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Concerning the Szlenk index

by

Ryan M. Causey (Oxford, OH)

Abstract. We discuss pruning and coloring lemmas on regular families. We discuss
several applications of these lemmas to computing the Szlenk index of certain w∗ compact
subsets of the dual of a separable Banach space. Applications include estimates of the
Szlenk index of Minkowski sums, infinite direct sums of separable Banach spaces, constant
reduction, and three-space properties.

We also consider using regular families to construct Banach spaces with prescribed
Szlenk index. As a consequence, we give a characterization of which countable ordinals
occur as the Szlenk index of a Banach space, prove the optimality of a previous universality
result, and compute the Szlenk index of the injective tensor product of separable Banach
spaces.

1. Introduction. A classical result in Banach space theory is that every
separable Banach space embeds isometrically in C[0, 1]. One can ask whether
other classes of Banach spaces, for example the class of Banach spaces having
separable dual, admit a member which contains isomorphic copies of every
member of that class. For the case of Banach spaces having separable dual,
Szlenk [22] introduced the Szlenk index to prove that there is no Banach
space having separable dual which contains isomorphic copies of all Banach
spaces having separable dual. Since its inception, the Szlenk index has been
the object of significant investigation.

Typically defined in terms of slicings of the unit ball of the dual of a
separable Banach space, the Szlenk index of a separable Banach space is
equal to the weakly null `+1 index of that space in the case that this space
does not contain a copy of `1 [2]. This fact allows for a modification of certain
transfinite versions of an argument of James [12] involving equivalence of
finite representability and crude finite representability of `1 in a Banach
space. This argument can be used to yield new information about the Szlenk
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index and new methods for estimating it. More generally, regular families
play a key role in computing so-called σ indices in separable Banach spaces.
Consequently, certain purely combinatorial results concerning colorings of
regular families have as easy corollaries strong results about Szlenk index,
including that of [2]. Moreover, regular families can be used to construct
Banach spaces with prescribed weakly null `+1 behavior, which can be used
to prove certain existence and non-existence results. For example, we provide
a characterization of which countable ordinals occur as the Szlenk index
of a Banach space. In [7], it was shown that for each countable ordinal ξ
there exists a separable Banach space with Szlenk index ωξ+1 which contains
isomorphic copies of every separable Banach space having Szlenk index not
exceeding ωξ. Thanks to being able to construct a Banach space with precise
control over the weakly null `+1 index, we can prove the optimality of that
result.

In the first half of the paper, we discuss regular families, colorings and
prunings thereof, and applications of these coloring results to computing the
Szlenk index of certain subsets of the dual of a separable Banach space.
We generalize Alspach, Judd, and Odell’s argument that the Szlenk index
of a Banach space not containing `1 is equal to its weakly null `+1 index in
order to compute the Szlenk index of certain sets K ⊂ X∗, X a separable
Banach space. We then deduce as easy applications of this work a number of
corollaries, some old and some new. In the second half of the paper, we discuss
how to construct Banach spaces with prescribed weakly null `+1 structure.
As a consequence, we provide a characterization of the countable ordinals
which occur as the Szlenk index of a Banach space and use this to prove the
optimality of the universality results of [7] and [8]. We also show how one
can compute the Szlenk index of a Banach space having separable dual via
embeddings into Banach spaces with shrinking basis having subsequential
upper block estimates in certain mixed Tsirelson spaces. With this, we prove
an optimal result about the Szlenk index of an injective tensor product of
two separable Banach spaces.

The paper is arranged as follows. In Section 2, we discuss the necessary
definitions concerning Banach spaces and finite-dimensional decompositions.
In Section 3, we discuss trees, regular families, and their use in computing
ordinal indices. In that section we also give two useful pruning lemmas which
will be used throughout. In Section 4, we state and prove the combinatorial
lemmas concerning regular families. In Section 5, we define the Szlenk and
weakly null `+1 indices and provide several examples of applications thereof.
In Section 6, we discuss the use of mixed Tsirelson spaces in constructing
Banach spaces with prescribed `+1 behavior and the special role played by
these families.



Concerning the Szlenk index 203

2. Banach spaces and finite-dimensional decompositions. If X
is a Banach space, we say a sequence E = (En) of finite-dimensional sub-
spaces of X is a finite-dimensional decomposition (FDD) for X provided
that for each x ∈ X, there exists a unique sequence (xn) such that xn ∈ En
for each n ∈ N and x =

∑
xn. In this case, for each n ∈ N, the operator

x =
∑
xm 7→ xn is a bounded linear operator from X to En, called the nth

canonical projection, denoted PEn . For a finite set A, we let PA =
∑

n∈A Pn.
By the principle of uniform boundedness, the projection constant of E in X,
given by supm≤n ‖PE[m,n]‖, is finite. We say E is bimonotone for X if the
projection constant of E in X is 1. It is well-known that if E is an FDD
for X, one can equivalently renorm X to make E a bimonotone FDD for X
with the new norm. Throughout, we will assume that for each n ∈ N,
En 6= {0}.

We can consider E∗n as being embedded in X∗ via the adjoint (PEn )∗,
although this embedding is not necessarily isometric unless E is bimonotone.
We let E∗ = (E∗n), and consider these as subspaces of X∗. The FDD E is
said to be shrinking for X if E∗ is an FDD for X∗. Since E∗ will always be
an FDD for the closed span [E∗n]n∈N with projection constant in this space
not exceeding the projection constant of E in X, we see that E is a shrinking
FDD for X if and only if X∗ = [E∗n]n∈N.

If E is an FDD for X and if 0 = s0 < s1 < · · · , and Fn = [Ek]sn−1<k≤sn ,
then F = (Fn) is called a blocking of E. In this case, F is also an FDD for X
with projection constant in X not exceeding the projection constant of E
in X. If E is shrinking, any blocking of E will be as well.

If x ∈ X, we let suppE(x) = {n ∈ N : PEn x 6= 0}. We let ranE(x) be the
smallest interval in N which contains suppE(x). We let c00(E) = {x ∈ X :
|suppE(x)| < ∞}. We say a (finite or infinite) sequence of non-zero vec-
tors (xn) is a block sequence with respect to E provided max suppE(xn) <
min suppE(xn+1) for each appropriate n.

We let Σ(E,X) denote all finite block sequences with respect to E in BX .
We say B ⊂ Σ(E,X) is a hereditary block tree in X with respect to E if it
contains all subsequences of its members. If ε = (εi) ⊂ (0, 1) and if B is a
hereditary block tree, we let

BE,Xε = {(xi)ni=1 ∈ Σ(E,X) : n ∈ N ∪ {0},

∃(yi)ni=1 ∈ B, ‖xi − yi‖ < εi ∀1 ≤ i ≤ n}.

If (εi) is non-increasing, BE,Xε is also a hereditary block tree in X with
respect to E.

Given (finite or infinite) sequences (en), (fn) of the same length in (pos-
sibly different) Banach spaces, we say (en) C-dominates (fn), or that (fn)
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is C-dominated by (en), provided that for each (an) ∈ c00,∥∥∥∑ anfn

∥∥∥ ≤ C∥∥∥∑ anen

∥∥∥.
If E is an FDD for a Banach space X and if (en) is a normalized 1-

unconditional basis for a Banach space U , we say E satisfies subsequential
C-U upper block estimates in X provided that for any normalized block
sequence (xn) with respect to E, if mn = max suppE(xn), then (xn) is C-
dominated by (emn). This idea has occurred in other works, such as [18],
[10], and [7], where mn was taken to be min suppE(xn) rather than the
maximum. Our definition is chosen for convenience within this work, and it
does not affect the main theorems contained herein, or the main theorems
contained in the cited works. This is because for each basis (en) considered
in the main theorems of the cited works, and for each pair of sequences of
natural numbers k1 < k2 < · · · , l1 < l2 < · · · such that max{kn, ln} <
min{kn+1, ln+1}, (ekn) and (eln) are equivalent, and hence equivalent with
uniform constant.

Proposition 2.1. Let X be a Banach space not containing `1.

(i) Suppose Y ≤ X is a closed subspace, (xn) ⊂ BX is weakly null, and
δ ∈ (0, 1/2) is such that ‖xn‖X/Y < δ for all n ∈ N. Then there
exists a weakly null sequence (yn) ⊂ BY and a subsequence (xkn) of
(xn) such that ‖xkn − yn‖ < 4δ for each n ∈ N.

(ii) If Q : X → Z is a quotient map and (zn) ⊂ BZ is weakly null, then
for any δ > 0, there exists a weakly null sequence (xn) ⊂ 3BX and a
subsequence (zkn) of (zn) such that ‖zkn −Qxn‖ < δ for all n ∈ N.

Proof. Several times, we will use Rosenthal’s `1 dichotomy [20], which
states that any bounded sequence in a Banach space has either a subsequence
equivalent to the canonical `1 basis or a subsequence which is weakly Cauchy.

(i) For each n, choose some un ∈ Y so that ‖xn − un‖ < δ. By passing
to a subsequence, we can assume that (un) is weakly Cauchy. Choose a
convex block defined by vn =

∑
i∈In aixi so that ‖vn‖ < δ − ‖xn − un‖ and

min In →∞ as n→∞. Let wn =
∑

i∈In aiui. Then (un−wn) is weakly null
in Y and

‖un − wn‖ ≤ ‖xn‖+ ‖xn − un‖+ ‖vn‖+
∑
i∈In

ai‖xi − ui‖ ≤ 1 + 2δ.

Moreover,

‖xn − (un − wn)‖ ≤ ‖xn − vn − (un − wn)‖+ ‖vn‖

≤ ‖xn − un‖+ ‖vn‖+
∑
i∈In

ai‖xi − ui‖ < 2δ.
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Now if yn = un − wn for those n ∈ N such that ‖un − wn‖ ≤ 1 and if yn is
the normalization of un−wn for those n ∈ N such that ‖un−wn‖ > 1, then

‖xn − yn‖ ≤ ‖xn − (un − wn)‖+ ‖yn − (un − wn)‖ < 4δ.

Since (un − wn) is weakly null and yn = an(un − wn) for some sequence
(an) ⊂ [0, 1], (yn) is also weakly null.

(ii) Choose ε > 0 to be determined. For each n ∈ N, choose un ∈ X
with ‖un‖ < 1 + ε so that Qun = zn. By passing to a subsequence, we can
assume (un) is weakly Cauchy. Choose a convex block vn =

∑
i∈In aizi so

that ‖vn‖ < ε and min In →∞ as n→∞. Let wn =
∑

i∈In aiui. Then

‖un − wn‖ ≤ 1 + ε+
∑
i∈In

ai(1 + ε) = 2 + 2ε < 3

for appropriate ε. Moreover, this sequence is weakly null. Last,
‖zn −Q(un − wn)‖ = ‖Qwn‖ = ‖vn‖ < ε < δ.

Thus taking ε < min{1/2, δ} suffices.

3. Trees, derivatives, and indices

3.1. Trees on sets. Throughout, if P,Q are partially ordered sets, we
say f : P → Q is order preserving provided that x, y ∈ P with x <P y
implies f(x) <Q f(y). We say f : P → Q is an embedding if it is an injection
such that for x, y ∈ P , x <P y if and only if f(x) <Q f(y).

Given a set S, we let Sω (resp. S<ω) denote the set of all infinite (resp.
finite) sequences in S. We include the sequence of length zero, denoted ∅,
in S<ω. For s ∈ S<ω, we let |s| denote the length of s. For s, t ∈ S<ω, we let
sat denote the concatenation of s with t. Given s = (xi)

n
i=1 ∈ S<ω, we let

s|m = (xi)
m
i=1 for 0 ≤ m ≤ n. We define the partial order ≺ on S<ω by s ≺ s′

provided |s| < |s′| and s = s′||s|. If s ≺ s′, we say s is a predecessor of s′, and
s′ is a successor of s. If |s′| = |s|+ 1, we say s is the immediate predecessor
of s′, and s′ is an immediate successor of s. Given a set U ⊂ S<ω, we let
C(U) denote the set of all finite, non-empty chains in U \ {∅}. We define a
partial order < on C(U) by c < c′ provided s ≺ s′ for all s ∈ c and s′ ∈ c′.

If T ⊂ S<ω is downward closed with respect to the order ≺, we call T
a tree, and we let MAX(T ) denote the maximal elements of T with respect
to the order ≺. We let T̂ = T \ {∅}. If T contains all subsequences of its
members, we say T is hereditary. If T ⊂ S<ω, we let

T (s) = {t ∈ S<ω : sat ∈ T},
and note that if T is a tree (resp. hereditary tree), then T (s) is a tree (resp.
hereditary tree) as well. If T is a tree, we call linearly ordered subsets of T
chains of T , and chains which are maximal with respect to inclusions will
be called branches of T . If T is a tree on a vector space, we say T is convex
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provided it contains all convex blockings of its members. We recall that for
a sequence (xi)

n
i=1 in a vector space, (yi)mi=1 is a convex blocking of (xi)ni=1

provided there exist 0 = k0 < · · · < km = n and non-negative scalars (ai)ni=1

such that for each j,
∑kj

i=kj−1+1 ai = 1 and yj =
∑kj

i=kj−1+1 aixi.
Given a tree T , we let T ′ = T \MAX(T ), and note that this is a tree as

well. We define the countable transfinite derivations as follows. Throughout,
ω and ω1 will denote the first infinite and uncountable ordinals, respectively.
We let

T 0 = T, T ξ+1 = (T ξ)′, ξ < ω1,

and
T ξ =

⋂
ζ<ξ

T ζ , ξ < ω1 a limit ordinal.

Finally, we define the order o of the tree T by

o(T ) = min{ξ < ω1 : T
ξ = ∅}

provided such a ξ exists, and o(T ) = ω1 otherwise.

3.2. Regular trees on N. Throughout, ifM is any infinite subset of N,
we let [M ]ω (resp. [M ]<ω) denote the infinite (resp. finite) subsets of M . We
identify the subsets of N in the natural way with strictly increasing sequences
in N. We topologize the power set of N by identifying it with the Cantor set.
A set F ⊂ [N]<ω is called compact if it is compact with respect to this
topology. For E,F ⊂ N, we write E < F to denote maxE < minF . For
n ∈ N and E ⊂ N, we write n ≤ E to denote n ≤ minE. By convention, we
let ∅ < E < ∅ for any E. Throughout, we will write EaF in place of E ∪ F
when E < F . We write naE (resp. Ean) in place of (n)aE (resp. Ea(n)).

Given (ki)
n
i=1, (li)

n
i=1 ∈ [N]<ω, we say (li)

n
i=1 is a spread of (ki)ni=1 pro-

vided ki ≤ li for each 1 ≤ i ≤ n. We say F ⊂ [N]<ω is spreading provided
it contains all spreads of its members. We say F is hereditary if it contains
all subsets of its members. With the identification of sets with sequences,
we can naturally identify a hereditary family with a (hereditary) tree on N.
We call a family F ⊂ [N]<ω regular provided it is compact, spreading, and
hereditary.

We say that a sequence (Ei)ni=1 ⊂ [N]<ω is F-admissible if it is successive
(that is, E1 < · · · < En), n ≥ 0, Ei 6= ∅, and (minEi)

n
i=1 ∈ F . Given a

regular family G and a set E, we say the successive sequence (Ei)
n
i=1 is the

standard decomposition of E with respect to G provided that E =
⋃n
i=1Ei

and for each j ≤ n, Ej is the maximal initial segment of
⋃n
i=j Ei which is a

member of G. Note that E admits a standard decomposition with respect to
G if and only if E = ∅ (in which case n = 0) or E 6= ∅ and (minE) ∈ G. In
each case the standard decomposition is unique.
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If (mn) = M ∈ [N]ω, the bijection n 7→ mn induces a natural bijection
between the power sets of N and M , which we also denote M . That is,
M(E) = (mn : n ∈ E). For F ⊂ [N]<ω, we let M(F) = {M(E) : E ∈ F}. If
M ∈ [N]ω and if F ⊂ [N]<ω, we let M−1(F) = {E :M(E) ∈ F}.

Given regular families F ,G, we define

FaG = {FaG : F ∈ F , G ∈ G},

F [G] =
{ n⋃

i=1
Ei : n ≥ 0, E1 < · · · < En, ∅ 6= Ei ∈ G, (minEi)

n
i=1 ∈ F

}
=
{ n⋃

i=1
Ei : n ≥ 0, (Ei)

n
i=1 ⊂ G is F-admissible

}
.

