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Conjugacy classes of diffeomorphisms of the interval
in C1-regularity

by

Églantine Farinelli (Dijon)

Abstract. We consider the conjugacy classes of diffeomorphisms of the interval, en-
dowed with the C1-topology. Given two diffeomorphisms f, g of [0; 1] without hyperbolic
fixed points, we give a complete answer to the following two questions:

• under what conditions does there exist a sequence of smooth conjugates hnfh
−1
n of

f tending to g in the C1-topology?
• under what conditions does there exist a continuous path of C1-diffeomorphisms ht

such that htfh
−1
t tends to g in the C1-topology?

We also present some consequences of these results to the study of C1-centralizers for
C1-contractions of [0;∞); for instance, we exhibit a C1-contraction whose centralizer is
uncountable and abelian, but is not a flow.

1. Introduction

1.1. Conjugacy classes of diffeomorphisms of the interval. We
consider diffeomorphisms of [0; 1] whose fixed points are precisely 0 and 1.
In 1970, N. Kopell [K] showed that, for an open and C2-dense set of such
diffeomorphisms f , the only C1-diffeomorphisms commuting with f are the
iterates of f , i.e. the elements of the group {f i : i ∈ Z}: the diffeomorphism
f has trivial centralizer. One of the keys to this theorem is the fact that the
C1-centralizers of f on [0; 1) and on (0; 1] are both one parameter-groups,
which will respectively be denoted by f−t and f+

t . The centralizer of f on [0; 1]
corresponds to those values of t such that f−t = f+

t . Comparison between
these two flows is described by the Mather invariant of f : this invariant
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depends continuously on f in the C2-topology, and vanishes when f−t = f+
t

for all t. More details about the centralizer and the Mather invariant can
be found in Section 2. For the moment, let us explain how this result is the
starting point of the study presented in this paper.

The Mather invariant is a C1-conjugacy invariant among C2-diffeomor-
phisms. However, it does not vary continuously with respect to the C1-topo-
logy: in [BCVW], it is shown that every f can be C1-perturbed into a diffeo-
morphism for which the Mather invariant vanishes, and thus the perturbed
diffeomorphism is embedded in a flow. The argument mentioned in [BCVW]
seemed to indicate that an arbitrarily small C1-perturbation of f may lead to
a Mather invariant having every a priori fixed value. On the other hand, the
Mather invariant represents, together with the values of the derivatives at the
extremities—when these are not equal to 1—a complete C1-conjugacy invari-
ant among C2-diffeomorphisms of [0; 1] without fixed point in the interior.

This reasoning led the authors of [BCVW] to the following conjecture:

Conjecture 1. For all α > 1 and 0 < β < 1, consider the set Dα,β

of diffeomorphisms f : [0; 1]→ [0; 1] whose fixed points are exactly 0 and 1,
and such that Df(0) = α and Df(1) = β. Then C1-conjugacy classes are
all C1-dense in Dα,β . In other words, given two diffeomorphisms f, g ∈ Dα,β ,
one can find a diffeomorphism arbitrarily C1-close to g and conjugate to f
by a diffeomorphism of [0; 1].

Our Theorem 1.2 confirms this conjecture: conjugacy classes are dense
in Dα,β . Actually, we show a slightly stronger result, implying that each
diffeomorphism g ∈ Dα,β is accessible from f by a path in its differentiable
conjugacy class. We will see that this stronger notion is crucial for the study
of centralizers.

More precisely, the key notion for the study of centralizers will be the
following:

Definition 1.1. Given f, g ∈ Diff 1([0; 1]), one says that f is isotopic
to g by C1-conjugacy (or simply isotopic by conjugacy to g) if there exists
a C1-continuous path (ht)t∈[0,1), ht ∈ Diff 1([0; 1]), such that h0 = id, and
htfh

−1
t → g as t → 1. Under these conditions, the path (htfh

−1
t )t∈[0;1) will

be called an isotopy by conjugacy from f to g.

And this is the result:

Theorem 1.2. Let f and g be two diffeomorphisms of [0; 1] without fixed
points, except 0 and 1, and f, g ≥ id on (0; 1). Then there exists an isotopy
by conjugacy from f to g if and only if f and g have the same derivatives at
0 and 1: Df(0) = Dg(0) and Df(1) = Dg(1).

Continuity of the Mather invariant in the C2-topology implies that The-
orem 1.2 is not true in the Cr-topology, for any r ≥ 2.
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Remark. This notion of isotopy by conjugacy is a priori more restrictive
than the fact that g is accessible from f by a path in its conjugacy class (i.e.
g is the limit of a continuous path (htfh

−1
t )t∈[0;1) such that ht ∈ Diff 1([0; 1])

for all t and h0 = id, without requiring any continuity of ht with respect
to t). Actually, concerning diffeomorphisms of Dα,β , the two notions are
equivalent.

Indeed, Theorem 1.2 is a consequence of the more general Theorem 4.8:
each continuous path of diffeomorphisms linking f to g that neither changes
derivatives on the boundary nor introduces fixed points in the interior can
be C1-approximated by an isotopy by conjugacy from f to g.

Now that we have introduced the notion of isotopy by conjugacy, we
come to the natural question:

Question 1. Given two diffeomorphisms f, g of [0; 1], under what con-
ditions is there an isotopy by C1-conjugacy from f to g?

As already seen, the case of diffeomorphisms without fixed points in (0; 1)
was settled by Theorem 1.2, which also establishes Conjecture 1.

Let us consider now diffeomorphisms of [0; 1] without hyperbolic fixed
points in (0; 1), but with no restriction on the set of nonhyperbolic fixed
points. We will see that, in this context, the existence of an isotopy by con-
jugacy from f to g is a more restrictive condition than that g is an accumu-
lation point of the conjugacy class of f .

Theorem 1.3 below provides a necessary and sufficient condition for each
of those properties. Its statement features the notion of signature of a dif-
feomorphism f of [0; 1] (see Definition 7.1): the signature of f is a pair
((C = {Ci}i∈I ,≺), σ), where:

• (C,≺) is a countable ordered set—roughly speaking, the set of maximal
intervals on which the sign of f does not change, ordered by their
position in [0; 1];
• σ is a map from C into {+,−} which associates to each interval the

sign of f − id on it.

The most general answer to Question 1 provided in this paper can be
stated as follows:

Theorem 1.3. Let f and g be two nondecreasing C1-diffeomorphisms of
[0; 1] without hyperbolic fixed points except possibly 0 and 1, and such that
Df(0) = Dg(0) and Df(1) = Dg(1). Let ((C,≺), σ) and ((C ′,≺′), σ′) denote
the respective signatures of f and g. Then:

1. There exists an isotopy by conjugacy from f to g if and only if there
exists an injective and order preserving map Φ : C ′ → C such that
σ′(c′) = σ(Φ(c′)) for all c′ ∈ C ′.
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2. There exists a sequence of conjugates of f converging to g if and only
if, for every finite subset γ′ of C ′, there exists an injective and order
preserving map Φ : γ′ → C such that σ′(c′) = σ(Φ(c′)) for all c′ ∈ γ′.

We now give an example to show the distinction between the existence of
an isotopy by conjugacy from f to g and the fact that g is an accumulation
point of the conjugacy class of f .

Example 1.4. Let f, g ∈ Diff 1([0; 1]) without hyperbolic fixed points be
such that Fix(f) is a sequence tending to 0, and the sign of f − id changes
at each fixed point, while Fix(g) consists of a sequence tending to 0 and a
sequence tending to 1, and the sign of g − id changes at each fixed point.
Namely, they can been chosen so that:

• the sign of f − id is:
� < 0 on

(
1

2n ; 1
2n−1

)
,

� > 0 on
(

1
2n+1 ; 1

2n

)
for all n > 0;

• the sign of g − id is
� < 0 on

(
1

2n ; 1
2n−1

)
and on

(
1− 1

2n−1 ; 1− 1
2n

)
,

� > 0 on
(

1
2n+1 ; 1

2n

)
,
(
1− 1

2n ; 1− 1
2n+1

)
and

(
1
3 ; 2

3

)
for all n > 1.

Then there exists a sequence (hn)n∈N of diffeomorphisms of [0; 1] such that
hnfh

−1
n converges to g, but there does not exist any isotopy by conjugacy

from f to g. Indeed, one can easily check that the signature of f is −N with
σf (−n) = (−1)n+1, whereas the signature of g is Z with σg(n) = (−1)n.

1.2. Cr-centralizer of contractions of [0;∞). The centralizer Cr(f),
for r ≥ 0, of a Cr-diffeomorphism f of a manifold M is the set Cr(f) =
{g ∈ Diff r(M) : gf = fg}. This set is a group and contains the group
〈f〉 = {f i}i∈Z generated by f . One says that f has trivial centralizer when
Cr(f) is as small as possible, that is, Cr(f) = 〈f〉.

We are interested here in diffeomorphisms of the half-line [0;∞), and
more precisely in contractions, that is, diffeomorphisms having 0 as the only
fixed point and which are strictly smaller than the identity on (0;∞). In
this context, size and structure of centralizers of diffeomorphisms of [0;∞)
depend essentially on the regularity of the diffeomorphisms in question.

For example, each C0-contraction f of [0;∞) is conjugate to the trans-
lation x 7→ x − 1 of R (after restriction to (0;∞)), so that the centralizer
of f is conjugate to the group of lifts on R of diffeomorphisms of the circle.
Consequently, the C0-centralizer of a contraction has large size and does not
depend, up to a conjugacy, on the diffeomorphism cosidered.

Beyond the C0 context, however, rather opposite situations may occur:
for example, if f is a homothety of [0;∞), then the only homeomorphisms
commuting with f and which are differentiable at zero are homotheties. In
particular, C1(f) is the group of homotheties. In the case of a C2-contraction
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f of [0;∞), the situation is quite similar: the C1-centralizer is then isomorphic
to R (it is a flow). This follows from Kopell’s lemma [K] and from Szekeres’
theorem [Sz], or from Sternberg’s theorem [St]. Consequently:

• The Cr-centralizer of a contraction of [0;∞), for r ≥ 2, is isomorphic
to a subgroup of R.

That is what was stated in Kopell’s lemma: if f is a C2-contraction of [0;∞)
and g is a C1-diffeomorphism commuting with f , then, if g has another fixed
point besides 0, then g must be the identity. From that, one can deduce im-
mediately that the C1-centralizer of f is an ordered and archimedean group,
and thus from Hölder’s theorem is a subgroup of R.

The results above lead us to the following natural question:

Question 2. Which subgroups of R appear as Cr-centralizers of con-
tractions of [0;∞)?

Concerning this question, recall that F. Sergeraert [Se] gave explicit ex-
amples of C∞-contractions of [0;∞) whose Cr-centralizers, for r ≥ 2, are
not whole R. Also, relying on his construction, H. Eynard [Ey] provided ex-
amples where the centralizer is a proper subgroup of R containing a Cantor
set.

Between these two extreme situations, we find the case of the C1-centra-
lizer of C1-contractions of [0;∞), in which we are interested in this paper.
This context is rather different from the C2-context, in particular because,
Kopell’s lemma being invalid in the C1-context, the centralizer presents a
greater flexibility than in the C2-context, and also because in compensation
the nonvalidity of Szekeres’ theorem does not ensure anymore the existence
of a centralizer as big as R.

1.3. Embedding of a group in a centralizer and isotopy by conju-
gacy to the identity. In this context of C1-centralizers of C1-contractions,
various situations can occur; indeed:

• Togawa [T] showed that, for every map in a certain Gδ-dense subset
of the set of C1-contractions, the centralizer is trivial.
• It is a consequence of our results that there exist contractions of

[0;∞) whose centralizers contain nontrivial diffeomorphisms having
fixed points different from 0 (going in this way against the conclusions
of Kopell’s lemma). Here we note that the existence of such examples
was previously known (see in particular [FF]).

Existence of C1-counterexamples to Kopell’s lemma leads to the following
question: given a compact subinterval of (0;∞), which groups of diffeomor-
phisms with support in this subinterval can be embedded in the centralizer
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of a contraction? First we have to formulate this question in more precise
words.

Definition 1.5. Given a compact interval J ⊂ (0;∞) and a group G of
diffeomorphisms of J , the group G will be called embeddable in the centralizer
of a contraction if there exists a C1-contraction f of [0;∞), with 0 as the
only fixed point, and a subgroup G0 of C1(f) such that {g|J : g ∈ G0} = G.

Our first result answers the above question by characterizing groups
which are embeddable in the C1-centralizer of a contraction. Before stating
this result, we extend the notion of isotopy by conjugacy from a diffeomor-
phism to another diffeomorphism (Definition 1.1) to a notion of isotopy by
conjugacy from a group to a diffeomorphism:

Definition 1.6. A subgroup G ⊂ Diff 1([0; 1]) is said to be isotopic
by conjugacy to a C1-diffeomorphism g of [0; 1] if there exists a continu-
ous path (ht)t∈[0;1) of C1-diffeomorphisms of [0; 1] such that, for all f ∈ G,
(htfh

−1
t )t∈[0;1) is an isotopy by conjugacy from f to g.

Theorem 1.7. A group of diffeomorphisms of a compact subinterval of
(0;∞) is embeddable in the centralizer of a contraction if and only if there
exists an isotopy by C1-conjugacy from this group to id.

Thus we want now to answer the following question:

Question 3. Which groups of diffeomorphisms of [0; 1] are isotopic by
conjugacy to the identity?

An obvious obstruction is the existence of a hyperbolic fixed point (i.e.
with derivative different from 1) for at least one element of the group. The
question is whether there exist other obstructions. In this paper, we answer
this question in the case where G is generated by only one diffeomorphism,
namely we shall prove:

Theorem 1.8. A C1-diffeomorphism f of [0; 1] is isotopic to the identity
by C1-conjugacy if and only if all its fixed points are tangent to the identity.

We think that Theorem 1.8 is not true if the isotopy is required to be a C2-
continuous path of C2-conjugates. As an immediate corollary of Theorem 1.8,
we obtain:

Corollary 1.9. If J is a nontrivial subinterval of (0;∞) and if gJ is a
diffeomorphism of J whithout hyperbolic fixed points, then gJ is embeddable
in the C1-centralizer of a contraction: there exists a contraction f of [0;∞)
and a diffeomorphism g ∈ C1(f) whose restriction to J is gJ .

The following result exhibits C1-contractions with big centralizers:
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Corollary 1.10. Let I = {Ii}i∈N be a sequence of subintervals of [0; 1]
whose interiors are pairwise disjoint and, for all i ∈ N, let gi be a diffeo-
morphism of [0; 1] with support in Ii, whose derivatives at fixed points are 1.
Assume that, for all i ∈ N, gi tends to the identity in the C1-topology, i.e.
limi→∞ ‖gi − id‖1 = 0. Then:

• for every bounded sequence n̄ = {ni}i∈N of integers, the map gn̄ which
coincides with gni

i on Ii for all i ∈ N and with the identity outside the
union of the Ii’s is a diffeomorphism of [0; 1];
• the set of all gn̄ where n̄ is a bounded sequence of integers is an abelian
and uncountable group, denoted by GI ;
• the group GI is isotopic by conjugacy to the identity.

Proof. One checks easily that GI is a group of diffeomorphisms. From
Theorem 1.8, if n̄ is the constant sequence equal to 1, then gn̄ is isotopic by
conjugacy to the identity, via the isotopy (htgn̄h

−1
t )t∈[0;1). It follows that, for

all i, (htgih
−1
t )t∈[0;1) is an isotopy by conjugacy from gi to the identity. Thus,

for every bounded sequence n̄ of integers, (htgn̄h
−1
t )t∈[0;1) is an isotopy by

conjugacy from gn̄ to the identity.

After a first informal version of this paper was available, Andrès Navas
showed us a clever and simple argument proving Theorem 1.8, which is based
on the cohomological equation. His result can also be applied in the context
of diffeomorphisms of the circle with irrational rotation number. Here is what
he shows:

Theorem 1.11 (Navas). Each diffeomorphism of [0; 1] without hyperbolic
fixed points is isotopic by conjugacy to the identity. Each diffeomorphism of
the circle with irrational rotation number α is isotopic by conjugacy to the
rotation Rα.

2. Background

2.1. The Cr, r ≥ 2, setting: Kopell’s lemma and theorem, Sze-
keres vector field and Mather invariant. In [K], Kopell considered the
centralizer of C2-diffeomorphisms of the interval. She proved the existence
of a C2-dense open subset O of diffeomorphisms whose centralizer is triv-
ial: if f ∈ O and g commutes with f , then g = fk for some k ∈ Z. The
technical point in [K], known as Kopell’s lemma, concerns the centralizer of
C2-contractions of [0,∞).

