≤ y1 ≤ (1 + b)/2}.
Therefore, we will show the negativity of (∂2KΩ/∂x

2
1)(λ, 0) for any a/2 ≤

λ ≤ (1 + b)/2.
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By Proposition 2.1, we have

∂2KΩ

∂x2
1

(λ, 0) = −
�

∂Ω

k′
(√

(λ− y1)2 + |ȳ|2
)√

(λ− y1)2 + |ȳ|2
(λ− y1)e1 · n(y) dσ(y)

= λσm−2(Sm−2)

ω(0)�

0

k′(
√
λ2 + r2)√
λ2 + r2

rm−2 dr

+
σm−2(Sm−2)

m− 1

1�

0

k′
(√

(λ− t)2 + ω(t)2
)√

(λ− t)2 + ω(t)2
(λ− t) dω(t)m−1

− (λ− 1)σm−2(Sm−2)

ω(1)�

0

k′
(√

(λ− 1)2 + r2
)√

(λ− 1)2 + r2
rm−2 dr.

For any a/2 ≤ λ ≤ (1+b)/2, the first and third terms are obviously negative.
Therefore, it is sufficient to show the negativity of the second integral.

We first consider the case of a/2 ≤ λ ≤ a. We decompose the second
integral into(2λ−a�

0

+

λ�

2λ−a
+

a�

λ

)k′(√(λ− t)2 + ω(t)2
)√

(λ− t)2 + ω(t)2
(λ− t) dω(t)m−1.

For any 0 ≤ δ ≤ a− λ, the concavity of ωm−1 implies 0 ≤ (ωm−1)′(λ+ δ) ≤
(ωm−1)′(λ− δ), and the monotonicity of ω implies 0 ≤ ω(λ− δ) ≤ ω(λ+ δ).
Hence we obtain( λ�

2λ−a
+

a�

λ

)k′(√(λ− t)2 + ω(t)2
)√

(λ− t)2 + ω(t)2
(λ− t) dω(t)m−1

=

a−λ�

0

k′
(√

(δ2 + ω(λ− δ)2
)√

δ2 + ω(λ− δ)2
(ωm−1)′(λ− δ)δ dδ

−
a−λ�

0

k′
(√

δ2 + ω(λ+ δ)2
)√

δ2 + ω(λ+ δ)2
(ωm−1)′(λ+ δ)δ dδ

≤ 0.

Furthermore, we can easily get

2λ−a�

0

k′
(√

(λ− t)2 + ω(t)2
)√

(λ− t)2 + ω(t)2
(λ− t) dω(t)m−1 < 0,

which completes the proof in the case of a/2 ≤ λ ≤ a.

The same argument works for b ≤ λ ≤ (1 + b)/2. Furthermore, the
negativity of (∂2KΩ/∂x

2
1)(λ, 0) for a ≤ λ ≤ b is obvious.
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Corollary 4.2. Let Ω and k be as in Theorem 4.1. Then Ω has a
unique k-center.

Remark 4.3. When ω(t) = tp, the assumption “ωm−1 is concave” cor-
responds to 0 ≤ p ≤ 1/(m− 1).

Remark 4.4. In the proof of Theorem 4.1, in order to show the negativ-
ity of (∂2KΩ/∂x

2
1)(λ, 0), we decomposed the boundary integral expression

of (∂2KΩ/∂x
2
1)(λ, 0) into three integrals, over the left base, the side and

the right base. The integrals over the bases were obviously negative, and we
showed the negativity of the integral over the side.

Unfortunately, this argument does not work for any axially symmetric
convex body Ω. When we apply this argument to the cone of Example 3.4,
the boundary integral over the side is not negative on the minimal unfolded
region. In other words, in order to show the negativity of (∂2KΩ/∂x

2
1)(λ, 0)

for any axially symmetric convex body Ω, we have to estimate the bound-
ary integrals over the bases in more detail. We have not been able to do it
and leave the following problem as a conjecture: Does an axially symmet-
ric convex body Ω have a unique k-center? More generally, does a convex
body Ω have a unique k-center? Assume some conditions on the kernel k if
necessary.

