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Abstract. Let T be a multilinear integral operator which is bounded on certain
products of Lebesgue spaces on Rn. We assume that its associated kernel satisfies some
mild regularity condition which is weaker than the usual Hölder continuity of kernels of
multilinear Calderón–Zygmund singular integral operators. In this paper, given a suit-
able multiple weight ~w, we obtain a bound for the weighted norm of T in terms of ~w.
As applications, we obtain new weighted bounds for certain singular integral operators
such as linear and multilinear Fourier multipliers and the Riesz transforms associated to
Schrödinger operators on Rn.

1. Introduction. In the past decades, weighted inequalities have been
a very attractive realm in harmonic analysis. One basic problem concerning
them consists in determining conditions for a given operator to be bounded
in Lp(w) with an appropriate weight w. A sustained research period started
with the famous work of Muckenhoupt [Mu] in the seventies. In that work he
characterized the class of weights u, v such that the following weak inequality
for the Hardy–Littlewood maximal operator M and for 1 ≤ p <∞ holds:

(1.1) ‖M(f)‖Lp,∞(u) ≤ C‖f‖Lp(v).

When u = v = w, this condition on the weights is known as the Ap condition:

[w]Ap := sup
Q

(
1

|Q|

�

Q

w(x) dx

)(
1

|Q|

�

Q

w(x)−1/(p−1) dx

)p−1
<∞, p > 1,
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where the supremum is taken over all cubes (or balls) in Rn. For p > 1,
Muckenhoupt proved that the strong estimate�

Rn

(Mf(x))pw(x) dx ≤ C
�

Rn

|f(x)|pw(x) dx, f ∈ Lp(w),

holds if and only if w satisfies the Ap condition.

After that, harmonic analysts focused on studying weighted inequalities
for many different classical operators such as the Hilbert and Riesz trans-
forms and other singular integral operators, leading to a vast literature.
However, the classical results did not reflect the quantitative dependence of
the Lp(w) operator norm on the relevant constant involving the weight. The
question of the sharp dependence of the norm estimates of a given operator
on the Ap constant of the weight was specifically raised by S. Buckley [Bu],
who proved the following optimal bound for the Hardy–Littlewood operator:

(1.2) ‖M‖Lp(w) ≤ Cp [w]
1/(p−1)
Ap

,

where Cp is a dimensional constant that also depends on p, but not on w.
The estimate in (1.2) is sharp in the sense that the exponent 1/(p−1) cannot
be replaced by a smaller one.

On the other hand, it turned out that for singular integral operators the
question was much more complicated. Linear bounds for the Hilbert and
Riesz transforms were addressed by Petermichl [P1, P2]. Since then, the
so-called A2 conjecture attracted much attention. This conjecture states
that the sharp dependence of the L2(w) norm of a Calderón–Zygmund
operator on the A2 constant of the weight w is linear. Finally, in 2012
T. Hytönen [Hyt1] proved the so-called A2 theorem, which confirmed that
conjecture. This, in combination with the extrapolation theorem of [DGPP],
gives the sharp dependence of the Lp(w) norm for Calderón–Zygmund oper-
ators with 1 < p <∞. More precisely, if T is a Calderón–Zygmund operator
then

(1.3) ‖T‖Lp(w) ≤ CT,n,p[w]
max(1,1/(p−1))
Ap

, 1 < p <∞, w ∈ Ap.

Shortly thereafter, A. K. Lerner [Ler4] gave a much simpler proof of the A2

theorem proving that every Calderón–Zygmund operator is bounded from
above by a supremum of sparse operators. Namely, if X is a Banach function
space, then

(1.4) ‖T (f)‖X ≤ C sup
D ,S
‖AD ,S(f)‖X,

where the supremum is taken over arbitrary dyadic grids D and sparse
families S ⊂ D , and

AD ,S(f) =
∑
Q∈S

( �
Q

f
)
χQ.
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The interested readers can consult [Hyt2] for a survey on the history of the
proof. Lerner’s techniques were used in [DLP] to extend (1.4) and the A2 the-
orem to multilinear Calderón–Zygmund operators. Later on, Li, Moen and
Sun [LMS] proved the corresponding sharp weighted A~P bounds for multilin-

ear sparse operators (here ~P = (p1, . . . , pm)). Namely, if 1 < p1, . . . , pm <∞
with 1/p1 + · · ·+ 1/pm = 1/p and ~w = (w1, . . . , wm) ∈ A~P , then

(1.5) ‖AD ,S(~f )‖Lp(ν~w) . [~w]
max{1,p′1/p,...,p′m/p}
A~P

m∏
i=1

‖fi‖Lpi (wi)

for all tuples ~f = (f1, . . . , fm). Here AD ,S denotes the multilinear sparse
operator

AD ,S(~f )(x) =
∑
Q

( m∏
i=1

(fi)Q

)
χQ(x).

From (1.5), we can derive the multilinear A~P theorem for 1/m < p < ∞
(see [CR, LMS]). More precisely, if T is a multilinear Calderón–Zygmund
operator, 1 < p1, . . . , pm <∞, 1/p1 + · · ·+ 1/pm = 1/p and ~w ∈ A~P , then

(1.6) ‖T (~f )‖Lp(ν~w) ≤ Cn,m, ~P ,T [~w]
max{1,p′1/p,...,p′m/p}
A~P

m∏
i=1

‖fi‖Lpi (wi).

For further details on the theory of multilinear Calderón–Zygmund opera-
tors, we refer to [G, GT] and the references therein.

In this paper, we study weighted bounds for certain multilinear singular
integral operators on products of weighted Lebesgue spaces. It is important
to note that the multilinear singular integral operators considered here are
beyond the Calderón–Zygmund class of multilinear singular integral oper-
ators studied in [GT]. More precisely, we assume that T is a multilinear
operator initially defined on the m-fold product of Schwartz spaces and tak-
ing values in the space of tempered distributions,

T : S(Rn)× · · · × S(Rn)→ S ′(Rn).

The associated kernel K(x, y1, . . . , ym) is a function defined away from the
diagonal x = y1 = · · · = ym in (Rn)m+1, satisfying

T (f1, . . . , fm)(x) =
�

(Rn)m

K(x, y1, . . . , ym)f1(y1) . . . fm(ym) dy1 . . . dym

for all fj ∈ S(Rn) and all x /∈
⋂m
j=1 supp fj , j = 1, . . . ,m.