We observe that a set E is in F [G] if and only if E has an F-admissible
standard decomposition (Ei)

n
i=1 with respect to G. For a given F , we let

[F ]1 = F and [F ]n+1 = F [[F ]n] for n ∈ N.
If (Gn) is a sequence of regular families, we let

D(Gn) = {E : ∃n ≤ E ∈ Gn}.
We think of FaG as the sum of the trees F ,G, of F [G] as the product of
F ,G, and of D(Gn) as the diagonalization of the families Gn.

For each 1 ≤ n, let An = {E ∈ [N]<ω : |E| ≤ n} and S = D(An). If
ζ ≤ ω1 is a limit ordinal, we say that the family (Gξ)0≤ξ<ζ is additive if for
each ξ < ζ, Gξ+1 = Aa

1 Gξ, and for each limit ordinal ξ < ζ, there exists ξn ↑ ξ
such that Gξ = D(Gξn). We say (Gξ)0≤ξ<ζ is multiplicative if Gξ+1 = S[Gξ]
for each ξ < ζ, (1) ∈ MAX(G0), and for every limit ordinal ξ < ζ, there
exists a sequence ξn ↑ ξ such that Gξ = D(Gξn). Observe in this case that
(1) ∈ MAX(Gξ) for every ξ < ζ.

If F is regular, we observe that F ′ is also regular, and MAX(F) is the set
of isolated points in F . Thus F ′ is the Cantor–Bendixson derivative of F . In
place of the Cantor–Bendixson index, we define the index

ι(F) = min{ξ < ω1 : Fξ ⊂ {∅}}.
It is easy to see that for F hereditary, this set of ordinals is non-empty
if and only if F is compact, which is equivalent to F not containing any
infinite chain. Moreover, if F 6= ∅, then ι(F) + 1 coincides with the Cantor–
Bendixson derivative of F . The justification for using the index ι in place of
the Cantor–Bendixson index is evident in the following proposition.

Proposition 3.1. Let F , G, and Gn be non-empty regular families.

(i) For 0 ≤ ζ, ξ < ω1, we have (Fζ)ξ = Fζ+ξ.
(ii) FaG is regular and ι(FaG) = ι(G) + ι(F).
(iii) F [G] is regular and ι(F [G]) = ι(G)ι(F).
(iv) For any M ∈ [N]ω, M−1(F) is regular and ι(M−1(F)) = ι(F).
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(v) For any M ∈ [N]ω, we have M−1(F [G]) =M−1(F)[M−1(G)].
(vi) D(Gn) is regular and ι(D(Gn)) = supn ι(Gn).
(vii) If M ∈ [N]ω and ι(F) ≤ ι(G), then there exists N ∈ [M ]ω such that

N(F) ⊂ G.
(viii) If ζ ≤ ω1 is a limit ordinal and (Gξ)0≤ξ<ζ is either additive or

multiplicative, then for each 0 ≤ ξ ≤ η < ζ, there exist m,n ∈ N
such that Gξ ∩ [[m,∞)]<ω ⊂ Gη and Gξ ⊂ Gη+n.

Proof. (i) We use induction on ξ for ζ fixed. The ξ = 0 and successor
cases are trivial. If ξ is a limit ordinal, ζ + ξ is also a limit, so

(Fζ)ξ =
⋂
η<ξ

(Fζ)η =
⋂
η<ξ

Fζ+η =
⋂

η<ζ+ξ

Fη = Fζ+ξ.

Here we have used the facts that η 7→ ζ + η is continuous and the Cantor–
Bendixson derivatives of F are decreasing.

(ii) It is clear that a subset (resp. spread) of FaG, for F ∈ F and
G ∈ G, can be written in the form Fa

0 G0 where F0 (resp. G0) is a subset
(resp. spread) of F (resp. G). Thus FaG is spreading and hereditary. If
N |n ∈ FaG for all n ∈ N, let m ∈ N ∪ {0} be maximal such that N |m ∈ F .
Then choose n ∈ N ∪ {0} maximal with (N \ N |m)|n ∈ G. It is clear that
N |k /∈ FaG for any k > n+m. This is because if FaG = N |k, then either F
is a proper extension of N |m, or G has a subset which is a proper extension
of (N \N |m)|n, either of which contradicts the maximality of either m or n.

Next, we note that (FaG)(F ) = G ∩ [(maxF,∞)]<ω for F ∈ MAX(F).
Since ι(G ∩ [(maxF,∞)]<ω) = ι(G), we have (∅) = (FaG)(F )ι(G), which
means F ∈ MAX((FaG)ι(G)). If E ∈ (FaG) \ F , write E = FaG where
F is the maximal initial segment of E which lies in F , and ∅ 6= G ∈ G.
Then, (FaG)ζ(E) = Gζ(G) for any ordinal ζ. Since ι(G(G)) < ι(G), we
have (FaG)ι(G)(E) = Gι(G)(G) = ∅. This means E /∈ (FaG)ι(G). Therefore
F = (FaG)ι(G), and ι(FaG) = ι(G) + ι(F).

(iii) Any spread (resp. subset) of
⋃n
i=1Ei is an F-admissible union of

spreads (resp. subsets) Fi of Ei. If N |n ∈ F [G] for all n ∈ N, choose recur-
sively n0, n1, n2, . . . maximal such that n0 = 0 and (N \ N |ni−1)|ni ∈ G for
all i ∈ N. Let mi = min(N \N |ni−1) and choose k so that (mi)

k
i=1 /∈ F . Then

N |s /∈ F [G] for any s >
∑k

i=1 ni. Indeed, if N |s ∈ F [G], let (Ei)
t
i=1 be the

standard decomposition of N |s with respect to G. Then F 3 (minEi)
t
i=1 is

a proper extension of (mi)
k
i=1, a contradiction.

We prove by induction that F [G]ι(G)ξ = Fξ[G] for all ξ ≤ ι(F). The result
is clear if F = {∅} or G = {∅}, so assume ι(F), ι(G) > 0. The base case is true
by definition. If (Ei)ni=1 ⊂ G is F-admissible with F := (minEi)

n
i=1 ∈ F ′,

then there exists m > maxEn such that Fai ∈ F for each i ≥ m. Then
G ∩ (m,∞)<ω ⊂ F [G]

(⋃n
i=1Ei

)
. This means

⋃n
i=1Ei ∈ F [G]ι(G), whence
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F ′[G] ⊂ F [G]ι(G). Next, fix E ∈ F [G] and let (Ei)
n
i=1 be the standard de-

composition of E with respect to G. Suppose that (minEi)
n
i=1 ∈ MAX(F).

Then F [G]
(⋃n

i=1Ei
)
= G(En). But ι(G(En)) < ι(G), which means

⋃n
i=1Ei /∈

F [G]ι(G). Therefore F [G]ι(G) ⊂ F ′[G], and these sets are equal. Applying this
argument again to Fξ in place of F yields the successor case. Last, for a
limit ordinal ξ, ι(G)ξ is also a limit ordinal. Then

F [G]ι(G)ξ =
⋂

ζ<ι(G)ξ

F [G]ζ =
⋂
ζ<ξ

F [G]ι(G)ζ =
⋂
ζ<ξ

Fζ [G] = Fξ[G].

The last equality follows from the fact that E will lie in either of the two sets
if and only if E has a standard decomposition (Ei)

n
i=1 with respect to G and

that this sequence is Fξ-admissible, while this second property is equivalent
to being Fη-admissible for every ζ < ξ.

(iv) If E ∈M−1(F) and F is a subset (resp. spread) of E, thenM(F ) is a
subset (resp. spread) of M(E). Therefore M(F ) ∈ F , whence F ∈M−1(F).
If N ∈ [N]ω is such that N |n ∈ M−1(F) for all n ∈ N, then M(N |n) ∈ F
for all n ∈ N, contradicting the compactness of F . Thus M−1(F) is reg-
ular. It is easy to see that M−1(F)ξ = M−1(Fξ) for any 0 ≤ ξ < ω1, so
ι(M−1(F)) = ι(F).

(v) Let F ∈M−1(F [G]). Then writeM(F ) =
⋃n
i=1Ei, where (Ei)

n
i=1 ⊂ G

is F-admissible. Note that for each 1 ≤ i ≤ n, Ei =M(Fi) for some Fi, which
necessarily lies in M−1(G). Moreover, M((minFi)

n
i=1) = (minEi)

n
i=1 ∈ F ,

and (minFi)
n
i=1 ∈M−1(F). Note that F =

⋃n
i=1 Fi ∈M−1(F)[M−1(G)], so

that M−1(F [G]) ⊂M−1(F)[M−1(G)].
If E ∈ M−1(F)[M−1(G)], write E =

⋃n
i=1Ei, (minEi)

n
i=1 ∈ M−1(F),

Ei ∈M−1(G). Then (minM(Ei))
n
i=1 =M((minEi)

n
i=1) ∈ F andM(Ei)∈G.

Therefore M(E) =
⋃n
i=1M(Ei) ∈ F [G], and E ∈M−1(F [G]).

(vi) Suppose E ∈ D(Gn) and fix m ≤ E ∈ Gm. If F is a subset (resp.
spread) of E, then m ≤ F ∈ Gm, so F ∈ D(Gn). If N |m ∈ D(Gn) for all
m ∈ N, then we can choose for each m ∈ N some km ∈ N so that km ≤ N
and N |m ∈ Gkm . We can, of course, assume that for some k ≤ N , km = k
for all m. Then N |m ∈ Gk for all m, a contradiction.

Let D = D(Gn) and ξ = supn ι(Gn). It is clear that ι(D) ≥ supn ι(Gn ∩
[[n,∞)]<ω) = ξ. For any n ∈ N, we have D(n) =

⋃n
i=1 Gi(n) and Dξ(n) =⋃n

i=1 Gξ(n) = ∅. From this it follows that Dξ ⊂ {∅}, and ι(D) = ξ.
(vii) First, we observe that for any regular F , (ι(F(n)))n∈N is a non-

decreasing sequence. This is because F(n) is homeomorphic to a subset of
F(m) for n ≤ m via the map E 7→ (k +m : k ∈ E). We next observe that
if ι(F) = ξ + 1, then ι(F(n)) = ξ eventually. First, if ι(F(n)) > ξ for some
n ∈ N, then (n) ∈ Fξ+1, which means ι(F) > ξ + 1. If ι(F(n)) < ξ for all
n ∈ N, then Fξ contains no singletons, and therefore ι(F) ≤ ξ.
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Next, if ξ is a limit ordinal and ι(F) = ξ, then ι(F(n)) ↗ ξ. We know
ι(F(n)) < ξ for all n ∈ N by the same argument as in the successor case.
We know this sequence is non-decreasing, again by the same reasoning as in
the successor case. If ι(F(n)) ≤ ζ < ξ for all n ∈ N, then ι(F) ≤ ζ + 1 < ξ.

Before completing (vii), we prove the following.

Claim. Suppose F ,G are regular families with ι(G) ≥ 1. Suppose also
that for any n ∈ N and any M ∈ [N]ω, there exist kn ∈ N and N ∈ [M ]ω

such that N(F(n)) ⊂ G(kn). Then for any M ∈ [N]ω, there exists N ∈ [M ]ω

such that N(F) ⊂ G.

Proof of claim. If ι(G) ≥ 1, then {(k) : k ≥ k0} ⊂ G for some k0. Let
M0 = M and choose M1 ∈ [M0]

ω, and k1 ∈ N so that M1(F(1)) ⊂ G(k1).
By replacing M1 with a subset of M1, we can assume k0, k1 ≤ M1. We
can do this since if M ′ ∈ [M1]

ω, each member of (M ′)(F(1)) is a spread of
M1(F(1)), so the desired containment is preserved by passing to M ′.

Next, assume that for 1 ≤ i < n, we have chosen Mi ∈ [M0]
ω and ki ∈ N

so that Mi ∈ [Mi−1]
ω, Mi(F(i)) ⊂ G(ki), and ki ≤Mi. Then choose kn ∈ N

and Mn ∈ [Mn−1]
ω so that Mn(F(n)) ⊂ G(kn), and again assume that

kn ≤Mn. This completes the recursive choices of kn and Mn.
Let Mn = (mn

i )i and let N = (mn
n). Note that m1

1 < m2
2 < · · · and

kn ≤ mn
n. We claim that N(F) ⊂ G. To see this, fix E ∈ F . If |E| = 0, then

N(E) = ∅ ∈ G. If |E| = 1, then for some n ∈ N, we have N(E) = (mn
n) ∈

{(k) : k ≥ k0} ⊂ G. Last, if |E| > 1, we can write E = naF for some n ∈ N
and F ∈ F(n). Since n < F , N(F ) is a spread of Mn(F ) ∈ Mn(F(n)) ⊂
G(kn). Therefore N(F ) ∈ G(kn) and kanN(F ) ∈ G. But since kn ≤ mn

n and
N(E) = mna

n N(F ) is a spread of kanN(F ), it follows that N(E) ∈ G.

We return to (vii). If the result were false, we could choose ζ < ω1 minimal
such that there exists η ≤ ζ and regular families F ,G such that ι(F) = η,
ι(G) = ζ, and M ∈ [N]ω such that N(F) 6⊂ G for each N ∈ [M ]ω. Next,
we could choose ξ ≤ ζ to be a minimal value of η such that the indicated
F ,G, and M ∈ N exist. We assume we have fixed such F ,G,M . We consider
several cases.

First, if ι(G) = 0, then G = {∅} = F . Clearly this cannot be.
If ζ is a successor, say ζ = β + 1, then there exists n ∈ N such that

ι(G(m)) = β for each m ≥ n. If ξ ≤ β, then there exists N ∈ [M ]ω such
that N(F) ⊂ G(n) ⊂ G, which also cannot be. Thus if ζ = β + 1, it must
be true that ξ = β + 1 = ζ. Then for each m ∈ N, ι(F(m)) ≤ β, and
by the hypothesis for any M ′ ∈ [N]ω there exist N ′ ∈ [M ′]ω such that
N ′(F(m)) ⊂ G(n). By the Claim, we deduce that there exists N ∈ [M ]ω

such that N(F) ⊂ G, and this contradiction means that ζ cannot be a suc-
cessor.
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Last, suppose ζ is a limit ordinal. Then ι(G(n))↗ ζ. If ξ is a successor,
then ξ < ζ and ι(F(n)) ≤ ξ < ζ for each n ∈ N. If ξ is a limit, then for each
n ∈ N, by our remarks above, ι(F(n)) < ξ ≤ ζ. Therefore we can choose a
sequence (kn) ∈ [N]ω such that ι(F(n)) ≤ ι(G(kn)). Then by the inductive
hypothesis, for n ∈ N and any M ′ ∈ [N]ω, there exists N ′ ∈ [M ′]ω such that
N ′(F(n)) ⊂ G(kn). Again, our Claim implies that there exists N ∈ [M ]ω

such that N(F) ⊂ G, and this contradiction exhausts the possibilities of
ways that (vii) could fail.

(viii) First assume (Gξ)0≤ξ<ζ is either additive or multiplicative. We prove
the first part by induction on η with ξ held fixed. The η = ξ case is clear.
Suppose that for a given ξ ≤ η < ζ, the conclusion holds. Choose m ∈ N so
that Gξ∩[[m,∞)]<ω ⊂ Gη. Since Gη ⊂ Gη+1, we have Gξ∩[[m,∞)]<ω ⊂ Gη+1.
Last, suppose ξ < η < ζ is a limit ordinal and the conclusion holds for each
ξ ≤ γ < η. Fix ξ < η and let ηn ↑ η be such that Gη = D(Gηn). Choose
some n ∈ N so that ξ < ηn and k ∈ N so that Gξ ∩ [[k,∞)]<ω ⊂ Gηn . Let
m = max{k, n}. Then

Gξ ∩ [[m,∞)]<ω ⊂ Gηn ∩ [[n,∞)]<ω ⊂ Gη.

This completes the first statement in both the additive case and the multi-
plicative case.

Next, assume (Gξ)0≤ξ<ζ is additive. Observe that if Gξ∩ [[m,∞)]<ω ⊂ Gη,
then Gξ∩ [[m−1,∞)]<ω ⊂ Aa

1 Gη = Gη+1. By induction, Gξ = Gξ∩ [[1,∞)]<ω

⊂ Gη+m−1.
Last, assume (Gξ)0≤ξ<ζ is multiplicative. Observe that G0 ⊂ Gξ and (1) ∈

MAX(Gξ) for each 0 ≤ ξ < ζ. We claim that if Gξ ∩ [[m,∞)]<ω ⊂ Gη for
m > 2, then Gξ∩ [[m−1,∞)]<ω ⊂ Gη+1. This is because if E = (m−1)aF ∈
Gξ∩[[m−1,∞)]<ω, then F ∈ Gξ∩[[m,∞)]<ω ⊂ Gη. Hence (m−1,minF ) ∈ S
and E = (m− 1)aF ∈ S[Gη] = Gη+1. Therefore, since Gξ ∩ [[m,∞)]<ω ⊂ Gη,
we obtain Gξ ∩ [[2,∞)]<ω ⊂ Gη+m−2. But since (1) ∈ MAX(Gξ) ∩ Gη+m−2,
we conclude that Gξ = {(1)} ∪ (Gξ ∩ [[2,∞)]<ω) ⊂ Gη+m−2.