Lemma 2.1 (Kopell’s lemma). Let f be a C2-contraction of [0;∞). Let
g ∈ Diff 1([0;∞)) commute with f . Assume that g has a fixed point in (0;∞).
Then g is the identity map.
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The proof of Kopell’s lemma uses essentially the control of the distor-
sion of the iterates fn on a fundamental domain [x; f(x)] to prove that the
derivative of any diffeomorphism g commuting with f and having a fixed
point at x is bounded on [x; f(x)], independently of the diffeomorphism g.
As gn, for n ∈ Z, also commutes with f , this means that the derivatives
of gn, n ∈ Z, are bounded on [x; f(x)] independently of n ∈ Z. One easily
deduces that the only possibility is that g is the identity.

Kopell’s lemma implies that the C1-centralizer C1(f) of a C2-contraction
f is naturally ordered: if g1, g2 ∈ C1(f) satisfy g1(x0) < g2(x0) for a point
x0 ∈ [0;∞), then g1(x) < g2(x) for all x ∈ [0;∞). This property defines an
order, which is a total archimedean order, and then Hölder’s theorem implies
that C1(f) is isomorphic to a subgroup of R.

In the opposite direction, Szekeres’ theorem states that any C2-contrac-
tion of [0;∞) is the time-one map of a vector field X which is C2 on (0;∞)
and C1 at 0. By combining Kopell’s lemma and Szekeres’ theorem, one find
that C1(f) is precisely the flow of X (and thus is isomorphic to R). As f
is assumed to be Cr, r ≥ 2, it is natural to consider its Cr-centralizer. It
is a subgroup of C1(f), and [Se] provides an example of a C∞-contraction
f which has no C2 square root: the time-1

2 map of the Szekeres flow is not
C2 (see also [Ey] for recent generalizations). This cannot happen if the fixed
point 0 is hyperbolic (or even if it is not C∞-flat). In that case, f is smoothly
conjugate to a smooth normal form and hence is embedded in a smooth
flow.

Let us come back now to diffeomorphisms f of [0; 1] and assume for
instance that Fix(f) = {0, 1} and f(x) > x for x ∈ (0; 1). In this case,
the restriction (f−)−1 of f−1 to [0; 1) and f+ of f to (0; 1] are conjugate to
contractions of [0;∞) and therefore are the time-one maps of the Szekeres
flows X− and X+ respectively.

The C1-centralizer of f is the intersection

C1(f) = C1(f+) ∩ C1(f−).

In [K], N. Kopell shows that, for a C2-open and dense subset of such diffeo-
morphisms, C1(f+) ∩ C1(f−) = {fn : n ∈ Z}. Let us quickly explain why
this is natural: Start with a smooth diffeomorphism f0 of [0; 1], f0 > id
on (0; 1), which is the time-one map of a vector field X. Choose a point
a ∈ (0, 1) and a (smooth) diffeomorphism ϕ supported on [a; f0(a)]. Con-
sider then the diffeomorphism f = ϕf0. One easily checks that the Szek-
eres vector fields X− and X+ coincide respectively with ϕ∗(X) and X on
[a; f0(a)] = [a; f(a)]. If ϕ(x) > x on (a; f0(a)), one can see that, for every
t ∈ (0; 1), (X−)t(a) > (X+)t(a). Thus C1(f+) ∩ C1(f−) = {fn : n ∈ Z}.

This argument is closely related to the Mather invariant: the Szekeres
flows X− and X+ both provide a time parametrization ψ−, ψ+ : R → (0; 1)
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which conjugate f to the translation T1 : t 7→ t+ 1. These parametrizations
are well defined up to composition with a translation. The Mather invariant
is the change of these coordinates: it is a diffeomorphism of R commuting
with the translation T1, and well defined up to compositon on the right and
on the left with translations.

In the example above, the Mather invariant Mf will be precisely the
diffeomorphism induced on R commuting with T1 and whose expression in
the fundamental domain ψ−1

− ([a; f0(a)]) is

Mf |ψ−1
− ([a;f0(a)]) = ψ−1

+ ϕψ−.

Let us conclude this section by noticing that Kopell’s lemma, Szekeres’
theorem, and the Mather invariant are typical of C2-diffeomorphisms and do
not hold in the C1-setting: for instance, Tsuboi [Ts] builds counterexamples
to the C1+α Kopell’s lemma. Indeed, as can be noticed from our Theorems 1.7
and 1.8, Kopell’s lemma is not true anymore in these settings. These two the-
orems together give C1-counterexamples to Kopell’s lemma: they show that
every diffeomorphism supported on a compact interval included in (0;∞)
can be embedded in the C1-centralizer of a C1-contraction.

In the same spirit, Kopell’s lemma implies that the C1-centralizer of a
C2-diffeomorphism f of [0; 1] is not abelian if and only if f coincides with
the identity on some nonempty open interval. This is no more true if f is C1:
[BoFa] shows that there exist diffeomorphisms of [0; 1] without fixed point
in (0; 1) whose centralizer may contain the free group F2.

Therefore, it is somewhat surprising that the Mather invariant is actually
invariant under C1-conjugacies (among C2-diffeomorphisms). The reason is
that the C1-centralizer is preserved under C1-conjugacies, hence the Szekeres
flows are conjugate. Nevertheless, [BCVW] shows that one can obtain a
trivial Mather invariant by C1-small pertubations.

In this paper, we will define and use (in Section 4.3) a notion of Mather
invariant in the C1-setting. Let us give an idea of this tool. We consider
diffeomorphisms f, g of [0; 1] without fixed points in (0; 1) such that g co-
incides with f in a neighbourhood of 0 and of 1. As a consequence, there
is a unique diffeomorphism h− of [0; 1) which conjugates f to g and which
is the identity map in a neighbourhood of 0. In the same way, there is a
unique diffeomorphism h+ of (0; 1] which conjugates f to g and which is
the identity map in a neighbourhood of 1. The Mather invariant of g with
respect to f is the diffeomorphism Mf (g) = h−1

+ h− : (0; 1) → (0; 1), which
commutes with f . This Mather invariant vanishes if and only if f and g are
conjugate by a diffeomorphism h which is the identity in a neighbourhood
of 0 and 1. Our main result consists in some sense in cancelling this relative
Mather invariant by small perturbations of g.
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2.2. Historical motivation in foliation theory. Kopell’s lemma has
been an important tool for the study of codimension 1 C2-foliations, in
particular on 3-manifolds. In particular, due to the Novikov theorem and
Thurston’s construction of foliations, compact leaves diffeomorphic to a torus
T2 play a key role in this study. For such leaves, the holonomy group is gen-
erated by two commuting diffeomorphisms of a transverse section which is a
segment.

Let us mention a straightforward consequence of Kopell’s theorem: on T3,
there are foliations whose leaves are cylinders and finitely many compact tori,
which are C2-structurally stable: every C2-foliation C2-close to them is con-
jugate to them by a homeomorphism. Such a foliation F may be constructed
as the suspension of two commuting diffeomorphisms f, g of the circle: f is a
Morse–Smale diffeomorphism with exactly two hyperbolic fixed points, and g
is the identity. One chooses f so that its restriction to each segment between
two successive fixed points belongs to the C2-open set given by Kopell’s re-
sult for which the centralizer is trivial. Then any foliation C2-close to F is
conjugate to the suspension of two commuting diffeomorphisms f1 and g1,
which are C2-close to f and g respectively. As the centralizer of f1 is trivial
and g1 is close to the identity, one deduces that g1 = id and one concludes
using the fact that f is structurally stable. The fact that the Mather invari-
ant can be made trivial by small C1-perturbations of f shows that none of
these foliations are C1-structurally stable.

Let us give a more recent application of the study of centralizers in
foliation theory. The topology of the space of foliations remains mostly a
mistery: one does not know whether this space is arc-connected, locally
connected, etc. Recently, H. Eynard announced the connectedness of the
space of C∞ codimension 1 foliations on compact 3-manifolds whose tan-
gent bundle belongs to a given homotopy class. More precisely, in her PhD
thesis, she reduced the connectedness problem to the problem of connected-
ness of the space of C∞-actions of Z2 on [0, 1]; this last step has been done
in [BE].

3. Groups which are embeddable in a centralizer: proof of The-
orem 1.7. Let us begin with the following useful lemma:

Lemma 3.1. Let G be a group of diffeomorphisms of a segment J . There
exists an isotopy from G to id if and only if there exists a sequence (ϕn)n∈N
of diffeomorphisms of this segment, converging to the identity in the C1-
topology, such that ϕ0 = id and such that, for all g ∈ G, the sequence
ϕn . . . ϕ1ϕ0gϕ

−1
0 ϕ−1

1 . . . ϕ−1
n converges to the identity in the C1-topology.

Proof. Let us assume that there exists an isotopy (htgh
−1
t )t∈[0;1) from

each element g of G to the identity.
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Claim. There exists a sequence (εn)n∈N of strictly positive numbers con-
verging to 0 and an increasing sequence (tn)n∈N in [0; 1) converging to 1 such
that t0 = 0 and ‖htn+1h

−1
tn − id‖1 < εn for all n ∈ N.

Proof of the claim. Given an increasing sequence (t′n)n≥1 in [0; 1) con-
verging to 1, by compactness of {ht : t ∈ [t′n; t′n+1]}, for all n ≥ 1 there
exist an integer Kn and a sequence (tnk)k∈J1;KnK of real numbers in [0; 1) such
that ‖htnk+1

h−1
tnk
− id‖1 < 1/n for all k ∈ J1;Kn − 1K. By concatenating the

sequences (tnk)k∈J1;KnK on one hand, and on the other hand the constant se-
quences equal to 1/n for n ≥ 1, we obtain the desired sequences (tn)n∈N and
(εn)n∈N.

Let (εn)n∈N and (tn)n∈N be as in the claim above, and define the following
C1-diffeomorphisms of [0; 1]: ϕ0 = ht0 and ϕn = htnh

−1
tn−1

for n ≥ 1. Then
the sequence (ϕn)n∈N converges to the identity in the C1-topology, as also
does the sequence (ϕn . . . ϕ1ϕ0gϕ

−1
0 ϕ−1

1 . . . ϕ−1
n )n∈N = (htngh

−1
tn )n∈N, since

htgh
−1
t is assumed to converge to id when t→ 1.
Conversely, assume that there exists a sequence (ϕn)n∈N of diffeomor-

phisms of J converging to id as n→∞ such that ϕ0 = id and, for all g ∈ G,
ϕn . . . ϕ1ϕ0gϕ

−1
0 ϕ−1

1 . . . ϕ−1
n converges to the identity in the C1-topology.

For all n ∈ N and t ∈ [0; 1], define ϕn,t = id + t(ϕn − id).
For all n ∈ N, denote by Hn the diffeomorphism of [0; 1] defined by

Hn = ϕn ◦ · · · ◦ ϕ0, and, for T ∈ R, define a diffeomorphism hT of [0; 1] by
hT = ϕn+1,t ◦Hn, where t ∈ [0; 1) is the fractional part of T , and n ∈ N its
integer part.

Since ϕn,tHn−1 → ϕnHn−1 = Hn = id ◦ Hn = ϕn,0Hn as t → 1, and
because of the continuity of the path (ϕn,t)t∈[0;1] for all n ∈ N, the path
(hT )T∈R is continuous. By hypothesis, if g ∈ G, then Hn−1gH

−1
n−1 converges

to id as n → ∞. One also knows that ‖ϕn,t − id‖1 ≤ ‖ϕn − id‖1, where
‖ϕn − id‖1 → 0 as n→∞. Consequently, ‖ϕn,t − id‖1 tends to 0 uniformly
with respect to t ∈ [0; 1). Thus D(ϕn,tHn−1gH

−1
n−1ϕ

−1
n,t) tends to 0 uniformly

on J . As ϕn,tHn−1gH
−1
n−1ϕ

−1
n,t has fixed points at the extremities of J , it

follows that this diffeomorphism also converges to id in the C1-topology as
n→∞. Furthermore, if g ∈ G, then hT gh−1

T = ϕn,tHn−1gH
−1
n−1ϕ

−1
n,t, where n

still denotes the integer part of T and t its fractional part. As a consequence,
hT gh

−1
T converges to id as T →∞.

Sufficient condition of Theorem 1.7. We show that a group which is iso-
topic to the identity by conjugacy is embeddable in a centralizer.

Let us consider a closed subinterval J of [0;∞), a group G of diffeo-
morphisms of this interval, and a C1-continuous path (ht)t∈[0;1) of diffeomor-
phisms of J such that h0 = id and htgh

−1
t → id as t → ∞ for all g ∈ G.

From Lemma 3.1, there exists a sequence (ϕn)n∈N of diffeomorphisms of J
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converging to id as n→∞, and satisfying

ϕn . . . ϕ0gϕ
−1
0 . . . ϕ−1

n −−−→n→∞
id for all g ∈ G.

Let now f0 be a homothety with ratio α < 1 such that the iterated images
of J under f0 are pairwise disjoint. One defines a contraction f of (0;∞) by

f |J = f0 ◦ ϕ0,

f |f0(J) = f0 ◦ (f0ϕ1f
−1
0 ); . . . ; f |fn0 (J) = f0 ◦ (fn0 ϕnf

−n
0 ) for all n ≥ 1,

f = f0 elsewhere.

Since ϕn
C1−→ id as n → ∞, we know that D(fn0 ϕnf

−n
0 )(fn0 (x)) converges

to 1 uniformly with respect to x ∈ J . Then Df |fn0 (J) tends to α as n→∞,
and thus Df(x) → α as x→ 0. Consequently, f can be extended to a C1-
diffeomorphism of [0;∞).

Then we extend each gJ ∈ G to a diffeomorphism g of (0;∞) in such a way
that it commutes with f , i.e. g = fngJf

−n on fn0 (J), where n ∈ Z, and g = id
elsewhere. For all n∈N, we then have g|fn0 (J) =fn0 ϕn . . . ϕ0gJϕ

−1
0 . . . ϕ−1

n f−n0 ,
where ϕn . . . ϕ0gJϕ

−1
0 . . . ϕ−1

n tends to the identity in the C1-topology. So, as
f0 is a homothety, the derivative of g|fn0 (J) also tends to 1 as n → ∞, and
thus Dg(x) → 1 as x → 0. It follows that g extends in a differentiable way
at 0.

This ends the proof of the sufficient condition of Theorem 1.7.

Necessary condition of Theorem 1.7. We now show that given a group G
of diffeomorphisms of some J = [a; b] ⊂ [0;∞), there exists a contraction f
of [0;∞) in whose centralizer G is embeddable.

First note that, by replacing if necessary f by fk with k some large
enough integer, one can assume that J is included in a fundamental domain
[f(x0);x0] of f .

By assumption, each element gJ of G has an extension commuting with f .
Denoting by g such an extension, for all n ∈ N we have g|fn(J) = fngJf

−n.
If n ∈ N, we denote by An the increasing affine map from fn(J) into J and
by gn the C1-diffeomorphism of J defined by gn = Ang|fn(J)A

−1
n .

Claim. ‖gn − id‖1 → 0 as n→∞.

Indeed, the orbits under g of fixed points of gJ which are the extremities
a and b of J accumulate at 0 and consist of fixed points of g. By continuity
of the derivative of g at 0, the derivative of g tends to Dg(0) at 0; moreover
Dg(0) = limn→∞ g(fn(a))/fn(a) = 1. Thus, if n is large enough, g|fn(J) has
derivative near 1 between two fixed points, and as a consequence is C1-close
to id. By conjugating this diffeomorphism by the affine map An, one does not
modify its derivative, which enables us to conclude that gn is also C1-close
to the identity if n is large enough.
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From the expression of g|fn(J) given above, one has

gn = Anf
ngJf

−nA−1
n .

Defining ϕ0 = id|J ; ϕ1 = A1f |J ; ϕn = (Anf
n|J)(An−1f

n−1|fn−1(J))
−1 for

n ≥ 2, one has gn = ϕn . . . ϕ1ϕ0g0ϕ
−1
0 ϕ−1

1 . . . ϕ−1
n . From the previous claim

and Lemma 3.1, if we prove the following result, we will have proved that
there exists an isotopy by conjugacy from gJ to id and thus completed the
proof of Theorem 1.7:

Claim. ϕn → id as n→∞ in the C1-topology.

Indeed, by definition, ϕn = Anf |fn−1(J)A
−1
n−1. Furthermore, as Df is

continuous at 0 and Df(0) 6= 0, one has

sup
x,y∈fn−1(J)

Df(x)

Df(y)
−−−→
n→∞

1.