In what follows, we denote dy1 . . . dym by d~y. For the rest of this paper,
we assume that there exist p0 ≥ 1 and a constant C > 0 such that:

(H1) T maps Lp0 × · · · × Lp0 into Lp0/m,∞.
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(H2) There exists δ > n/p0 such that for the conjugate exponent p′0
of p0, one has

(1.7)
( �

Sjm (Q)

. . .
�

Sj1
(Q)

|K(x, y1, . . . , ym)−K(x, y1, . . . , ym)|p′0 d~y
)1/p′0

≤ C |x− x|
m(δ−n/p0)

|Q|mδ/n
2−mδj0

for all balls Q, all x, x ∈ 1
2Q and (j1, . . . , ym) 6= (0, . . . , 0), where

j0 = max{jk : k = 1, . . . ,m} and Sj(Q) = 2jQ \ 2j−1Q if j ≥ 1,
otherwise Sj(Q) = Q.

Note that we do not require any size condition on the kernel of T . Con-
sidering the class of operators satisfying (H1) and (H2) is motivated by
the recent works [KW, BD, GT, LO+, LRT, LMRT, LMPR]. In the linear
case of m = 1, the class of such operators is contained implicitly in [KW].
Condition (H2) is similar to the Lr-Hörnander conditions considered in
[LRT, LMRT, LMPR]. In the multilinear case, this kind of operators were
considered by the first and third authors [BD] in studying weighted norm
inequalities for multilinear Fourier multiplier operators with symbols of lim-
ited smoothness. More importantly, the class of operators satisfying (H1)
and (H2) includes the class of multilinear Calderón–Zygmund singular inte-
gral operators (see [GT, LO+] for the precise definition). More precisely, if
T is a multilinear Calderón–Zygmund singular integral operator then it is
easy to see that T satisfies (H1) and (H2) with p0 = 1.

The main goal of this paper is to obtain weighted bounds for multilinear
singular integrals which satisfy (H1) and (H2). According to a standard
approach, it is natural to consider the following multi-sublinear operators.
Fix p0 ∈ [1,∞) and a dyadic grid D ⊂ Rn. Define, for any cube Q,

〈f〉Q,p0 :=

(
1

|Q|

�

Q

|f(x)|p0 dx
)1/p0

.

For k ≥ 0, denote by Ak,p0D ,S the m-sublinear sparse operator

Ak,p0D ,S (~f )(x) =
∑
Q∈S

[ m∏
i=1

〈fi〉Q(k),p0

]
χQ(x),

which acts on measurable m-tuples ~f = (f1, . . . , fm). Here Q(k) denotes the

kth dyadic ancestor of Q in D . Also, we define an operator T k,p0S by

T k,p0S (~f )(x) =
∑
Q∈S

[ m∏
i=1

〈fi〉2kQ,p0
]
χQ(x).
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We shall also work with the localized versions of the operators above, in
which the sum in the definition ranges over cubes Q contained in some fixed
cube P . We will denote them respectively by Ak,p0S,P and T k,p0S,P .

Our first main result reads as follows:

Theorem 1.1. Assume that the tuple ~f is compactly supported. Then
for each sparse family S there exist sparse families Sj, 1 ≤ j ≤ cn, such that

T k,p0D ,S (~f )(x) ≤ C(k + 1)

cn∑
j=1

A0,p0
Dj ,Sj (

~f )(x) a.e.,

for some constant C that may depend on m, but not on k or ~f .

The proof of Theorem 1.1 follows the scheme of [CR], where the case
p0 = 1 is considered. The main new difficulty is that the operator Am,p0S is

not linear for p0 6= 1. Of course, Am,pS ~f ≥ Am,qS ~f for positive tuples ~f and

p ≥ q. Therefore, bounding the operators Am,p0S for p0 > 1 leaves some space
for estimates involving Calderón–Zygmund operators with rough kernels. On
the other hand, the operators Ap0S := A0,p0

S have nice quantitative properties:

Theorem 1.2. Suppose that p0 < p1, . . . , pm < ∞ with 1/p1 + · · · +
1/pm = 1/p and ~w ∈ A~P/p0

. Then

‖Ap0S (~f )‖Lp(ν~w) . [~w]
max{1,(p1/p0)′/p,...,(pm/p0)′/p}
A~P/p0

m∏
i=1

‖fi‖Lpi (wi).

This is all we need to get weighted bounds of our operators with non-
smooth kernels.

Theorem 1.3. Let T satisfy (H1) and (H2). If f has compact support
inside a cube Q0, then we have the pointwise bound

|T (~f )(x)| ≤ C
cn∑
j=1

A0,p0
Dj ,Sj (

~f )(x) for a.e. x ∈ Q0.

Moreover, let X be a quasi Banach function space (in the sense of [CR]).
Then

‖T (~f )‖X ≤ C sup
D ,S
‖A0,p0

D ,S(~f )‖X

(the supremum runs over dyadic systems D and sparse families S). In par-
ticular, suppose that p0 < p1, . . . , pm <∞ with 1/p1 + · · ·+ 1/pm = 1/p and
~w ∈ A~P/p0

. Then

‖T (~f )‖Lp(ν~w) . [~w]
max{1,(p1/p0)′/p,...,(pm/p0)′/p}
A~P/p0

m∏
i=1

‖fi‖Lpi (wi).
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We point out that our results are new even for the linear case. Although
our conjecture is that these bounds are sharp, we have not been able to
prove this and leave it as an open problem.

As applications of Theorem 1.3, we prove the following new results (see
Section 5):

(a) Weighted bounds for the linear Fourier multipliers Tm with a symbol
m of limited smoothness as in [KW]—see Theorem 5.3. Note that in
this situation, Tm is not a Calderón–Zygmund operator.

(b) Weighted bounds for the Riesz transforms ∇L−1/2, where L =
−∆ + V is a Schrödinger operator with potential V ∈ RHq, n/2 ≤
q < n—see Theorem 5.6. It is worth noticing that if V ≥ q ≥ n then
∇L−1/2 is a Calderón–Zygmund operator. However, this is not so far
V ∈ RHq, n/2 ≤ q < n (see for example [S]);

(c) Weighted bounds for the multilinear Fourier multiplier Tm as
in [BD]—see Theorem 5.10. Note that in this situation, the multilin-
ear Fourier multiplier Tm cannot be a multilinear Calderón–Zygmund
singular integral due to the limited smoothness imposed on m.

The outline of the rest of the paper is the following: In the next section
we recall the definition of multiple weights and Lerner’s local oscillation
formula. Section 3 is devoted to proving Theorem 1.1. The proofs of The-
orems 1.2 and 1.3 are given in Section 4. Finally, in Section 5, we apply
Theorem 1.3 to obtain weighted bounds for certain singular integral opera-
tors such as linear and multilinear Fourier multipliers and Riesz transforms
associated to Schrödinger operators.

Throughout, A . B will denote A ≤ CB, where C is a positive constant
independent of the weight which may change from line to line. Moreover,
A .a,b B will denote A ≤ CB, where C is a positive constant depending on
a and b.