We are now ready to define the fine Schreier families (Fξ)0≤ξ<ω1 . These
families were defined in [18], and are a finer version of the more familiar
Schreier families defined in [1]. We let F0 = {∅}. Next, if Fξ has been defined,
we let Fξ+1 = Aa

1 Fξ. If ξ < ω1 is a limit ordinal and Fζ has been defined for
each ζ < ξ so that (Fζ)0≤ζ<ξ is additive, fix ηn ↑ ξ. By Proposition 3.1(viii),
we can choose recursively some natural numbers mn so that Fηn+mn ⊂
Fηn+1+mn+1 for each n ∈ N. We let ξn = ηn +mn and Fξ = D(Fξn).

We next define the Schreier families (Sξ)0≤ξ<ω1 . We let S0 = F1, Sξ+1 =
S[Sξ], and if Sζ has been defined for each ζ less than the countable limit
ordinal ξ, we fix ξn ↑ ξ and define Sξ = D(Sξn). Proposition 3.1 and our
construction yield the following.
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Proposition 3.2. For each 0 ≤ ξ < ω1, Fξ is regular with ι(Fξ) = ξ.
Moreover, for each limit ξ < ω1, there exists ξn ↑ ξ such that Fξ = D(Fξn)
and Fξn ⊂ Fξn+1 for each n ∈ N. For each 0 ≤ ξ < ω1, Sξ is regular with
ι(Sξ) = ωξ.

A straightforward induction proof shows that if 0 ≤ ξ < ω1 and E ∈ F ′ξ,
then Ea(1+maxE) ∈ Fξ. We will implicitly use this fact in our proofs, but
it is inessential.

We recall the following dichotomies for subsets of [N]<ω.

Theorem 3.3 ([11]). For F ,G ⊂ [N]<ω hereditary, for any N ∈ [N]ω
there exists M ∈ [N ]ω such that either

F ∩ [M ]<ω ⊂ G or G ∩ [M ]<ω ⊂ F .

Theorem 3.4 ([19]). For a regular family F , if A,B ⊂ MAX(F) are
such that A ∪ B = MAX(F), then there exists M ∈ [N]ω such that either

MAX(F) ∩ [M ]<ω ⊂ A or MAX(F) ∩ [M ]<ω ⊂ B.

3.3. The pruning lemmas and applications. In this section, we dis-
cuss two useful lemmas involving prunings. The notion of a pruning is the
regular family analogue of passing to a subsequence of a sequence. The state-
ment and proof of the pruning lemma require notations which belie the sim-
plicity of the underlying idea, so we say a word about the content before
stating it. Let F ⊂ [N]<ω be a regular family. For each E ∈ F ′, suppose that
the sequence of immediate successors of E in F has a subsequence with some
desired property PE which is allowed to depend on E. Then beginning at the
root ∅ of F , we can pass to a subsequence of the immediate successors of ∅
(while “pruning” the rest from the tree) so that the remaining sequence has
the desired property P∅. For each immediate successor E of ∅ which survives
the pruning, we pass to a subsequence of the immediate successors of E in
F which have the desired property PE , and so on. Thus, beginning with the
root of the tree, we recursively prune the levels of the tree so that in the
pruned tree G, for each E ∈ G′, the sequence of immediate successors of E in
G has the desired property. All this is done so that, although we have passed
to subsequences, F and G have the same “size.”

We will say that a function φ : F → F is a pruning provided φ(∅) = ∅
and for each E ∈ F ′, if s(E) = min{n ∈ N : Ean ∈ F}, then there ex-
ists a strictly increasing function ψE : [s(E),∞) → [s(φ(E)),∞) such that
φ(Ean) = φ(E)aψE(n) for each n ≥ s(E). The first lemma is essentially
contained in [2, Lemma 2.8], so we omit the proof.

Lemma 3.5 ([2]). Let F be a regular family. For each E ∈ F ′, suppose
PE ⊂ ([N]<ω)ω is such that some subsequence (Eam)m∈M of (Eam)m≥s(E)
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lies in PE. Then there exists a pruning φ : F → F such that for each E ∈ F ′,
(φ(Ean))n≥s(E) ∈ Pφ(E).

For convenience, in the examples below we freely relabel and denote a
pruned tree the same way as the original tree. In these examples, we will
say (xE)E∈F̂ is a weakly null tree (resp. w∗ null tree, block tree) if for each
E ∈ F ′, the sequence (xEn) is weakly null (resp. w∗ null, a block sequence),
where (En) is the sequence of immediate successors of E in F with the
natural enumeration. Recall that F̂ = F \ {∅}.

Example 3.6. If X is a Banach space with FDD F and (xE)E∈F̂ ⊂ X
is a weakly null tree such that inf

E∈F̂ ‖xE‖ = c > 0, then for fixed ε > 0,
for each E ∈ F̂ we can find zE ∈ c00(F ) such that ‖zE‖ = ‖xE‖, ‖xE − zE‖
< ε|E|, and so that suppF (Ean) → ∅ for each E ∈ F ′. Here (εn) ⊂
(0, 1) is decreasing to zero at a rate which depends on c, ε, and the pro-
jection constant of F in X. If PE consists of sequences (En) of immedi-
ate successors of E in F such that (zEn) is a seminormalized sequence of
successively supported vectors with max suppF (zE) < min suppF (zE1), we
can prune to obtain a pruned tree (yE)E∈F̂ of (xE)E∈F̂ and (uE)E∈F̂ of
(zE)E∈F̂ such that ‖yE − uE‖ < ε|E| for each E ∈ F̂ and moreover for
each E ∈ F ′, (uEan) is a block sequence with respect to F , and for each
E ∈ F̂ , (uE|i)

|E|
i=1 is a block sequence with respect to F . With an auspicious

choice of (εn), for each E ∈ F̂ , (yE|i)
|E|
i=1 and (uE|i)

|E|
i=1 will be (1 + ε)-

equivalent.

Example 3.7. Fix a function f : [N]<ω→(0, 1) with
∑

E∈[N]<ω f(E)<∞.
Suppose g : F → R is any function such that g(Ean)→ 0 for each E ∈ F ′.
Then we can find a pruning φ : F → F such that g(φ(E)) < f(E) for each
E ∈ F̂ . We will use this in two cases.

Suppose ∅ 6= K ⊂ X∗. If (xE)E∈F̂ ⊂ BX is such that x∗(xEan) → 0
for all E ∈ F ′ and x∗ ∈ K, we say (xE)E∈F̂ is a K null tree. Note that
if (ck) ⊂ C(F) is a sequence of pairwise disjoint chains and (xk) is a se-
quence such that xk is a convex combination of (xE)E∈ck , then (xk) need
not be pointwise null on K. We wish to overcome this, which we can easily
do under the assumption that K is norm separable. Let (x∗n) be a dense
sequence in K and let d(x) =

∑
dn|x∗n(x)|, where (dn) is any sequence of

positive numbers such that
∑
dn‖x∗n‖ < ∞. Note that (xn) ⊂ BX is point-

wise null on K if and only if d(xn) → 0. Suppose that (xE)E∈F̂ ⊂ BX is
a K null tree, g(E) = d(xE) for E ∈ F̂ , and let g(∅) = 0. After prun-
ing, we may assume d(xE) < f(E) for each E ∈ F̂ . Now suppose (ck)k
are pairwise disjoint members of C(F) and yk ∈ co{xE : E ∈ ck} ⊂ BX .
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Then∑
k

d(yk) ≤
∑
k

∑
E∈ck

d(xE) ≤
∑
k

∑
E∈ck

f(E) ≤
∑

E∈[N]<ω
f(E) <∞.

Thus d(yk) → 0, which means (yk) is pointwise null on K. In what follows,
any K null tree (xE)E∈F̂ in a Banach space X such that any sequence (xk)
with xk ∈ co{xE : E ∈ ck}, (ck) ⊂ C(F) pairwise disjoint, is pointwise null
on K will be called a strongly K null tree. In the case K = BX∗ , we call a
K null tree a weakly null tree and a strongly K null tree a strongly weakly
null tree.

Example 3.8. (B, d) is a metric space and (bE)E∈F ⊂ B is a tree such
that bEan → bE for each E ∈ F ′. We call such a tree a convergent tree.
For E ∈ F̂ , let g(E) = d(bE , bE||E|−1

). Then by passing to a pruning and
relabeling, we can assume d(bE , bE||E|−1

) < f(E). We claim that the resulting
tree, which we also denote by (bE)E∈F , is such that E 7→ bE is continuous. To
see this, it is sufficient to show that if E < Ek, k ∈ N, are such that minEk
strictly increases and Fk := EaEk ∈ F for each k ∈ N, then bFk → bE . Let
ck = {F : E ≺ F � Fk}, so (ck) are pairwise disjoint chains. Therefore∑

k

d(bFk , bE) ≤
∑
k

|Fk|∑
i=|E|+1

d(bFk|i , bFk|i−1
) <

∑
k

∑
F∈ck

f(F ) <∞.

In what follows any tree (bE)E∈F ⊂ B such that E 7→ bE is continuous will
be called a continuous tree. In the case where B = BX∗ for some separable
Banach space X and d is a metric compatible with the w∗ topology on BX∗ ,
we refer to these trees as w∗ convergent and w∗ continuous, respectively.

Example 3.9. Suppose that X is a Banach space and S,K ⊂ BX∗ are
norm separable, non-empty sets. Suppose that (x∗n) ⊂ K − K is a w∗ null
sequence so that ‖x∗n‖ > ε for all n ∈ N. First we can choose for each n ∈ N
some xn ∈ BX so that x∗n(xn) > ε. By passing to subsequences, we can
assume the sequence (xn) is pointwise convergent on S ∪ K. For δ > 0,
we can pass to further subsequences and assume that |x∗n(xm)| < δ for any
m < n. We let yn = (x2n−x2n−1)/2 and y∗n = x∗2n. Then y∗n(yn) ≥ ε/2− δ/2
and (yn) is pointwise null on S ∪K.

Next, suppose (x∗E)E∈F̂ ⊂ K−K is a w∗ null tree such that ‖x∗E‖ > ε for
all E ∈ F̂ . We can choose for each E ∈ F̂ some xE ∈ BX so that x∗E(xE) > ε.
By using the previous paragraph and pruning, we can assume that for some
ε′ ∈ (0, ε/2), (xE)E∈F̂ is an S ∪ K null tree and x∗E(xE) > ε′ for each
E ∈ F̂ . Next, we fix decreasing (εn) ⊂ (0, 1) and prune (xE)E∈F̂ using the
rule that a sequence (un) in X has property PE provided |x∗F (un)| < ε|E|+1

for all ∅ � F � E and n ∈ N. Of course, we pass to the corresponding
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pruning of (x∗E)E∈F̂ . The result is a pair of trees (xE)E∈F̂ and (x∗E)E∈F̂
such that (xE)E∈F̂ is S ∪K null, (x∗E)E∈F̂ is w∗ null, and if ∅ � E ≺ F ∈ F
then |x∗E(xF )| < ε|F |. We last pass to a pruning of (x∗E)E∈F̂ using the rule
that a sequence (u∗n) has property PE provided |u∗n(xF )| < ε|E|+1 for ∅ ≺
F � E. After passing to the corresponding pruning of (xE), we have obtained
S ∪K null and w∗ null trees (xE)E∈F̂ ⊂ BX and (x∗E)E∈F̂ ⊂ K −K such
that x∗E(xE) ≥ ε′ for each E ∈ F̂ , and |x∗E(xF )| < min{ε|E|, ε|F |} for any
comparable, distinct E,F .

Note that this example is also true without the assumption that S and
K are norm separable as long as X does not contain a copy of `1. This is
because norm separability was used here to deduce that if (xn) ⊂ BX , we
can pass to a sequence which is pointwise convergent on S∪K. If `1 does not
embed into X, we can use Rosenthal’s `1 theorem to pass to a weakly Cauchy
subsequence of (xn), and the rest of the argument goes through unchanged.

The pruning method defined above is a “bottom up” pruning, since it
begins at the root of the tree. We will also want to use a “top down” pruning
which begins with the leaves of the tree.

Lemma 3.10. Let K,L be compact metric spaces, F a regular family,
and k0 : MAX(F)→ K and l0 : MAX(F)→ L be any functions. Then there
exist functions k : F → K and l : F → L extending k0 and l0, respectively,
and a pruning φ : F → F such that k ◦ φ and l ◦ φ are continuous.

Proof. Recall that for each E ∈ F ′, we let s(E) = min{n ∈ N : Ean ∈
F}. We will define k(E), l(E) for E ∈ MAX(Fξ) by induction on ξ for
0 ≤ ξ ≤ ι(F), and ψE : [s(E),∞) → [s(E),∞) for E ∈ MAX(Fξ) by
induction on ξ for 0 < ξ ≤ ι(F). Then for E = (k1, . . . , kn), we let

φ(E) = φ(E|n−1)aψE|n−1

(
kn − s(E|n−1) + s(φ(E|n−1))

)
so that the resulting tree is convergent. A second pruning as in the example
above will yield a continuous tree.

For ξ = 0, we set k(E) = k0(E) and l(E) = l0(E).
Next, suppose that for some ξ with ξ + 1 ≤ ι(F), k(E) and l(E) have

been defined for each E ∈
⋃

0≤ζ≤ξMAX(Fζ) and ψE has been defined for
each E ∈

⋃
1≤ζ≤ξMAX(Fζ). Choose E ∈ MAX(Fξ+1). By compactness, we

can choose a set (mE
n ) ∈ [[s(E),∞)]ω so that (k(EamE

n )) and (l(EamE
n ))

converge to some k(E) ∈ K and l(E) ∈ L, respectively. Let ψE(s(E) +n) =
mE
n+1 for n = 0, 1, . . . .

Last, suppose that for some limit ordinal ξ ≤ ι(F), k(E) and l(E) have
been defined for each E ∈

⋃
0≤ζ<ξMAX(Fζ) and ψE has been defined for

each E ∈
⋃

1≤ζ<ξMAX(Fζ). The further steps in this case are the same as
in the successor case.
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4. Coloring theorems for regular trees. If ξ < ω1 is an ordinal,
there exist k ∈ N, non-negative integers n1, . . . , nk, and ω1 > α1 > · · · > αk
such that

ξ = ωα1n1 + · · ·+ ωαknk.

If ξ > 0, there is a unique representation of this form such that each ni
is non-zero. This is called the Cantor normal form of ξ. Let ξ and ζ be
countable ordinals and α1 > · · · > αk, ni,mi non-negative integers with

ξ = ωα1m1 + · · ·+ ωαkmk and ζ = ωα1n1 + · · ·+ ωαknk.

By allowing mi or ni to be zero, we can assume that the same ordinals αi
are used in the representations of both. Then we define the Hessenberg (or
natural) sum of ξ and ζ by

ξ ⊕ ζ = ωα1(m1 + n1) + · · ·+ ωαk(mk + nk).

Note that including extra zero terms does not change the value of this sum.
We also note that for each ξ < ω1, {(α, β) : α ⊕ β = ξ} is finite. This

sum is not continuous, since n ⊕ n = 2n → ω, while ω ⊕ ω = ω2. But for
each η < ω1 and each pair (ξn), (ζn) of sequences,

sup
n
ξn ⊕ ζn = ωη ⇒

(
sup
n
ξn

)
∨
(
sup
n
ζn

)
= ωη.

This is because for natural numbers n1, . . . , nk,
ωη > ωα1n1 + · · ·+ ωαknk

if and only if η > α1. Therefore if ξ = supn ξn and ζ = supn ζn < ωη, then
supn ξn ⊕ ζn ≤ ξ ⊕ ζ < ωη.