Consequently, Dϕn(x)/Dϕn(y) tends to 1 uniformly with respect to x, y ∈ J
as n→∞. Since Dϕn is equal to 1 at one point of J at least, it follows that
Dϕ tends to 1 uniformly on J . The claim follows.

4. Isotopies by conjugacy

4.1. Statement of the result. In this section, we consider the set

Dα,β = {f ∈Diff 1([0; 1]) : Fix(f)={0; 1}, f≥ id, Df(0)=α, Df(1)=β},

well-defined for all α ≥ 1 and 0 < β ≤ 1, and we show that the conjugacy
classes of such diffeomorphisms are dense in this set in the C1-topology.

Let now f and g be two diffeomorphisms in Dα,β . We will show that in
each C1-neighbourhood of g, there is a conjugate of f . This will give

Theorem 4.1. For each diffeomorphism f ∈ Dα,β, the differentiable con-
jugacy class of f is dense in Dα,β.

Let f, g ∈ Dα,β , and U be a C1-neighbourhood of g in Dα,β . In order to
find a conjugate of f in U , we will perturb g by sufficiently small diffeomor-
phisms so that we do not go out of U , till we find a conjugate of f .

As announced in the introduction, we actually show the stronger result
stated in Theorem 1.2, which we will deduce from the following theorem:

Theorem 4.2. Let f ∈ Dα,β without fixed points in (0; 1) and let (εt)t ⊂
(0; 1) be a continuous path. Let (ft)t∈[0;1] be a C1-continuous path in Dα,β

such that:

• f0 = f ;
• ft has no fixed point in (0; 1) for all t < 1.
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Then there exists a C1-continuous path (ht)t∈[0;1) of diffeomorphisms of [0; 1],
each coinciding with id on a neighbourhood of 0 and of 1, such that h0 = id
and ‖htfh−1

t − ft‖1 < εt for all t ∈ [0; 1).

Remarks. Since ft has no fixed point in (0; 1) for all t < 1, the diffeo-
morphism f1 can have in (0; 1) only fixed points with derivative equal to 1.

By choosing (εt) converging to 0, under the hypotheses of this theo-
rem, one obtains a continuous path (ht)t∈[0;1) such that limt→1 htfh

−1
t =

limt→1 ft.

Proof of Theorem 1.2 from Theorem 4.2. Given f, g ∈ Dα,β , one can
always easily exhibit a C1-continuous path (ft)t∈[0;1) ⊂ Dα,β such that f0 = f
and ft → g as t→ 1, for example, ft = (1−t)f+tg. If (εt)t∈[0;1)is a continuous
path of strictly positive numbers converging to 0, Theorem 4.2 provides a
continuous path (ht)t∈[0;1) of diffeomorphisms of [0; 1] such that h0fh

−1
0 = f

and htfh−1
t → g as t → 1. Then (htfh

−1
t )t∈[0;1) is an isotopy by conjugacy

from f to g.

4.2. Two “gluing lemmas”. From now on, Φ will denote a fixed C∞-
diffeomorphism of [0; 1] which is decreasing, equal to 1 on [0; 1/2] and equal
to 0 on a neighbourhood of 1. Its derivative, continuous on [0; 1], is thus
bounded. We define MΦ = maxx∈[0;1] |DΦ| > 1.

Gluing at the extremities. Given two C1-diffeomorphisms of 0; 1], f and g,
having the same derivatives at 0 and at 1, and an ε > 0, Corollary 4.5 below
enables us to obtain a new C1-diffeomorphism which coincides with f on a
neighourhood of 0 and on a neighourhood of 1, and which is ε-close to g in
the C1-topology on the whole interval [0; 1].

Definition 4.3. Let g ∈ Diff 1([0; 1]). For every ε > 0 and a, b ∈ (0; 1),
we denote by Ugε,a,b the set of f ∈ Diff 1([0; 1]) such that:

• ‖f |[0;a] − g|[0;a]‖1 < ε;
• ‖f |[b;1] − g|[b;1]‖1 < ε.

We set Ugε =
⋃
a,b∈(0;1) U

g
ε,a,b.

Lemma 4.4. Let ε > 0. Then there exists ε̃ > 0 such that for all g ∈
Diff 1([0; 1]) and a, b ∈ (0; 1), if f ∈ Ugε̃,a,b, then there exists f0 ∈ Diff 1([0; 1])
such that:

(i) ‖f0 − g‖1 < ε;
(ii) f0|[0;a/2]∪[(1+b)/2;1] = f |[0;a/2]∪[(1+b)/2;1];
(iii) f0|[a;b] = g|[a;b].

Proof. Let ε > 0, and 0 < ε̃ < ε/(2MΦ). Let g ∈ Diff 1([0; 1]), a, b ∈ (0; 1)
and f ∈ Ugε̃,a,b. If a ≥ b, it suffices to let f0 be f . Thus, we assume a < b.
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We now define a map Φ0 of [0; 1], which is obtained from Φ as follows:

• if x ∈ [0; a], then Φ0(x) = Φ(x/a), so Φ0 is equal to 1 on [0; a/2] and
to 0 on a neighbourhood of a in [0; a];
• Φ0(x) = 0 if x ∈ [a; b];
• Φ0(x) = Φ

(−x+1
1−b

)
if x ∈ [b; 1], so Φ0 is 0 on a neighbourhood of b in

[b; 1], and 1 on [(1 + b)/2; 1].

Set now f0 = Φ0f + (1 − Φ0)g, and notice that the hypothesis that
“‖f |[0;a]− g|[0;a]‖1 < ε̃ ” implies, by integrating the inequality |Df −Dg| < ε̃
on [0;x], that |f(x)− g(x)| < ε̃x for all x ∈ [0; a]. By the same method, one
obtains |f(x) − g(x)| < ε̃(1 − x) for each x ∈ [b; 1]. As (i) and (iii) follow
immediately from the construction of f0, one has now only to show that
|f0 − g| < ε and |Df0 −Dg| < ε, which is a simple calculation.

From this lemma, we deduce the following corollary:

Corollary 4.5. Let ε > 0 and f, g ∈ Dα,β. Then there exist a, b ∈ (0; 1)
and f0 ∈ Dα,β such that:

(i) ‖f0 − g‖1 < ε;
(ii) f0|[0;a/2]∪[(1+b)/2;1] = f |[0;a/2]∪[(1+b)/2;1];
(iii) f0|[a;b] = g|[a;b].

Proof. Indeed, considering ε̃ > 0 as in Lemma 4.4, since f and g have the
same derivatives at 0 and at 1, there exist a, b ∈ (0; 1) such that f ∈ Ugε̃,a,b.
Now apply Lemma 4.4.

This result will be useful in proving the density of conjugacy classes of
diffeomorphisms fromDα,β in that set. However, in order to obtain an isotopy
by conjugacy from a diffeomorphism of Dα,β to another, a parameter version
will be needed:

Lemma 4.6. Let f ∈ Dα,β and (ft)t∈[0;1) a C1-continuous path of diffeo-
morphisms in Dα,β. Then, for every continuous path (εt)t∈[0;1) in (0;∞),
there exist continuous paths (at)t∈[0;1) and (bt)t∈[0;1) in (0; 1) and a new
C1-continuous path (f̃t)t∈[0;1) in Dα,β such that:

• f̃t|[0;at/2]∪[(bt+1)/2;1] = f |[0;at/2]∪[(bt+1)/2;1] for all t < 1;
• ‖f̃t − ft‖1 < εt for all t < 1.

Moreover, if f0 = f , then we can also require that f̃0 = f .

Let us first give the following result:

Lemma 4.7. Let (εt)t∈[0;1) be a continuous path in (0;∞), f ∈ Dα,β and
(ft)t∈[0;1) a C1-continuous path in Dα,β. Then there exist continuous paths
(at)t∈[0;1) and (bt)t∈[0;1) in (0; 1) such that ‖ft|[0;at]∪[bt;1]−f |[0;at]∪[bt;1]‖1 < εt
for all t < 1.
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Proof. Given an increasing sequence (tn)n∈N in [0; 1) converging to 1, one
uses the continuity of (ft)t∈[0;1) on each compact set [tn; tn+1] to obtain a
partition of this interval into finitely many subintervals such that, for all t in
one of these subintervals I, only one 0 < aI < 1 satisfies ‖ft|[0;aI ]−f |[0;aI ]‖1 <
mint∈[tn;tn+1] εt. All what is needed now is finding a continuous map ϕ such
that, for all t in I, at = ϕ(t) is smaller than aI , which can easily be done.

We conclude by the same token as regards the path (bt).

Proof of Lemma 4.6. Lemma 4.7 gives us two continuous paths (at) and
(bt) such that for all t,

‖ft|[0;at]∪[bt;1] − f |[0;at]∪[bt;1]‖1 < inf

(
εt
2
,
εt

4MΦ

)
.

Considering the construction done in Lemma 4.4, one obtains the desired
path (f̃t); its continuity follows from the continuity of (at) and (bt).

To prove Theorem 4.2, it is now sufficient to establish the following the-
orem:

Theorem 4.8. Let f ∈ Dα,β without fixed points in (0; 1) and (εt)t∈[0;1)

be a continuous path in (0;∞). Let (ft)t∈[0;1) be a C1-continuous path in Dα,β

such that:

• f0 = f ;
• ft has no fixed point in (0; 1) for all t < 1;
• for all t < 1, there exist at > 0 and bt < 1, continuously depending
on t, such that ft coincides with f on [0, at] ∪ [bt, 1].

Then there exists a continuous path (ht)t∈[0;1) of diffeomorphisms of [0; 1],
each coinciding with id on a neighbourhood of 0 and of 1, such that h0 = id
and ‖htfh−1

t − ft‖1 < εt for all t ∈ [0; 1).

Proof of Theorem 4.2 from Theorem 4.8. For (ft)t∈[0;1), thanks to Lem-
ma 4.6, one can exhibit continuous paths (at)t∈[0;1) and (bt)t∈[0;1) in (0; 1)

and a continuous path (f̃t)t∈[0;1) of diffeomorphisms such that:

• f̃0 = f0;
• f̃t|[0;at/2]∪[(bt+1)/2;1] = f |[0;at/2]∪[(bt+1)/2;1] for all t < 1;
• ‖f̃t − ft‖1 < εt/2 for all t < 1.

One then applies Theorem 4.8 to obtain a C1-continuous path (ht)t∈[0;1) of
diffeomorphisms of [0; 1], with h0 = id, such that ht coincides with id on a
neighbourhood of 0 and of 1, and ‖htfh−1

t − f̃t‖1 < εt/2 for all t ∈ [0; 1).
Then ‖htfh−1

t − ft‖1 < εt for all t ∈ [0; 1).

Let us also point out a corollary of Lemma 4.4 which will be useful in
Section 5.2. If f and g are C1-diffeomorphisms of [0; 1] coinciding at one
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point, this corollary produces a new C1-diffeomorphism coinciding with f in
a neighbourhood of this point, and arbitrarily close to g.

Corollary 4.9. Let ε > 0. Then there exists ε̃ > 0 such that for all
g ∈ Diff 1([0; 1]), x0 ∈ (0; 1), and η ∈ (0; min(x0/2, (1− x0)/2)), if f is a
diffeomorphism of [0; 1] such that:

• f(x0) = g(x0);
• ‖f |[x0−2η;x0+2η] − g|[x0−2η;x0+2η]‖1 < ε̃,

then there exists g0 ∈ Diff 1([0; 1]) such that:

• g0|[x0−η;x0+η] = f |[x0−η;x0+η];
• g0|[0;x0−2η]∪[x0+2η;1] = g|[0;x0−2η]∪[x0+2η;1];
• ‖g0 − g‖1 < ε.

Here is the parameter version of this corollary:

Corollary 4.10. Let (εt)t∈[0;1) be a continuous path in (0;∞). Then
there exists a continuous path (ε̃t)t∈[0,1) in (0;∞) such that for all C1-conti-
nuous paths (ft)t∈[0;1) in Diff 1([0; 1]),all continuous paths (xt)t∈[0,1) in (0; 1),
and all ηn ∈ (0; min(xt/2, (1− xt)/2)), if f is a diffeomorphism of [0; 1] such
that:

• f(xt) = ft(xt) for all t < 1;
• ‖f |[xt−2ηt;xt+2ηt] − ft|[xt−2ηt;xt+2ηt]‖1 < ε̃t,

then there exists a C1-continuous path (gt)t∈[0,1) in Diff 1([0; 1]) such that:

• gt|[xt−ηt;xt+ηt] = f |[xt−ηt;xt+ηt];
• gt|[0;xt−2ηt]∪[xt+2ηt;1] = ft|[0;xt−2ηt]∪[xt+2ηt;1];
• ‖gt − ft‖1 < εt.

The proofs of Corollaries 4.9 and 4.10 are absolutely similar to the one
of Lemma 4.7, thus we omit them.

“Partial gluing” near an extremity

Definition 4.11. If g ∈ Diff 1([0; 1]), ε > 0 and a ∈ (0; 1), we willl
denote by Ugε,a the set of maps f ∈ Homeo([0; 1]) such that:

• f |[a;1] ∈ Diff 1([a; 1], [f(a); 1]);
• ‖f |[a;1] − g|[a;1]‖1 < ε.

We will see in the proof of the following lemma how, from a C1-diffeomor-
phism g of [0; 1] and a homeomorphism f ∈ Ugε,a, one can produce a map
coinciding with f in a neighbourhood of the extremities and which is arbi-
trarily close to g.
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Lemma 4.12. Let ε > 0. Then there exists ε̃ > 0 such that for all
g ∈ Diff 1([0; 1]), a ∈ (0; 1), 1 > b > (a+ 1)/2, and f ∈ Ugε̃,a, there exists
g0 ∈ Diff 1([0; 1]) satisfying:

• g0|[(a+1)/2;b] = f |[(a+1)/2;b];
• g0|[0;a]∪[(b+1)/2;1] = g|[0;a]∪[(b+1)/2;1];
• ‖g0 − g‖1 < ε.

Proof. Let ε > 0 and ε̃ < min(ε/2, ε/(4MΦ)). Let g ∈ Diff 1([0; 1]),
a ∈ (0; 1), f ∈ Ugε̃,a, and let Φ0 be a C∞-map of [0; 1], constructed from Φ
(see Section 4.2) in the following way:

• on [0; a] and on [(b+ 1)/2; 1], Φ0 is constant, equal to 1;
• if x ∈ [a; (a+ 1)/2], then Φ0(x) = Φ

(
x

(1−a)/2

)
;

• on [(a+ 1)/2; b], Φ0 is constant, equal to 0;
• if x ∈ [b; (b+ 1)/2], then Φ0(x) = Φ

(
1−x

(1−b)/2
)
.

Then one defines g0 = Φ0 g + (1 − Φ0)f , and one checks that ‖g − g0‖1 is
bounded by ε. The other conclusions can be checked by simple calculation,
using the fact that the integration of the inequality |Df − Dg| < ε̃ gives
|f(x)− g(x)| < ε̃(1− x) for all x ∈ [a; 1].

One can notice that, in Lemmas 4.12 and 4.4, ε̃ depends only on ε. That
justifies the following definition:

Definition 4.13. Given ε > 0, we denote by Marg(ε) the set of strictly
positive real numbers satisfying the conditions satisfied by ε̃ in Lemmas 4.4
and 4.12 and in Corollary 4.9. In other words,

Marg(ε) =

(
0; min

(
ε

2
,

ε

4MΦ

))
.

Just as for the first “gluing” lemma, we state a parameter version of
Lemma 4.12:

Lemma 4.14. Let (εt)t∈[0;1) be a continuous path in (0;∞), f ∈ Dα,β and
(ft)t∈[0;1) a continuous path in Dα,β. Lemma 4.6 ensures the existence of a
continuous path (bt)t∈[0;1) in (0; 1) such that ‖ft|[bt;1]− f |[bt;1]‖1 < Marg(εt).
Then, for all paths (ct)t∈[0;1) and (dt)t∈[0;1) such that bt < ct < 1 and
(ct + 1)/2 < dt < 1, there exists a C1-continuous path (f̃t)t∈[0;1) in Dα,β

satisfying:

• f̃t|[0;ct]∪[(dt+1)/2;1] = ft|[0;ct]∪[(dt+1)/2;1];
• f̃t|[(ct+1)/2;dt] = f |[(ct+1)/2;dt];
• ‖f̃t − ft‖1 < εt.

