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AN ASYMPTOTIC FORMULA FOR GOLDBACH’S CONJECTURE
WITH MONIC POLYNOMIALS IN Z[θ][x]

BY

ABÍLIO LEMOS and ANDERSON LUÍS ALBUQUERQUE DE ARAUJO (Viçosa)

Abstract. Let k ≥ 2 be a squarefree integer, and

θ =

{√
−k if −k 6≡ 1 (mod 4),

(
√
−k + 1)/2 if −k ≡ 1 (mod 4).

We prove that the number R(y) of representations of a monic polynomial f(x) ∈ Z[θ][x],
of degree d ≥ 1, as a sum of two monic irreducible polynomials g(x) and h(x) in Z[θ][x],
with the coefficients of g(x) and h(x) bounded in modulus by y, is asymptotic to (4y)2d−2.

1. Introduction. In 1965, Hayes [H1] showed that Goldbach’s conjec-
ture is considerably simpler for polynomials with integer coefficients.

Theorem 1.1. If f(x) is a monic polynomial in Z[x] of degree d > 1,
then there are monic irreducible polynomials g(x) and h(x) in Z[x] with
f(x) = g(x) + h(x).

In a recent note, Saidak [S], improving on a result of Hayes, obtained a
Chebyshev-type estimate for the number R(y) = Rf (y) of representations of
the monic polynomial f(x) ∈ Z[x] of degree d > 1 as a sum of two irreducible
monics g(x) and h(x) in Z[x], with the coefficients of g(x) and h(x) bounded
in absolute value by y. Saidak’s argument with slight modifications shows
that, for y sufficiently large,

c1y
d−1 < R(y) < c2y

d−1,

where c1 and c2 are constants that depend on the degree and coefficients of
the polynomial f(x).

Recently, Kozek [K] proved that R(y) is asymptotic to (2y)d−1, i.e.,

lim
y→∞

R(y)

(2y)d−1
= 1.
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His approach implies that there is a constant c3, depending only on d, such
that if y is sufficiently large, then

R(y) = (2y)d−1 + E, where |E| ≤ c3yd−2 ln y.

In 2011, Dubickas [D1] proved a more general result for the number
of representations of f as a sum of r monic irreducible (over Q) integer
polynomials f1, . . . , fr of height at most y, i.e.,

f(x) = f1(x) + · · ·+ fr(x).

For r = 2, he proved that

(1) R(y) = (2y)d−1 + O(yd−2)

for d ≥ 4,

(2) R(y) = (2y)2 + O(y ln(y))

for d = 3, and

(3) R(y) = 2y + O(
√
y)

for d = 2. Moreover, for each d ≥ 4, the error term in (1) is the best
possible for some f . Note that these results improve the error term proved
by Kozek [K].

In 2013, Dubickas [D2] proved a necessary and sufficient condition on the
list of nonzero integers u1, . . . , ur, r ≥ 2, under which a monic polynomial
f(x) ∈ Z[x] is expressible by a linear form u1f1(x) + · · ·+ urfr(x) in monic
polynomials f1(x), . . . , fr(x) ∈ Z[x].

We say that a ring D has property (GC) if

every element of D[x] of degree d ≥ 1
can be written as the sum of two irreducibles in D[x].

IfD is the ring of integers, then Theorem 1.1 implies that Z has property GC.

Pollack proved the following:

Proposition 1.1 ([P2, Theorem 1]). Suppose that D is an integral do-
main which is Noetherian and has infinitely many maximal ideals. Then D
has property (GC).

Corollary 1.1 ([P2, Theorem 2]). If S is any integral domain, then
D = S[x] has property (GC).

When D = Fq is a finite field (note that in this case, the assumptions
of Proposition 1.1 do not hold), Hayes [H2], in 1966, gave an asymptotic
formula for the number R(f) of representations of an odd polynomial f(x) ∈
Fq[x] as a sum αg(x) + βh(x) + γt(x) = f(x) with three monic irreducible
polynomials g(x), h(x) and t(x) in Fq[x], where α, β, γ in F∗q are such that
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α+ β + γ = fr and fr is the leading coefficient of f(x). Hayes’ formula is

R(f) = r−3q2rS(f) +O(q1/4q(5/4+ε)r),

where r = deg f , S(f) is the singular series (see [H2, (6.10)]), and the
constant implied in O is independent of both f and q. The number ε is
defined as max{1/2, ε∗}, where ε∗ is the least upper bound of the real parts
of the zeros of certain L-functions. Advances in this direction can be found
in Pollack [P1, P3], Webb [W] and Car [C1, C2, C3].