4.2. Uniqueness of a center of a non-obtuse triangle

Theorem 4.5. Let Ω be a non-obtuse triangle in R2. Suppose that the
kernel k is strictly decreasing and satisfies condition (C1

α) for some α > 1.
If k′(r)/r is increasing on the interval (d(Ω), D(Ω)), then the potential KΩ

is strictly concave on the minimal unfolded region of Ω.

Proof. For −π/2 ≤ θ ≤ π/2, let

Rθ =

(
cos θ − sin θ

sin θ cos θ

)
.

We will show that the second derivative ∂2KRθΩ/∂x
2
1 is negative on the

minimal unfolded region of RθΩ for any −π/2 ≤ θ ≤ π/2.
Let O be the origin, P the point (1, 0), and Q a point (a, b) with

1/2 ≤ a ≤ 1, b > 0, (a− 1/2)2 + b2 ≥ 1/4.

By an orthogonal transformation of R2, we may assume that Ω = 4OPQ.
Let A, B and C be the middle points of the line segments OP , PQ and QO,
respectively. We remark that the minimal unfolded region of Ω is contained
in 4ABC (see Example 2.5).

We identify the notation zj for the jth coordinate with the function
zj : R2 3 (z1, z2) 7→ zj ∈ R. We denote the point RθP by Pθ for short, and
so on.
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Fig. 13. Case I.1 Fig. 14. Case I.2

Fig. 15. Case I.3.1 Fig. 16. Case I.3.2

Fig. 17. Case I.4.1 Fig. 18. Case I.4.2

Fig. 19. Case II.1
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Fig. 20. Case II.2.1 Fig. 21. Case II.2.2

Fig. 22. Case II.3.1 Fig. 23. Case II.3.2

We have to consider the following eleven cases of the position of RθΩ
(see Figures 13 to 23):

Case I: The rotation angle θ is non-negative.

I.1: z1(Aθ) ≤ z1(Qθ) ≤ z1(Bθ).

I.2: z1(Qθ) ≤ z1(Aθ) ≤ z1(Bθ).

I.3.1: 0 ≤ z1(Bθ) ≤ z1(Aθ) and slope(PθQθ) ≤ 0.

I.3.2: 0 ≤ z1(Bθ) ≤ z1(Aθ) and slope(PθQθ) ≥ 0.

I.4.1: z1(Bθ) ≤ 0 ≤ z1(Aθ) and slope(PθQθ) ≤ 0.

I.4.2: z1(Bθ) ≤ 0 ≤ z1(Aθ) and slope(PθQθ) ≥ 0.

Case II: The rotation angle θ is non-positive.

II.1: z1(Cθ) ≤ z1(Aθ).

II.2.1: z1(Aθ) ≤ z1(Cθ) ≤ z1(Pθ) and slope(OQθ) ≥ 0.

II.2.2: z1(Aθ) ≤ z1(Cθ) ≤ z1(Pθ) and slope(OQθ) ≤ 0.

II.3.1: z1(Pθ) ≤ z1(Cθ) and slope(OQθ) ≥ 0.

II.3.2: z1(Pθ) ≤ z1(Cθ) and slope(OQθ) ≤ 0.
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Fig. 24 Fig. 25

We show the negativity of

∂2KRθΩ

∂x2
1

(x) = −
�

∂RθΩ

k′(r)

r
(x1 − y1)e1 · n(y) dσ(y)

= −
�

∂RθΩ

k′(r)

r
(x1 − y1) dy2

for any x ∈ Rθ(4ABC) only in Case I.1. The other cases are analogous.
Fix x in Rθ(4ABC).

Suppose z1(Cθ) ≤ x1 ≤ z1(Aθ). Then we obtain the following inequalities
in the same manner as in Theorem 4.2 (see Figure 24):

�

OPθ

k′(r)

r
(x1 − y1) dy2 > 0,

�

QθO

k′(r)

r
(x1 − y1) dy2 > 0.