Once again, the proof is analogous to the one of Lemma 4.7, and so we
omit it.
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4.3. Mather invariant. If f ∈ Dα,β and a, b ∈ (0; 1), we set

Df,a,b = {g∈Dα,β : f |[0;a] =g|[0;a] and f |[b;1] =g|[b;1]}, Df =
⋃

a,b∈(0;1)

Df,a,b.

If f ∈ Dα,β , a, b ∈ (0; 1), g ∈ Df,a,b and x0 < a is such that f(x0) < a,
then f |[0;f(x0)] = g|[0;f(x0)], and then h defined on [0; f(x0)] by h = id con-
jugates f to g on [0;x0]. The Remark below states that this diffeomorphism
extends uniquely onto [0; 1) in such a way that it conjugates f to g.

Remark. For all f ∈ Dα,β and g ∈ Df , there exists a unique diffeo-
morphism h of [0; 1) which conjugates f to g and coincides with id on a
neighbourhood of 0.

Proof. If h conjugates f to g, the relation hfh−1 = g gives
hn|[fn(x0);fn+1(x0)] = gnh0f

−n = gnf−n for all integers n.
One checks that this formula defines a C1-diffeomorphism of [0; 1).

Definition 4.15. The homeomorphism of [0; 1] coinciding with the dif-
feomorphism h mentioned in the Remark above on [0; 1) and with value 1
at 1 will be called the unitary conjugacy from g to f , and denoted by hg. It is
the only conjugacy from g to f which coincides with id on a neighbourhood
of 0.

Lemma 4.16. Let f be a C1-diffeomorphism of [0; 1], (at)t∈[0;1) and
(bt)t∈[0;1) be continuous paths in [0; 1], and (ft)t∈[0;1) be a C1-continuous path
of diffeomorphisms of [0; 1] such that ft ∈ Df,at,bt for all t ∈ [0; 1). Then, for
every compact interval I in (0; 1), the path (hft |I)t∈[0;1) is continuous in the
C1-topology.

Proof. Let I = [v0; v1]. Since v1 < 1, and by continuity of (at)t, for every
t ∈ [0; 1) there exists a neighbourhood Vt of t and an integer nt such that,
for all t′ ∈ Vt, hft′ is defined by hft′ = fnt

t′ f
−nt and so depends continuously

on ft′ in the C1-topology. The continuity of hft |I follows.

If the extension of hg to [0; 1] has C1-regularity, then g is C1-conjugate to
f by hg, and the conclusion of Theorem 4.1 is satisfied. However, generally,
hg is not differentiable at 1. In order to show that the conjugacy class of f
is arbitrarily close to g, one modifies g on U ∩ Df in such a way that hg
coincides with id on a neighbourhood of 1.

Proposition 4.17. If f ∈ Dα,β, g ∈ Df , and U is a C1-neighbourhood
of g, then there exists g′ ∈ Df ∩ U such that hg′ = h′ coincides with id in a
neighbourhood of 1.

A parameter version of this statement is the following:

Proposition 4.18. Let f ∈ Dα,β; (at)t∈[0;1) and (bt)t∈[0;1) continuous
paths in (0; 1); (εt)t∈[0;1) a continuous path in (0;∞). Let lastly (ft)t∈[0;1) be
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a C1-continuous path in Dα,β such that ft ∈ Df,at,bt for all t ∈ [0; 1). Then
there exist continuous paths (b̃t)t∈[0;1) and (c̃t)t∈[0;1) in (0; 1), as well as a
C1-continuous path (f̃t)t∈[0;1) in Df,at,b̃t

such that, for all t ∈ [0; 1), we have:

• hf̃t = id on [c̃t; 1];
• ‖f̃t − ft‖1 < εt.

In particular, this yields:

Corollary 4.19. Under the hypotheses of this proposition, the map

[0; 1)→ Diff 1([0; 1]), t 7→ hf̃t ,

is continuous in the C1-topology.

Indeed, we saw in Lemma 4.16 that, for every compact interval I in
(0; 1), the diffeomorphism hf̃t |I depends continuously on t in the C1-topology.
Thus it is sufficient to choose I in such a way that hf̃t coincides with id

on the complement of I so as to ensure that ‖hf̃t′ |I − hf̃t |I‖1, as well as
‖hf̃t′ |{I − hf̃t |{I‖1 are arbitrarily small provided that t and t′ are sufficiently
close to each other.

From these two propositions, one can prove Theorems 4.1 and 4.8 rather
easily. Proposition 4.18 will also be useful in Section 6 in the proof of
Lemma 6.1.

Proof of Theorem 4.1 from Proposition 4.17. Given two diffeomorphisms
f, g of Dα,β , we prove that there exists a conjugate of f arbitrairily C1-close
to g. Let ε > 0. From Corollary 4.5, there exist 1 > a, b > 0 and g0 ∈ Df,a,b

such that ‖g0− g‖1 < ε/2. From Proposition 4.17, there exists g̃0 ∈ Df such
that ‖g̃0 − g0‖1 < ε/2 and hg̃0 = id in a neighbourhood of 1. Then hg̃0 is a
C1-diffeomorphism of [0; 1] coinciding with the identity on a neighbourhood
of 0 and of 1, conjugating f to g̃0, and ‖g̃0 − g‖1 < ε.

Proof of Theorem 4.8 from Proposition 4.18. If (ft)t∈[0;1) is a continuous
path in Df , then (f̃t)t∈[0;1) = (hf̃tfh

−1

f̃t
)t∈[0;1) given by Proposition 4.18

is a C1-continuous path of conjugates of f such that the conjugacies hf̃t all
coincide with the identity near 0 and 1 and ‖hf̃tfh

−1

f̃t
−ft‖1 < εt for all t < 1.

Moreover, Corollary 4.19 ensures the C1-continuity of the path (hf̃t)t∈[0;1).

From now on, the aim is to reword the problem in order to obtain a
formulation similar to the C2-problem. For that, we will introduce an equiv-
alent of the C2-Mather invariant. This will enable us to measure how much
hg differs from id near 1.

Definition 4.20. Let f ∈ Dα,β and g ∈ Df . We define the Mather
invariant of g with respect to f , denoted byMf (g), to be the unique hom-
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eomorphism of [0; 1] commuting with f and coinciding with hg on a neigh-
bourhood of 1.

Remark. The Mather invariant is well-defined since hg commutes with
f on a neighbourhood of 1. By choosing a fundamental domain I included
in this neighbourhood and by pushing hg|I by the dynamic of f , one obtains
the unique homeomorphismMf (g)|(0;1) of (0; 1] which commutes with f and
coincides with hg on a neighbourhood of 1. By finally settingMf (g)(0) = 0,
one obtains a diffeomorphism of [0; 1].

Lemma 4.21. If f ∈ Dα,β and g, g′ ∈ Df are such that g′ ≥ g and
g′ > g on a closed interval containing a fundamental domain of g′, then
Mf (g′) >Mf (g).

Proof. Let a, b ∈ (0; 1) be such that g, g′ ∈ Df,a,b. By definition ofMf , it
is sufficient to show that hg′ > hg on a fundamental domain I0 = [x0; f(x0)]
of f included in [b; 1]. In other words, it is sufficient to show that hg′h−1

g > id
on hg(I0), or that g′ng−n > id on hg(I0) if n is so large that g−n(x) < a. Let
x ∈ hg(I0). Since g′ ≥ g, we know that g′ng−n(x) ≥ x0, and so the suborbit
{g′i(g−n(x))}0≤i<n lies in the fundamental domain of g′ on which g′ > g.
Consequently, g′n(g−n(x)) > gn(g−n(x)) > x.

Lemma 4.22. Let f ∈ Dα,β and let (at)t∈[0;1), (bt)t∈[0;1) be continuous
paths in (0; 1). Let (ft)t∈[0;1) be a path of C1-diffeomorphisms with ft∈Df,at,bt

for all t < 1. Then, for every compact subinterval I of (0; 1), the path
(Mf (ft)|I)t∈[0;1) is continuous in the C1-topology.

Proof. Let t ∈ [0; 1) and V be a neighbourhood of t. From Lemma 4.16,
we know that hft′ depends continuously on t′ ∈ V on a fundamental domain
I0 of f included in [supt′∈V bt′ ; 1). As I is compact, there exists an integer
n such that at each point x ∈ I,Mf (ft′) is obtained by conjugating hft′ |I0
by f less than n times. Thus it suffices that hft′ |I0 is sufficiently close to
hft |I0 , in other words that t′ is sufficiently close to t forMf (ft′) to be close
toMf (ft) on the whole I.

5. Proofs of Theorems 4.1 and 4.8. This section is dedicated to
finishing the proof of the main result of this paper, that is, Theorem 4.8,
preceded by its discrete and more comprehensible version, Theorem 4.1.
We will first use the material presented in the previous section to reword
Propositions 4.17 and 4.18. Let us recall in this connection that proving
these two propositions will complete the proofs of Theorems 4.1 and 4.8.

Propositions 5.1 and 5.2 below are rewordings of Propositions 4.17 and
4.18 respectively.

Proposition 5.1. If f ∈ Dα,β, g ∈ Df , and U is a C1-neighbourhood
of g, then there exists g′ ∈ Dα,β ∩ U such thatMf (g′) = id.
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Proposition 5.2. Let f ∈ Dα,β and let (at)t∈[0;1) and (bt)t∈[0;1) be
continuous paths in (0; 1), and (εt)t∈[0;1) a continuous path in (0;∞). Let
lastly (ft)t∈[0;1) be a C1-continuous path in Dα,β such that ft ∈ Df,at,bt for
all t ∈ [0; 1). Then there exist continuous paths (b̃t)t∈[0;1) and (c̃t)t∈[0;1) in
(0; 1), as well as a C1-continuous path (f̃t)t∈[0;1) in Df,at,b̃t

such that, for all
t ∈ [0; 1), we have:

• Mf (f̃t) = id;
• ‖f̃t − ft‖1 < εt.

Thus we will try, in the following subsections, to cancel the Mather in-
variant of a diffeomorphism (i.e. to make it coincide with the identity) while
remaining in an arbitrarily small neighbourhood of it.

5.1. To make the unitary conjugate have a fixed point. In order to
prove Proposition 5.1, given f ∈ Dα,β and g ∈ Df , we will first makeMf (g)
have fixed points by modifying g by small perturbations. More precisely,
Proposition 5.3 will enable us to prescribe the point which will become a
fixed point ofMf (g) after having perturbed g:

Proposition 5.3. Let f ∈ Dα,β; a, b ∈ (0; 1) with a < b; g ∈ Df,a,b;
U be a C1-neighbourhood of g in Dα,β; and p ∈ (0; 1). Then there exist b̃ > b
and g̃ ∈ U ∩Df,a,b̃ such that p is a fixed point ofMf (g̃).

The parameter version follows:

Proposition 5.4. Let f be a diffeomorphism of [0; 1] without fixed points
in (0; 1). Let (ft)t∈[0;1) be a C1-continuous path of diffeomorphisms of [0; 1]
such that:

• f0 = f ;
• ft has no fixed point in (0; 1) for all t < 1;
• for all t < 1, there exist at > 0 and bt < 1, depending continuously
on t, such that ft coincides with f on [0, at]∪ [bt, 1] (i.e. ft ∈ Df,at,bt).

Then, for every path (εt)t∈[0;1) in (0;∞) and every continuous path (pt)∈[0;1)

in (0; 1), there exists a C1-continuous path (f̃t)t∈[0;1) of diffeomorphisms of
[0; 1] such that:

• f̃0 = f ;
• for all t < 1, there exists b̃t < 1, depending continuously on t, such
that f̃t coincides with f on [0; at] ∪ [b̃t; 1];
• for all t ∈ [0; 1), ‖f̃t − ft‖1 < εt;
• for all t ∈ [0; 1), pt is a fixed point ofMf (f̃t).

The idea of the proof is to perturb each ft in a continuous way with
respect to t. So, one will obtain a new path which will also be continuous
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with respect to t, and such that the unitary conjugacies will have a fixed point
for all t. For that, we will consider two diffeomorphisms f+ and f− going
respectively “arbitrarily faster” and “arbitrarily slower” than f—the meaning
of these expressions will be made rigorous in Lemma 5.5 below—and we will
make the ft’s coincide with these diffeomorphisms for a sufficiently long time
for them to catch up or lose their lead with respect to f .

First, we will show that such diffeomorphisms f+ and f− exist:

Lemma 5.5. Let f be a C1-diffeomorphism of [0; 1] such that f > id.
There exist two C1-diffeomorphisms f+ and f− of [0; 1] such that:

• f+ > f , id < f− < f ;
• Df−(1) = Df+(1) = Df(1);
• for all x ∈ (0; 1) and all n0 ∈ N, there exists k ∈ N such that

(1) (f+)k(x) ≥ fn0+k(x) and (f−)n0+k(x) ≤ fk(x);

consequently, for all k′ ≥ k, the inequalities (f+)k
′
(x) ≥ fn0+k′(x) and

(f−)n0+k′(x) ≤ fk′(x) are still satisfied;
• the lead of f+ with respect to f and the delay of f− with respect to f
are decreasing, i.e., given n0, the smallest integer k satisfying the last
condition is increasing with respect to x.

Notation. If f ∈ Dα,β , x ∈ (0; 1) and n0 ∈ N, we will denote by k(n0, x)
the smallest integer k satisfying condition (1) above.

The proof of Lemma 5.5 is quite long and deferred to the Annex.
Let us now recall the definition of translation number of a diffeomorphism

with respect to another commuting with it:

Lemma-Definition 5.6. If f, h are two increasing C1-diffeomorphisms
of [0; 1] such that f has no fixed point on (0; 1), f > id and f and h commute
on [0; 1], then we can consider, given x ∈ [0; 1] and n ∈ N, the integer m(n)
defined by

fm(n)(x) ≤ hn(x) < fm(n)+1(x).

Then the limit limn→∞m(n)/n exists and is independent of x. We call
it the translation number of h with respect to f , and denote it by τf (h).
Furthermore, if (ht)t∈[0;1) is a path of C1-diffeomorphisms which varies C1-
continuously on compact sets in (0; 1), then the translation number τf (ht)
depends continuously on t.

One can consult [BF] for a more general proof in the case of local hom-
eomorphisms, or [N] for a similar proof in the context of rotation numbers.

Let us also introduce the following definition:
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Definition 5.7. Let f , g be increasing C1-diffeomorphisms of [0; 1], with
no fixed point in (0; 1), such that g coincides with f on a neighbourhood V0

of 0 and on a neighbourhood V1 of 1. Then the delay of g with respect to f
is the integer rf (g) = [|τf (Mf (g))|], that is, the integer part of the absolute
value of the translation number of the Mather invariant of g with respect
to f .

Lemma 5.8. Let f be an increasing C1-diffeomorphism of [0; 1] with no
other fixed point than 0 and 1; (at)t∈[0;1) and (bt)t∈[0;1) be continuous paths in
(0; 1); and (gt)t∈[0;1) be a C1-continuous path of increasing diffeomorphisms
gt ∈ Df,at,bt. Then τf (Mf (gt)) depends continuously on t, and the delay of
gt with respect to f is upper semicontinuous with respect to t.

Proof. From Lemma 4.22, we know that the Mather invariant of gt with
respect to f varies continuously on compact sets in [0; 1]. Thus, from Lemma-
Definition 5.6, the translation number τf (Mf (g)) depends continuously on t.
One concludes thanks to the continuity of the absolute value and the upper
semicontinuity of the integer part.

Lemma 5.9. Let f ∈ Dα,β, (rt)t∈[0;1) be an upper semicontinuous col-
lection of integers and (xt)t∈[0;1) be a continuous path in (0; 1). Then the
collection (`t)t∈[0;1) = (f

k(rt,xt)
+ (xt))t∈[0;1) is locally upper bounded; in other

words: for all t ∈ (0; 1), there exists ε > 0 such that sups∈[t−ε;t+ε] `s < 1.

The same holds for the collection (f
k(rt,xt)
− (xt))t∈[0;1).

Proof. Let t ∈ [0; 1) and ε > 0. If s ∈ [t− ε; t+ ε] and ε is small enough,
then by semicontinuity, rs varies from rt − 1 to rt + 1. Thus k(rs, xs) is
bounded by maxs∈[t−ε;t+ε] k(rt+ 1, xs). Since f+ has been defined in Lemma
5.5 in such a way that k(n0, x) increases with respect to x, one can conclude
that k(rs, xs) is bounded by k(rt + 1, xt+ε). Finally, the increasing of f+

ensures that `s ≤ fk(rt+1,xt+ε)
+ (xt+ε).