Moreover, suppose that ζm ⊕ ηm ↗ ξ for a limit ordinal ξ. We can write
ξ = ωα1n1 + · · ·+ ωαk(nk + 1)

for ni ≥ 0, where αk > 0. Let α = ωα1n1 + · · · + ωαknk and β = ωαk .
By passing to a subsequence, assume that ζm ⊕ ηm = α + βm > α for
each m ∈ N and note that βm ↗ β. Then for each m ∈ N, there exist
s1,m, . . . , sk,m, t1,m, . . . , tk,m ≥ 0 with si,m+ ti,m = ni for each 1 ≤ i ≤ k and
ζ ′m, η

′
m such that ζ ′m ⊕ η′m = βm, ζm = ωα1s1,m + · · · + ωαksk,m + ζ ′m and

ηm = ωα1t1,m + · · ·+ ωαkt1,k + η′m.
By our above remarks, either ζ ′m ↗ β or ηm ↗ β. Assume that ζ ′m ↗ β.

By passing to a further subsequence, we can assume that there exist s1, . . . , sk,
t1, . . . , tk such that for each m ∈ N and 1 ≤ i ≤ k, si,m = si and ti,m = ti.
In this case, with ζ ′′ = ωα1s1+ · · ·+ωαksk and η′′ = ωα1t1+ · · ·+ωαktk, we
have ζm = ζ ′′ + ζ ′m ↗ ζ ′′ + β, ηm ≥ η′′, and (ζ ′′ + β)⊕ η′′ = ξ. We will use
this observation in the limit ordinal case of the proof of our next lemma.

If we give each member of a set S of cardinality n at least one of the two
colors 0 and 1, of course we can find numbers i, j such that i + j = n and
subsets A,B of S with cardinality i, j, respectively, such that each member
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of A gets color 0, and each member of B gets color 1. We wish to generalize
this to colorings of regular families, in which case the analogous result, where
addition is the Hessenberg sum, is true for colorings of regular families. Here,
we consider the case in which each member of MAX(F) colors each of its
non-empty predecessors with at least one, but possibly both, of the colors
0, 1. If F is a regular family, we say a collection (A0

E ,A1
E)E∈F̂ of subsets of

MAX(F) is a coloring of F if A0
E ∪A1

E = {F ∈ MAX(F) : E � F} for each
E ∈ F̂ .

For the sake of simplifying the following proof, we introduce some more
terminology. Given regular families F ,G, we say the pair (i, e) is an extended
embedding of F into G if i : F̂ → Ĝ is an embedding and e : MAX(F) →
MAX(G) is a function such that i(E) � e(E) for each E ∈ MAX(F). If
(A0

E ,A1
E)E∈Ĝ is a coloring of G and (i, e) is an extended embedding of F

into G, we define for j = 0, 1 and E ∈ F̂ the set

BjE = {F ∈ MAX(F) : e(F ) ∈ Aji(E)}.

We refer to (B0E ,B1E) as the induced coloring of F by (i, e) and (A0
E ,A1

E), or,
if no confusion can arise, simply the induced coloring. It is easy to see that
this is indeed a coloring of F . We say that the induced coloring (B0E ,B1E) is
monochromatically j provided that for each E ∈ MAX(F),

e(E) ∈
|E|⋂
k=1

Aji(E|k).

We observe that if E ,F ,G are regular families, (A0
E ,A1

E)E∈Ĝ is a coloring
of G, (i, e) is any extended embedding of E into F , and (i′, e′) is an extended
embedding of F into G such that the induced coloring of F by (i′, e′) and
(A0

E ,A1
E) is monochromatically j, then (i′◦i, e′◦e) is an extended embedding

of E into G such that the induced coloring of E by (i′ ◦ i, e′ ◦e) and (A0
E ,A1

E)
is monochromatically j.

Lemma 4.1 (Coloring lemma for sums). Suppose F is a regular family
with ι(F) > 0. If (A0

E ,A1
E) is a coloring of F , then for j = 0, 1, there exist

an ordinal ξj and an extended embedding (ij , ej) of Fξj into F such that the
induced coloring of Fξj is monochromatically j and ξ0 ⊕ ξ1 = ι(F).

Here, it should be understood that if either ξj = 0 for j = 0 or 1, we take
ij and ej to be the empty maps to satisfy the conclusion for that j.

Proof of Lemma 4.1. We prove the result by induction on ι(F). Fix
0 ≤ ξ < ω1, and in the case ξ > 0 assume the result holds for all families F
with ι(F) ≤ ξ and all colorings (A0

E ,A1
E) of F . Fix a regular family F with

ι(F) = ξ + 1 and a coloring (A0
E ,A1

E) of F . There exists n0 ∈ N such that
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for all n ≥ n0, ι(F(n)) = ξ. For each n ≥ n0, E ∈ F(n), and j ∈ {0, 1}, let

AjE(n) = {F ∈ MAX(F(n)) : naF ∈ Aj
naE
}.

This defines a coloring of F(n), and in fact is the induced coloring of F(n)
corresponding to the extended embedding E 7→ naE. Note that for each
n ≥ n0, we have A0

∅(n)∪A
1
∅(n)=MAX(F(n)). By Theorem 3.4, there exists

Mn∈ [N]ω such that either

MAX(F(n)) ∩ [Mn]
<ω ⊂ A0

∅(n) or MAX(F(n)) ∩ [Mn]
<ω ⊂ A1

∅(n).

Without loss of generality, we can find n0 ≤ N ∈ [N]ω such that for each
n ∈ N , we have MAX(F(n)) ∩ [Mn]

<ω ⊂ A0
∅(n). Next, for each n ∈ N ,

choose a function

fn : MAX(F(n))→ MAX(F(n)) ∩ [Mn]
<ω

so that Mn(F ) � fn(F ) for each F ∈ MAX(F(n)). We can do this because
F(n) is regular, which means any member of F(n)∩[Mn]

<ω has an extension
in MAX(F(n)) ∩ [Mn]

<ω. Let (B0E(n),B1E(n)) be the coloring of F(n) given
by

BjE(n) = {F ∈ MAX(F(n)) : fn(F ) ∈ AjMn(E)(n)}.

It is easy to check that this is indeed a coloring. In fact, this is the induced
coloring corresponding to the extended embedding of F(n) into itself given
by E 7→ Mn(E), and for E ∈ MAX(F(n)), E 7→ fn(E). Now apply the
inductive hypothesis to find some ξ0,n, ξ1,n with ξ0,n ⊕ ξ1,n = ι(F(n)) = ξ
and an extended embedding (ij,n, ej,n) of Fξj,n into F(n) which is monochro-
matically j with respect to the coloring (B0E(n),B1E(n)). By passing to an
infinite subset of N , we can assume that we have some n0 ≤ N ∈ [N]ω and
ξ0, ξ1 such that for each n ∈ N , ξ0,n = ξ0 and ξ1,n = ξ1. It is clear that for
n ∈ N and j = 0 or 1,

i′j,n(E) =Mn(ij,n(E)), e′j,n(E) = fn(ej,n(E))

defines an extended embedding of Fξj into F(n) such that the induced col-
oring of Fξj by (A0

E(n),A1
E(n)) is monochromatically j.

For convenience, set i′0,n(∅) = ∅ and let e′0,n(∅) = ∅ if ∅ ∈ MAX(F(n)).
Define i0 : F̂ξ0+1 → F̂ , e0 : MAX(Fξ0+1) → MAX(F), i1 : F̂ξ1 → F̂ and
e1 : MAX(Fξ1)→ MAX(F) by

i0(k
aE) = nak i

′
0,nk

(E), e0(k
aE) = nak e

′
0,nk

(E),

i1(E) = na1 i
′
1,n1

(E), e1(E) = na1 e
′
1,n1

(E),

where N = (nk). The coloring induced by (i1, e1) is monochromatically 1
with respect to (A0

E ,A1
E). To see that the coloring induced by (i0, e0) is

monochromatically 0, fix F ∈ MAX(Fξ0+1). Write F = kaE. By our choices
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and the definition of (A0
G(nk))G,

e0(F ) = nak e
′
0,nk

(E) ∈
|E|⋂
i=1

A0
na
k i
′
0,nk

(E|i)
=

|F |⋂
i=2

A0
i0(F |i).

But by our choices, e0(F ) ∈ MAX(Fnk) ∩ [Mnk ]
<ω ⊂ A0

(nk)
, so

e0(F ) ∈
|F |⋂
i=1

A0
i0(F |i).

Thus the coloring on Fξ0+1 induced by (i0, e0) and (A0
E ,A1

E) is monochro-
matically 0. Since (ξ0 + 1)⊕ ξ1 = ξ0 ⊕ ξ1 + 1 = ξ + 1, this finishes the ξ + 1
case.

Suppose ξ is a limit ordinal and the result holds for every coloring of
every regular family with ι index less than ξ. Fix F with ι(F) = ξ and a
coloring (A0

E ,A1
E) of F . Fix n0 ∈ N so that (n0) ∈ F . For n ≥ n0, define the

coloring (A0
E(n),A1

E(n)) as in the successor case. Recall that ι(F(n)) ↗ ξ.
For each n ≥ n0, choose ξj,n so that ξ0,n ⊕ ξ1,n = ι(F(n)), and extended
embeddings (ij,n, ej,n) of Fξj,n into F(n) so that the induced coloring is
monochromatically j. Recall by our separation technique that we can pass to
a subsequence N = (nk) ∈ [N]ω, find ordinals α, β, βk, γ, and find j ∈ {0, 1}
(which we assume without loss of generality is equal to 0) such that

(i) ξ0,nk = α+ βk,
(ii) βk ↗ β,
(iii) β is a limit ordinal,
(iv) (α+ β)⊕ γ = ξ,
(v) γ ≤ ξ1,nk for all k ∈ N.

Fix ζk ↑ α + β so that Fα+β = D(Fζk) and Fζk ⊂ Fζk+1
for all k ∈ N.

By passing to a further subsequence of N , we can assume without loss of
generality that ζk ≤ α + βk for all k ∈ N. Choose an extended embedding
(i′, e′) of Fγ into Fξ1,n1 , and for each k ∈ N, an extended embedding (i′k, e

′
k)

of Fζk into Fα+βk = Fξ0,nk . We define extended embeddings (i0, e0) and
(i1, e1) of Fα+β and Fγ , respectively, into F such that the coloring induced
by (ij , ej) is monochromatically j by

i1(E) = na1 (i1,n1 ◦ i′)(E), e1(E) = na1 (e1,n1 ◦ e′)(E),

and if E ∈ F̂α+β with k = minE,

i0(E) = nak (i0,nk ◦ i
′
k)(E), e0(E) = nak (e0,nk ◦ e

′
k)(E).

Lemma 4.2 (Coloring lemma for products). Let F ,G be non-empty reg-
ular families. Suppose f : C(F [G]) → {0, 1} is a function such that for any
embedding j : G → F [G], there exists c ∈ C(j(G)) with f(c) = 0. Then there
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exists an order preserving j : F̂ → C(F [G]) such that f ◦ j ≡ 0 and the sets
{j(E) : E ∈ F̂} are pairwise disjoint.

Proof. We first recursively define r : F̂ → C(G) so that for E ∈ F̂ , if we
let Fi = max r(E|i) ∈ G for 1 ≤ i ≤ |E|, we have:

(i) (minFi)
|E|
i=1 is a spread of E, hence is a member of F ,

(ii) (Fi)
|E|
i=1 is successive,

(iii) f({(
⋃|E|−1
i=1 Fi)

aF : F ∈ r(E)}) = 0.

Then j(E) = {(
⋃|E|−1
i=1 Fi)

aF : F ∈ r(E)} gives the desired function.
To perform the base step and inductive step simultaneously, we only

need to demonstrate how to perform the construction on the sequence of
immediate successors of any E ∈ F ′. Suppose that E ∈ F ′ is such that
r(E|i) has been defined for each 1 ≤ i ≤ |E|. Let Fi be as above. Let
m0 > E be minimal such that Eam0 ∈ F . Choose m0 ≤ m1 ∈ N so that
F|E| < m1 and ((minFi)

|E|
i=1)

am1 ∈ F . Since (minFi)
|E|
i=1 is a spread of E,

which is non-maximal in F , such an m1 exists. If there exists n ≥ m1 with

f
({( |E|⋃

i=1

Fi

)a
F : F ∈ c

})
= 1

for all c ∈ C(G ∩ [(n,∞)]<ω), we obtain a contradiction. This is because
in this case the embedding j(G) =

(⋃|E|
i=1 Fi

)a
(k + n : k ∈ G) is such that

f |j(G) ≡ 1. This is indeed an embedding by our choice ofm1 and the fact that
Fi ∈ G for each 1 ≤ i ≤ |E|. We can choose chains cm0 , cm0+1, . . . so that for
each m ≥ m0, cm ∈ C(G ∩ [(m1,∞)]<ω), minmin cm is strictly increasing
with m, and

f
({( |E|⋃

i=1

Fi

)a
F : F ∈ cm

})
= 0.

Setting r(Eam) = cm for each m ≥ m0 we easily see that (i)–(iii) are
satisfied.

5. The Szlenk and weakly null `+1 indices

5.1. Definition and remarks. LetX be a Banach space and let L⊂X∗
be a bounded set. For ε > 0, we let

sε(L) = {x∗ : ∀w∗ neighborhood V of x∗, diam‖·‖(V ∩ L) > ε}.

As usual, we define the transfinite derivatives

s0ε(L) = L, sξ+1
ε (L) = sε(s

ξ
ε(L)),
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and if ξ is a limit ordinal,

sξε(L) =
⋂
ζ<ξ

sζε(L).

It is easy to see that if L is w∗ compact, then so is sξε(L) for each ξ.
We define the Szlenk index Szε(L) = min{ξ < ω1 : sξε(L) = ∅} provided

this set is non-empty, and Szε(L) = ω1 otherwise. Last, we define Sz(L) =
supε>0 Szε(L). We set Sz(X) = Sz(BX∗).

Proposition 5.1 ([22, 14]). Let X,Y be separable Banach spaces, and
let ∅ 6= K ⊂ X∗ be w∗ compact.

(i) If X is isomorphic to a subspace of Y , then Sz(X) ≤ Sz(Y ).
(ii) Sz(K) < ω1 if and only if K is norm separable.
(iii) If K is convex, then either Sz(K) = ω1 or there exists ξ < ω1 such

that Sz(K) = ωξ.
(iv) IfK is convex and not norm compact, then the supremum supε Szε(K)

is not attained.
(v) Sz(K) = 1 if and only if K is compact.

5.2. Weakly null and general σ indices. For a given set S and a
given σ ⊂ Sω, we can define the σ derivatives and σ indices for general
hereditary trees on S. Given a tree H on S, we let

(H)′σ = {t ∈ H : ∃(si) ∈ σ, tasi ∈ H ∀i ∈ N}.
If H is a hereditary tree on S, then (H)′σ is also a hereditary tree on S. It
is not hard to see that if H is not hereditary, (H)′σ need not be a tree. As
usual, we define the transfinite σ derivatives and σ index by

(H)0σ = H, (H)ξ+1
σ = ((H)ξσ)′σ

and
(H)ξσ =

⋂
ζ<ξ

(H)ζσ, ξ < ω1 is a limit ordinal.

We define Iσ(H) = min{ξ < ω1 : (H)ξσ = ∅} provided this set is non-empty,
and Iσ(H) = ω1 otherwise. We say σ contains diagonals if any subsequence
of a member of σ is also a member of σ, and if (si,j)i ∈ σ for each j ∈ N
implies there exists a sequence (ij), i1 < i2 < · · · , such that (sij ,j)j ∈ σ.
A standard induction proof gives the following.

Proposition 5.2 ([18]). Let H be a non-empty hereditary tree on S, and
suppose σ ⊂ Sω contains diagonals. Then for 0 ≤ ξ < ω1, Iσ(H) > ξ if and
only if there exists (tE)E∈F̂ξ

⊂ S such that

(i) (tE|i)
|E|
i=1 ∈ H for each E ∈ F̂ξ,

(ii) (tEan)E<n ∈ σ for each E ∈ F ′ξ.
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Observe that in place of Fξ, we can use any regular family F with
ι(F) = ξ, since there existsM ∈ [N]ω such thatM(F) ⊂ Fξ andM(Fξ) ⊂ F .

Note also that only one direction of Proposition 5.2 requires that S
contains diagonals. Indeed, if (tE)E∈F̂ξ ⊂ S is as in the statement, then
IS(H) > ξ.