2. Preliminaries

2.1.Multipleweight theory. For a general account on multiple weights
and related results we refer the interested reader to [LO+]. In this section
we briefly introduce some definitions and results that we will need. Consider
m weights w1, . . . , wm and denote ~w = (w1, . . . , wm). Also let 1 < p1, . . . , pm
<∞ and 1/m < p <∞ be numbers such that 1/p = 1/p1 + · · ·+ 1/pm, and

denote ~P = (p1, . . . , pm). Set

ν~w :=

m∏
i=1

w
p/pi
i .
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We say that ~w satisfies the A~P condition if

(2.1) [~w]A~P
:= sup

Q

(
1

|Q|

�

Q

ν~w

) m∏
i=1

(
1

|Q|

�

Q

w
1−p′i
i

)p/p′i
<∞.

When pi = 1 for some i, (|Q|−1
	
Qw

1−p′i
i )p/p

′
i is understood as (infQwi)

−p.

This condition, introduced in [LO+], was shown to characterize the classes
of weights for which the multilinear maximal function M is bounded from
Lp1(w1)×· · ·×Lpm(wm) into Lp(ν~w) (see [LO+, Thm. 3.7]). We also denote
by Ap, 1 ≤ p <∞, and RHq, 1 < q ≤ ∞, the classes of Muckenhoupt weights
and of reverse Hölder weights on Rn, respectively. For w ∈ Ap, 1 ≤ p < ∞,
the quantity [w]Ap is defined by

[w]Ap := sup
Q

(
1

|Q|

�

Q

w(x) dx

)(
1

|Q|

�

Q

w(x)−1/(p−1) dx

)p−1
,

with the usual modification when p = 1. The supremum above is taken over
all cubes (or balls) in Rn. For w ∈ RHq, 1 < q ≤ ∞, we define

[w]RHq := sup
Q

(
1

|Q|

�

Q

w(x)q dx

)1/q( 1

|Q|

�

Q

w(x) dx

)−1
,

with the usual modification when q = ∞. Again, the supremum is taken
over all cubes (or balls) in Rn.

Let σ ∈ A∞ =
⋃
p≥1Ap. The dyadic maximal function with respect to σ

is defined as

(2.2) MD
σ (f)(x) = sup

x∈Q
Q∈D

1

σ(Q)

�

Q

|f |σ.

It is well-known (see e.g. [Mo]) that

(2.3) ‖MD
σ f‖Lp(σ) ≤ p′‖f‖Lp(σ), 1 < p <∞.

2.2. A local mean oscillation formula. For the notion of a general
dyadic grid D we refer to previous works (e.g. [Ler2] and [Hyt2]). A collection
S = {Q} ⊂ D is called a sparse family of cubes if there exist pairwise disjoint
subsets EQ ⊂ Q with |Q| ≤ 2|EQ| for each Q ∈ S.

The major tool to prove our main results is Lerner’s local oscillation
formula from [Ler2]. To formulate it we need to introduce several notions.
By a median value of a measurable function f on a set Q we mean a possibly
nonunique, real number mf (Q) such that

max
{
|{x ∈ Q : f(x) > mf (Q)}|, |{x ∈ Q : f(x) < mf (Q)}|

}
≤ |Q|/2.
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The decreasing rearrangement of a measurable function f on Rn is de-
fined by

f∗(t) = inf
{
α > 0 : |{x ∈ Rn : |f(x)| > α}| < t

}
, 0 < t <∞.

The local mean oscillation of f is

ωλ(f ;Q) = inf
c∈R

((f − c)χQ)∗(λ|Q|), 0 < λ < 1.

Then it follows from the definitions that

(2.4) |mf (Q)| ≤ (fχQ)∗(|Q|/2).

The following theorem was proved by Hytönen [Hyt2, Theorem 2.3] in order
to improve Lerner’s original formula given in [Ler1, Ler2].

Theorem 2.1. Let f be a measurable function on Rn and let Q0 be a
fixed cube. Then there exists a (possibly empty) sparse family S of cubes
Q ∈ D(Q0) such that for a.e. x ∈ Q0,

(2.5) |f(x)−mf (Q0)| ≤ 2
∑
Q∈S

ω1/2n+2(f ;Q)χQ(x).

3. Proof of Theorem 1.1. This section is entirely devoted to the
proof of Theorem 1.1. To that end, we first make some reductions. First,
since the operator T k,p0S is (multi-)sublinear, we may assume that fi ≥ 0 for
1 ≤ i ≤ m. Second, by a well known variation of the one-third trick (see,
for example, [HLP]), we may replace centered dilations by dyadic ancestors.
More precisely, we may write

T k,p0S
~f(x) .p0,n

cn∑
j=1

Ak,p0
Dj ,Sj

~f(x)

for certain dyadic systems D1, . . . ,Dcn , sparse families Sj ⊂ Dj and some
dimensional constant cn. Therefore, we may just concentrate on one such
operator Ak,p0D ,S . However, we will consider a slightly more general operator.

Namely, given a dyadic system D (that we remove from the notation from
now on), we will study operators of the form

Ak,p0α
~f(x) =

∑
Q∈D

αQ

[ m∏
i=1

〈fi〉Q(k),p0

]
χQ(x),

where the sequence α = (αQ)Q is Carleson and normalized:

sup
Q∈D

∑
T∈D(Q)

αT
|T |
|Q|

= 1.

Finally, by the usual density arguments, we may assume that the sequence
α is finite, which in particular implies that there exists some cube P0 ∈ D
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such that Ak,p0α = Ak,p0α,P0
, that is,

Ak,p0α
~f(x) =

∑
Q∈D , Q(k)⊂P0

αQ

[ m∏
i=1

〈fi〉Q(k),p0

]
χQ(x).

Also, recall that we assume that each function fi is supported in the cube P0.
The rest of the proof consists in obtaining a pointwise estimate of Ak,p0α,P0

and

follows the lines of [CR]. Since it is a bit lengthy, we divide it into several
steps. We will skip some details at the points where our argument does not
differ substantially from that of [CR].

Step 1. Slicing: reduction to separated scales. We start the proof by
separating the scales of Ak,p0α,P0

as follows:

Ak,p0α,P0
~f(x) =

k−1∑
`=0

∞∑
j=1

∑
Q∈Djk+`(P0)

αQ

( m∏
i=1

〈fi〉Q(k),p0

)
χQ(x)

=:
k−1∑
`=0

Ak,p0;`α,P0
~f(x).

Now, as in [CR], we rewrite Ak,p0;`α,P0
as a sum of disjointly supported operators

of the form Ak,p0;0α,P . Indeed, we have the expression

Ak,p0α,P0
~f(x) =

k−1∑
`=0

∑
P∈D`(P0)

Ak,p0;0α,P
~f(x).

Therefore, it is enough to prove the following claim: Let k ≥ 1 and α be a nor-
malized Carleson sequence. For nonnegative integrable functions f1, . . . , fm
on P0, there exists a sparse family S of cubes in D(P0) such that

Ak,p0;0α,P0
~f(x) ≤ C

∑
Q∈S

( m∏
i=1

〈fi〉Q,p0
)
χQ(x),

for some constant C independent of k and the cube P0.