Lemma 5.10. Let (`t)t∈[0;1) be a locally upper bounded collection of real
numbers in [0; 1), that is, for all t ∈ (0; 1), there exists εt > 0 such that
sups∈[t−εt;t+εt] `s < 1. Then there exists a continuous path (dt)t∈[0;1) in (0; 1)
such that 1 > dt > `t for all t ∈ [0; 1).

Proof. Each compact set C in [0; 1) is covered by
⋃
t∈C [t−εt; t+εt]. From

this union, one can extract a finite subcover. Since `t|[t−εt;t+εt] is bounded
by Mt, (`t)t∈C is bounded by the maximum of these constants. So `t is
bounded on each compact set in [0; 1). Let (tn)n∈N be an increasing sequence
converging to 1. On each interval [tn; tn+1], `t is bounded by Mn, so there
exists a continuous path (dt)t∈[0;1) such that, on [tn; tn+1], one has dt > Mn,
and the lemma is proved.
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Proof of Proposition 5.4. Since ft and f± have the same derivative at 1,
from Lemma 4.7, one can find a continuous path (ct)t∈[0;1) in (0; 1) such that,
for all t < 1,

ct > bt, f−1

(
ct + 1

2

)
> bt, ‖ft|[ct;1] − f±|[ct;1]‖1 < ε̃t =

εt
4MΦ

.

From Lemmas 5.8–5.10, one can in this way produce a continuous path
(dt)t∈[0;1) in (0; 1) such that, for all t ∈ [0; 1),

dt > f
k(rt+1,f+(

ct+1
2

))+1
+

(
ct + 1

2

)
.

For all t < 1, from Lemma 4.14, there exist diffeomorphisms ft,+ and ft,−
such that:

• ft,± coincide with ft on [0; ct] ∪ [(dt + 1)/2; 1];
• ft,± coincide with f± on [(ct + 1)/2; dt];
• ‖ft,± − ft‖1 < εt.

Let us denote kt = k(rt + 1, f+((ct + 1)/2)).

Claim 1. For all t < 1, one has the following inequalities on (dt; 1):

Mf (ft,+) > id, Mf (ft,−) < id.

Proof of Claim 1. Let t < 1, x > dt, and n a sufficiently great integer
so that f−n(x) < at. Let n1 be the smallest integer such that f−n1(x) <
(ct + 1)/2. By construction of dt, one can decompose n1 as n1 = rf (ft)+1+
kt + 1 + n′, where n′ ∈ N∗. Then
(2) Mf (ft,+)(x) = fn1

t,+Mf (ft)f
−n1(x).

Moreover,
Mf (ft)(f

−n1(x)) ≥ f [τf (Mf (ft))](f−n1(x))

by definition of τf (Mf (ft)). Thus

(3) fn1
t,+(Mf (ft)f

−n1(x)) ≥ fn1
t,+f

[τf (Mf (ft))](f−n1(x)).

Since ft,+ ≥ f on [bt; 1] and f−n1(x) > bt, one also has

f
rf (ft)+1
t,+ f [τf (Mf (ft))](f−n1(x)) ≥ f−n1(x).

So
fn1
t,+f

[τf (Mf (ft))](f−n1(x)) ≥ fkt+1+n′

t,+ (f−n1(x)).

Hence fkt+1+n′

t,+ f−n1(x) = fn
′

t,+f
kt
t,+(ft,+f

−n1(x)); furthermore ft,+f−n1(x) ∈[
ct+1

2 ; f+

(
ct+1

2

))
, thus ft,+ coincides with f+ on the interval [ft,+f

−n1(x);

fkt−1
+ (ft,+f

−n1(x))), which enables us to write

fkt+1+n′

t,+ f−n1(x) = fn
′

t,+f
kt
+ (ft,+f

−n1(x)).
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Since ft,+f−n1(x) ∈
[
ct+1

2 ; f+

(
ct+1

2

))
, and since k is increasing with respect

to its second variable, fkt+1+n′

t,+ f−n1(x) > fn
′

t,+f
rf (ft)+1+kt(ft,+f

−n1(x)). By
noticing that ft,+ = f+ is greater than f on

[
ct+1

2 ; f+

(
ct+1

2

))
, one obtains

fkt+1+n′

t,+ f−n1(x) > fn
′

t,+f
rf (ft)+1+ktf−n1+1(x) ≥ fn′t,+f−n

′
(x) ≥ x.

From these calculations it follows that Mf (ft,+) > id on (dt; 1). One can
show similarly thatMf (ft,−) < id on (dt; 1).

Thus,Mf (f+) (resp.Mf (f−)) is strictly greater (resp. smaller) than the
identity on at least one fundamental domain of f , and is defined elsewhere
by its commuting relation with f . It is then strictly greater (resp. smaller)
than the identity on the whole (0; 1); in particular Mf (f+)(pt) > pt (resp.
Mf (f−)(pt) < pt).

One now considers, for all t < 1, the path (ft,s)s∈[0;1] of diffeomorphisms
defined by ft,s = sft,+ + (1− s)ft,−.

Claim 2. For all t < 1, there exists a unique st ∈ [0; 1] such that
Mf (ft,st)(pt) = pt.

It should be noted immediately that the property ‖ft,±−ft‖1 < εt, which
has been stated above, implies that, for all s ∈ [0; 1],

‖ft,s − ft‖1 < εt.

Moreover, setting b̃t = (dt + 1)/2, we have

ft,s ∈ Df,at,b̃t
.

Proof of Claim 2. By construction of ft,+, this diffeomorphism coincides
with f+ on at least one fundamental domain, and is also strictly greater
than ft,− on this domain, since ft,− coincides with f− there. Consequently,
if s, s′ ∈ [0; 1] with s < s′, then ft,s′ > ft,s on at least one fundamental
domain of ft,+, and as a consequence also on at least one fundamental do-
main of ft,s′ . One can thus use Lemma 4.21 to state that, if s < s′, then
Mf (ft,s) <Mf (ft,s′). On the other hand, given t ∈ [0; 1), one knows that
Mf (ft,s) depends continuously on s on each compact subset of (0; 1), and
Mf (ft,+)(pt) > pt andMf (ft,−)(pt) < pt. The result follows.

Claim 3. The real number st depends continuously on t.

Proof of Claim 3. Given t ∈ [0; 1) and a sequence (tn)n∈N converging
to t, there exists an integer N such that f−N (ptn) = f−Ntn,stn (ptn) for n large
enough. Moreover, by continuity of the path (pt)t and of the diffeomorphism
f−N , one knows that f−N (ptn) converges to f−N (pt), which is equal to
f−Nt,st (pt). So f−Ntn,stn (ptn) converges to f−Nt,st (pt), and by uniqueness of the
parameter s satisfying this property, one can deduce that stn → st as n→∞,
which proves the continuity of (st)t∈[0;1).
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Claim 3 implies the continuity of the path (f̃t)t∈[0;1) = (ft,st)t∈[0;1), so
the proof of Proposition 5.4 is now complete.

5.2. Creating a degenerate fixed point of hg
Lemma 5.11. Let f ∈ Dα,β; a, b ∈ (0; 1) with a < b; g ∈ Df,a,b such that

Mf (g) has a fixed point p in (b; 1); and U a C1-neighbourhood of g in Dα,β.
Then there exist b̃ > b and g̃ ∈ U ∩ Df,a,b̃ such that p is a fixed point of
Mf (g̃), with derivative equal to 1.

This time again, we state a parameter version of this lemma:

Lemma 5.12. Let f ∈ Dα,β, (ft)t∈[0;1) be a C1-continuous path in Dα,β,
(pt)t∈[0;1) a continuous path in (0; 1) and (εt)t∈[0;1) a continuous path in
(0;∞), such that:

• f0 = f ;
• there exist continuous paths (at)t∈[0;1) and (bt)t∈[0;1) in (0; 1) such that
ft ∈ Df,at,bt for all t < 1;
• for all t < 1, pt > bt and pt is a fixed point ofMf (ft).

Then there exist a C1-continuous path (f̃t)t∈[0;1) in Dα,β and a continuous
path (b̃t)t∈[0;1) in (0; 1) such that, for all t:

• f̃0 = f ;
• f̃t ∈ Df,at,b̃t

;
• pt is a fixed point ofMf (f̃t) with derivative equal to 1;
• ‖f̃t − ft‖1 < εt.

Here again, since the proof of Lemma 5.12 is quite simple, one gives
directly the proof of the parameter version.

Proof of Lemma 5.12. The idea is to perturb locally, along the orbit of pt,
the diffeomorphism ft by composition on the right with an affine map which
will, fundamental domain by fundamental domain, make the derivative of
hf (ft) at these fixed points become closer and closer to 1. For that, one
chooses a continuous path (ε′t)t∈[0;1) in (0;∞) such that, for all t < 1, for all
C1-diffeomorphisms ϕt of [0; 1] with ‖ϕt − id‖1 < ε′t, one has ‖ft ◦ ϕ − ft‖1
< ε̃t. For all t ∈ [0; 1), one can consider the smallest integer kt such that
Dhf (ft)(pt)(1−ε′t)kt < 1 if Dhf (ft)(pt) > 1 (resp. Dhf (ft)(pt)(1+ε′t)

kt > 1
if Dhf (ft)(pt) < 1). One considers the composition of ft with the affine map
H i

1−ε′t
(x) = (1−ε′t)(x−f i(pt))+f i(pt), resp.H i

1+ε′t
(x) = (1+ε′t)(x−f i(pt))+

f i(pt) on a neighbourhood of the fixed points f i(pt) where i = 0, . . . , kt − 2,
and then with the affine map

1

(1− ε′t)kt−1Dh− f(ft)(pt)
(x− fkt−2(pt)) + fkt−2(pt)
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resp.
1

(1 + ε′t)
kt−1Dh− f(ft)(pt)

(x− fkt−2(pt)) + fkt−2(pt),

on a neighbourhood of the fixed point fkt−2(pt). One can notice that, as pt
has been chosen to be greater than bt, the diffeomorphism hf (f̃t) at f i(pt)
is obtained by conjugating H i−1

1±ε′t
◦ hf (f̃t) by f at f i−1(pt). This ensures the

preservation of the improvement given to the derivative of hf (f̃t) along the
orbit of pt, and thus enables us to conclude that, after having worked as
explained above, the derivative of hf (f̃t) at the fixed point fk(pt) is equal
to 1.

The C1-diffeomorphism f̃t is then given by re-gluing these local perturba-
tions to the initial diffeomorphism ft following Corollary 4.10. The continuity
of this new path (f̃t)t∈[0;1) follows from the continuity of the path (pt)t∈[0;1) of
fixed points, of the path (εt)t∈[0;1), and the continuity of hf (ft) with respect
to t on each compact subset of (0; 1).

5.3. To squash hg in successive fundamental domains: end of the
proof of Theorems 4.1 and 4.8. In this section, we finish the proof of
Proposition 5.1 by establishing the following proposition:

Proposition 5.13. Let (αn)n∈N and (βn)n∈N be sequences in [0; 1],
(fn)n∈N be a sequence in Dαn,βn converging to id in the C1-topology and
h0 be an increasing C1-diffeomorphism of [0; 1] with Dh0(0) = 1 = Dh0(1).
Let ε > 0. Then there exists a sequence (f̃n)n∈N, where f̃n ∈ Dαn,βn ∩Bfn(ε)
for all n, such that the sequence (hn)n∈N of C1-diffeomorphisms of [0; 1], de-
fined by h0 and hn = f̃n−1hn−1f

−1
n−1 for n ∈ N∗ is stationary, equal to id for

all n large enough.

Proposition 5.2 will follow from its parameter version:

Proposition 5.14. Let (ft,n)(t,n)∈[0;1)×N be a collection of diffeomor-
phisms in Dαn,βn such that:

• for all n, (ft,n)t∈[0;1) is a C1-continuous path,
• for all t ∈ [0; 1), (ft,n)n∈N converges to the identity in the C1-topology
as n→∞.

Let also (ht,0)t∈[0;1) be a continuous path of increasing C1-diffeomorphisms
of [0; 1] such that Dht,0(0) = 1 = Dht,0(1) for all t ∈ [0; 1), and lastly
let (εt)t∈[0;1) be a continuous path in (0;∞). Then there exists a collection
(f̃t,n)(t,n)∈[0;1)×N such that f̃t,n ∈ Dαn,βn ∩ Bft,n(εt) for all (t, n) ∈ [0; 1)×N
and the collection (ht,n)n∈N of C1-diffeomorphisms of [0; 1] defined by ht,0
and ht,n = f̃t,n−1ht,n−1f

−1
t,n−1 for n ∈ N∗ is stationary for all t, equal to id

for all n greater than N large enough.
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Let us make a technical remark before beginning the proof of this propo-
sition.

Remark. The graph of the map F : (0;∞]→ (0;∞], x 7→
∣∣ x

1−x
∣∣, is given

by the figure below. In particular, F is increasing on (0; 1) and decreasing
on (1;∞); its limits at 1− and at 1+ are ∞; it has value 0 at 0 and tends to
1 at ∞; its value at 1/2 is 1 and at 1/3 is 1/2.

Notations. If ε > 0, we will denote by 0 < aε < 1 < bε two real
numbers such that F (x) > 1/ε if aε < x < bε, and F (x) ≤ 1/ε if x ≤ aε or
x ≥ bε.

In order to expound clearly the reasoning, and as the adaptation to the
parameter version does not present any extra difficulty, we show here only
how to deduce Proposition 5.1 from Proposition 5.13.

Proof of Proposition 5.1 from Proposition 5.13. Let g ∈ Df,a,b and p ∈
(0; 1). From Proposition 5.3, there exist b̃ > b and g̃ ∈ U ∩ Df,a,b̃ such
that p is a fixed point of Mf (g̃). From Lemma 5.11, one can suppose that
DMf (g̃)(p) = 1. Let m be a sufficiently large integer such that fm(p) > b̃.
One considers the sequence (fn)n∈N, where fn is the normalization of the
diffeomorphism f |[fm+n(p);fm+n+1(p)] from [fm+n(p); fm+n+1(p)] on its image.
One also defines a C1-diffeomorphism h0 to be the normalization on [0; 1] of
Mf (g)|[fm(p);fm+1(p)]. Then this sequence converges uniformly to the identity
in the C1-topology, and one can apply Proposition 5.13. By perturbing g
on the successive fundamental domains of f in such a way that f̃n is the
normalization on [0; 1] of g|[fm+n(p);fm+n+1(p)], one will obtain a perturbation
g̃ of g on [0; 1] such thatMf (g̃) = id.
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Proof of Proposition 5.14. We will write f̃t,n as perturbations ft,n ◦ψt,n.
By noticing that ht,n+1 is then given by ft,n ◦ ψt,nht,nf−1

t,n , we can interpret
the transition from ht,n to ht,n+1, where t is given, as the transformation of
ht,n into ψt,n ◦ht,n, followed by conjugacy by ft,n. Since our aim is to obtain
ht,n equal to the identity, it appears that the best perturbation ψt,n would be
h−1
t,n. However, the permitted perturbations have size bounded by ε̃t, which

is small enough for f̃t,n = ft,n ◦ ψt,n ∈ Bft,n(εt) to hold. This real number
does not depend on ft,n, but only on εt, and one can choose it in such a way
that the path (ε̃t)t∈[0;1) is continuous.

Given n ∈ N and t ∈ [0; 1), one defines ψt,n(x) = x+Kt,nΨt,n(x), where
h−1
t,n(x) = x+ Ψt,n(x) and

Kt,n = inf

(
1;

ε̃t
maxx∈[0;1] |DΨt,n(x)|

)
= inf

(
1; ε̃t · min

x∈[0;1]

1

|DΨt,n(x)|

)
.

One can then check that ‖ψt,n − id‖1 < ε̃t, and

Kt,n = inf

(
1; ε̃t ·min

[0;1]

∣∣∣∣ Dht,n
1−Dht,n

∣∣∣∣).
As already announced, one also defines, for (t, n) ∈ [0; 1)×N, the diffeomor-
phism f̃t,n to be f̃t,n = ft,n ◦ ψt,n, and lastly ht,n+1 = f̃t,nht,nf

−1
t,n .

Let us introduce the following operator P , defined on {ft,n}(t,n)∈[0;1)×N×
Diff 1

+([0; 1]) and with values in the same set:

P : (ft,n, h) 7→ (ft,n+1, f̃t,nhf
−1
t,n ).

In particular, if (t, n) ∈ [0; 1)× N, one has P (ft,n, ht,n) = (ft,n+1, ht,n+1).

Remark. The operator P is continuous with respect to t.