In this paper, we do not distinguish the sum g(x)+h(x) from h(x)+g(x)
and we recall that a monic polynomial in Z[x] is irreducible over Z if and
only if it is irreducible over Q.

Following the results of Hayes and Pollack with D = Z[θ], where θ has
the properties described in Lemma 2.1 below, and following the ideas of
Kozek [K], we prove that the number R(y) of representations of a monic
polynomial f(x) ∈ Z[θ][x] as a sum of two monic irreducible polynomials
g(x) and h(x) in Z[θ][x], with the coefficients of g(x) and h(x) bounded in
modulus by y, is asymptotic to (4y)2d−2.

2. Notation and preliminary results. Some well known facts are
presented below. Let f(x) =

∑d
i=0 fix

i be a polynomial in C[x]. Set

H(f) = max
0≤i≤d

|fi| and M(f) = exp
( 1�

0

ln |f(e2πit)| dt
)
.

The expressions H(f) and M(f) are known as the height and Mahler’s
measure of f , respectively (see [M1, M2]). Mahler [M2] showed that for
0 ≤ i ≤ n, |fi| ≤

(
n
i

)
M(f), and that M(f) is multiplicative. Another result

of Mahler is

(4)
M(f)√
d+ 1

≤ H(f) ≤ 2d−1M(f).

An important property of Mahler’s measure is

(5) 1 ≤M(f) ≤
( d∑
i=0

|fi|2
)1/2

,

which was proved by Landau [L].

Assume that f(x) = a(x)b(x) with deg a = d1 and deg b = d2, i.e.,
d = d1 + d2. A direct application of Jensen’s formula (see [M1]) results in
H(f) = H(ab) ≤ (1 + d1)H(a)H(b) if d1 ≤ d2. To see this, let

f(x) =
d∑
i=0

fix
i, a(x) =

d1∑
k=0

akx
k, b(x) =

d2∑
t=0

btx
t.
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Then

|fi| =
∣∣∣ d1∑
j=0

ajbi−j

∣∣∣ ≤ (1 + d1) max |ak|max |bt| = (1 + d1)H(a)H(b).

Moreover,

(6) H(ab) ≥ H(a)H(b)

2d−2
√
d+ 1

,

which follows from the fact that M(f) is multiplicative and from (4) for
a(x) and b(x), i.e., H(a) ≤ 2d1−1M(a), H(b) ≤ 2d2−1M(b) and M(ab) ≤
H(ab)

√
d+ 1.

Using the above, we prove the result below.

Lemma 2.1. Let f(x) = a(x)b(x) be a polynomial of degree d in Z[θ][x],
where a(x), b(x) ∈ Z[θ][x] and

(7) θ =

{√
−k if −k 6≡ 1 (mod 4),

(
√
−k + 1)/2 if −k ≡ 1 (mod 4),

where k is a squarefree integer and k ≥ 2. Let

a(x) =
m∑
i=0

aix
i and f(x) =

d∑
i=0

fix
i.

Then, for 0 ≤ l ≤ m,

|al| ≤ 22d−2
√
d+ 1

( d∑
i=0

|fi|2
)1/2

.

Proof. First, we observe that |r + sθ| ≥ 1/2 for any θ as above and
r, s ∈ Z with r 6= 0 or s 6= 0. Indeed,

|r + sθ| =

{√
r2 + s2k if −k 6≡ 1 (mod 4),

1
2

√
r21 + s2k if −k ≡ 1 (mod 4),

where r1 = 2r+s. Since r and s are integers with r 6= 0 or s 6= 0, and k > 1,
we have

√
r2 + s2k ≥ 1 and

√
r21 + s2k ≥ 1. Consequently, H(b) ≥ 1/2.

From (4) and (6), we have

H(a)H(b) ≤ 22d−3
√
d+ 1M(f).

Now, using (5), it follows that

1

2
|al| ≤

1

2
H(a) ≤ H(a)H(b) ≤ 22d−3

√
d+ 1

( d∑
i=0

|fi|2
)1/2

.
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Consequently,

|al| ≤ 22d−2
√
d+ 1

( d∑
i=0

|fi|2
)1/2

.

Before we state the next lemma, we recall the big O notation. For two
functions r(y) and φ(y), we write r(y) = O(φ(y)) as y → ∞ if there is a
y0 and a C > 0 such that |r(y)| ≤ Cφ(y) for all y > y0. In the event that
the constant C depends only on a value s, we write |r(y)| ≤ Csφ(y), and
also r(y) = Os(φ(y)). If C depends on the coefficients and the degree of a
polynomial f(x), we use Of instead.