Step 2. Construction of the collection S for the sliced operator. We now
build the family S. The construction is similar to that in [CR, p. 6]. We
start by defining

C∗ := 22(m+1)W(p0, k),

where

W(p0, k) = sup
P∈D , αCarleson
αQ 6=0⇒Q∈D(P )

‖Ak,p0;0α,P ‖Lp0 (P )×···×Lp0 (P )→Lp0/m,∞(P ).
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Also, if Q ∈ Dkn(P0) for some n ≥ 0, define

γQ = max
R∈Dk(Q)

αR.

Set also ∆P0 = 0. Then we inductively implement the following selection
procedure, starting with the cube P = P0:

(1) If ∆P − (
∏m
i=1〈fi〉P,p0)γP < 0, then we choose P ∈ S and we set

∆Q = ∆P + (C∗ − αQ)

m∏
i=1

〈fi〉P,p0

for all Q ∈ Dk(P ).
(2) If ∆P − (

∏m
i=1〈fi〉P,p0)γP ≥ 0, then we choose P 6∈ S and we set

∆Q = ∆P − αQ
m∏
i=1

〈fi〉P,p0 .

(3) Go back to (1) for the cubes Q ∈ Dk(P ).

Since the sequence α is finite, the procedure terminates and yields the family
S that we will use.

Step 3. The family S is sparse. To prove sparsity, we will show the
following (stronger) claim: fix P ∈ S, and denote

F (P ) :=
⋃

Q(P,Q∈S
Q.

Then |F (P )| ≤ 1
2 |P |. The claim and its proof are entirely similar to [CR,

pp. 7–8]. Let R be the collection of maximal subcubes of P which belong
to S. By maximality, for each x ∈ R ∈ R we have( m∏

i=1

〈fi〉R,p0
)
γR +Ak,p0;0α,P

~f(x) > C∗
m∏
i=1

〈fi〉P,p0 .

Now, denote

GP,p0 ~f =
∑
R∈R

γR

( m∏
i=1

〈fi〉R,p0
)
χR.

Then for all x ∈ P ,

GP,p0 ~f(x) +Ak,p0;0α,P
~f(x) > C∗

m∏
i=1

〈fi〉P,p0 .
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Thus we have

|F (P )| ≤
∣∣∣{x ∈ P : GP,p0 ~f(x) +Ak,p0;0α,P

~f(x) > C∗
m∏
i=1

〈fi〉P,p0
}∣∣∣

≤
‖GP,p0 +Ak,p0;0α,P ‖

p0/m

Lp0 (P )×···×Lp0 (P )→Lp0/m,∞(P )

(C∗
∏m
i=1〈fi〉P,p0)p0/m

( m∏
i=1

‖fi‖Lp0 (P )

)p0/m
≤ 2p0/m|P |

(‖GP,p0‖p0/mLp0 (P )×···×Lp0 (P )→Lp0/m,∞(P )

(C∗)p0/m

+
‖Ak,p0;0α,P ‖

p0/m

Lp0 (P )×···×Lp0 (P )→Lp0/m,∞(P )

(C∗)p0/m

)
≤ |P |

2

(‖GP,p0‖p0/mLp0 (P )×···×Lp0 (P )→Lp0/m,∞(P )

2
+

1

2

)
.

Finally, we observe that the operator GP,p0 is bounded above by the multi-
sublinear operator

PP,p0 ~f =
∑
R∈R

( m∏
i=1

〈fi〉R,p0
)
χR,

which is contractive from Lp0(P )× · · · × Lp0(P ) to Lp0/m,∞(P ). Therefore,
the norm of GP,p0 from Lp0(P ) × · · · × Lp0(P ) to Lp0/m,∞(P ) is bounded
by 1. This is enough to obtain the assertion.

Step 4. Pointwise bound. Following the proof of [CR, Lemma 2.3], one
gets the pointwise bound

Ak,p0;0α,P0
~f(x) .n,m W(p0, k)

∑
Q∈S

( m∏
i=1

〈fi〉Q,p0
)
χQ(x).

Therefore, we only need to prove W(p0, k) .p0,n,m 1.

Step 5. Weak type estimate for Ak,p0α,P . Fix some P ∈ D and some nor-

malized Carleson sequence α such that αQ 6= 0 only if Q ∈ D(P ). We need
to show that

‖Ak,p0α,P ‖Lp0×···×Lp0→Lp0/m,∞ .n,m,p0 1.

To prove it, we first establish an L2p0m estimate. We will use the estimate
of [CD], which reads

(3.1)

( ∑
Q∈D(P )

αQ

( m∏
i=1

1

|Q|

�

Q

fi

)q
|Q|
)1/q

≤
m∏
i=1

p′i‖fi‖Lpi (P )
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whenever 1/q = 1/p1 + · · · + 1/pm and α is Carleson and normalized. We
will show that

‖Ak,p0α,P
~f ‖L2p0 .

m∏
i=1

‖fi‖L2p0m .

Indeed, by using duality we reduce to showing�

P

g(x)Ak,p0α,P
~f(x) dx . 1

assuming that ‖fi‖L2p0m = ‖g‖L(2p0)
′ = 1 for all 1 ≤ i ≤ m and g ≥ 0. By

definition and Hölder’s inequality, it is enough to show( ∑
Q∈D≥m(P0)

αQ

( m∏
i=1

〈fi〉Q(k),p0

)2p0
|Q|
)1/(2p0)

×
( ∑
Q∈D≥k(P0)

αQ

(
1

|Q|

�

Q

g

)(2p0)′

|Q|
)1/(2p0)′

. 1.

The second term can be estimated, using (3.1) in the linear case, by an
absolute constant. For the first term observe that the sequence βQ defined by

βQ =
1

2nk

∑
R∈Dk(Q)

αR

is a Carleson sequence adapted to P of constant 1. Indeed, for anyQ ∈ D(P ),

1

|Q|
∑

R∈D(Q)

βR|R| =
1

|Q|
∑

R∈D(Q)

|R| 1

2nk

∑
T∈Dk(R)

αT

=
1

|Q|
∑

R∈D(Q)

∑
T∈Dk(R)

αT |T | =
1

|Q|
∑

R∈D≥k(Q)

αR|R| ≤ 1.

Therefore, we can write the first term as( ∑
Q∈D(P )

βQ

( m∑
i=1

〈fi〉Q,p0
)2p0
|Q|
)1/(2p0)

,

which can also be estimated by (3.1), with p1 = · · · = pm = 2m, q = 2:( ∑
Q∈D(P )

βQ

( m∏
i=1

〈fi〉Q,p0
)2p0)1/(2p0)

=
( ∑
Q∈D(P )

βQ

( m∏
i=1

〈|fi|p0〉Q,1
)2
|Q|
)1/(2p0)

.p0,m

m∏
i=1

‖ |fi|p0‖1/p02m . 1.