Proof. This follows from the continuity of the paths (ft,n)t∈[0;1) and
(ht,n)t∈[0;1) for n fixed, the latter proved by induction. Indeed, (ht,0)t∈[0;1) is
assumed to be continuous, and if (ht,n)t∈[0;1) is continuous, then so are Ψt,n
and Kt,n (from the continuity of (ε̃t)t∈[0;1)), and consequently ψt,n as well.
This proves the continuity of (f̃t,n)t∈[0;1), and hence of (ht,n)t.

Notice now that if there exists (t, n)∈ [0; 1)×N such that min[0;1]

∣∣ Dht,n
1−Dht,n

∣∣
≥ 1/ε̃t, then Kt,n = 1 and ht,n+1 = id. Moreover, one can easily check that
if n is such that ht,n = id, then ht,k = id for all k ≥ n.

So, the proof will be complete once we prove the following:

Claim 1. For all t ∈ [0; 1), there exists Mt ∈ N such that

min
[0;1]

∣∣∣∣ Dht,Mt

1−Dht,Mt

∣∣∣∣ ≥ 1

ε̃t
.

The rest of the proof is devoted to proving this result. For that, we will
first use the convergence of (ft,n)n∈N to the identity to clarify the calcula-
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tions. Let (t, n) ∈ [0; 1)×N. Let ηt > 0 be such that (1+ ε̃t)(1−ηt) > 1+ ε̃t/2
and (1− ε̃t)(1 + ηt) < 1− ε̃t/2, and also such that

ηt < 1− 2

3(1 + ε̃t/2)
.

There exists Nt > 0 such that, for all n ≥ Nt and all x, y ∈ [0; 1], one has

1− ηt <
Dft,n(x)

Dft,n(y)
< 1 + ηt.

Define now ηNt = ηt. The uniform convergence of ft,n to id as n→∞ implies
also the existence of a sequence (ηt,n)n≥Nt converging to 0 and such that, for
all n ≥ Nt and x, y ∈ [0; 1], one has

1− ηt,n <
Dft,n(x)

Dft,n(y)
< 1 + ηt,n.

One can also require that ηt,n ≤ ηt for all t < 1 and all n ≥ Nt.
We have the following result:

Claim 2. For all t ∈ [0; 1), there exists n ≥ Nt such that

min
[0;1]

∣∣∣∣ Dht,n
1−Dht,n

∣∣∣∣ > 1.

Proof of Claim 2. Let x, y ∈ [0; 1] and n ≥ Nt. Assume that the minimum
is ≤ 1. We can calculate

(4) D(ψt,n ◦ ht,n)(x) = Dht,n(x) +Kt,n(1−Dht,n(x)).

Notice that:

(i) If Dht,n(x) = 1, then 1 − Dht,n(x) = 0, so the derivative at this
point does not change when ht,n gets composed with ψt,n.

(ii) If Dht,n(x) < 1 (resp. Dht,n(x) > 1), then 1 −Dht,n(x) > 0 (resp.
1−Dht,n(x) < 0), thus the derivative becomes greater (resp. smaller)
after being composed with ψt,n.

(iii) If Dht,n(x) < 1, then D(ψt,n ◦ ht,n)(x) is also < 1, and conversely.
(iv) If Dht,n(x) < Dht,n(y), then D(ψt,n ◦ ht,n)(x) < D(ψt,n ◦ ht,n)(y).

The graph of F indicates that

min
[0;1]

∣∣∣∣ Dht,n
1−Dht,n

∣∣∣∣ =
minDht,n

|1−minDht,n|
.

On the other hand, from (iv) it follows that

argminD(ψt,n ◦ ht,n) = argminDht,n.

One can now calculate that minD(ψt,n ◦ ht,n) = (1 + ε̃t) minDht,n, i.e. the
minima of D(ψt,n ◦ ht,n) and Dht,n are reached at the same point. It follows
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immediately that, for all x ∈ [0; 1],

(5) D(ψt,n ◦ ht,n)(x) ≥ (1 + ε̃t) min
[0;1]

Dht,n.

So to know the derivative of hn+1, one still has to conjugate ψt,n ◦ ht,n by
ft,n, which leads to

Dht,n+1(ft,n(x)) =
Dft,n(ψt,nht,n(x))

Dft,n(x)
·D(ψt,nht,n)(x).

From this expression and from (5), and according to our choice for ηt, we
deduce that for all x ∈ [0; 1],

(6) Dht,n+1(x) > (1 + ε̃t)(1− ηt,n) min
[0;1]

Dht,n > (1 + ε̃t/2) min
[0;1]

Dht,n.

Let now k be an integer such that (1 + ε̃t/2)k min[0;1]Dht,n > 1. Two cases
can then occur: either

• there exists an integer n < k′ ≤ k such that min
∣∣ Dht,k′

1−Dht,k′

∣∣ > 1; in this
case our statement is proved; or
• for each integer k′ between n and k, min[0;1]

∣∣ Dht,k′
1−Dht,k′

∣∣ ≤ 1; in this case,
from the previous calculation, one obtains

Dhn+k > (1 + ε̃t/2)k minDht,n > 1,

and from the graph of the map F we can conclude that Claim 2 is proved.

Claim 3. Let t ∈ [0; 1). If n ≥ Nt is such that 1/ε̃t > min
∣∣ Dht,n

1−Dht,n

∣∣ > 1,

then min
∣∣ Dht,k

1−Dht,k

∣∣ > 1 for all k ≥ n.

Proof of Claim 3. We argue by induction. If n ≥ Nt and min
∣∣ Dht,n

1−Dht,n

∣∣>1,
two cases can occur:

If this minimum is reached at a point x ∈ [0; 1] such that Dht,n(x) < 1,
then, since 1/ε̃t > min

∣∣ Dht,n
1−Dht,n

∣∣, similar calculations to those above lead to
inequality (6). In particular, minDht,n+1 > minDht,n, and we deduce, with
the help of the graph of F , that min

∣∣ Dht,n+1

1−Dht,n+1

∣∣ > min
∣∣ Dht,n

1−Dht,n

∣∣ > 1.
Otherwise, this minimum is reached at a point x such that Dht,n(x) > 1.

Thus, from the graph of F , it is reached at maxDht,n, that is,

min
[0;1]

∣∣∣∣ Dht,n+1

1−Dht,n+1

∣∣∣∣ =
maxDht,n

maxDht,n − 1
.

Furthermore, as above we can use (iv) to conclude that argmax(Dψt,n ◦ht,n)
= argmaxDht,n, which gives maxD(ψt,n ◦ ht,n) = (1 + ε̃t) maxDht,n. Con-
sequently, for all x ∈ [0; 1],

(7) Dht,n+1(x) < (1− ε̃t)(1 + ηt,n) max
[0;1]

Dht,n < max
[0;1]

Dht,n.
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On the other hand, the hypothesis min
∣∣ Dhn

1−Dhn

∣∣ > 1 implies that Dht,n(x) >
1/2 for each t. Thus, for all x ∈ [0; 1],

D(ψt,n ◦ ht,n)(x) = Dht,n(1−Kt,n) +Kt,n >
1

2
(1−Kt,n) +Kt,n,

and then, using min
∣∣ Dhn

1−Dhn

∣∣ > 1 again, one obtains D(ψt,n ◦ ht,n)(x) >
1
2(1 + ε̃t). After conjugating ψt,n ◦ ht,n by ft,n, one has

Dht,n+1(x) > (1− ηt,n)D(ψt,n ◦ ht,n)(x) >
1

2

(
1 +

ε̃t
2

)
>

1

2
.

Each Dht,n+1(x) is then bounded by 1/2 on one side and by maxDht,n > 1

on the other side, and thus min
∣∣ Dht,n+1

1−Dht,n+1

∣∣ > 1.

Claim 4. For all t ∈ [0; 1), one has Dht,n → 1 as t→∞.

Proof of Claim 4. From the reasoning above, one can assume that

min

∣∣∣∣ Dhn
1−Dhn

∣∣∣∣ > 1 for all n > n0.

Let t ∈ [0; 1) and n ≥ n0. From (4), we can then deduce the following:

• If Dht,n(x) < 1, then D(ψt,nht,n)(x) > Dht,n(x) + ε̃t(1 −Dht,n), and
so Dht,n+1(f(x)) > (1− ηt,n)(Dht,n(x) + ε̃t(1−Dht,n));

• If Dht,n(x) > 1, then D(ψt,nht,n)(x) < Dht,n(x) + ε̃t(1 −Dht,n), and
so Dht,n+1(f(x)) < (1 + ηt,n)(Dht,n(x) + ε̃t(1−Dht,n)).

Denoting by dt,n the maximal distance from Dht,n to 1 and using (iv), one
deduces

dn+1 < max
[0;1]

(
ηt,n + (1− ηt,n)dn(1− ε̃t); ηt,n + (1 + ηt,n)dt,n(1− ε̃t)

)
= ηt,n + (1 + ηt,n)dt,n(1− ε̃t) < dt,n(1− ε̃/2) + ηt,n.

Notice that ηt,n
ε̃t/2

is an attracting fixed point of the affine map x 7→ x(1 −
ε̃t/2) + ηt,n, and

ηt,n
ε̃t/2

converges to 0 as n → ∞, when t ∈ [0; 1) is given.
Consequently, the same holds for the maximal distance dt,n from Dht,n to 1,
and thus Claim 4 is proved.

One can easily check that Dψt,n(0) = 1 = Dψt,n(1) for all (t, n) ∈
[0; 1)×N, which follows fromDf̃t,n(0) = Dft,n(0) andDf̃t,n(1) = Dft,n(1).

Now, since F (x) → ∞ as x→ 1, Claim 4 implies that min[0;1]

∣∣ Dht,n
1−Dht,n

∣∣
→∞ as n→∞, and thus Claim 1 is proved.

This ends the proof of Theorem 4.8.
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6. Isotopy by conjugacy to the identity. In this section, we prove
Theorem 1.8.

It is clear that ifDf(x) 6=1 for some fixed point x of f , thenD(htfh
−1
t )(x)

= Df(x) 6= 1 for all t ∈ [0; 1), and consequently f cannot converge to id in
the C1-topology.

Thus, we will show now that the condition is sufficient.
For that, we will first consider the case where f has no other fixed point

than 0 and 1.

Lemma 6.1. Let f be an increasing diffeomorphism of [0; 1] such that
Df(0) = 1 = Df(1) and Fix(f) = {0, 1}. Let g be an increasing C1-diffeo-
morphism of [0; 1] without hyperbolic fixed points and with (f−id)(g−id) ≥ 0
on the whole [0; 1]. Then there exists an isotopy by conjugacy (ft)t∈[0;1) from
f to g such that ‖ft − g‖1 < 2‖f − g‖1 for all t ∈ [0; 1).

Proof. Let (f̃t)t∈[0;1) be the continuous path of increasing C1-diffeomor-
phisms of [0; 1] defined by f̃t = (1 − t)f + tg. Then ‖f̃t − g‖1 ≤ ‖f − g‖1.
Furthermore, if t ∈ [0; 1), then f̃t has no fixed point, f̃0 = f and f̃t → g
as t → 1. One can thus apply Theorem 4.2 for a path (εt)t∈[0;1) in (0;∞)
bounded by ‖f − g‖1, converging to 0 as t → 1, and in this way obtain the
existence of an isotopy by conjugacy from f to g, denoted by (ft)t∈[0;1), such
that ‖f̃t− ft‖1 < εt for t < 1. By the triangle inequality, one has the desired
control for ‖ft − g‖1.

Proof of Theorem 1.8. First notice that the set of connected components
of [0; 1] \Fix(f) is countable, and fix a numbering C1, C2, . . . of the closures
of these components.

For all n ≥ 1, denoting by Φn the affine map from Cn into [0; 1], we define
fn = Φnf |CnΦ

−1
n . Then ‖fn − id‖1 → 0 as n→∞. Indeed, by uniform con-

tinuity of Df |Cn , and since diam(Cn) → 0, one finds that Df |Cn converges
to Df |Cn(∂Cn) = 1 on Cn, and consequently f |Cn converges to id.

Let t0 = 0 < t1 < t2 < · · · with tn → 1 as n→∞.
For all n ≥ 1, let ((fn)s)s∈[0;1] be an isotopy by conjugacy from fn to id

satisfying the conclusions of Lemma 6.1. One defines, for all t ∈ [0; 1], the
diffeomorphism ft by setting for all n ≥ 1,

ft|Cn =

{
f |Cn if t < tn−1,
Φ−1
n (fn) t−tn−1

1−tn−1

Φn if tn−1 ≤ t ≤ 1,

and ft(1) = 1. The path (ft)t∈[0;1) is then continuous: this follows in each
component Cn from the continuity of the isotopies ((fn)s)s∈[0;1], and in the
neighbourhood of fixed points, from the fact that these isotopies coincide
with f |Cn at these points.
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The continuity at t = 1 can be proved as follows: If ε > 0, there exists
n0 ∈ N such that ‖f |Cn − id‖1 < ε/2 for all n ≥ n0. Then, for all t ≥
tn0−1, ft coincides either with f , or with id, or with (fn)s where s ∈ [0; 1),
depending on the component Cn in which we work. In each of these cases,
from Lemma 6.1 one has ‖ft|Cn − id‖1 < 2 · ε2 = ε.

7. Generalization: proof of Theorem 1.3

7.1. Signature of a diffeomorphism of [0; 1]. For instance, we saw
that two C1-diffeomorphisms f and g of [0; 1] with no other fixed point than
0 and 1, with the same derivatives at 0 and at 1 and such that (f−id)(g−id)
≥ 0 are isotopic by conjugacy. We also saw that each C1-diffeomorphism of
[0; 1] with derivative 1 at each of its fixed points is isotopic by conjugacy to
the identity.

We would now like to group together these two results in a more general
statement, as well as distinguish the cases in which there exists an isotopy
by conjugacy from f to g from the cases in which such an isotopy does not
exist, but in which it is yet possible to obtain a sequence of conjugates of f
converging to g.

Definition 7.1. Let f ∈ Diff 1
+([0; 1]) without hyperbolic fixed points,

except possibly 0 and/or 1. A countable and well-ordered set ({Ci}i∈I ,≺)
endowed with a map σ : {Ci}i∈I → {+,−} will be called a signature of f
if there exists an increasing, one-to-one map Ψ : {Ci}i∈I → [0; 1] \ Fix(f),
Ci 7→ xi, such that:

• For all i ∈ I, f(xi)− xi has the same sign as σ(Ci).
• If i, j ∈ I are such that xi < xj , then there exists k ∈ I such that
xi < xk ≤ xj and (f(xk)− xk)(f(xi)− xi) < 0.
• For all x ∈ [0; 1] \Fix(f), there exists i ∈ I such that, for all y ∈ [x;xi]

(an unoriented interval), (f(y)− y)(f(xi)− xi) ≥ 0.

Proposition 7.2. For every orientation-preserving C1-diffeomorphism
f of [0; 1], without hyperbolic fixed points other than possibly 0 and 1, a sig-
nature of f exists and is unique up to an orientation-preserving isomorphism.

Proof. Existence. Given a C1-diffeomorphism f of [0; 1], we will first spec-
ify the meaning of the expression “maximal interval on which the sign of f
does not change”, used in the Introduction.

For all x ∈ [0; 1] such that f(x) 6= x, one considers the set Ix of all
intervals (a; b) ⊂ [0, 1] such that

• x ∈ (a, b),
• (f(x)− x)(f(y)− y) ≥ 0 for all y ∈ (a; b),
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• a does not belong to the interior of Fix(f) with respect to the induced
topology on [a; 1]. In other words, a is neither in the interior of Fix(f)
nor the lower extremity of a connected component of this interior.
• b does not belong to the interior of Fix(f) with respect to the induced

topology on [b; 1].

One can then check that, for all x ∈ [0; 1] \Fix(f), the interval Ix =
⋃
I∈Ix I

belongs to Ix: it is thus the maximal element of this set with respect to
inclusion.

Consider now the set {Ix : x ∈ [0; 1]\Fix(f)}. If x and x′ are in the same
connected component of [0; 1] \Fix(f), then Ix = Ix′ . It follows in particular
that this set is countable. We therefore denote from now on

{Ix : x ∈ [0; 1] \ Fix(f)} = {Ci}i∈I = {Ix}x∈I′ ,
where I is a countable set, and I ′ is a countable subset of [0; 1]. Now define
a map Φ by

Φ : {Ci}i∈I → {+;−}, Ix = Ci 7→ sign of f(x)− x,
and a map Ψ by

Ψ : {Ci}i∈I → [0; 1], Ix = Ci 7→ x.