Example 5.3. If X is a Banach space and ∅ 6= K ⊂ BX∗ is norm
separable, and if σ denotes all sequences in BX which are pointwise null
on K, then σ contains diagonals. This is because (xn) ⊂ BX is pointwise
null on K if and only if d(xn) → 0, where d(x) =

∑
cn|x∗(xn)|, (x∗n) is

dense in K, and cn > 0 is chosen so that
∑
cn‖x∗n‖ < ∞. In this, for any

hereditary tree H on BX , we denote the pointwise null on K derivative by
(H)′K and the pointwise null on K index by IK(H). In the case K = BX∗ ,
we refer to this derivative as the weakly null derivative, denoted by (H)′w,
and the weakly null index, denoted by Iw(H).

Example 5.4. Let X be a Banach space and ∅ 6= K ⊂ X∗. For r > 0,
we say (xn) ⊂ BX has K radius r if for any x∗ ∈ K, lim sup |x∗(xn)| ≤ r.
If K is norm separable and if σ is the collection of sequences (xn) ⊂ BX
having K radius r, then σ contains diagonals. Clearly any subsequence of a
member of σ is a member of σ. If (x∗n) is a dense sequence in K, and for each
i ∈ N, (xin)n ∈ σ, we can choose i1, i2, . . . so that |x∗k(xnin)| < r + 1/n for all
n ∈ N and 1 ≤ k ≤ n. Then (xnin) ∈ σ. In this case, for any hereditary tree H
on BX , we let (H)′K,r denote the derivative when σ consists of all sequences
in BX with K radius r, and IK,r(H) denotes the σ index in this case.

Example 5.5. If X is a Banach space with FDD E, and if σ denotes all
infinite block sequences in BX with respect to E, then σ contains diagonals.
In this case, for any hereditary block tree H on BX , we denote the block
derivative by (H)′bl and the block index by Ibl(H).

Example 5.6. If σ consists of all sequences (Bn) ⊂ [N]<ω such that
Bn →n ∅, then σ contains diagonals. In this case, for any hereditary tree
H on [N]<ω consisting of successive sets, we also denote the derivative by
(H)′bl and the index by Ibl(H). We think of this as a discretized version of
the block index for FDDs.

Proposition 5.7 ([18]). Suppose X is a Banach space with FDD E. Let
B be a hereditary block tree on BX with respect to E. Let the compression B̃
of B be defined by

B̃ = {(max suppE(xi))
k
i=1 : (xi)

k
i=1 ∈ B}.

Then for any non-increasing ε = (εn) ⊂ (0, 1),
ι(B̃) ≤ 2Ibl(BE,Xε ).

In particular, if λ is a limit ordinal and Ibl(BE,Xε ) < λ, then ι(B̃) < λ.
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Remark 5.8. The compression was defined in [18] using minima of sup-
ports rather than maxima of supports. We include a sketch of proof to outline
how to obtain the version of the statement made here.

We note that any ordinal ξ can be written as ξ = λ+n where λ is either
zero or a limit ordinal and n is either zero or a natural number. We recall
that in this case, 2ξ = λ+ 2n.

Sketch of proof of Proposition 5.7. First, one defines for any B ⊂ Σ(E,X)
the support tree

supp(B) = {(suppE(zi))ni=1 : (zi)
n
i=1 ∈ B}

and proves by induction on ξ that for any non-increasing ε ⊂ (0, 1),
(supp(B))ξbl ⊂ supp((BE,Xε )ξbl).

This part of the proof is unchanged.
Next, one proves a discretized version of the statement. For each collec-

tion B of finite, non-empty, successive sequences of finite subsets of N, one
defines

max(B) = {(maxAi)
n
i=1 : (Ai)

n
i=1 ∈ B}.

Then one shows by induction that if B ⊂ [N]<ω is a hereditary collection of
finite, non-empty, successive sequences of finite subsets of N, then for any
ordinal ξ = λ + n, where λ is either zero or a limit and n is either 0 or a
natural number,

(maxB)ξ ⊂ max((B)λ+2n
bl ).

Since B̃ = max(supp(B)) for any B ⊂ Σ(E,X), one applies these two facts
to B̃ to obtain

ι(B̃) = ι(max(supp(B))) ≤ 2Ibl(supp(B)) ≤ 2Ibl(BE,Xε ).

The difference lies in the discretized version. The key part of the proof
lies in the successor case. If one supposes that (n1, . . . , nr) ∈ max(B)′′ and
pj , qjk → ∞ satisfy pj < qjk and (n1, . . . , nr, pj , qjk) ∈ max(B) for all
j, k ∈ N, we can choose for any j, k ∈ N some successive Aj1, . . . , A

j
r, Cj , Djk ∈

[N]<ω so that maxAji = ni, maxCj = pj , maxDjk = qjk and (Aj1, . . . , A
j
r,

Cj , Djk) ∈ B. Since Aji ⊂ {1, . . . , nr} for all j ∈ N and 1 ≤ i ≤ n, we
can pass to some subsequence and assume we have successive A1, . . . , Ar
such that Aji = Ai for all j ∈ N and 1 ≤ i ≤ r. Since maxCj→

j
∞, we

may fix a sequence kj such that minDjkj tends to infinity with j, and by
heredity, (A1, . . . , Ar, Djkj ) ∈ B for all j. Since minDjkj→

j
∞, we deduce

(A1, . . . , Ar) ∈ (B)′bl.
In what follows, for a Banach space and ∅ 6= K ⊂ BX∗ , we let

HKε = {(xi)ni=1 ∈ B<ω
X : ∃x∗ ∈ K, x∗(xi) ≥ ε ∀1 ≤ i ≤ n}.

We let HXε = HBX∗ε .
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5.3. Dualization for separable spaces. In [2], it was shown that the
weakly null `+1 index is equal to the Szlenk index of any separable Banach
space not containing `1. Here we discuss how to modify this result to com-
pute the Szlenk index of certain subsets of the dual of a separable Banach
space.

Lemma 5.9. If X is a separable Banach space and if ∅ 6= K ⊂ X∗ is
w∗ compact and norm separable, then the following are equivalent for any
0 < ξ < ω1:

(i) There exists ε > 0 such that Szε(K) > ξ.
(ii) There exists ε > 0 such that for every norm separable ∅ 6= S ⊂ X∗,

there exists an S null (xE)E∈F̂ξ⊂BX and a w∗ continuous (x∗E)E∈Fξ
⊂ K such that x∗E(xF ) ≥ ε for all E ∈ Fξ and ∅ ≺ F � E.

(iii) There exists ε > 0 such that for every norm separable ∅ 6= S ⊂ X∗,
there exists an S null (xE)E∈F̂ξ ⊂ BX and (x∗E)E∈MAX(Fξ) ⊂ K

such that x∗E(xF ) ≥ ε for all E ∈ MAX(Fξ) and ∅ ≺ F � E.
(iv) There exists ε > 0 such that IS(HKε ) > ξ for every norm separable

∅ 6= S ⊂ X∗.
(v) There exist 0 < r < ε such that IS,r(HKε ) > ξ for every norm sepa-

rable ∅ 6= S ⊂ X∗.

Moreover, if `1 does not embed into X, the result is true without the assump-
tion that K or S is norm separable.

Proof. (i)⇒(ii). An easy proof by induction shows that if x∗ ∈ sξε(K),
there must exist some tree (x∗E)E∈Fξ ⊂ K such that, setting x∗∅ = x∗, for
each E ∈ F ′ξ,

(a) x∗
Ean
→
w∗
x∗E ,

(b) ‖x∗E − x∗Ean
‖ > ε/2 for all n > E.

Suppose Szε(K) > ξ and fix x∗ ∈ sξε(K). Fix ∅ 6= S ⊂ BX∗ norm separable.
Let (x∗E)E∈F ⊂ K be as above with x∗∅ = x∗. For each E ∈ F̂ξ, let y∗E =
x∗E−x∗E||E|−1

. Let y∗∅ = x∗∅. Then (y∗E)E∈F̂ξ ⊂ K−K is a w∗ null tree in X∗ so
that ‖y∗E‖ > ε/2 for all ∅ ≺ E ∈ Fξ. Fix 0 < δ < ε′ < ε/4 and (εn) ⊂ (0, 1)
so that δ > nεn +

∑
i>n εi for each n ∈ N. By Lemma 3.5 and Example 3.9,

we can pass to a pruning and assume (y∗E)E∈F̂ξ
, (xE)E∈F̂ξ ⊂ BX are such

that (xE)E∈F̂ξ is S null (actually S ∪K null), y∗E(xE) > ε′ for all E ∈ F̂ξ,
and for any E ∈ F̂ξ, F ∈ Fξ comparable and distinct,

|y∗F (xE)| < min{ε|E|, ε|F |}.

Then for all E ∈ F̂ and ∅ ≺ F � E,
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(
y∗∅ +

|E|∑
i=1

y∗E|i

)
(xF ) ≥ y∗F (xF )−

|F |−1∑
i=0

|y∗F |i(xF )| −
|E|∑

i=|F |+1

|y∗E|i(xF )|

> ε′ − |F |ε|F | −
∑
i>|F |

εi > ε′ − δ.

But

y∗∅ +

|E|∑
i=1

y∗E|i = x∗∅ +

|E|∑
i=1

(x∗E|i − x
∗
E|i−1

) = x∗E ∈ K.

Note that (x∗E)E∈Fξ is w∗ convergent, so by pruning once more (as in Ex-
ample 3.8) and passing to the appropriate pruning of (xE)E∈F̂ξ (which is
still S ∪K null), we can assume (x∗E)E∈Fξ ⊂ K is w∗ continuous.

(ii)⇒(iii). This is trivial.
(iii)⇒(iv). Suppose ε > 0 is such that for each norm separable ∅ 6=

S ⊂ X∗, there exists an S null tree (xE)E∈F̂ξ ⊂ BX with branches lying
in HKε . By Proposition 5.2, this tree witnesses the fact that IS(HKε ) > ξ.

(iv)⇒(v). This is trivial, since if σ denotes all sequences in BX point-
wise null on S and σ(r) denotes all sequences in BX with S radius r, then
σ ⊂ σ(r). Thus for any r > 0, we have IS(H) ≤ IS,r(H) for any H.

(v)⇒(i). We apply (v) with S = K. We claim that for any ζ ≤ ξ, any
0 < δ < ε − r, and any sequence t ∈ (HKε )ζK,r, there exists x∗ ∈ sζδ(K)

such that x∗(x) ≥ ε for each x ∈ t. Applying this with ζ = ξ yields the
non-emptiness of sξδ(K). The ζ = 0 case follows by the definition of HKε .
Assume the result holds for some ζ < ξ and t ∈ (HKε )ζ+1

K,r . Then there exists
a sequence (xn) ⊂ BX havingK radius r such that taxn ∈ (HKε )ζK,r for every
n ∈ N. For each n, fix x∗n ∈ s

ζ
δ(K) such that x∗(x) ≥ ε for every x ∈ taxn.

By passing to a subsequence, we may assume x∗n→
w∗
x∗ ∈ sζδ(K). Note that

lim inf
n
‖x∗n − x∗‖ ≥ n lim inf

n
(x∗n − x∗)(xn) ≥ ε− r > δ.

Hence x∗ ∈ sζ+1
δ (K). Of course, x∗(x) = limn x

∗
n(x) ≥ ε for any x ∈ t. Last,

suppose that ζ ≤ ξ is a limit ordinal and the result holds for every γ < ζ.
Suppose that t ∈ (HKε )ζK,r. For every γ < ζ, there exists x∗γ ∈ s

γ
δ (K) such

that x∗γ(x) ≥ ε for every x ∈ t. Any w∗ limit x∗ of a subnet of (x∗γ)γ<ζ lies
in sζδ(K) and satisfies x∗(x) ≥ ε for every x ∈ t.

To see the last statement, we leave it to the reader to check that the
only cited results here which depend upon separability of either K or S are
Example 3.9 and Proposition 5.2, guaranteeing that σ contains diagonals.
However, the last paragraph of Example 3.9 indicates that the example holds
without the assumption of separability whenever X does not contain `1, and
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that we have only used the direction of Proposition 5.2 which does not require
that σ contains diagonals.

Corollary 5.10. Let X be a separable Banach space. If ∅ 6= K ⊂ X∗

is w∗ compact and separable, then for any separable S ⊃ K, Sz(K) =
supε>0 IS(HKε ). If `1 does not embed into X, then Sz(K) = supε>0 Iw(HKε ).

Proof. If ξ < IS(HKε ) for S ⊃ K norm separable, or if Iw(HKε ) > ξ,
then the proof of (v)⇒(i) above shows that Sz(K) > ξ. Therefore Sz(K) ≥
supε>0 IS(HKε ) and Sz(K) ≥ supε>0 Iw(HKε ). But (i)⇒(iv) above implies
that if ξ < Szδ(K), then ξ < supε>0 IS(HKε ), and Sz(K) ≤ supε>0 IS(HKε ).
The implication (i)⇒(iv) in the “moreover” case of Lemma 5.9 yields Sz(K) ≤
supε>0 Iw(HKε ) whenever `1 does not embed into X.

5.4. First application: Minkowski sums

Theorem 5.11. For any separable Banach space X, any ε > 0, and
∅ 6= K,L, S ⊂ X∗ norm separable such that K,L are w∗ compact,

IS(HK+L
ε ) ≤ IS(HKε/2)⊕ IS(H

L
ε/2).

If K,L are also assumed to be convex, then Sz(K+L) = max{Sz(K), Sz(L)}.
In particular, for any separable Banach spaces Y,Z,

Sz(Y ⊕ Z) = max{Sz(Y ),Sz(Z)}.

Remark 5.12. The third part of the statement was shown in [18], using
slicings of the dual ball.

Proof of Theorem 5.11. LetK0=K andK1=L. Suppose ξ<IS(HK0+K1
ε ).

Fix a strongly S null tree (xE)E∈F̂ξ ⊂ BX with branches lying in HK0+K1
ε .

For each F ∈ MAX(Fξ), choose x∗F (0) ∈ K0 and x∗F (1) ∈ K1 so that
(x∗F (0) + x∗F (1))(xE) ≥ ε for all ∅ ≺ E � F . For E ∈ F̂ξ and j = 0
or 1, let

AjE = {F ∈ MAX(Fξ) : E � F, x∗F (j)(xE) ≥ ε/2}.

By Lemma 4.1, we can find ξ0, ξ1 with ξ0 ⊕ ξ1 = ξ and for j = 0 or 1 an
extended embedding (ij , ej) of Fξj into Fξ such that the induced coloring is
monochromatically j. But this means that for each E ∈ MAX(Fξj ),

e(E) ∈
|E|⋂
k=1

Ajij(E|k),

so x∗e(E)(j)(xij(E|k)) ≥ ε/2 for 0 < k ≤ |E|. Thus the S null tree (xij(E))E∈F̂ξj
witnesses the fact that ξj < IS(H

Kj
ε/2). Then
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ξ = ξ0 ⊕ ξ1 < IS(HKε/2)⊕ IS(H
L
ε/2).

Since ξ < IS(HK+L
ε ) was arbitrary, IS(HK+L

ε ) ≤ IS(HKε/2)⊕ IS(H
L
ε/2).

For the second statement, max{Sz(K), Sz(L)} = ωξ for some 0 ≤ ξ < ω1.
If ξ = 0, both K and L, and therefore K + L, must be norm compact. This
gives the result for ξ = 0. Suppose ξ > 0. Then

IK∪L(HK+L
ε ) ≤ IK∪L(HKε/2)⊕ IK∪L(H

L
ε/2) ≤ IK(HKε/2)⊕ IL(H

L
ε/2) < ωξ.

Here we have used the fact that IK(HKε/2), IL(H
L
ε/2) are successors, and there-

fore strictly less than Sz(K),Sz(L), respectively. Since any sequence point-
wise null on K ∪ L is pointwise null on K + L, we can take the supremum
over ε and deduce Sz(K + L) ≤ max{Sz(K), Sz(L)}. Since K + L contains
translates of K and L, and since the Szlenk index is translation invariant,
we deduce that Sz(K + L) ≥ max{Sz(K), Sz(L)}.

For the last part, it is sufficient to assume Y ∗, Z∗ are separable, since
otherwise both sides of the equation are ω1. It is clear that Sz(Y ⊕ Z) ≥
max{Sz(Y ),Sz(Z)} and Sz(Y ⊕ Z) = Sz(Y ⊕1 Z), so we assume Y ⊕ Z =
Y ⊕1 Z. We identify Y , Z in the natural way with subspaces of Y ⊕1 Z
and note that with this identification, B(Y⊕1Z)∗ = BY ∗ +BZ∗ . The previous
paragraph now gives the conclusion.