Combining both terms we arrive at the strong type result we want.
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Now we can prove our weak type estimate

sup
λ>0

λ|{x : Ak,p0α,P
~f(x) > λ}|m/p0 .n,m,p0

m∏
i=1

‖fi‖Lp0 .

By homogeneity we can assume ‖fi‖Lp0 = 1 and fi ≥ 0 for 1 ≤ i ≤ m.
We will use the previous strong bound and a standard Calderón–Zygmund
decomposition of the positive tuple (fp01 , . . . , fp0m ), which we explain now.

We need the following version of the dyadic maximal operator:

MD
p0g(x) = sup

x∈Q∈D
〈g〉Q,p0 .

For 1 ≤ i ≤ m, denote

Ωi = {x ∈ P :MD
p0fi(x) > λ1/m}.

If 〈fi〉P,p0 > λ1/m then

|P |λp0/m < ‖fi‖p0Lp0 ,

and the estimate follows by the homogeneity assumption. Therefore, we can
assume 〈fi〉P,p0 ≤ λ1/m for all 1 ≤ i ≤ m. But then we can write Ωi as
a union of cubes in a collection Ri consisting of pairwise disjoint dyadic
(strict) subcubes R of P with the properties

〈fi〉R,p0 > λ1/m and 〈fi〉R(1),p0
≤ λ1/m, R ∈ Ri.

For each 1 ≤ i ≤ m let bi =
∑

R∈Ri
bRi , where

bRi (x) :=
(
fp0i (x)− 〈fi〉p0R,p0

)
χR(x).

We now let gi = fp0i − bi. Observe that

|gi(x)| . λp0/m, ‖gi‖L1 . ‖fi‖Lp0 = 1

as well as

|Ωi| =
∑
R∈Ri

|R| ≤ 1

λp0/m
.

Set Ω =
⋃
iΩi. Now we have

|{x : Ak,p0α,P
~f(x) > λ}| ≤ |Ω|+ |{x ∈ Rn \Ω : Ak,p0α,P

~f(x) > λ}|(3.2)

≤ m

λp0/m
+ |{x ∈ Rn \Ω : Ak,p0α,P

~f(x) > λ}|.

To estimate the second term above observe that

〈fi〉p0Q,p0 ≤
∣∣∣∣ 1

|Q|

�

Q

gi

∣∣∣∣+

∣∣∣∣ 1

|Q|

�

Q

bi

∣∣∣∣.
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Therefore, by the concavity of the function x 7→ |x|1/p0 we obtain

Ak,p0α,P
~f(x) ≤ |A|k,p0α,P ~g(x) +

2m−1∑
j=1

|A|k,p0α,P (hj1, . . . , h
j
m)(x),

where we have denoted ~g = (gi)1≤i≤k, h
j
i is either gi or bi, and for each j,

there is at least one 1 ≤ i ≤ m such that hji = bi. Also, we have used the
notation

|A|k,p0α,P
~h(x) =

∑
Q∈D(P ), Qk⊂P

αQ

m∏
i=1

∣∣∣∣ 1

|Q(k)|

�

Q(k)

hi

∣∣∣∣1/p0χQ(x).

If hji = bi, then for all x /∈ Ωi we can see that |A|k,p0α,P (hj1, . . . , h
j
m)(x) = 0

because each bRi has zero average. With this fact we can see that the second
term in (3.2) is actually identical to

|{x ∈ Rn \Ω : |A|k,p0α,P ~g(x) > λ}|.

Now we can use the L2p0 bound. Writing |~g|1/p0 = (|g1|1/p0 , . . . , |gk|1/p0), we
have

|{x ∈ Rn \Ω : |A|k,p0α,P ~g(x) > λ}|

≤ 1

λ2p0
‖ |A|k,p0α,P ~g‖

2p0
L2p0
≤ 1

λ2p0
‖Ak,p0α,P |~g|

1/p0‖2p0
L2p0

.
1

λ2p0

m∏
i=1

‖ |gi|1/p0‖2p0L2p0m
.

1

λp0/m

m∏
i=1

‖gi‖1/mL1 .
1

λp0/m
.

Putting both estimates together we arrive at the desired result. This com-
pletes the proof of Theorem 1.1.

4. Proofs of Theorems 1.2 and 1.3

Proof of Theorem 1.2. We borrow some ideas from [LMS, Theorem
3.2], where the case p0 = 1 is considered. Throughout the proof, we set

a = p/p0 and ai = pi/p0 for i = 1, . . . ,m. Let σi = w
1−a′i
i , ~fσ,p0 =

(f1σ
1/p0
1 , . . . , fmσ

1/p0
m ) and fi ≥ 0. We have σi, ν~w ∈ A∞ (see [LO+, Theorem

3.6]). It suffices to prove that

(4.1) ‖Ap0D ,S(~fσ,p0)‖Lp(ν~w) . [~w]
max{1,a′1/(p0a),...,a′m/(p0a)}
A~P/p0

m∏
i=1

‖fi‖Lpi (σi).

By definition, for any cube Q ⊂ Rn, we have

(4.2) [~w]A~P/p0
≥
(

1

|Q|

�

Q

ν~w

) m∏
j=1

(
1

|Q|

�

Q

w
1−a′j
j

)a/a′j
.
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Denote β = max{1, a′1/(p0a), . . . , a′m/(p0a)}, and assume that 0 ≤ g ∈
Lp
′
(ν~w). We have

�

Rn

Ap0D ,S(~fσ,p0)gν~w =
∑
Q∈S

�

Q

gν~w ×
( m∏
i=1

(
1

|Q|

�

Q

|fi|p0σi
)1/p0)

.

From this and the definition of [~w]A~P/p0
, we obtain

∑
Q∈S

�

Q

gν~w ×
( m∏
i=1

1

|Q|

�

Q

|fi|p0σi
)1/p0

≤ [~w]βA~P

∑
Q∈S

|Q|m(βa−1/p0)

ν~w(Q)β−1
∏m
i=1 σi(Q)βa/a

′
i−1/p0

×
(

1

ν~w(Q)

�

Q

gν~w

)
×
( m∏
i=1

1

σi(Q)

�

Q

|fi|p0σi
)1/p0

≤ 2m(βa−1/p0)[~w]βA~P

∑
Q∈S

|EQ|m(βa−1/p0)

ν~w(Q)β−1
∏m
i=1 σi(Q)βa/a

′
i−1/p0

×
(

1

ν~w(Q)

�

Q

gν~w

)
×
( m∏
i=1

1

σi(Q)

�

Q

|fi|p0σi
)1/p0

≤ 2m(βa−1/p0)[~w]βA~P

∑
Q∈S

|EQ|m(βa−1/p0)

ν~w(EQ)β−1
∏m
i=1 σi(EQ)βa/a

′
i−1/p0

×
(

1

ν~w(Q)

�

Q

gν~w

)
×
( m∏
i=1

1

σi(Q)

�

Q

|fi|p0σi
)1/p0

,

where in the last inequality we have used the inequalities ν~w(Q) ≥ ν~w(EQ),
σi(Q) ≥ σi(EQ) and the positivity of the exponents. On the other hand, by
Hölder’s inequality, we have

(4.3) |EQ| =
�

EQ

ν
1/(ma)
~w

m∏
i=1

σ
1/(ma′i)
i ≤ ν~w(EQ)1/(ma)

m∏
i=1

σi(EQ)1/(ma
′
i).