Thus the second derivative of KRθΩ is negative at x.
Suppose z1(Aθ) ≤ x1 ≤ z1(Qθ). Set

Xθ =
(
2x1 − z1(Pθ), slope(OPθ)(2x1 − z1(Pθ))

)
,

Yθ =
(
2x1 − z1(Pθ), slope(OQθ)(2x1 − z1(Pθ))

)
,

Zθ =
(
2x1 − z1(Qθ), slope(OQθ)(2x1 − z1(Qθ))

)
.

We obtain the following inequalities in the same manner as in Theorem 4.1
(see Figure 25):

�

XθPθ

k′(r)

r
(x1 − y1) dy2 > 0,

�

QθZθ

k′(r)

r
(x1 − y1) dy2 > 0.

Let us show the positivity of the contour integral along the line segments
YθO and OXθ. We remark that, for any 0 ≤ δ ≤ z1(Xθ), we have

(slope(OPθ) + slope(OQθ))(z1(Xθ)− δ)− 2x2

≤ (slope(OPθ) + slope(OQθ))(z1(Xθ)− δ)
− 2
(
slope(OQθ)(x1 − z1(Aθ)) + z2(Aθ)

)
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= 2x1 slope(OPθ)− 2z2(Pθ)− δ(slope(OPθ) + slope(OQθ))

≤ −δ(slope(OPθ) + slope(OQθ)) ≤ 0,

where the first and the second inequalities follow from the fact that x lies
above the line AθBθ and from x1 ≤ z1(Pθ), respectively. This implies∣∣∣∣( z1(Xθ)− δ

slope(z1(Xθ)− δ)

)
−
(
x1

x2

)∣∣∣∣2 − ∣∣∣∣( z1(Yθ)− δ
slope(OQθ)(z1(Yθ)− δ)

)
−
(
x1

x2

)∣∣∣∣2
= ((slope(OPθ) + slope(OQθ))(z1(OPθ)− δ)− 2x2)

× (slope(OPθ)− slope(OQθ))(z1(Xθ)− δ) ≥ 0

for any 0 ≤ δ ≤ z1(Xθ). Hence

(4.2)
( �

YθO

+
�

OXθ

)k′(r)
r

(x1 − y1) dy2 > 0

as in Theorem 4.1 (see also Figure 25). Therefore the second derivative
of KRθΩ is negative at x.

Suppose z1(Qθ) ≤ x1 ≤ z1(Bθ). As in Theorem 4.1, we obtain (see
Figure 26)

�

XθPθ

k′(r)

r
(x1 − y1) dy2 > 0,

�

PθQθ

k′(r)

r
(x1 − y1) dy2 > 0.

Since (4.2) also holds in this case, the second derivative of KRθΩ is negative
at x (see also Figure 26).

Fig. 26

Corollary 4.6. Let Ω and k be as in Theorem 4.5. Then Ω has a
unique k-center.

Remark 4.7. In the proof of Theorem 4.5, we showed the concavity of
the potential KΩ on 4ABC. Since the minimal unfolded region is contained
in the triangle, we obtained the conclusion.
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Unfortunately, this argument does not work for any obtuse triangle (ex-
cept isosceles triangles). This is because the minimal unfolded region of an
obtuse triangle is not contained in the triangle whose vertices are the middle
points of the edges (see Example 2.5).

5. Applications to specific centers. Let Ω be a body in Rm. We
consider some applications of the results in the previous section.

Recall that

(5.1) V
(α)
Ω (x) =


sign(m− α)

�

Ω

rα−m dy (0 < α 6= m),

−
�

Ω

log r dy (α = m),
x ∈ Rm,

is called the rα−m-potential.

Definition 5.1 ([O1, Definition 3.1]). A point x is called an rα−m-

center of Ω if it gives the maximum value of V
(α)
Ω .

Theorem 5.2 ([M1, Theorem 3.1]). Let m ≥ 2 and 0 < α ≤ 1. If Ω is
convex, then Ω has a unique rα−m-center.