Lemma 2.2. Let d > 1 be an integer and let gd−1 ∈ Z[θ] be fixed, with
θ as in Lemma 2.1. For each y ≥ 2, let ry denote the number of d-tuples
(gd−1, gd−2, . . . , g1, g0) of elements in Z[θ] satisfying |gi| ≤ y for each i with
0 ≤ i ≤ d− 1 such that the polynomial

g(x) =
d−1∑
i=0

gix
i + xd

is reducible. Then ry = Og(y
2d−4 ln y). In particular, ry = 0 if y < |gd−1|.

Proof. Let g(x) ∈ Z[θ](x) be as above with gd−1 fixed. Then there are
monic polynomials a(x), b(x) ∈ Z[θ][x] of degree ≥ 1 such that g(x) =
a(x)b(x). Let

deg(a) = m ≥ n = deg b,

where m+ n = d. We write

a(x) = xm + am−1x
m−1 + · · ·+ a1x+ a0,

b(x) = xn + bn−1x
n−1 + · · ·+ b1x+ b0.

We assert that the number of monic polynomials g(x) that we are considering
with g0 = 0 is Og(y

2d−4). Indeed, denoting by gj = gj,1 + i
√
k gj,2, we have

|gj | =
√
g2j,1 + kg2j,2 ≤ y. Therefore, the number of possibilities for gj is

bounded by

(8)

(2y+1)

(
2
y√
k

+1

)
−2

y√
k
−
[
2
y√
k
−2

√
2y − 1√
k

]
−· · ·−

[
2
y√
k
−2

√
y2 − 1√
k

]
,

with the sum having y terms, i.e., (8) is Ok(y
2), and the assertion follows.

The argument above is sufficient to show that the number of d-tuples

(am−1, am−2, . . . , a1, a0, bn−1, bn−2, . . . , b1, b0)

as above with a0b0 6= 0 is equal to Og(y
2d−4 ln y).
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We consider a(x), which has degree m ≤ d − 1. A similar argument
applies to b(x). For 1 ≤ l ≤ m− 1, Lemma 2.1 implies

|al| ≤ 22d−2
√
d+ 1

( d∑
i=0

|gi|2
)1/2

≤ 22d−2
√
d+ 1((d+ 1)y2)1/2 = Cdy,

where Cd depends only on d. Thus, the number of (d− 4)-tuples

(am−2, . . . , a1, bn−2, . . . , b1)

is Og(y
2m−4y2n−4) = Og(y

2d−8).
Observe that when we multiply a(x) and b(x), the value of the coefficient

gd−1 is am−1 + bn−1, since a(x) and b(x) are both monic. Also, since gd−1
is fixed, when am−1 is determined, bn−1 is determined as well. Hence, the
number of pairs (am−1, bn−1) is Ok(y

2).
Since a0b0 = g0, we have 1 ≤ |a0b0| ≤ y, i.e.,

1 ≤ (a20,1 + ka20,2)(b
2
0,1 + kb20,2) ≤ y2.

Thus, the number of pairs (a0, b0) is bounded by

16
∑
q≤y2

∑
δ|y2

1 = 16
∑
δ≤y2

∑
q≤y2
δ|q

1 ≤ 16
∑
δ≤y2

y2

δ

≤ 16y2
∑
δ≤y2

1

δ
≤ 16y2

(
1 +

y2�

1

1

t
dt

)
= O(y2 ln y2) = O(y2 ln y),

where 16 appears because each term of a0 and b0 may be either positive or
negative.

Finally, for an integer d > 1 and a fixed gd−1 ∈ Z[θ], the number of
d-tuples

(a0, a1, . . . , am−1, b0, b1, . . . , bn−1),

corresponding to the coefficients of two monic polynomials a(x) and b(x) in
Z[θ][x] of degrees m,n ≥ 1 such that g(x) = a(x)b(x) and the coefficients of
g(x) are bounded in absolute value by y is

ry = Og(y
2m−4y2n−4y2(ln y)y2) = Og(y

2d−4 ln y) as y →∞,
with the constants depending only on d and k.