Inserting this into the estimate above we conclude that∑
Q∈S

�

Q

gν~w ×
( m∏
i=1

1

|Q|

�

Q

|fi|p0σi
)1/p0

≤ 2m(βa−1/p0)[~w]βA~P

∑
Q∈S

ν~w(EQ)(βa−1/p0)/a
∏m
i=1 σi(EQ)(βa−1/p0)/a

′
i

ν~w(EQ)β−1
∏m
i=1 σi(EQ)βa/a

′
i−1/p0

×
(

1

ν~w(Q)

�

Q

gν~w

)
×
( m∏
i=1

1

σi(Q)

�

Q

|fi|p0σi
)1/p0
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≤ 2m(βa−1/p0)[~w]βA~P

∑
Q∈S

ν~w(EQ)1−1/(ap0)
m∏
i=1

σi(EQ)1/(p0ai)

×
(

1

ν~w(Q)

�

Q

gν~w

)
×
( m∏
i=1

1

σi(Q)

�

Q

|fi|p0σi
)1/p0

= 2mq(βa−1/p0)[~w]βA~P

∑
Q∈S

ν~w(EQ)1/p
′
m∏
i=1

σi(EQ)1/pi
(

1

ν~w(Q)

�

Q

gν~w

)

×
( m∏
i=1

1

σi(Q)

�

Q

|fi|p0σi
)1/p0

= 2mq(βa−1/p0)[~w]βA~P

∑
Q∈S

[(
1

ν~w(Q)

�

Q

gν~w

)
ν~w(EQ)1/p

′
]

×
[ m∏
i=1

(
1

σi(Q)

�

Q

|fi|p0σi
)
σi(EQ)p0/pi

]1/p0
.

This, together with Hölder’s inequality and the disjointness of the family
{EQ}Q∈S , yields

∑
Q∈S

�

Q

gν~w ×
( m∏
i=1

1

|Q|

�

Q

|fi|p0σi
)q

≤ 2mq(βa−1/p0)[~w]βA~P

[∑
Q∈S

(
1

ν~w(Q)

�

Q

gν~w

)p′
ν~w(EQ)

]1/p′

×
m∏
i=1

[∑
Q∈S

(
1

σi(Q)

�

Q

|fi|p0i σi
)pi/p0

σi(EQ)

]1/pi
≤ 2m(βa−1/p0)[~w]βA~P

‖MD
ν~w

(g)‖Lp′ (ν~w) ×
m∏
i=1

‖MD
σi(|fi|

p0)‖1/p0
Lpi/p0 (σi)

. 2m(βa−1/p0)[~w]βA~P
‖g‖Lp′ (ν~w) ×

m∏
i=1

‖fp0i ‖
1/p0
Lpi/p0 (σi)

= 2m(βa−1/p0)[~w]βA~P
‖g‖Lp′ (ν~w) ×

m∏
i=1

‖fi‖Lpi (σi),

by applying (2.3) to get the last inequality. This proves (4.1).

The following proposition plays an important role in proving Theorem
1.3.
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Proposition 4.1. Let T satisfy (H1) and (H2). Then, for any cube
Q ⊂ Rn,

ωλ(T ~f ;Q) ≤ c(T, λ,m, n)

∞∑
`=0

2−`δ0
( m∏
i=1

1

|2`Q|

�

2`Q

|fi(y)|p0 dy
)1/p0

,

where δ0 = δ − n/p0.

Proof. The proof is standard. For completeness, we sketch it here. For
each i = 1, . . . ,m, we define f0i = fiχQ∗ and f∞i = fi − f0i . Setting ~f 0 =
(f1χ4Q, . . . , fmχ4Q), we have

(4.4) T (~f)(z) = T (~f 0)(z) +
∑
~α∈I0

T (fα1
1 , . . . , fαm

m )(z),

where I0 := {~α = (α1, . . . , αm) : αi ∈ {0,∞} and at least one αi 6= 0}. We
first observe that[(
T (~f )−

∑
~α∈I0

T (fα1
1 , . . . , fαm

m )(x0)
)
χQ

]∗
(λ|Q|)

≤ 2(T (~f 0)χQ)∗(λ|Q|/2)

+ 2
∥∥∥∑
~α∈I0

T (fα1
1 , . . . , fαm

m )(·)−
∑
~α∈I0

T (fα1
1 , . . . , fαm

m )(x0)
∥∥∥
L∞(Q)

,

where x0 is the center of Q. Since T maps Lp0 × · · · ×Lp0 into Lp0/m,∞, we
have

(T ~f 0)∗(λ|Q|) ≤ Cn,T,λ‖T ~f 0‖Lp0/m,∞(Q,dx/|Q|)

≤ Cn,T,λ
( m∏
i=1

1

|4Q|

�

4Q

|fi(y)|p0 dy
)1/p0

.

On the other hand, for x ∈ Q, the argument in [BD, Theorem 3.1] yields

(4.5)
∣∣∣∑
~α∈I0

T (fα1
1 , . . . , fαm

m )(x)−
∑
~α∈I0

T (fα1
1 , . . . , fαm

m )(x0)
∣∣∣

≤ Cn,m,T
∞∑
`=0

2−`δ0
( m∏
i=1

1

|2`Q|

�

2`Q

|fi(y)|p0dy
)1/p0

with δ0 = δ − n/p0. Taking the last two estimates into account we obtain[(
T (~f )−

∑
~α∈I0

T (fα1
1 , . . . , fαm

m )(x0)
)
χQ

]∗
(λ|Q|)

≤ Cn,m,T,λ
∞∑
`=0

2−`δ0
( m∏
i=1

1

|2`Q|

�

2`Q

|fi(y)|p0dy
)1/p0

.
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At this stage, Theorem 1.3 follows immediately from Theorem 1.2 via
the following short argument:

Proof of Theorem 1.3. From Theorem 2.1 and Proposition 4.1, for
Q0 ∈ D , we can pick a sparse family S(Q0) ⊂ D(Q0) so that

|T (~f )(x)−m
T (~f )

(Q0)|

≤ c(T, n,m)
∑

Q∈S(Q0)

∞∑
`=0

2−`δ0
( m∏
i=1

1

|2`Q|

�

2`Q

|fi(y)|p0dy
)1/p0

χQ(x)

for a.e. x ∈ Q0. Since T maps Lp0 × · · · × Lp0 into Lp0/m,∞, we can write

|m
T (~f )

(Q0)| ≤ (T (~f )χQ0)∗(|Q0|/2) ≤ (2/|Q0|)m/p0‖T (~f )χQ0‖Lp0/m,∞

. ‖T‖Lp0×···×Lp0→Lp0/m,∞

m∏
i=1

〈|fi|〉Q0,p0 .