Theorem 5.3 ([O1, Theorem 3.15]). If m ≥ 2 and α ≥ m + 1, then Ω
has a unique rα−m-center.

Theorem 5.4 ([O3, Theorem 3.8]). Let Ω̃ be a compact convex set
in Rm, 1 < α < m+ 1, and

f(α) = −1 +

√
m+ 1− α

2

(
4

√
m+ 2− α
m+ 1− α

+
1

2

√
m+ 1− α
m+ 2− α

)
×
(

2 +
3(

1 +
(
4
(
4
√

m+2−α
m+1−α + 1

2

√
m+1−α
m+2−α

)2
+ 1
)−(m+2−α)/2)1/(m−2) − 1

)
.

If δ ≥ f(α) diam Ω̃, then the parallel body Ω̃ + δBm = {ỹ + δw | ỹ ∈ Ω̃,
w ∈ Bm} has a unique rα−m-center.

Proposition 5.5. Let Ω be as in Theorem 4.1 or 4.5. For any 1 < α <
m+ 2, Ω has a unique rα−m-center.

Proof. If 1 < α < m + 2, direct computation shows that the kernel

of V
(α)
Ω satisfies the assumptions of Theorem 4.1 or 4.5.

Remark 5.6. The new result in this paper (Proposition 5.5) is the
uniqueness of an rα−m-center for 1 < α < m + 1 when Ω is not a par-
allel body as in Example 3.3 or 3.5.
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Let

(5.2) AΩ(x, h) =
�

Ω

h

(r2 + h2)(m+1)/2
dy, x ∈ Rm, h > 0.

It is well-known that AΩ satisfies the Laplace equation for the upper half-
space,

(5.3) ∆AΩ(x, h) =

( m∑
j=1

∂2

∂x2
j

+
∂2

∂h2

)
AΩ(x, h) = 0, x ∈ Rm, h > 0,

and the boundary condition

(5.4) lim
h→0+

AΩ(x, h) =
σm(Sm)

2
χΩ(x), x ∈ Rm \ ∂Ω.

The function AΩ(x, h) has a geometric meaning: Let x ∈ Rm and h > 0.
Define p(x,h) : Ω → Sm by

(5.5) p(x,h)(y) =
(y, 0)− (x, h)

|(y, 0)− (x, h)|
=

(y, 0)− (x, h)√
r2 + h2

.

The solid angle of Ω at (x, h) is defined as the spherical Lebesgue measure of
the image p(x,h)(Ω). Direct calculation shows that AΩ(x, h) coincides with
the solid angle of Ω at (x, h). In other words, AΩ(x, h) gives the “visibility”
of Ω at (x, h).

On the other hand, the function AΩ(x, h) was introduced by Katsuyuki
Shibata [Sh] to give an answer to PISA’s problem “Where should a street-
light be placed in a triangle-shaped park?”. Shibata called a maximizer of
AΩ(·, h) an illuminating center of Ω of height h.

Theorem 5.7 ([Sak, Theorem 5.32, Proposition 5.33, Theorem 5.36]).

(1) If h ≥
√
m+ 2 D̃(Ω), where D̃(Ω) is a slight improvement of D(Ω),

then Ω has a unique illuminating center.
(2) If h ≤

√
2/(m− 1) d(Ω), if Ω is convex, and if Uf(Ω) is contained

in the interior of Ω, then Ω has a unique illuminating center.
(3) Let Ω̃ be a compact convex set in Rm. If δ ≥

√
(m+ 2)(m− 1)/2

× diam Ω̃, then for any h, the parallel body Ω̃ + δBm has a unique
illuminating center.

Proposition 5.8. Let Ω be as in Theorem 4.1 or 4.5. For any h > 0,
Ω has a unique illuminating center.

Proof. Direct computation shows that the kernel of AΩ satisfies the as-
sumptions of Theorem 4.1 or 4.5 for any h.

Remark 5.9. The new result in this paper (Proposition 5.8) is the
uniqueness of an illuminating center without the assumption on h when
Ω is not a parallel body as in Example 3.3 or 3.5.
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