Remark 2.1. If we replace (7) by

θ =

{√
k if k 6≡ 1 (mod 4),

(
√
k + 1)/2 if k ≡ 1 (mod 4),

where k ≥ 2 is a squarefree integer and we consider Z[θ] with the usual
norm induced by Q, our argument cannot be applied because, for y large
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enough, there are infinitely many possibilities for gj = gj,1 +
√
k gj,2 with

gj,1, gj,2 ∈ Z and |gj | ≤ y. Therefore, we could not achieve the limitation (8).

Remark 2.2. If we remove the condition in Lemma 2.2 that gd−1 is
fixed, then ry = Og(y

2d−2 ln y). This is a direct consequence of the same
arguments used to prove (8). If the degree of g is d−1, and in this case gd−2
is not fixed, then ry = Og(y

2d−4 ln y).

Lemma 2.3. Let f(x) be a monic polynomial in Z[θ][x] of degree d > 1.
Consider pairs (g(x), h(x)) of monic polynomials such that f(x) = g(x) +
h(x), where g(x) or h(x) is reducible with deg g = d and 1 ≤ deg h ≤ d− 1,
and the coefficients of g(x) and h(x) are bounded in modulus by y. The
number of such pairs is Of (y2d−4 ln y).

Proof. Write

(9) f(x) = xd +
d−1∑
j=0

fjx
j , g(x) = xd +

d−1∑
j=0

gjx
j , h(x) = xn +

n−1∑
j=0

hjx
j ,

where fj = gj + hj and 1 ≤ n ≤ d− 1.

Suppose at least one of g(x) or h(x) is reducible. Once g(x) or h(x) is
fixed, it determines the other. Thus, we can count separately when g(x) is
reducible and when h(x) is reducible. We count the ways that g(x) might be
reducible. Since f(x) = g(x) + h(x), by (9), we have either gd−1 = fd−1 or
gd−1 = fd−1 − 1. Therefore, in any case, gd−1 is fixed. Now, the coefficients
of g are bounded in modulus by y, and thus by Lemma 2.2, the number
of monic reducible polynomials g(x) is Of (y2d−4 ln y). Now, we count the
ways that g(x) might be reducible. If deg h = d − 1, then by Remark 2.2,
the number of monic reducible polynomials h(x) is Of (y2d−4 ln y), and if
deg h < d− 1, this number is smaller, also by Remark 2.2.

3. Main result

Theorem 3.1. Let f(x) be a monic polynomial in Z[θ][x] of degree d > 1
and with θ as in Lemma 2.1. The number R(y) of representations of f(x) as
a sum of two monic irreducible g(x) and h(x) in Z[θ][x], with the coefficients
of g(x) and h(x) bounded in modulus by y, is asymptotic to (4y)2d−2.

Proof. Let

f(x) = xd +
d−1∑
j=0

fjx
j ,

where fj = fj,1 + i
√
k fj,2. We are looking for pairs of monic polynomials

g(x), h(x) ∈ Z[θ][x] such that f(x) = g(x) + h(x) and the coefficients of
g(x) and h(x) are bounded in modulus by y. Without loss of generality, let
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deg g > deg h, and observe that deg g = d and 1 ≤ deg h ≤ d − 1. In this
case,

g(x) = xd +
d−1∑
j=0

gjx
j , h(x) = xn +

n−1∑
j=0

hjx
j ,

where gj = gj,1+i
√
k gj,2, hj = hj,1+i

√
k hj,2, fj = gj+hj and 1 ≤ n ≤ d−1.

If y ≥ 1 + {|f0|, |f1|, . . . , |fd−1|}, then the total number of pairs of monic
(not necessarily irreducible) polynomials g(x), h(x) is

d−2∑
S=0

S∏
j=0

(2byc+ 1− |fj,1|)(2byc+ 1− |fj,2|) = (4y)2d−2 + Of (y2d−4),

since fj,1 + i
√
k fj,2 = gj,1 + hj,1 + i

√
k (gj,2 + hj,2).

By Lemma 2.3, almost all of these pairs of monic polynomials g(x), h(x)
are irreducible. In fact, the number of pairs (g(x), h(x)) where g(x) or h(x)
is reducible is Of (y2d−4 ln y). Thus,

R(y) =
d−2∑
S=0

S∏
j=0

(2byc+ 1− |fj,1|)(2byc+ 1− |fj,2|) + Of (y2d−4 ln y)

= ((4y)2d−2 + Of (y2d−4 ln y)) + Of (y2d−4 ln y)

= (4y)2d−2 + Of (y2d−4 ln y).

Since any constant depending only on the coefficients and degree of f(x) is
small compared to ln y when y is sufficiently large, we get

R(y) ∼ (4y)2d−2.
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