If x, x′ ∈ I ′ and x < x′, then Ix ∩ Ix′ = ∅. So {Ix}x∈I′ is well-ordered, in the
same order as the real numbers x ∈ I ′, which implies that Ψ is increasing
and injective.

By construction, the sign of Φ(Ix) where x ∈ I ′ is the one of f(Ψ(Ix))−
Ψ(Ix).

Let x, x′ ∈ I ′ with x < x′ and (f(x) − x)(f(x′) − x′) > 0. Assume that
(f(x) − x)(f(y) − y) ≥ 0 for all y ∈ [x;x′]. Then Ix ∪ Ix′ would belong
to Ix, which contradicts the maximality of Ix in Ix. Therefore there exists
y ∈ [x;x′] such that (f(y)− y)(f(x)− x) < 0. In particular y is not a fixed
point, so there exists x′′ ∈ I ′ such that Iy = Ix′′ . Since Ψ is increasing and
injective, from x < y < x′ one deduces Ix < Iy < Ix′ , and then x < x′′ < x′,
and, since x′′ ∈ Iy, one also has (f(x′′)− x′′)(f(x)− x) < 0.

If x ∈ [0; 1] \ Fix(f), then there exists x̃ ∈ I ′ such that x ∈ Ix = Ix̃. For
all y ∈ [x; x̃], one has y ∈ Ix̃, so (f(y)− y)(f(x̃)− x̃) ≥ 0.

Uniqueness. Assume that ((C = {Ci}i∈I ,≺), σ) and ((C ′ = {C ′i}i∈I′ ,
≺′), σ′) are two signatures of a C1-diffeomorphism f of [0; 1]. Let i ∈ I and
xi ∈ [0; 1] \ Fix(f) be the image of i by the map Ψ defined in Definition
7.1. Then, since ((C ′ = {C ′i}i∈I′ ,≺′), σ′) is a signature of f , there exists a
unique x′i in the image of Ψ ′ such that the sign of f does not change on
the whole unoriented interval [xi;x

′
i]. We will denote this real number by

ϕ(xi). We then define φ(i) = Ψ ′−1(x′i). In other words, φ is the map from
I to I ′ defined by φ = Ψ ′−1ϕΨ . Now we will show that φ is isomorphic and
order-preserving.
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• φ is injective and order-preserving : This follows directly from the same
properties of Ψ , Ψ ′, and ϕ.
• φ is onto: Let us consider C ′i in C ′. Set x′i = Ψ ′(C ′i), and let xi in

the image of Ψ be such that the sign of f does not change on the
unoriented interval [xi;x

′
i]. Then x′i has the same property as ϕ(xi),

and thus x′i = ϕ(xi). Consequently, C ′i is in the image of φ.

Definition 7.3. From now on, the signature of f in the sense A will
refer to the signature of f as constructed in the proof of the existence of a
signature above.

7.2. Proof of Theorem 1.3. First, let us state some properties con-
cerning isotopies by conjugacy:

Notation If f, g are two orientation-preserving C1-diffeomorphisms of
[0; 1], we will write f  g if there exists an isotopy by conjugacy from f
to g.

Proposition 7.4. The relation  is reflexive and transitive.

Proof. One immediately checks that  is reflexive.
Concerning the transitivity, assume that (Ht)t∈[0;1) is an isotopy by conju-

gacy from an orientation-preserving C1-diffeomorphism f0 of [0; 1] to another,
which we will denote by f . Assume also that (htfh

−1
t )t∈[0;1) is an isotopy

by conjugacy from f to a diffeomorphism g ∈ Diff 1
+([0; 1]), and consider a

continuous path (εt)t∈[0;1) in (0;∞).
Denote by ηt > 0 the greatest constant such that if ‖ϕ− ψ‖1 < ηt, then

‖htϕh−1
t −htψh

−1
t ‖1 < εt. The continuity of the path (ht)t∈[0;1) ensures that

the collection (ηt)t∈[0;1) is locally bounded; more precisely, for each t ∈ [0; 1),
there exists a neighbourhood V of t and η̃t,V > 0 such that η̃t,V < ηt′ for all
t′ ∈ V.

On the other hand, with each given t0 ∈ [0; 1), by convergence of Ht

to f , one can associate the smallest real number r̃t0 of [0; 1) such that
‖f −Hr̃t0

‖1 < ηt0 . Since the collection (ηt)t∈[0;1) is locally bounded, one has
a similar property for (r̃t)t∈[0;1): for each t ∈ [0; 1), there exists a neighbour-
hood V of t and rt,V ∈ [0; 1) such that r̃t < rt,V for all t′ ∈ V. Lemma 5.10
now yields a continuous path (r(t))t∈[0;1) in [0; 1) satisfying, for all t ∈ [0; 1),
‖Hr(t) − f‖1 < ηt, and hence ‖htHr(t)h

−1
t − htfh

−1
t ‖1 < εt. By choosing

εt → 0 as t→ 1, one obtains the convergence of htHr(t)h
−1
t to g as t→ 1 in

the C1-topology, and consequently an isotopy by conjugacy from f0 to g.

Proposition 7.5. Let f, g be increasing C1-diffeomorphisms of [0; 1]
without hyperbolic fixed points, and B = {Bi}i∈I be the set of connected
components of [0; 1] \ Fix(f). Assume that (g|Bi − id)(f |Bi − id) ≥ 0 for all
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i ∈ I, and g = id outside
⋃
i∈I Bi. Then there exists an isotopy by conjugacy

from f to g.

Proof. The proof is similar to the one of Theorem 1.8, by using Lemma
6.1.

Proof of Theorem 1.3. Case 1. First, we assume that there exists an
isotopy from f to g, denoted by (htfh

−1
t )t∈[0;1), where (ht)t∈[0;1) is con-

tinuous. One defines Ψ (resp. Ψ ′) to be the increasing and injective map
{Ci}i∈I → [0; 1] \Fix(f) (resp. {C ′i}i∈I′ → [0; 1] \Fix(g)) satisfying the con-
ditions listed in the definition of the signature, and if i ∈ I (resp. i ∈ I ′),
one defines xi = Ψ(Ci) (resp. x′i = Ψ ′(C ′i)).

Notice that if x′i ∈ Ψ ′(C ′), then, by convergence of htfh−1
t to g, there

exists T > 0 such that (htfh
−1
t (x′i) − xi)(g(xi) − xi) > 0 for all t ≥ T . So,

f − id has at h−1
t (x′i) the same sign as g at x′i, for all t ≥ T . By definition of

the signature of f , there exists a unique xϕ(i) ∈ Ψ(C) such that f − id has
constant sign on the whole unoriented interval [h−1

T (x′i);xϕ(i)]. The continuity
of t 7→ h−1

t (x′i) ensures that f − id has constant sign on each unoriented
interval of the kind [h−1

t (x′i);xϕ(i)], where t ≥ T (in particular, ϕ is well-
defined: it does not depend on the choice of t, provided that it satisfies
the above mentioned conditions). Then Φ(C ′i) = Ψ−1(xϕ(i)) defines a map
Φ : C ′ → C, and one shows that:

• Φ preserves the signs: The explanation above shows that σ(Φ(C ′i)) =
σ′(C ′i) for all i ∈ I ′.
• Φ is non-decreasing : Let C ′i, C

′
k ∈ C ′ with C ′i ≺ C ′k; then x′i < x′k.

If g − id had the same sign at x′i and at x′k, then, by definition of the
signature of g, there would exist x′l ∈ Ψ ′(C ′) with x′i < x′l < x′k such that
(g(x′i)− xi)(g(x′l)− x′l) < 0. Thus it is sufficient to consider the case where
(g(x′i)−xi)(g(x′k)−x′k) < 0. For each t ∈ [0; 1) sufficiently close to 1 we have
h−1
t (x′i) < h−1

t (x′k), and (f(h−1
t (x′i))− h

−1
t (x′i))(f(h−1

t (x′k))− h
−1
t (x′k)) < 0.

Assume now that xϕ(k) ≤ xϕ(i). Three cases can occur:
If xϕ(k) ≤ h−1

t (x′i), then f−id must have constant sign on [xϕ(k);h
−1
t (x′k)];

yet h−1
t (x′i) belongs to this interval. That leads to a contradiction.

If xϕ(i) ≥ h−1
t (x′k), then f−id must have constant sign on [h−1

t (xi);xϕ(i)],
which contradicts the fact that h−1

t (x′k) belongs to this interval.
If h−1

t (xi) < xϕ(k) ≤ xϕ(i) < h−1
t (x′k), then since f − id has to have

constant sign on [h−1
t (x′i);xϕ(i)] and on [xϕ(k);h

−1
t (x′k)], it follows that it has

constant sign on [h−1
t (x′i);h

−1
t (x′k)]. This time again, this contradicts the fact

that f − id does not have the same sign at h−1
t (x′i) and at h−1

t (x′k).
Thus xϕ(i) < xϕ(k), and we get the assertion since Ψ−1 is increasing.

• Φ is one-to-one: This follows directly from monotonicity.
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Case 2. Let now {C ′i}i∈[[1;N ]] be a finite subset of {C ′i}i∈I′ . Assume that
there exists a sequence of conjugates of f , denoted by (hnfh

−1
n )n∈N, con-

verging to g as n→∞. Let m be a sufficiently large integer so that, for all
i ∈ [[1;N ]], hnfh−1

n (x′i) − x′i has the same sign as g(x′i) − x′i. Then f − id
has the same sign at h−1

m (x′i) as g − id has at x′i. By definition of the signa-
ture of f , for all i ∈ [[1;N ]], there exists xϕ(i) ∈ Ψ(C) such that f − id has
constant sign on the unoriented interval [xϕ(i);h

−1
m (x′i)]. One then defines

Φ(C ′i) = Ψ−1(xϕ(i)) and one shows, similarly to Case 1, that Φ is an increas-
ing and sign-preserving one-to-one map. Here, unlike the case where we had
an isotopy by conjugacy from f to g, ϕ depends on the chosen integer m,
so the proof would not work if we had not restricted it to a finite subset
of C ′.

Proposition 7.6. Let f and g be increasing C1-diffeomorphisms of [0; 1]
without hyperbolic fixed points. Denote by ((C = {Ci}i∈I ,≺), σ) and ((C ′ =
{C ′i}i∈I′ ,≺′), σ′) their respective signatures. Then:

1. There exists an isotopy by conjugacy from f to g if and only if there
exists a one-to-one and order-preserving map Φ : C ′ → C such that
σ(C ′i) = σ′(Φ(C ′i)) for all i ∈ I ′.

2. There exists a sequence of conjugates of f converging to g if and only
if, for every finite subset J ′ of I ′, there exists a one-to-one and order-
preserving map Φ : {C ′i}i∈J ′ → C such that σ(C ′i) = σ′(Φ(C ′i)) for all
i ∈ J ′.

End of the proof of Theorem 1.3 assuming Proposition 7.6. Consider the
signature in the sense A of f , ((C̃ = {C̃i}i∈I , ≺̃), σ̃). In each C̃i, choose a
point xi which is not a fixed point of f , and associate to it the connected
component Ci of [0; 1] \ Fix(f) to which it belongs. Define ≺ by: if i, j ∈ I,
then Ci ≺ Cj if and only if C ′i ≺′ C ′j , and the map σ by: if i ∈ I, then σ(Ci) =

σ̃(C̃i). Then choose (({Ci}i∈I ,≺), σ) to be the description of the signature
of f , and call such a description of the signature of a diffeomorphism of
Diff 1

+([0; 1]) the signature in the sense B. We will denote by ((C ′,≺′), σ′)
the signature in the sense B of g.

Assume that there exists a one-to-one and increasing map Φ : C ′ → C
such that σ(C ′i) = σ′(Φ(C ′i)) for all i ∈ I ′. If Df(0) = Dg(0) 6= 1, then one
can consider the smallest element of the ordered set C ′, denoted by (0; ag);
then Φ((0; ag)) is the smallest element of C, denoted by (0; af ). Otherwise,
Df(0) = Dg(0) = 1 and we define af = ag = 0.

Similarly, if Df(1) = Dg(1) 6= 1, then we can consider the greatest
element of C ′, denoted by (bg; 1); then Φ((bg; 1)) is the smallest element
of C, denoted by (bf ; 1). Here again, if Df(1) = Dg(1) = 1, then define
bf = bg = 1. Then f |[af ;bf ] and g|[ag ;bg ] are increasing C1-diffeomorphisms
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without hyperbolic fixed points. Moreover, Φ is a one-to-one and increasing
map from C ′ \ ((0; ag) ∪ (bg; 1)) to C \ ((0; af ) ∪ (bf ; 1)), compatible with
the signs σ′ and σ on these sets. Normalizing the diffeomorphisms f |[af ;bf ]

and g|[ag ;bg ] so as to obtain diffeomorphisms defined on [0; 1], one can use
Proposition 7.6 to obtain an isotopy by conjugacy from one to the other.
Let now h be an increasing C1-diffeomorphism of [0; 1] such that h(af ) = ag,
h(bf ) = bg and h is an affine map on [af ; bf ]. We define g1 = hgh−1. Then
there exists an isotopy by conjugacy from f |[af ;bf ] to g1|[af ;bf ].

On (0; af ), g1− id has sign σ′([0; ag]) = σ([0; af ]), and on (bf ; 1), g1− id
has sign σ′([bg; 1]) = σ([bf ; 1]). Moreover g1 − id has no fixed point on these
intervals. From Theorem 1.2 there exists an isotopy by conjugacy from f |[0;af ]

to g1|[0;af ], as well as from f |[bf ;1] to g1|[bf ;1]. From these three isotopies by
conjugacy, by following the same method as in the proof of Theorem 1.8,
one can construct an isotopy by conjugacy from f to g1, and the transitivity
of the relation  enables us to conclude.

The proof in the case of a sequence of conjugates follows exactly the same
scheme.

Proposition 7.7. Let f, g be increasing C1-diffeomorphisms of [0; 1]
such that:

• (f − id)(g − id) ≥ 0;
• Df(0) = Dg(0) = Df(1) = Dg(1) = 1;
• g has no fixed point in (0; 1);
• if x, y /∈ Fix(f), then z /∈ Fix(f) for all x ≤ z ≤ y.

Then there exists an isotopy by conjugacy from f to g, denoted by
(htfh

−1
t )t∈[0;1), and a constant C > 0 such that, for all t ∈ [0; 1),

‖htfh−1
t − g‖1 < C‖f − g‖1.

Proof. We prove the result in the case where f has an interval of fixed
points [0; a] and has no fixed point in (a; 1). The other cases can be handled
similarly.

Let (at)t∈[0;1) be a continuous path with a0 = a and at → 0 as t → 1,
and (ht)t∈[0;1) be a continuous path in Diff 1

+([0; 1]) such that ht(a) = at
and {‖ht‖1 : t ∈ [0; 1)} is bounded (for example one can choose δ <
min((1− a)/2, a/2) and choose ht coinciding on [0; a − δ] with the affine
map from [0; a] into [0; at], and on [a + δ; 1] with the affine map from [a; 1]
into [at; 1], and then smooth the map on [a− δ; a+ δ]).

Then htfh−1
t converges to f1, where f1 has no fixed points in (0; 1) and

(f − id)(f1 − id) ≥ 0 on [0; 1]. Then, by using Theorem 1.2 to obtain an
isotopy by conjugacy from f1 to g, and then Proposition 7.4 to combine the
two isotopies, we obtain an isotopy by conjugacy from f to g.



Interval diffeomorphisms 241

By a similar method to the one presented in the proof of Theorem 1.8,
one can deduce the following corollary:

Corollary 7.8. Let f, g be increasing C1-diffeomorphisms of [0; 1] with-
out hyperbolic fixed points, and B = {Bi}i∈I be the set of connected compo-
nents of [0; 1] \ Fix(g). Assume that (g|Bi − id)(f |Bi − id) ≥ 0 for all i ∈ I,
and f = id outside

⋃
i∈I Bi. Then there exists an isotopy by conjugacy from

f to g.

Proof of Proposition 7.6. Let (({C ′i}i∈I′ ,≺′), σ′) be the signature of g in
the sense A. The set (({Ci}i∈I ,≺), σ) will be considered as the signature of
f in the sense B.

Let ε > 0, and denote by Jε the finite subset of I ′ defined by: i ∈ Jε
if there exists x ∈ C ′i such that max(|g(x) − x|, |Dg(x) − 1|) ≥ ε, so that
‖g|{⋃i∈Jn C

′
i
− id|{⋃i∈Jε C

′
i
‖1 < ε.