5.5. Second application: Szlenk index of an operator. Given an
operator T : X → Y with X separable, the Szlenk index Sz(T ) of T is
defined to be Sz(T ∗BY ∗). The next theorem was shown in [5] for the usual
definition of the Szlenk index, while what we show uses our dualization of
the Szlenk index. What we have already done easily yields the following:

Theorem 5.13. For ξ < ω1, and separable Banach spaces X,Y , let

SZξ(X,Y ) = {T ∈ L(X,Y ) : Sz(T ) ≤ ωξ}.
Then for any separable Banach spaces W,X, Y, Z, any ξ < ω1, and any S ∈
SZξ(X,Y ), T ∈ L(W,X), and R ∈ L(Y, Z), we have RST ∈ SZξ(W,Z).
Moreover, SZξ(X,Y ) is a closed subspace of L(X,Y ).

Proof. Note that SZ0(X,Y ) is simply the compact operators, so the
result is well-known. Assume ξ > 0. We first note that in this case, S∗BY ∗
is norm separable and w∗ compact for every S ∈ SZξ(X,Y ).

Note that Sz(0) = 1, so 0 ∈ SZξ for any 0 ≤ ξ < ω1. If S ∈ SZξ, then
for any ε > 0 and non-zero scalar c,

I(cS∗)BY ∗ (H
(cS∗)BY ∗
ε ) = IS∗BY ∗ (H

(cS∗)BY ∗
ε ) = IS∗BY ∗ (H

S∗BY ∗
|c−1|ε ) ≤ Sz(S).

Therefore Sz(cS) ≤ Sz(S). Since c 6= 0 was arbitrary, Sz(S) = Sz(cS).
If Sz(S) > ωξ, there exists ε > 0 such that IS∗BY ∗ (H

S∗BY ∗
ε ) > ωξ. If

S∗BY ∗ is non-separable, obviously S is not the norm limit of any sequence



228 R. M. Causey

Tn : X → Y such that T ∗nY ∗ is separable. From this it follows that S is
not the norm limit of a sequence in SZξ(X,Y ). If S∗BY ∗ is separable and
Sz(S) > ωξ, then there exists (xE)E∈F̂ξ ⊂ BX which is S∗BY ∗ null and has

branches lying in HS
∗BY ∗

ε . If ‖S − U‖ < ε/3, then any member of HS
∗BY ∗

ε

is a member of HU
∗BY ∗

2ε/3 . Moreover, any S∗BY ∗ null sequence (xn) ⊂ BX is
a U∗BY ∗ radius ε/3 sequence. Therefore (xE)E∈F̂ξ ⊂ BX witnesses the fact

that IU∗BY ∗ ,ε/3(H
U∗BY ∗
2ε/3 ) > ξ. Hence Sz(U) > ωξ. Thus S cannot be the

norm limit of a sequence lying in SZξ, and SZξ is a norm closed subset of
L(X,Y ).

Using the fact that for S,U ∈ SZξ(X,Y ) we have (S∗ + U∗)BY ∗ ⊂
S∗BY ∗ + U∗BY ∗ and Theorem 5.11, we get

Sz(S + U) = Sz((S∗ + U∗)BY ∗)

≤ Sz(S∗BY ∗ + U∗BY ∗) = max{S∗BY ∗ , U∗BY ∗},
whence SZξ(X,Y ) is closed under finite sums.

Suppose S ∈ SZξ(X,Y ) and R ∈ L(Y,Z) has norm not exceeding 1.
Then

HS∗R∗BZ∗ε ⊂ HS∗BY ∗ε ,

since S∗R∗BZ∗ ⊂ S∗BY ∗ . Thus
IS∗BY ∗ (H

S∗R∗BZ∗
ε ) ≤ IS∗BY ∗ (H

S∗BY ∗
ε ) ≤ Sz(S).

Since S∗R∗BZ∗ ⊂ S∗BZ∗ , Lemma 5.9 gives

Sz(SR) ≤ sup
ε>0

IS∗BY ∗ (H
S∗R∗BZ∗
ε ) ≤ sup

ε>0
IS∗BY ∗ (H

S∗BY ∗
ε ) = Sz(S) ≤ ωξ.

Suppose S ∈ SZξ(X,Y ) and T ∈ L(W,X) has norm not exceeding 1.
Note that

T (HT ∗S∗BY ∗ε ) ⊂ HS∗BY ∗ε .

More generally, an easy proof by induction shows that for any ξ,

T ((HT ∗S∗BY ∗ε )ξT ∗S∗BY ∗ ) ⊂ (HS∗BY ∗ε )ξS∗BY ∗ .

The only non-trivial step is the successor step, for which we note that any
sequence (uj) ⊂ BW which is pointwise null on T ∗S∗BY ∗ is such that
(Tuj) ⊂ BX is pointwise null on S∗BY ∗ . This proves Sz(TS) ≤ Sz(S).

In the next section, we will see a new application of pointwise null indices
to computing the Szlenk index of an operator.

5.6. Third application: Direct sums. Suppose (Xn) is a sequence of
Banach spaces and U is a Banach space with normalized, 1-unconditional
basis (en). We denote by

(⊕
nXn

)
U
the space all sequences (xn) such that

xn ∈ Xn and
∑
‖xn‖en ∈ U , and letX denote this space with norm ‖(xn)‖ =∥∥∑ ‖xn‖en∥∥. We also let Pn : X → Xn denote the operator which takes (xm)
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to xn. More generally, for each E ⊂ N, we let PE =
∑

n∈E Pn. We have the
following:

(i) X is a Banach space with this norm.
(ii) X is separable if and only if Xn is separable for each n ∈ N.
(iii) If (en) is a shrinking basis for U , then X∗ = (

⊕
nX

∗
n)U∗ isometri-

cally.
(iv) If (en) is shrinking, then a sequence (sn) ⊂ X is weakly null if and

only if it is bounded and (Pmsn)n is weakly null in Xm for each
m ∈ N.

Theorem 5.14. If U is a Banach space with normalized 1-unconditional
basis (en) and if Xn is a sequence of separable spaces, then

Sz(X) ≤
(
sup
n

Sz(Xn)
)
Sz(U).

Proof. If U∗ is non-separable or X∗n is non-separable for some n ∈ N,
the result is clear. Thus it is sufficient to assume that (en) is shrinking,
which means X∗ is separable, and it is sufficient to estimate the weakly null
`+1 index. Let ξ = supn Sz(Xn) and ζ = Iw(HUε/3). Seeking a contradiction,
suppose Iw(HXε ) > ξζ. Let (xE)E∈F̂ζ [Fξ]

⊂ BX be a weakly null tree with

branches in HXε . Mimicking the proof of Lemma 4.2, we will recursively
construct r : F̂ζ → C(Fξ), I : F̂ζ → [N]<ω, and u : F̂ζ → BX so that for all
E ∈ F̂ζ , letting Fi = max r(E|i) for each 1 ≤ i ≤ |E|, and F =

⋃|E|−1
i=1 Fi,

• u(E) ∈ co(xFaG : G ∈ r(E)),
• ‖u(E)− PI(E)(uE)‖ < 2ε/3,
• (minFi)

|E|
i=1 is a spread of E,

• if E ≺ H ∈ Fζ , then I(E) < I(H),
• if Eak,Eal ∈ Fζ with k < l, then I(Eak) < I(Eal),
• (Fi)

|E|
i=1 is successive.

For a given E ∈ Fζ , we must define r(E), I(E), u(E) assuming that
r(H), I(H), u(H) have been defined for each ∅ ≺ H ≺ E. Let m0 ∈ N be
minimal such that Eam0 ∈ Fζ . We will recursively define r(Eam), I(Eam),
u(Eam) for each m ≥ m0. Assume that for some k ≥ m0, these have been
defined for each m0 ≤ m < k. Let Fi = max r(E|i) and F =

⋃|E|
i=1 Fi. Fix

n so that F < n, I(E) < n, k < n, and ((minFi)
|E|
i=1)

an ∈ Fζ . This can
be done since (minFi)

|E|
i=1 is a spread of E, which is non-maximal in Fζ . If

k > m0, assume also that n > I(Ea(k − 1)). Define j : Fξ → Fζ [Fξ] by

j(G) = Fa(n+ i : i ∈ G).
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If for each c ∈ C(Fξ ∩ (n,∞)<ω),

inf{‖P[1,n)x‖ : x ∈ co(xFaG : G ∈ c)} ≥ ε/3,

then (P[1,n)xj(G))G∈F̂ξ ⊂ B⊕n
i=1Xi

is a weakly null tree with branches in

HX′ε/3, where X
′ =

⊕n
i=1Xi. But this would mean that

max
1≤i≤n

Sz(Xi) = Sz
( n⊕
i=1

Xi

)
> ξ,

a contradiction. Thus we can find some c ∈ C(Fξ ∩ (n,∞)) such that

inf{‖P[1,n)x‖ : x ∈ co(xFaG) : G ∈ c} < ε/3.

Let r(Eak) = c. Let u(Eak) ∈ co{xFaG : G ∈ c} be a vector such that
‖P[1,n)u(E

ak)‖ < ε/3. Choose l ∈ N so that ‖P(l,∞)u(E
ak)‖ < ε/3 and let

I(Eak) = [n, l]. This completes the recursive construction.
We now let q(E) = {FaG : G ∈ r(E)} to obtain an order preserv-

ing function. Note that since q is order preserving, (u(E|i))|E|i=1 is a con-
vex block of a member of HXε , and thus is a member of HXε . Let yE =∑

j∈I(E) ‖Pj(u(E))‖ej , so that

‖yE‖ =
∥∥∥ ∑
j∈I(E)

‖Pj(u(E))‖ej
∥∥∥ = ‖PI(E)(u(E))‖ ≤ ‖u(E)‖ ≤ 1,

and, for any (ai)
|E|
i=1 ⊂ [0,∞),∥∥∥ |E|∑

i=1

aiyE|i

∥∥∥=∥∥∥ |E|∑
i=1

∑
j∈I(E|i)

ai‖Pj(u(E|i))‖ej
∥∥∥

=

∥∥∥∥∑
j

∥∥∥Pj( |E|∑
i=1

aiPI(E|i)(u(E|i))
)∥∥∥ej∥∥∥∥=∥∥∥ |E|∑

i=1

aiPI(E|i)(u(E|i))
∥∥∥

≥
∥∥∥ |E|∑
i=1

aiu(E|i)
∥∥∥− |E|∑

i=1

ai‖u(E|i)− PI(E|i)u(E|i)‖

≥
(
ε− 2

ε

3

) |E|∑
i=1

ai=
ε

3

|E|∑
i=1

ai.

But (yE)E∈F̂ζ ⊂ BU is a block tree, and therefore a weakly null tree. We
deduce Iw(HUε/3)>ζ, a contradiction.

Remark 5.15. The result above is optimal in certain cases. Recall that
for ξ < ω1, the Schreier space of order ξ, denoted Xξ, is the completion of
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c00 under the norm
‖x‖Xξ = sup

E∈Sξ
‖PEx‖`1 .

It is known that Sz(Xξ) = ωξ+1 [7]. Fix ζ, ξ < ω1 and let X = (
⊕
Xζ)Xξ .

That is, each member of the sequence of spaces is equal to Xζ . Let (eni )i
denote the basis of the space Xζ which sits in the nth position in the direct
sum. For E ∈ Ŝξ[Sζ ], let (Ei)

k
i=1 be the standard decomposition of E with

respect to Sζ . Next let xE = eminEk
maxEk

. Then (xE)E∈Ŝξ[Sζ ]
⊂ BX is weakly

null. Moreover, if ∅ ≺ E ∈ Sξ[Sζ ] and (ai)i∈E are any scalars, then letting
(Ei)

k
i=1 denote the standard decomposition of E with respect to Sζ and

letting Fi =
⋃i
j=1Ej , we get∥∥∥∑

F�E
aFxF

∥∥∥
X
≥

k∑
i=1

∥∥∥PminEi

∑
F�E

aFxF

∥∥∥
Xζ

=
k∑
i=1

∥∥∥ ∑
Fi−1≺F�Fi

aF e
minEi
maxF

∥∥∥
Xζ

=

k∑
i=1

∑
Fi−1≺F�Fi

|aF | =
∑
F�E
|aF |.

Thus Sz(X) > ι(Sξ[Sζ ]) = ωζ+ξ. If ξ is infinite, then ζ+1+ξ+1 = ζ+ξ+1,
so the estimate of ωζ+ξ+1 given by Theorem 5.14 is optimal in this case.

Remark 5.16. Suppose U, V are Banach spaces with normalized, shrink-
ing, 1-unconditional bases (un), (vn), respectively, so that the operator IU,V :
U → V defined by IU,V un = vn is bounded. Suppose that we have two
sequences Xn, Yn of separable Banach spaces and a uniformly bounded se-
quence of operators Tn : Xn → Yn. Then we can define an operator T :
(
⊕
Xn)U → (

⊕
Yn)V by T (xn) = (Tnyn). An inessential modification of the

preceding proof yields Sz(T ) ≤ (supn Sz(Tn))Sz(IU,V ).

5.7. Fourth application: Constant reduction. The following argu-
ment is a modification of a well-known argument due to James [12]. Es-
sentially, it is implicitly contained in [2]. However, we need a more precise
quantification than the one given there, so we provide a proof. Suppose
(xi)

n2

i=1 ⊂ BX and δ, ε > 0 are such that each convex combination of these
points has norm at least δε. We partition {1, . . . , n2} into successive intervals
I1 < · · · < In, each having cardinality n, and consider two cases. Either for
some 1 ≤ i ≤ n, all convex combinations of (xj)j∈Ii have norm at least ε,
or for each 1 ≤ i ≤ n, we can find a convex combination yi =

∑
j∈Ii ajxj of

(xj)j∈Ii such that ‖yi‖ < ε. Then (ε−1yi)
n
i=1 ⊂ BX , by homogeneity, has the

property that each convex combination of this sequence has norm at least δ.
Below, we view a tree of order ξ2 as being composed of a tree of order ξ,

with each vertex being a tree of order ξ. We will again consider two cases:
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one of these “interior” trees will already have the lower ε estimate on all
of its branches, or we can replace each of these trees with a “bad” convex
combination so that, after being multiplied by ε−1, these “bad” combinations
will form a tree of size ξ having the appropriate δ lower estimates on all
convex combinations of all branches.

Theorem 5.17. For δ, ε ∈ (0, 1) and a Banach space X having separable
dual,

Iw(HXεδ) ≤ Iw(HXε )Iw(HXδ ).

If Iw(HXε ) > ωω
ξ for some ξ, then Iw(HXδ ) > ωω

ξ . In particular, if η < ω1 is
a limit ordinal, then Sz(X) 6= ωω

η . Moreover, if η < ω1 is any limit ordinal,
and if Y is any Banach space, then Sz(Y ) 6= ωω

η .

Proof. Let ξ = Iw(HXε ). Fix 0 < ζ < ω1. Assume that Iw(HXεδ) > ξζ.
Then we can find a strongly weakly null tree

(xE)E∈F̂ζ [Fξ]
⊂ BX

whose branches lie in HXεδ. We define a coloring on C(F̂ζ [Fξ]) by letting c
have color 0 provided there exists a convex combination of (xE)E∈c which
has norm less than ε, and color 1 otherwise. If there exists an embedding i :
F̂ξ → F̂ζ [Fξ] such that each c ∈ C(i(F̂ξ)) receives color 1, then (xi(E))E∈F̂ξ
witnesses the fact that Iw(HXε ) > ξ, a contradiction. Therefore for each em-
bedded tree i(F̂ξ), some of its branches receives color 0. Applying Lemma 4.2,
we obtain an order preserving j : F̂ζ → C(Fζ [Fξ]) such that for each E ∈ F̂ζ ,
j(E) receives color 0. Letting yE be a convex combination of (xF )F∈j(E) with
norm less than ε, we obtain a weakly null tree (yE)E∈F̂ζ . This tree is weakly
null because the original tree was strongly weakly null. Since j is order pre-
serving, (yE|i)

|E|
i=1 is a convex block of a member of HXεδ, and therefore lies

in HXεδ. Then by homogeneity, (ε−1yE)E∈F̂ζ ⊂ BX is a weakly null tree with
branches in HXδ . This means Iw(HXδ ) > ζ, which proves the first inequality.