Therefore, after adding the median term to the right hand side and rela-
belling we are left with the estimate

|T (~f )(x)| .
∞∑
`=0

2−`δ0T `,p0S(Q0)
(~f )(x) for a.e. x ∈ Q0.

We now argue as in [CR, Corollary A.1] (see also [C]) and apply Theorem
1.1 to obtain the pointwise estimate

(4.6) |T (~f )(x)| .
cn∑
j=1

A0,p0
Dj ,Sj (

~f )(x) for a.e. x ∈ Q0,

which is the first assertion of Theorem 1.3. Finally, taking a sequence of
cubes that grow to fill the space and by a limit procedure we obtain the
second assertion:

‖T (~f )‖X .T,m,n sup
D ,S
‖Ap0D ,S(~f )‖X.

Remark 4.2. Our local pointwise estimate (4.6) holds only for points
inside a compact set. This is irrelevant in applications, since the estimate
is powerful enough to deduce full norm estimates from it. In the particular
case of ω-Calderón–Zygmund operators, the global pointwise estimate can
be deduced from the local one by taking an appropriate partition of Rn (see
for example [Ler3]). However, this technique does not seem feasible in our
present setting. The reason is that for a given cube Q, Lerner [Ler3] can
bound T (f13Q) by a sparse family of cubes inside Q, whereas we are able
to bound T (f13Q) by a sparse family of cubes inside 3Q.
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5. Applications to certain singular integral operators with non-
smooth kernels

5.1. Linear Fourier multipliers. Let m be a bounded function on Rn.
We define the multiplier operator Tm by setting

(Tmf)∧(x) = m(x)f̂(x)

where f̂ is the Fourier transform of f .

Let s ≥ 1, l be a positive integer and α = (α1, . . . , αn) be a multi-index of
nonnegative integers αj with length |α| = |α1|+ · · ·+ |αn|. Following [KW],
we say that the function m is in M(s, l) if

(5.1) sup
R>0

(
Rs|α|−n

�

R<|x|<2R

|∂αm(x)|s dx
)1/s

<∞ for all |α| ≤ l.

Hörmander [H] showed that if m ∈ M(2, l) and l > n/2, then the as-
sociated operators Tm are bounded on Lp for 1 < p < ∞. The condition
m ∈ M(s, l) with s ≥ 2 and l > n/s was considered in [CT]. In [KW], the
authors consider the class of m ∈ M(s, l) with s ≤ 2 and l > n/s. The
following result is a direct consequence of [KW, Theorem 1].

Theorem 5.1. Let 1 < s ≤ 2 and m ∈ M(s, l) with n/s < l < n. Then
Tm is bounded on Lp for 1 < p <∞.

Moreover, the following estimate follows from [KW, Lemma 1]:

Lemma 5.2. Let 1 < s ≤ 2 and m ∈M(s, l) with n/s < l < n. Then for
any p0 > n/l there exists ε > 0 such that for any ball B and x, x ∈ B,( �

Sk(B)

|K(x, y)−K(x, y)|p′0 dy
)1/p′0 ≤ C 2−kε

(2krB)n/p0

for all k ≥ 2, where K(x, y) is the kernel of Tm.

Therefore, Tm satisfies conditions (H1) and (H2). Thus, as a consequence
of Theorem 1.3, we obtain the following result.

Theorem 5.3. Let 1 < s ≤ 2 and m ∈ M(s, l) with n/s < l < n. For
any n/l < p0 <∞:

(a) For p0 < p <∞ and w ∈ Ap/p0, we have

‖Tmf‖Lp(w) ≤ CTm,p,p0 [w]
max{1,1/(p−p0)}
Ap/p0

‖f‖Lp(w).

(b) For 1 < p < p′0 and w ∈ Ap ∩RH(p′0/p)
′, we have

‖Tmf‖Lp(w) ≤ CTm,p,p0 [w]
max{p′−1, p′−1

p′−p0
}

RH(p′0/p)
′

[w]
max{p′−1, p′−1

p′−p0
}

Ap
‖f‖Lp(w).
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Proof. (a) From Theorem 5.1 and Lemma 5.2, Tm satisfies (H1) and
(H2) for p0. As a consequence of Theorem 1.3 we get

‖Tmf‖Lp(w) ≤ CTm,p,p0 [w]
max{1, (p/p0)

′
p
}

Ap/p0
‖f‖Lp(w)

= CTm,p,p0 [w]
max{1, 1

p−p0
}

Ap/p0
‖f‖Lp(w).

(b) For w ∈ Ap ∩RH(p′0/p)
′ , we claim that

(5.2) [σ]Ap′/p0
≤ [w]p

′−1
RH(p′0/p)

′
[w]p

′−1
Ap

:= [w]
1/(p−1)
RH(p′0/p)

′
[w]

1/(p−1)
Ap

,

where σ = w1−p′ . Once (5.2) is proved, (b) follows immediately by duality.

To prove (5.2), we write

[σ]Ap′/p0
= sup

Q

( �
Q

σ
)( �

Q

σ1−(p
′/p0)′

)p′/p0−1
.

This along with the fact that

(1− p′)
[
1−

(
p′

p0

)′]
=

p0
p− p0(p− 1)

=

(
p′0
p

)′
implies that

[σ]Ap′/p0
= sup

Q

( �
Q

w1−p′
)( �

Q

w(p′0/p)
′
)p′/p0−1

.

Using the facts that w ∈ RH(p′0/p)
′ and[

p′

p0
− 1

](
p′0
p

)′
=

1

p− 1
,

we obtain

[σ]Ap′/p0
≤ [w]

1/(p−1)
RH(p′0/p)

′
sup
Q

( �
Q

w1−p′
)( �

Q

w
)1/(p−1)

≤ [w]
1/(p−1)
RH(p′0/p)

′
[w]

1/(p−1)
Ap

.

This proves (5.2).