Let Φε be a one-to-one map from {C ′i}i∈Jε to {Ci}i∈I , and define an
increasing C1-diffeomorphism f0 of [0; 1] as follows:

• on each Φε(C ′i) = (ai; bi), f0 = id on
(
ai;

2
3ai + 1

3bi
]
∪
[

1
3ai + 2

3bi; bi
)
;

f0 has no fixed point on
(

2
3ai + 1

3bi;
1
3a − i + 2

3bi
)
; and on this latter

interval, f0 − id has the same sign as f − id;
• f0 = id elsewhere.

Proposition 7.5 again yields an isotopy by conjugacy from f to f0.
Define now f1 ∈ Diff 1

+([0; 1]) by:

• for all i ∈ Jε, f1|C′i is conjugate to f0|Φε(C′i)
(by an increasing and affine

C1-diffeomorphism, denoted by h̃i);
• f1 = id outside

⋃
i∈Jε C

′
i.

Note that the signature of f1 in the sense B is ({C ′i}i∈Jε , σ′).
Claim. There exists an isotopy by conjugacy from f0 to f1.

Proof of the Claim. Define h0 = id, and, if i ≥ 1, define:

• ϕ(i) < i to be the integer satisfying aϕ(i) = max{aj : j < i and
aj < ai}; if this set is empty, then ϕ(i) = 0;
• ψ(i) < i to be the integer satisfying aψ(i) = min{aj : j < i and
aj > ai}; if this set is empty, then ψ(i) = 1;

• a conjugacy hi ∈ Diff 1
+([0; 1]) in such a way that hi|[ 2

3
a′i+

1
3
b′i;

1
3
a′i+

2
3
b′i]

coincides with h̃i; on [b′ϕ(i); a
′
i], hi coincides with the affine map from[

1
3a
′
ϕ(i) + 2

3b
′
ϕ(i);

2
3a
′
i + 1

3b
′
i

]
to
[

1
3aϕ(i) + 2

3bϕ(i);
2
3ai + 1

3bi
]
; on [b′i; a

′
ψ(i)],

hi coincides with the affine map from
[

1
3a
′
i + 2

3b
′
i;

2
3a
′
ψ(i) + 1

3b
′
ψ(i)

]
to
[

1
3ai + 2

3bi;
2
3aiψ(i) + 1

3bψ(i)

]
; hi = hi−1 on

[
0; 1

3a
′
ϕ(i) + 2

3b
′
ϕ(i)

]
∪[

2
3a
′
ψ(i) + 1

3b
′
ψ(i); 1

]
.
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For all i ∈ N∗ and t ∈ [0; 1), define ht,i = thi + (1 − t)hi−1. Choose a
non-decreasing sequence (tn)n∈N ⊂ [0; 1) with t0 = 0 and tn → 1 as n→∞,
and, given ti ≤ t < ti+1, define ht = h t−ti

ti+1−ti
,i+1

. One can check that the path

of C1-diffeomorphisms constructed in this way is continuous. Furthermore,
htf0h

−1
t → f1 as t→ 1 in the C1-topology.

Indeed, let ε > 0. From the regularity of f0 and f1, and since their fixed
points, except 0 and 1, are not hyperbolic, there exists n ∈ N such that
‖f0|Ci − id‖1 < ε/2 and ‖f1|Ci − id‖1 < ε/2 for all i ≥ n. In particular, if
t ≥ 0, since ht is an affine map on the intervals where f0 6= id, one also has
‖htf0h

−1
t |ht(Ci) − id‖1 < ε/2.

On the other hand, if t ≥ tn−1, then htf0h
−1
t = f1 on

⋃
k<nC

′
k. On

the complement of this set, htf0h
−1
t and f1 either coincide with the identity

(the former outside
⋃
k≥n ht(Ck) and the latter outside

⋃
k≥nC

′
k), or, as

we just saw, are ε/2-close to the identity in the C1-norm. Consequently,
‖htf0h

−1
t − f1‖1 < ε for all t ≥ tn−1, and the proof is complete.

Let gε be the increasing C1-diffeomorphism coinciding with g on
⋃
i∈Jε C

′
i

and with id elsewhere, and define a C1-diffeomorphism g̃ε by: g̃ε has no fixed
point and has the same sign as σ′(C ′i) on C ′i, and coincides with id outside⋃
i∈Jε C

′
i.

By Corollary 7.8, there exists an isotopy by conjugacy from f1 to g̃ε, and
then Theorem 1.8 ensures the existence of an isotopy by conjugacy from g̃ε
to gε.

Hence, by Proposition 7.4, there exists an isotopy by conjugacy from f
to gε. As a consequence, there exists a conjugate of f ε-close to gε, thus also
2ε-close to g, and that is true for all ε > 0; the second item of the theorem
is thus proved.

The first item can be proved by following the same reasoning; the only
difference is that one does not “cancel the waves” of g which are smaller
than ε before applying the described method. Consequently, one uses the
one-to-one map which maps C ′ to C, which in this case does exist without
the hypothesis of finiteness of the signature of g, and, by using the interme-
diate diffeomorphisms as in Case 2 (except gε), one obtains the existence of
isotopies that one combines by using Proposition 7.4, to obtain an isotopy
by conjugacy from f to g.

8. Annex

8.1. Statement and structure of the proof. Here we prove Lem-
ma 5.5. The method of proof has been kindly suggested by C. Bonatti.

For convenience, we first transpose the problem to the following equiva-
lent proposition, whose proof is the subject of this Annex:
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Proposition 8.1. Let f be a C1-diffeomorphism of [0;∞) without fixed
points except 0, such that f is a contraction (i.e. f− id < 0 on (0;∞)). Then
there exist C1-contractions f+ and f− of [0;∞) such that:

• Df+(0) = Df(0) = Df−(0);
• f−(x) < f(x) < f+(x) for all x > 0;
• for each x > 0, there exists n ∈ N∗ such that fn−(x) < fn+1(x) <
fn(x) < fn−1(x) < fn+(x).

Remark. If f+ and f− are C1-contractions of [0;∞) with f− < f < f+

and satisfying the conclusions of the proposition only on a neighbourhood
of 0, then f+ and f− satisfy the conclusions on the whole half-line. Thus,
it will be sufficient to construct these two contractions on a neighbourhood
of 0, and then to extend them to contractions remaining respectively greater
and smaller than f .

The first step consists in proving that, if f is embeddable in a C1-flow,
then f satisfies the conclusions of Proposition 8.1.

Lemma 8.2. Let f be a C1-contraction of [0;∞) such that f is the time-
one map of a C1-vector field X on [0;∞). Then there exist C1-contractions
f+ and f− of [0;∞) satisfying the conclusions of Proposition 8.1.

We will hence reduce the initial problem to the following result:

Lemma 8.3. If f is a C1-contraction of [0;∞), then there exist C1-con-
tractions g+, g− of [0;∞) and C1-vector fields X+, X− of [0;∞) such that:

• g− < f < g+ on [0;∞);
• g+, g− are the respective time-one maps of X+, X−;
• Dg−(0) = Df(0) = Dg+(0).

Indeed, by applying Lemma 8.2 to the contractions g+ and g−, one can
easily find the desired contractions f+ and f− for f .

8.2. Proof of Lemma 8.2. Let ϕ(t, x) be the relevant flow. By consid-
ering 1 as origin, one can write each x ∈ (0; 1] in the form x = ϕ(t(x), 1).
Then x 7→ t(x) is a positive, strictly decreasing map, and tends to ∞ as
x→ 0. Moreover, it is differentiable with derivative 1/X(x) for all x ∈ (0; 1].

Define f+ and f− on (0; f(1)) by

f+(x) = ϕ(1− 1/t(x), x) and f−(x) = ϕ(1 + 1/t(x), x)

One can check that f− < f < f+ < id on (0; f(1)). Let us now show
that these two formulas define C1-contractions of (0; f(1)) with the same
derivative at 0 as f .
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Indeed, for f− one has

d

dx

(
ϕ

(
1 +

1

t(x)
, x

))
= X

(
ϕ

(
1 +

1

t(x)
, x

))
· 1

X(x)
−X

(
ϕ

(
1 +

1

t(x)

))
· 1

X(x)
· 1

t2(x)
,

the first term coming from the derivative of ϕ with respect to the second
variable, and the second term from the derivative of ϕ with respect to time.

Notice that the right hand side above is strictly positive, as t(x) > 1 on
(0; f(1)). Hence f− is a diffeomorphism from (0; f(1)) on its image.

It remains to show that f− is C1 at 0 and that Df−(0) = Df(0). For
that, just notice that the first term above has the same limit when x→ 0 as
X(f(x))/x, and this expression tends to Df(0). The second term tends to 0
by the same reasoning. The case of f+ is analogous.

It remains to prove the third conclusion of Proposition 8.1. Write fn(x) =
ϕ(n, x) for all x ∈ (0; 1] and n ∈ N. Set fn−(x) = xn. Then

xn = ϕ(tn, x), where tn = n+
1

t(xn−1)
+

1

t(xn−2)
+ · · ·+ 1

t(x1)
+

1

t(x)
.

It suffices to show that
1

t(xn−1)
+

1

t(xn−2)
+ · · ·+ 1

t(x1)
+

1

t(x)
> 1.

We argue by contradiction: if this sum were bounded by some constant C,
then each t(xn) would be smaller than n+ C, hence

1

t(xn−1)
+

1

t(xn−2)
+ · · ·+ 1

t(x1)
+

1

t(x)
≥

n∑
k=1

1

k + C
,

which can be arbitrarily large, a contradiction.
Finally, we extend the constructed diffeomorphisms f+ and f− restricted

to a small neighbourhood of 0 to C1-contractions of [0;∞) in such a way that
the inequality f− < f < f+ is preserved.

8.3. Proof of Lemma 8.3. In the case where Df(0) = 1, the proof is
as follows. We define the following C1-vector fields on [0; 1]:

X−(x) =
1

2
(f(x)− x)

d

dx
, X+(x) = 2(f(x)− x)

d

dx
.

One can check that they have the desired properties, by using the fact that
f is C1-close to the identity on a neighbourhood of 0.

The case where Df(0) 6= 1 is more difficult, and is handled in two steps.
First, we notice that if the derivative of f is monotonic, then f satisfies

the conclusions of Lemma 8.3:
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Lemma 8.4. Let f be a C1-contraction of [0;∞) such that its derivative
is a monotonic continuous map which is not equal to 1 at 0. Then there
exist C1-contractions g+, g− of [0;∞) and C1-vector fields X+, X− on [0;∞)
satisfying the conclusions of Lemma 8.3.

Finally, the following lemma will enable us to complete the proof:

Lemma 8.5. Let f be a C1-contraction of [0;∞) such that Df(0) 6= 1.
Then there exist C1-contractions h+, h− of [0;∞) such that:

• h− < f < h+ on some interval (0; ε], where ε > 0;
• Dh−(0) = Df(0) = Dh+(0);
• h− and h+ have monotonic derivatives.

Indeed, given h+, h−, one can apply Lemma 8.4 to each of them to obtain
C1-contractions which will be the time-one maps of C1-vector fields on [0;∞)
and be respectively greater and smaller than f .

Proof of Lemma 8.4. Assume that Df is increasing. Since f is greater
than the homothety x 7→ Df(0) · x, one can define g−(x) = Df(0) · x,
which is the time-one map of the linear vector field X−(x) = log(Df(0)) ·
x d
dx and satisfies the desired conditions. As regards g+, consider the vector

field X+(x) = log
(

x
f−1(x)

)
· x d

dx on (0; f(1)), and define g+ as its time-one
map. Since Df is increasing, so is f(x)/x, and hence |log(y/f−1(y))| ≤
|log(f(x)/x)| for all y ∈ [f(x);x]. Given x0 ∈ (0; f(1)), for all y ∈ [f(x0);x0],
the norm ofX+(y) is smaller than the one of log(f(x0)/x0)·x d

dx , whose time-
one map maps x0 to f(x0). It follows that x0 takes a time longer than 1 to
reach f(x0) along the orbit of X+. Hence g+(x0) ∈ [f(x0);x0], and thus
g+(x0) ≥ f(x0): the map g+ is greater than f .

One has now to check that g+ is C1 also at 0, and that its derivative at
this point is the same as that of f ; this follows from the expression of the
derivative of X+ by letting x→ 0.

In the case where Df is decreasing, we follow the same reasoning with
g+(x) = Df(0)·x and g− being the time-one map of the vector fieldX−(x) =
log(x/f−1(x)) · x d

dx .

Proof of Lemma 8.5. On a neighbourhood of 0 define

h+(x) =

x�

0

inf
y∈[0;z]

Df(y) dz and h−(x) =

x�

0

sup
y∈[0;z]

Df(y) dz.

These are C1-maps whose derivatives are strictly smaller than 1, so they
define C1-contractions on a neighbourhood of 0. Their derivative at 0 is
Df(0). It remains to extend h+ and h− as C1-diffeomorphisms of the half-
line.
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9. Appendix. We present here the proof, due to A. Navas, of Theo-
rem 1.11. The proof is based on ergodic theory and reduces the problem to
the approximate solving of a cohomological equation. The starting point is
the following remark:

Let f be a C1-diffeomorphism of [0; 1] without hyperbolic fixed points. We
want to find a C1-diffeomorphism ϕ which conjugates f to a C1-diffeomor-
phism close to the identity. This amounts to finding ϕ such that logD(ϕfϕ−1)
is close to 0, in other words such that log(Dϕ) − log(Dϕ) ◦ f is close to
logDf . Thus we want to find approximate and continuous solutions to the
cohomological equation

ρ− ρ ◦ f = logDf .

After adding to ρ a constant if necessary, the map ϕ(x) =
	x
0 exp(ρ(u)) du

becomes a C1-diffeomorphism of [0; 1] satisfying the desired conditions. More
precisely, that argument shows:

Lemma 9.1. Let f be a diffeomorphism of [0; 1] or of the circle S1 = R/Z.
Let (ρt)t∈[0;1) be a continuous path of continuous maps such that ρt − ρt ◦ f
converges uniformly to logDf as t → 1 and such that

	1
0 exp ρt(u) du = 1.

Define

ht(x) =

x�

0

exp(ρt(u)) du.

Then (ht)t∈[0;1) is a continuous path of C1-diffeomorphisms of the interval
(or of the circle) and is an isotopy by conjugacy from f to the identity (in
the case of the interval) or to the rotation of the same rotation number as f
(in the case of the circle).

Then we have to prove the existence of the path ρt. The following propo-
sition ensures the existence of approximate solutions to the cohomological
equation.

Proposition 9.2. Let f be a C1-diffeomorphism of [0; 1] without hyper-
bolic fixed points (resp. a diffeomorphism of the circle with irrational rotation
number), and ε > 0. Then there exists a continuous map ρ of [0; 1] (resp.
of S1) such that ‖ρ− ρ ◦ f − log(Df)‖∞ < ε.

Proof. Given an integer k ≥ 1 and a map ϕ from [0; 1] to R, consider the
kth Birkhoff sum Sk(ϕ) =

∑k−1
i=0 ϕ(f i), and, given n ∈ N, consider the map

ρn defined by

ρn =
S1(log(Df)) + S2(log(Df)) + · · ·+ Sn(log(Df))

n
.

One can then calculate that

ρn − ρn+1 ◦ f = log(Df)− Sn(log(Df)) ◦ f
n

.

One concludes by using the following claim:
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Claim. Sn(log(Df))/n converges uniformly to 0 as n→∞.

Proof of the Claim: This is a consequence of the fact that the hypotheses
“no hyperbolic fixed points” and “irrational rotation number” imply that,
for every probability measure µ which is invariant under f and ergodic, the
Lyapunov exponent of f with respect to µ, given by λ(µ) =

	
log(Df)dµ, is

equal to 0. See [PS] or [H] for more details.

Now we are able to construct a sequence (hn =
	x
0 exp(ρ(u)) du)n∈N of

conjugacies such that hnfh−1
n converges to the identity in the C1-topology.

We still have to obtain not only a sequence of conjugates, but an isotopy by
conjugacy from f to the identity.

Given n ∈ N and λ ∈ (0; 1), if t = λ
n + 1−λ

n+1 , we denote by ρt the map (of
the interval or of the circle) defined by

ρt = λρn + (1− λ)ρn+1.

One can now conclude the proof by applying the following lemma, whose
proof is immediate:

Lemma 9.3. (ρt)t∈[0;1) is a continuous path of continuous maps such that	1
0 exp ρt(u) du = 1 for all t, and ρt− ρt ◦ f converges uniformly to logDf as
t→ 1.
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