Suppose Iw(HXε ) > ωω
ξ for some ξ. Fix ζ < ωω

ξ . Choose n ∈ N so
that ε1/n > δ. Note that ζn < ωω

ξ , so Iw(HXε ) > ζn. By applying the first
inequality, we deduce Iw(HXδ ) > ζ. Since ζ < ωω

ξ was arbitrary, Iw(HXδ )
≥ ωωξ . But since Iw(HXδ ) is always a successor, Iw(HXδ ) > ωω

ξ .
Suppose that Sz(X) ≥ ωω

η . This means that for ζ < η, Iw(HXε ) > ωω
ζ

for some ε ∈ (0, 1), and by the preceding part, Iw(HX1/2) > ωω
ζ . But since

this holds for any ζ < η, we have Iw(HX1/2) ≥ supζ<η ω
ωζ = ωω

η . Again,
since Iw(HX1/2) is a successor, this must be a strict inequality, which means
Sz(X) > ωω

η .
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For the last statement, we cite a result of Lancien [14] which states that
if the Szlenk index of a Banach space is countable, it is separably deter-
mined. Therefore if there existed a Banach space Y with Sz(Y ) = ωω

η with
η countable, then Y would have a separable subspace X with Sz(X) = ωω

η .
But this means X∗ is separable, hence Sz(X) = ωω

η is impossible.

5.8. Fifth application: Three-space properties. Given our dual-
ization lemma, the following theorem can be shown to be equivalent to [6,
Proposition 2.1] in the case of a Banach space having separable dual, up to
the value of certain constants. There, however, the result was shown using
the usual definition of Szlenk index involving slicing the dual ball, whereas
we only use the weakly null `+1 index.

Theorem 5.18. For any ε ∈ (0, 1/3), any Banach space X having sep-
arable dual, and any closed subspace Y ≤ X,

Iw(HXε ) ≤ Iw(H
X/Y
ε/5 )Iw(HYε/5).

In particular, for any ordinal ξ < ω1, Sz(·) ≤ ωω
ξ and Sz(·) < ωω

ξ are
three-space properties on the class of separable Banach spaces.

Proof. Fix a Banach space X having separable dual, ε ∈ (0, 1/3), and
Y ≤ X. Let Q : X → X/Y denote the quotient map. Let ξ = Iw(HX/Yε/5 )

and ζ = Iw(HYε/5). If Iw(HXε ) > ξζ, we can find a strongly weakly null
tree (xE)E∈F̂ζ [Fξ]

⊂ SX with branches in HXε . Define the coloring f on
C(Fζ [Fξ]) by letting f(c) = 1 provided that ‖Qx‖X/Y ≥ ε/5 for each
convex combination x of (xE)E∈c, and f(c) = 0 otherwise. If there exists
an embedding i : F̂ξ → F̂ζ [Fξ] such that f(c) = 1 for all c ∈ C(i(F̂ξ)),
then (Qxi(E))E∈F̂ξ ⊂ BX/Y is a weakly null tree witnessing the fact that

Iw(HX/Yε/5 ) > ξ, a contradiction. Therefore we apply Lemma 4.2 to obtain an

order preserving j : F̂ζ → C(F̂ζ [Fξ]) such that f ◦j ≡ 0. For each E ∈ F̂ζ , we
let zE be a convex combination of (xF )F∈j(E) such that ‖QzE‖X/Y < ε/5.
For each E ∈ F̂ζ , (zE|i)

|E|
i=1 is a convex block of a member of HXε , and is

therefore also a member of HXε .
For E ∈ F ′ζ , Proposition 2.1 shows that there exists a subsequence

(zEakn) of (zEan)E<n and a weakly null sequence (yn)E<n ⊂ BY with
‖zEan−yn‖ < 4ε/5. By Lemma 3.5, we can find a pruned subtree (uE)E∈F̂ζ of
(zE)E∈F̂ζ and a weakly null tree (yE)E∈F̂ζ ⊂ BY such that ‖uE−yE‖ < 4ε/5

for each E ∈ F̂ζ . For each E ∈ F̂ζ , since (uE|i)
|E|
i=1 ∈ HXε , there exists

f ∈ BX∗ such that f(uE|i) ≥ ε for each 1 ≤ i ≤ |E|. Then for such i,
f(yE|i) ≥ f(uE|i) − ‖uE − yE‖ > ε − 4ε/5 = ε/5. Thus (yE)E∈F̂ζ ⊂ BY
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witnesses the fact that Iw(HYε/5) > ζ, a contradiction. This proves the first
statement.

For the second and third parts, assume Sz(Y ),Sz(X/Y ) ≤ ωω
ξ . This

means Y ∗, (X/Y )∗, and therefore X∗, are separable. Moreover, for each ε ∈
(0, 1/3),

Iw(HXε ) ≤ Iw(H
X/Y
ε/5 )Iw(HYε/5) < ωω

ξ
,

since Iw(HX/Yε/5 ), Iw(HYε/5) < ωω
ξ . Since this holds for all ε, it follows that

Sz(X) ≤ ωω
ξ . Moreover, if Sz(Y ), Sz(X/Y ) < ωω

ξ , then Sz(X/Y )Sz(Y )

< ωω
ξ , and

sup
ε∈(0,1/3)

Iw(HXε ) ≤ Sz(X/Y )Sz(Y ) < ωω
ξ
.

6. Classes of Banach spaces with bounded Szlenk index

6.1. Mixed Tsirelson spaces. For our purposes, mixed Tsirelson spaces
are a remarkably useful class of spaces for providing examples with prescribed
`1 behavior. For example, given a sequence of countable ordinals ξn ↗ ωξ

and constants 1 ≥ θn ↘ 0, does there exist a Banach space X such that
ωξ > Iw(HXθn) ≥ ξn for each n ∈ N? Theorem 5.17 says this is not possible
for arbitrary sequences, since Iw(HXθn) ≤ Iw(HXθ )n for any θ ∈ (0, 1). When
this estimate is essentially optimal, i.e. we have roughly geometric growth,
we encounter this restriction. It is the only restriction, however, as the mixed
Tsirelson spaces show.

Let (en) denote the canonical c00 basis and let Pn, PE denote the as-
sociated canonical coordinate and partial sum projections. Suppose that
1 > θn ↘ 0 and (Gn)n≥0 are regular families such that G0 contains all
singletons. Define the norm ‖ · ‖G0 on c00 by

‖x‖G0 = max
E∈G0

‖PEx‖`1 .

We inductively define norms | · |n, n = 0, 1, 2, . . . , on c00 by |x|0 = ‖x‖G0 and

|x|n+1 = |x|n ∨ sup
m∈N

sup
{
θm

k∑
i=1

|PEix|n : (Ei)
k
i=1 is Gm-admissible

}
.

One can easily prove by induction that |x|n ≤ ‖x‖`1 , so that ‖x‖ = supn |x|n
is a well-defined norm on c00 making the canonical c00 basis normalized and
1-unconditional satisfying the implicit equation

‖x‖ = ‖x‖G0 ∨ sup
m∈N

sup
{
θm

k∑
i=1

‖PEix‖ : (Ei)ki=1 is Gm-admissible
}
.

We let T (G0, (θn,Gn)) denote the completion of c00 with respect to this norm.
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In the special case where this space is built from a single family G and a single
constant θ ∈ (0, 1), we denote the resulting space by T (θ,G). This occurs
when G0 = S0 and for each n ∈ N, Gn = G and θn = θ. This space coincides
with the usual Tsirelson space Tξ,θ when G = Sξ, and is isomorphic to either
c0 or `p for some p > 1 if G = Fn for some n ∈ N [3]. We will use the
following results. Item (ii) comes from [15], and (iii) comes from [13].

Proposition 6.1. Fix regular families (Gn)n≥0 such that G0 contains all
singletons and constants 1 > θn ↘ 0. Let T = (G0, (θn,Gn)).

(i) For any 0 ≤ k and m ∈ N, we have Iw(HTθkm) ≥ ι(G0)ι(Gm)
k.

(ii) If ι(G0) ≥ supn ι(Gn)ω, then Sz(T ) = ι(G0) supn ι(Gn)ω.
(iii) For any θ ∈ (0, 1), any ξ < ω1, and any M ∈ [N]ω,

Sz(T (θ,M−1(Sξ))) = ωξω.

(iv) For any θ ∈ (0, 1) and any n ∈ N, we have Sz(T (θ,Fn)) = ω.

Proof. (i) One can easily show by induction on k that if E ∈ [Gn]k[G0],
then for any scalars (ai)i∈E ,∥∥∥∑

i∈E
aiei

∥∥∥ ≥ θkn∑
i∈E
|ai|.

Once we establish that the basis of T is shrinking, which we will do below,
this will imply that (emaxE)E∈ ̂[Gn]k[G0]

is a normalized weakly null tree with

branches in HT
θkn
. This guarantees that Iw(HTθkn) > ι([Gn]k[G0]) = ι(G0)ι(Gn)k.

For (ii)–(iv), we must first define the Bourgain `1 block index of a basis,
introduced in [4]. Given a Banach space X with basis (ei), for K ≥ 1 we let

T (X, (ei),K) =
{
(xi)

n
i=1 ∈ Σ((ei), X) : n ∈ N,

∀(ai)ni=1 ⊂ R, K
∥∥∥ n∑
i=1

aixi

∥∥∥ ≥ n∑
i=1

|ai|,

∀1 ≤ i ≤ n, ‖xi‖ ≤ 1
}
.

With the order o as defined in Section 3.1, we define

B(X, (ei),K) = o(T (X, (ei),K)), B(X, (ei)) = sup
K≥1

B(X, (ei),K).

We recall that `1 embeds into X if and only if B(X, (ei)) = ω1. Moreover,
if (ei) is 1-unconditional, and Iw(HXε ) > ξ, as discussed in Example 3.6,
we can replace ε with any strictly smaller number δ and use a standard
perturbation argument to find a block tree (xE)E∈F̂ξ ⊂ BX with branches
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in HXδ . By 1-unconditionality, for all E ∈ F̂ξ and scalars (ai)
|E|
i=1,

δ−1
∥∥∥ |E|∑
i=1

aixE|i

∥∥∥ ≥ |E|∑
i=1

|ai|.

One then shows by induction that for each 0 ≤ ζ ≤ ξ,
(xE)

E∈F̂ζξ
⊂ dζ(T (X, (ei), δ−1)),

whence
Iw(HXε ) ≤ B(X, (ei), δ

−1) ≤ B(X, (ei)).

By [15], B(T, (ei)) < ω1, so that `1 does not embed into T for any choice
(Gn)n≥0, 1 > θn → 0. By [13], B(T (θ,Sξ)) = ωξω. Since T (θ,Fn) is iso-
morphic to either c0 or `p for some p > 1, we deduce that none of these
spaces contains `1, and the basis of each is shrinking. For (ii) and (iv), it
remains to note that B(T, (ei)) = ι(G0) supk,n ι(Gn)k [15], and B(`p, (ei)) =

B(c0, (ei)) = ω for p > 1. For (iii), we note that Sz(T (θ,M−1(Sξ))) ≥ ωξω

by (i). It is easy to see that the sequence (en) in T (θ,M−1(Sξ)) is isometri-
cally equivalent to (emn) in T (θ,Sξ) by proving by induction that they are
isometrically equivalent with respect to each norm | · |n in the definitions of
these spaces. Therefore

Sz(T (θ,M−1(Sξ))) ≤ B(T (θ,M−1(Sξ)), (ei)) ≤ B(T (θ, Sξ), (ei)) = ωξω.

With this, we arrive at a characterization of the countable ordinals which
occur as the Szlenk index of a Banach space. We note that in [15], the cor-
responding result for the Bourgain `1 index was established, and the re-
sult below only requires a minor modification of their result combined with
Lancien’s result in [14] that the Szlenk index, when countable, is separably
determined.

Theorem 6.2. Let 1 ≤ ξ < ω1 be an ordinal. The following are equiva-
lent:

(i) There exists a Banach space X with Sz(X) = ωξ.
(ii) There exists a mixed Tsirelson space T with Sz(T ) = ωξ.
(iii) There does not exist a limit ordinal ζ such that ξ = ωζ .

Proof. We consider several cases.

Case 1: ξ = 0. Then Sz(X) = 1 = ω0 for any finite-dimensional X.

Case 2: ξ = 1. Then Sz(T (1/2,F1)) = ω.

Case 3: ξ = ωζ+1. Then Sz(T (1/2,Sωζ )) = ωω
ζω = ωω

ζ+1 .

Case 4: ξ = ωζ , ζ a limit ordinal. There is no Banach space with this
Szlenk index by Theorem 5.17.
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Case 5: ξ is not of any of the forms mentioned above. Then write the
Cantor normal form of ξ as ξ = ωα1n1 + · · ·+ ωαknk. Let ζ = ωα1n1 + · · ·+
ωαk(nk − 1) and let η = ωω

αk . Then ωζη = ωξ. Moreover, βω ≤ η for any
β < η. Take βn ↑ η and note ζ ≥ supn β

ω
n , so

Sz(T (Sζ , (2−n,Fβn))) = ι(Sζ) sup
n
ι(Fβn)ω = ωζη = ωξ.

6.2. Mixed Tsirelson spaces as upper envelopes

Theorem 6.3. If X is an infinite-dimensional Banach space with shrink-
ing FDD E, then there exists a mixed Tsirelson space T such that Sz(X) =
Sz(T ) and a blocking F of E which satisfies subsequential T upper block
estimates in X.

Proof. This is a modification of the proof of [7, Theorem 5.5]. Let Sz(X)
= ωξ.

Step 1: We claim that for any ρ ∈ (0, 1), we can find some 0 = m0 <
m1 < · · · and regular families (Kn)n≥0 such that if M = (mn)n≥1 and if
Fn = [Ek]mn−1<k≤mn , then for any n ∈ N and any (xi)

k
i=1 ∈ Σ(F,X) ∩

HXρn−1 , we have [mn,∞) ∩ (mmax suppF (xi))
k
i=1 ∈ Kn[K0]. Note that if Gn =

M−1(Kn), this condition implies that if (xi)ki=1 ∈ Σ(F,X) ∩ HXρn−1 , then
[n,∞) ∩ (max suppF (xi))ki=1 ∈ Gn[G0].

Step 2: We prove that with these choices, if θ ∈ (ρ, 1), then F satisfies
subsequential T upper block estimates in X.

We first complete Step 2 and then return to Step 1. Let (xi) be a nor-
malized block sequence with respect to F . Let li = max suppF (xi). Choose
a = (ai) ∈ c00 and let x =

∑
aixi. Choose x∗ ∈ SX∗ so that x∗(x) = ‖x‖.

For each n ≥ 1, let

An = {i ∈ supp(a) : i < n, ρn−1 ≤ |x∗(xi)| < ρn−2},
B+
n = {i ∈ supp(a) : i ≥ n, ρn−1 ≤ x∗(xi) < ρn−2},

B−n = {i ∈ supp(a) : i ≥ n, ρn−1 ≤ −x∗(xi) < ρn−2}.
Since ρn−1 ≤ x∗(xi) for each i ∈ B+

n , we have (xi)i∈B+
n
∈ Σ(F,X) ∩ HXρn−1 .

Since n ≤ B+
n and li ≥ i,

(li)i∈B+
n
= [n,∞) ∩ (li)i∈B+

n
∈ Gn[G0].

This means
θn
∑
i∈B+

n

|ai| ≤
∥∥∥∑
i∈B+

n

aieli

∥∥∥
T
≤
∥∥∥∑ aieli

∥∥∥
T
.

Similarly,
θn
∑
i∈B−n

|ai| ≤
∥∥∥∑ aieli

∥∥∥
T
.
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Last, since (ei) is normalized and 1-unconditional, and since |An| < n,∑
i∈An

|ai| ≤ (n− 1)‖a‖∞ ≤ (n− 1)
∥∥∥∑ aieli

∥∥∥
T
.

Since {An, B+
n , B

−
n : n ∈ N} partitions {i ∈ supp(a) : x∗(xi) 6= 0}, we get

‖x‖ =
∞∑
n=1

[∑
i∈An

aix
∗(xi) +

∑
i∈B±n

aix
∗(xi)

]

≤
∞∑
n=1

(∑
i∈An

|ai|ρn−2 +
∑
i∈B±n

|ai|ρn−2
)

≤
∥∥∥∑ aieli

∥∥∥
T

∞∑
n=1

((n− 1)ρn−2 + 2ρn−2θ−n)

=

(
1

(1− ρ)2
+

2ρ−1

θ − ρ

)∥∥∥∑ aieli

∥∥∥
T
.

We now complete Step 1. We will choose (Kn)n≥0 according to the fol-
lowing cases:

Case 1: ξ = 1. Choose K0 = S0 and for n > 0, Kn = [Fs]n for some
s ∈ N. In this case, for any θ ∈ (0, 1), T = T (G0, (θn,Gn)) = T (θ,Fs) has
Sz(T ) = ω.