Remark 5.4. Note that it was proved in [KW, Theorem 1] that under
the assumptions of Theorem 5.3, Tm is bounded on Lp(w) for n/l < p <∞
and w ∈ Apl/n and hence by duality Tm is bounded on Lp(w) for 1 < p <
(n/l)′ and w ∈ Ap ∩RH((n/l)′/p)′ . Hence, it is reasonable to expect that the
weighted bounds in Theorem 5.3 still hold for p0 = n/l. We leave it as an
open problem.
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5.2. Riesz transforms related to Schrödinger operators. Let L =
−∆ + V be a Schrödinger operator on Rn with n ≥ 3 where the potential
V is in the reverse Hölder class RHq for some q > n/2. Note that if V ∈
RHq, q ≥ n, then the Riesz transforms ∇L−1/2 and L−1/2∇ turn out to be
Calderón–Zygmund operators (see e.g. [S]). That is why we restrict ourselves
to the case V ∈ RHq with n/2 < q < n.

We now recall the following result of [S] concerning the boundedness of
∇L−1/2 and L−1/2∇.

Theorem 5.5. Let L = −∆+ V be a Schrödinger operator on Rn with
n ≥ 3. Assume that V ∈ RHq, n/2 < q < n. Let p0 = qn/(n− q). Then:

(a) L−1/2∇ is bounded on Lp for p′0 ≤ p <∞.
(b) ∇L−1/2 is bounded on Lp for 1 < p ≤ p0.

We now apply Theorem 1.3 to get weighted bounds for these operators.

Theorem 5.6. Let L = −∆+ V be a Schrödinger operator on Rn with
n ≥ 3. Assume that V ∈ RHq, n/2 < q < n. Let p0 = qn/(n− q). Then:

(a) For p′0 < p <∞ and w ∈ Ap/p′0, we have

‖L−1/2∇f‖Lp(w) ≤ CL,p,q[w]
max{1,1/(p−p′0)}
Ap/p′0

‖f‖Lp(w).

(b) For 1 < p < p0 and w ∈ Ap ∩RH(p0/p)′, we have

‖∇L−1/2f‖Lp(w) ≤ CL,p,q[w]
max{p′−1, p′−1

p′−p′0
}

RH(p0/p)
′ [w]

max{p′−1, p′−1

p′−p′0
}

Ap
‖f‖Lp(w).

Proof. (a) Let K(x, y) be the kernel of L−1/2∇. According to [GLP,
proof of Theorem 1.6(iii)] there exists ε > 0 such that for any ball B and
x, x ∈ B, ( �

Sk(B)

|K(x, y)−K(x, y)|p0 dy
)1/p0

≤ C 2−kε

(2krB)n/p
′
0

for all k ≥ 2. Hence, (a) follows immediately from Theorem 1.3.

(b) This follows from (a) and the duality argument used in Theorem
5.3.

Remark 5.7. It is worth noting that our approach also yields weighted
bounds for other Riesz transforms, like V 1/2L−1/2, L−1/2V 1/2, V L−1 and
L−1V .

5.3. Multilinear Fourier multipliers. Another application of The-
orem 1.3 is to obtain weighted bounds for multilinear Fourier multiplier
operators.
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For simplicity, we only consider the bilinear case. Let m ∈ Cs(R2n \{0}),
for some integer s, satisfy

(5.3) |∂αξ ∂βηm(ξ, η)| ≤ Cα,β(|ξ|+ |η|)−(|α|+|β|)

for all |α| + |β| ≤ s and (ξ, η) ∈ R2n \ {0}. The bilinear Fourier multiplier
operator Tm is defined by

Tm(f, g)(x) =
1

(2π)2n

�

Rn

�

Rn

eix·(ξ+η)m(ξ, η)f̂(ξ)ĝ(η) dξ dη

for all f, g ∈ S(Rn). The associated kernel K(x, y1, y2) is given by

(5.4) K(x, y1, y2) = m̌(x− y1, x− y2)
where m̌ is the inverse Fourier transform of m. It is proved in [BD] that K
satisfies (H2).

Proposition 5.8. For any p > 2n/s, we have

(5.5)
( �

Sj(Q)

�

Sk(Q)

|K(x, y1, y2)−K(x, y1, y2)|p
′
dy1 dy2

)1/p′
≤ C |x− x|

s−2n/p

|Q|s/n
2−smax{j,k}

for all balls Q, all x, x ∈ 1
2Q and (j, k) 6= (0, 0).

It was shown in [CM] that if (5.3) holds for s > 4n then Tm maps
Lp1 × Lp2 into Lp for all 1 < p1, p2, p < ∞ with 1/p1 + 1/p2 = 1/p. It
was proved in [GT] that Tm maps boundedly Lp1 × Lp2 into Lp for all
1 < p1, p2 < ∞ such that 1/p1 + 1/p2 = 1/p provided that (5.3) holds for
s ≥ 2n + 1. However, in view of the linear case, the number of derivatives
s ≥ 2n + 1 is not optimal and it is natural to expect that we only need
s ≥ n + 1. The first positive answer is due to Tomita [T] who proved
that if (5.3) holds for s ≥ n + 1, then Tm maps Lp1 × Lp2 into Lp for
all 2 ≤ p1, p2, p < ∞ such that 1/p1 + 1/p2 = 1/p, and then by using
multilinear interpolation and duality arguments he proved that Tm maps
Lp1 ×Lp2 into Lp for all 1 < p1, p2, p <∞ such that 1/p1 + 1/p2 = 1/p. This
result was then improved in [GS] to p ≤ 1 by using the Lr-based Sobolev
space, 1 < r ≤ 2. A particular case of [GS, Theorem 1.1] is the following
theorem.

Theorem 5.9. Assume that (5.3) holds for some n+ 1 ≤ s ≤ 2n. Then
for any p1, p2 and p such that 2n/s < p1, p2 < ∞ and 1/p1 + 1/p2 = 1/p,
the operator Tm maps Lp1 × Lp2 into Lp.

We remark that the number 2n/s in Theorem 5.9 is contained implicitly
in the proof of [GS, Theorem 1.1].



Weighted bounds for singular operators 267

For any 2n/s < p0, by Theorem 5.9 and Proposition 5.8, Tm satisfies
(H1) and (H2) for p0. Then applying Theorem 1.3 we obtain

Theorem 5.10. Assume that (5.3) holds for some n + 1 ≤ s ≤ 2n. Let
2n/s < p0. Then for any p1, p2, p such that p0 < p1, p2 <∞, 1/p1 + 1/p2 =

1/p, and ~ω = (w1, w2) ∈ A~P/p0
with ~P = (p1, p2), we have

‖Tm(f1, f2)‖Lp(v~ω) ≤ C[~w]
max{1,(p1/p0)′/p,(p2/p0)′/p}
A~P/p0

‖f1‖Lp1 (w1)‖f2‖Lp2 (w2).

Remark 5.11. Similarly to the linear case in Theorem 5.3, it is natural
to ask whether the weighted bound in Theorem 5.10 holds true for p0 =
2n/s. This will be a subject of our future research.
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