Case 2: ξ = ωζ+1 = ωζω. Choose K0 = S0 and for n > 0, Kn = [Sωζs]n
for some s ∈ N. Then, for any θ ∈ (0, 1), T = T (G0, (θn,Gn)) = T (θ,G1) =
T (θ,M−1(Sωζs)) has Sz(T ) = ωω

ζω = ωξ.

Case 3: ξ is of neither of the forms mentioned above. We write the Cantor
normal form of ξ as ξ = ωα1n1+ · · ·+ωαknk. Then we let ζ = ωα1n1+ · · ·+
ωαk(nk−1) and β = ωω

αk , so ωζβ = ωξ. We choose βn ↑ β and have K0 = Sζ
and Kn = Fβn for n > 0. Then for any θ ∈ (0, 1), T = T (G0, (θn,Gn)) is such
that Sz(T ) = ωξ, since ι(G0) = ωζ ≥ β = supn∈N ι(Gn)ω = supn∈N β

ω
n . This

is because in this case, since ξ = ωζ with ζ a limit ordinal is impossible, we
have ζ ≥ βω0 for any β0 < β.

In each case, Sz(T ) = Sz(X). Let 2δn = ρn−1 + ρn and 2µn = ρn−1− ρn.
For each n ∈ N, let

Bn = Σ(E,X) ∩HXδn
and choose εn = (εi,n)i non-increasing so that

∑
i εi,n < µn. Observe that

(Bn)E,Xεn
⊂ HXρn . By Proposition 5.7, this implies

ι(B̃n) ≤ 2Ibl((Bn)E,Xεn
) ≤ 2Iw(HXρn) < Sz(X).

Here we have used the fact that E is shrinking, so bounded block sequences
in E are weakly null. If Sz(X) = ω, then choose s ∈ N so that Iw(HXρ ) < s/2
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and note that Iw(HXρn) < (s/2)n for all n ∈ N by Theorem 5.17. This means
that 2Iw(HXρn) < sn for all n ∈ N. If Sz(X) = ωω

ζ+1
= ωω

ζω, choose s ∈ N
so that Iw(HXρ ) < ωω

ζs and note that Iw(HXρn) < ωω
ζsn for each n ∈ N. This

means that 2Iw(HXρn) < ωω
ζsn for all n ∈ N. In the third case, with ζ, β as

in Case 3 above, choose any βn < β such that Iw(HXρn) < ωζβn. Let Kn be
as given in the cases above. We no longer need to distinguish between the
three cases.

Let M0 = N and, using Theorem 3.3, recursively choose Mn ∈ [N]ω so
that for each n ∈ N, Mn ∈ [Mn−1]

ω and either
B̃n ∩ [Mn]

<ω ⊂ Kn[K0] or Kn[K0] ∩ [Mn]
<ω ⊂ B̃n.

But in each case,
ι(Kn[K0] ∩ [Mn]

<ω) = ι(K0)ι(Kn) > ι(B̃n),
so the first containment always holds. Choosemn ∈Mn withm1 < m2 < · · · ,
set M = (mn)n≥1, and let m0 = 0. With Fn = [Ek]mn−1<k≤mn , to finish, we
only need to show that for n ∈ N and (xi)

k
i=1 ∈ Σ(F,X) ∩ HXρn−1 , we have

[mn,∞) ∩ (mmax suppF (xi))
k
i=1 ∈ Kn[K0]. Again, let li = max suppF (xi). We

can find a small perturbation (yi)
k
i=1 ⊂ BX of (xi)ki=1 such that

(i) ‖yi − xi‖ < µn,
(ii) ranF (yi) = ranF (xi),
(iii) mli = max suppE(yi).

The first two items guarantee that (yi)ki=1 ∈ Σ(E,X)∩HXρn−1−µn = Σ(E,X)

∩HXδn . The last two items guarantee that

(mli)
k
i=1 = (mmax suppF (yi))

k
i=1 = (max suppE(yi))

k
i=1 ∈ B̃n.

Combining these gives (mli)
k
i=1 ∈ B̃n. But [mn,∞) ∩ (mmax suppF (yi))

k
i=1 ∈

[Mn]
<ω, so that

[mn,∞) ∩ (mmax suppF (yi))
k
i=1 ∈ B̃n ∩ [Mn]

<ω ⊂ Kn[K0].

6.3. Universal spaces. If C is a class of Banach spaces, we say the
Banach space U is universal for C if every member of C is isomorphic to a
subspace of U . We say U is surjectively universal for C if every member of C
is isomorphic to a quotient of U .

For each 0 ≤ ξ < ω1, let Cξ denote the class of separable Banach spaces
with Szlenk index not exceeding ωξ. In [9], it was shown that for each ξ, there
exists a Banach space Yξ having separable dual which is universal for Cξ. The
results there were obtained using descriptive set theory, without an estimate
on Sz(Yξ). In [10], it was shown that for each ξ < ω1, Yξ can be taken to
be in Cζ+1, where ζ = min{ηω : ηω ≥ ζ}. In [7], the following estimate was
obtained.
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Theorem 6.4. For every 1 ≤ ξ < ω1, there exists a Banach space
Zξ ∈ Cξ+1 which is both universal and surjectively universal for Cξ.

It was not stated in [7] that this space is surjectively universal for the
class Cξ, but it is contained within the proof. It was shown there that if X
is a separable Banach space with Sz(X) ≤ ωξ, then X is isomorphic to a
quotient of a Banach space Y which embeds complementably in Zξ, so X is
isomorphic to a quotient of Zξ. Our goal here is to prove that this result is
optimal.

Theorem 6.5. For any ξ < ω1, there does not exist a member of Cξ
which is universal or surjectively universal for Cξ.

In [8], it was shown that if ξ < ω1 and if CRξ denotes the class of separ-
able, reflexive Banach spaces X with Sz(X), Sz(X∗) ≤ ωξ, then there exists
a Banach space Z ∈ CRξ+1 which is universal and surjectively universal
for CRξ. In the proof of 6.5, we will show that if Z ∈ Cξ, then there exists
X ∈ Cξ which is not isomorphic to any quotient of any subspace of Z. If
ξ > 0, this space will be a mixed Tsirelson space. In the proof, we will have
the freedom to choose the families used in the construction of X so that X
is reflexive and Sz(X∗) = ω, so that actually X ∈ CRξ. Therefore we will in
fact prove that if Z is either universal or surjectively universal for CRξ, then
Z /∈ Cξ, and the result in [8] concerning the existence of a member of CRξ+1

universal for CRξ is also optimal.
Of course, the ξ = 0 cases of Theorems 6.4 and 6.5 are trivial, since

Sz(X) = 1 = ω0 if and only if X is finite-dimensional. We outline the
idea for each of the other cases. We note that for each p > 1, Sz(`p) = ω.
Moreover, a separable Banach space X has Sz(X) = ω if and only if for
some p > 1, every normalized weakly null tree on X indexed by [̂N]<ω has a
branch which is dominated by the `p basis. This means the `p spaces, p > 1,
form a sort of upper envelope for C1. But among these spaces, no one sits
atop all the others. To see how this can be generalized to Cξ, we use the
following

Proposition 6.6. Let Z be a Banach space having separable dual.

(i) If X is isomorphic to a subspace of Z, then there exists K > 0 such
that Iw(HXε ) ≤ Iw(HZε/K) for any ε ∈ (0, 1).

(ii) If X is isomorphic to a quotient of Z, then there exists K > 0 such
that Iw(HXε ) ≤ Iw(HZε/K) for any ε ∈ (0, 1).

(iii) If X is a Banach space having separable dual and such that Iw(HX2−n)
> Iw(HZ3−n) for all n ∈ N, then X is not isomorphic to any subspace
of any quotient of Z.
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Proof. (i) Let T : X → Z be an isomorphic embedding and fix a, b > 0
so that

a−1‖x‖ ≤ ‖Tx‖ ≤ b‖x‖
for all x ∈ X. Let K = ab. If ξ < Iw(HXε ) and if (xE)E∈F̂ξ ⊂ BX is a weakly
null tree with branches in HXε , then one easily checks that (b−1TxE)E∈F̂ξ
⊂ BZ is a weakly null tree with branches in HZε/K .

(ii) First we assume X is isometrically a quotient of Z, and then apply
part (i). Let T : Z → X be a quotient map. Then if ξ < Iw(HXε ), fix
(xE)E∈F̂ξ ⊂ BX weakly null with branches in HXε . By applying Proposition
2.1 and Lemma 3.5, for any 0 < δ < ε, we can find a pruned subtree (yE)E∈F̂ξ
of (xE)E∈F̂ξ and a weakly null tree (zE)E∈F̂ξ ⊂ 3BZ such that ‖TzE − yE‖
< ε/2. This implies that (3−1TzE)E∈F̂ξ ⊂ BX has branches lying in HXε/6.
Since T is norm 1, the weakly null tree (3−1zE)E∈F̂ξ ⊂ BZ has branches
lying in HZε/6, and Iw(H

Z
ε/6) > ξ.

(iii) If X is isomorphic to a subspace of a quotient of Z, then there exists
K such that Iw(HXε ) ≤ Iw(HZε/K) for each ε ∈ (0, 1). If we choose n so large
that 2−nK > 3−n, then

Iw(HZ3−n) < Iw(HX2−n) ≤ Iw(H
Z
2−n/K) ≤ Iw(HZ3−n),

a contradiction.

Proof of Theorem 6.5. Case 1: ξ = 1. Suppose Z ∈ C1. Then Iw(HZ3−1)

< k for some k < ω. By Theorem 5.17, for each n ∈ N, we have Iw(HZ3−n)
< kn. But the Tsirelson space T = T (2−1,Fk) has kn < Iw(HT2−n) < ω for
each n ∈ N. This means T ∈ C1 cannot be isomorphic to a subspace of a
quotient of Z.

Case 2: ξ = ωγ+1. Suppose Z ∈ Cωγ+1 . Then Iw(HZ3−1) < ωω
γ+1

= ωω
γω.

This means there exists k ∈ N such that Iw(HZ3−1) < ωω
γk. By Theorem 5.17,

Iw(HZ3−n) < ωω
γkn for each n ∈ N. But for any n ∈ N, the Tsirelson space

T = T (2−1,Sωγk) has ωω
γkn < Iw(HT2−n). This means T ∈ Cωγ+1 cannot be

isomorphic to a subspace of a quotient of Z.

Case 3: ξ = ωγ , γ a limit ordinal. By Theorem 6.2, supX∈Cξ Sz(X) = ωξ.
Therefore if Z is either universal or surjectively universal for Cξ, then Sz(Z)
≥ ωξ. But again by Theorem 6.2, there is no Banach space with this Szlenk
index, so Sz(Z) > ωξ.

Case 4: ξ is not of any of the forms above. Then write the Cantor normal
form of ξ as ξ = ωα1n1 + · · · + ωαknk. In this case, let ζ = ωα1n1 + · · · +
ωαk(nk − 1) and η = ωαk . Fix Z ∈ Cξ. Then there exists a sequence (βn) ⊂
[0, ωη) such that Iw(HZ3−n) < ωζβn. But for each n ∈ N, the mixed Tsirelson
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space T = T (Sζ , (2−n,Fβn)) satisfies ωζβn < Iw(HT2−n). Then T ∈ Cξ cannot
be isomorphic to a subspace of a quotient of Z.

6.4. Injective tensor products. If X,Y are Banach spaces, we can
consider the tensor product X ⊗ Y as a collection of finite rank operators
mapping Y ∗ into X. That is, given u =

∑n
i=1 xi⊗yi, u(y∗) =

∑n
i=1 y

∗(yi)xi.
Of course, the adjoint u∗ of u maps X∗ into the image of Y in Y ∗∗ under
the canonical embedding, so we can equally well consider u as a map from
X∗ into Y . We can endow X ⊗ Y with the operator norm and let X ⊗̂ε Y
denote the completion ofX⊗Y with respect to the operator norm. Of course,
X ⊗̂ε Y is contained within the space of compact operators from Y ∗ to X.

If X has an FDD E, then for any compact u : Y ∗ → X, PE[1,n]u→ u with
respect to the operator norm. This implies that if Y also has an FDD F ,
PE[1,n]u(P

F
[1,n])

∗ → u with respect to the norm topology. If E,F are shrinking
FDDs for X,Y , respectively, then

Hn = span{Ek ⊗ Fj : max{k, j} = n}
defines a shrinking FDD for the injective tensor product X ⊗̂εY [7]. Showing
that this forms an FDD is straightforward, while showing that this FDD
is shrinking involves a characterization of weak nullity in injective tensor
products given in [16]. For u ∈ X ⊗̂ε Y , the projection PH[1,n]u is given by
PE[1,n]uP

F ∗

[1,n]. We think about such u as an infinite matrix whose j, k entry is
a member of Ej⊗Fk. In this case, the projections PH[1,n] are the n×n leading
principal minors of this infinite matrix. Then a block sequence (un) with
respect to H can be considered as a sequence of square matrices such that
there exist 0 = k0 < k1 < · · · such that un is equal to its kn × kn leading
principal minor, while its kn−1 × kn−1 leading principal minor is zero. In
this case, we can write un = rn + cn so that (rn) is a sequence of successive
rows and (cn) is a sequence of successive columns. This simple decomposition
leads to the following

Proposition 6.7 ([7]). Suppose T is a Banach space with normalized
1-unconditional basis (en). Let X,Y be Banach spaces with shrinking bi-
monotone FDDs E,F such that E (resp. F ) satisfies subsequential C-T up-
per block estimates in X (resp. Y ). Then the FDD H for X ⊗̂ε Y satisfies
subrequential 2C-T upper block estimates in X ⊗̂ε Y .

Theorem 6.8. For any separable non-zero Banach spaces X,Y ,

Sz(X ⊗̂ε Y ) = max{Sz(X),Sz(Y )}.
For this, we will need the following simple fact.

Proposition 6.9. If (en) is a shrinking, normalized, 1-unconditional
basis for the space T , and if F is a shrinking FDD for the Banach space
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Z such that F satisfies subsequential C-T upper block estimates in Z, then
Sz(Z) ≤ Sz(T ).

If ξ < Sz(Z), then we can find for some ε > 0 a block tree (zE)E∈F̂ξ with
branches in HZε . If tE = emax suppF (zE), then (tE)E∈F̂ξ

⊂ BT is a weakly null
tree in T with branches lying in HTε/C . This means ξ < Sz(T ).

Proof of Theorem 6.8. If either X∗ or Y ∗ is non-separable, the result
is clear. If either space is finite-dimensional, the result is immediate from
Theorem 5.11, since in this case the tensor product is isomorphic to a finite
direct sum where each summand is either X or Y . Assume Sz(X), Sz(Y )
< ω1.

If X is a closed subspace of X0, and Y is a closed subspace of Y0,
then X ⊗̂ε Y is isomorphic to a subspace of X0 ⊗̂ε Y0. By a result of
Schlumprecht [21], we can embed X,Y into Banach spaces X0, Y0 with
shrinking bimonotone bases such that Sz(X) = Sz(X0) and Sz(Y ) = Sz(Y0).
Thus it suffices to assume that X,Y themselves have shrinking bimono-
tone bases. Then by Theorem 6.3, we can find Banach spaces TX , TY with
normalized 1-unconditional bases (eXn ), (e

Y
n ) such that Sz(TX) = Sz(X)

and Sz(TY ) = Sz(Y ), and shrinking bimonotone FDDs E,F for X,Y , re-
spectively, such that E satisfies subsequential TX upper block estimates in
X and F satisfies subsequential TY upper block estimates in Y . Then if
en = eXn + eYn ∈ TX ⊕∞ TY , E,F satisfy subsequential [en] upper block es-
timates in X,Y , respectively. Therefore the FDD H is a shrinking FDD for
X ⊗̂ε Y satisfying subsequential [en] upper block estimates in X ⊗̂ε Y . We
deduce that

Sz(X ⊗̂ε Y ) ≤ Sz([en]) ≤ Sz(TX ⊕∞ TY )

= max{Sz(TX),Sz(TY )} ≤ max{Sz(X),Sz(Y )}.

Since X,Y both embed into X ⊗̂ε Y , the reverse inequality is clear.

Remark 6.10. It is unnecessary to take the direct sum TX⊕∞TY in the
previous proof. It is easy to see how to modify the proof of Theorem 6.3 to
find one mixed Tsirelson space which can play the roles of both TX and TY
simultaneously.
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